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We consider three related representation theories: That of a quantum group
at a complex root of unity, that of an almost simple algebraic group over an
algebraically closed �eld of prime characteristic and that of the symmetric
group.

Soergel has recently computed the characters of the quantum tilting mod-
ules. Applying Soergels result we determine some multiplicities of wallcrossed
quantum tilting modules. This result is based on the combinatorics of right
cells in the aÆne Weyl group, the group generated by re
ections in the walls
of the �rst alcove. One of these re
ections, s0, is not in the �nite Weyl group;
the right cell containing this re
ection is central to this paper and we denote
it by C(s0). Identifying alcoves and Weyl group elements, we view C(s0) as
a set of alcoves. The multiplicities determined is the multiplicities of the in-
decomposable quantum tilting modules with highest weight in an alcove of
C(s0).

In type A
n�2, Dn, E6, E7, E8 and G2 we obtain a generalization to the

modular case. For any modular tilting module we give a formula describing
the multiplicities of the modular indecomposable tilting modules with highest
weight in an alcove of C(s0). This formula is the main result of our paper.

As an application of the modular multiplicity formula, we determine the
dimension of a set of simple representations of the symmetric group over a �eld
of characteristic p. The dimension formula covers simple modules parametrized
by partitions (n1; : : : ; nn) with either n1 � nn�1 < p � n + 2 or n2 � nn <

p�n+2. This generalizes a result of Mathieu [22] as well as a recent result by
Jensen and Mathieu [12]. Further, it proves in part a conjecture by Mathieu
[23].

Key Words: tilting modules, cells of aÆne groups, symmetric group

1. INTRODUCTION

The structure of the tilting modules is a highly interesting unsolved prob-
lem in the representation theory of reductive algebraic groups in prime
characteristic. The notion of a tilting module was originally de�ned by
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Ringel [25] in the setting of quasi hereditary algebras, and later adapted
to reductive algebraic groups by Donkin [7]. In the latter setting, a tilting
module is a module with a �ltration of Weyl modules and a �ltration of
dual Weyl modules. The tilting modules form a family of modules with
very interesting properties: It is closed under tensor products, and any
summand of a tilting module is tilting. The indecomposable tilting mod-
ules can be parametrized by the dominant weights and are then denoted
by T (�). The characters of these indecomposable tilting modules are in
general unknown.
Let k denote an algebraically closed �eld of characteristic p > 0. We will

mostly be concerned with an almost simple algebraic group G over k.
Identi�cation of the indecomposable tilting modules of G poses serious

problems. Their description would allow for the computation of the charac-
ters of the simple modules of G. It would also determine the dimensions of
all simple representations of the symmetric group in prime characteristic.
Even partial results on the characters of the tilting modules would shed
light on the two problems above.
The problem of determining the tilting modules may be approached from

several angles. We consider here formulae for the number of times an
indecomposable tilting module occurs as a summand in a tilting module
with known character. With Q denoting a known tilting module, we ask
for the multiplicity [Q : T (�)] of all indecomposable tilting modules in Q.
This is equivalent to �nding the characters of the indecomposable tilting
modules. If � belongs to the �rst alcove (see Section 3 for the notation),
the answer is well known, due to Georgiev and Mathieu [11] and Andersen
and Paradowski [3].

[Q : T (�)] =
X

x2W; x:�2X+

(�1)l(x)[Q : V (x:�)] (1)

Little seems to be known if � does not belong to the �rst alcove. In this
paper we prove a formula for [Q : T (z:�)] with z in the right cell of s0 and
� in the �rst alcove; the formula is valid in the simply laced types and in
type G2. To state the precise result we introduce the quantum group.
Consider Uq, the quantum group at a complex prime root of unity corre-

sponding to G. The de�nition and the properties of the tilting Uq-modules
resemble those of the modular tilting modules. Soergel [26] recently found a
way to compute the characters of the indecomposable tilting Uq-modules,
that relies on calculations in a Hecke algebra module, usually called the
Hecke module. Central to the representation theory of Hecke algebras is
the concept of right cells; the right cells provide right ideals and right mod-
ules of the Hecke algebra. From this point of view, right cells should provide
insight into the structure of the quantum tilting modules. Along this line,
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Ostrik [24] used right cells to de�ne tensor ideals of tilting modules. The
�rst result we present use right cells to describe some of the summands in
the wallcrossed quantum tilting modules. To be more precise, let Z denote
the union of feg and the right cell containing s0; as usual h denotes the
Coxeter number of the root system of G.

Theorem 1.1. Let p � h. Consider a weight � belonging to the �rst
alcove and let s; t denote re
ections in the walls of the �rst alcove.

1.Assume x =2 Z and z 2 Z. Then

[�sTq(x:�) : Tq(z:�)] = 0:

2.Assume z 2 Z and zs > z > zt. There are non-negative numbers ay
such that

�sTq(z:�) = Tq(zs:�)� ÆTq(zt:�)�
M
y=2Z

ayTq(y:�)

where Æ equals 1 when zts < zt and 0 when zts > zt.

Corresponding to a modular tilting module Q, we have a tilting Uq-
module (denoted Qq) with the same character, see Section 3. Since the
quantum tilting modules are well understood, we can decompose Qq in the
quantum setup - even in situations where we do not know the modular de-
composition of Q. In turn, the quantum decomposition yields information
on the modular decomposition; as to the summands T (z:�) with z 2 Z ,
the quantum decomposition tells everything in the simply laced types as
well as in type G2. This is the main result of this paper, which we state in
a theorem.

Theorem 1.2. Let p � h and suppose that the root system of G is of
type An�2; Dn; E6; E7; E8 or G2. For a weight � in the �rst alcove and
z 2 Z we have

[Q : T (z:�)] = [Qq : Tq(z:�)] (2)

Note that the theorem covers the situation considered in equation (1).
We can sharpen the theorem slightly; see Theorem 3.11.
Schur-Weyl duality is a link between the representation theories of the

general linear group and the symmetric group. This duality determines
the dimension of simple modules of the symmetric group in terms of tilt-
ing multiplicities in a GLn(k)-tilting module. As a result, the formula of
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Theorem 1.2 provides information on the dimension of simple modules of
the symmetric group. In section 4 we show that the formula determines
the dimension of the simple modules parametrized by certain partitions:

Theorem 1.3. Let p � n and consider a partition (n1; : : : nn) with at
least three lines such that n1 � nn�1 < p� n+ 2 or n2 � nn < p� n+ 2.
The dimension of the simple module of the symmetric group parametrized

by (n1; : : : nn) equals the dimension of the simple module of the Hecke al-
gebra of the symmetric group at a primitive p'th root of unity parametrized
by (n1; : : : nn)

This is a generalization of a result by Mathieu [22], determining the
dimension of the simple modules parametrized by Young diagrams with
n1�nn < p�n+1. Further, our result proves a special case of conjecture
15.4 in [23].

2. THE HECKE MODULE

The section serves several purposes. The Hecke algebra of an aÆne Weyl
group is introduced; this allow us to de�ne the Hecke module as well as
right cells. The Hecke module calculations in 2.4 is vital for the various
decompositions of tilting modules to follow. Whenever possible we will use
the notation of [26], to which we also refer to for the missing proofs in 2.1
and 2.2.

2.1. The Hecke algebra

Let S0 = fs1; : : : ; sng denote the generators of the Weyl group W0 of an
irreducible rootsystem, and let S = fs0; s1; : : : ; sng denote the generators of
the corresponding aÆne Weyl group W . On W we have the Bruhat order
< and a length function, l, mapping w 2 W to the length of a reduced
expression. Let

L(w) = fs 2 S j sw < wg

R(w) = fs 2 S j ws < wg:

Let H denote the Hecke algebra over Z[v; v�1] associated to W . We
choose Hx = vl(x)Tx as basis of H. On H we have a ring homomorphism,
�, taking Hx to Hx = H�1

x�1 and v to v�1. Since � is an involution, we say

that H is self-dual if H = H .
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Theorem 2.1. There exists a unique self-dual element

Hx 2 Hx +
X
y<x

vZ[v]Hy:

We will (as is usual) denoteHs by Cs. We de�ne polynomials hy;x 2 Z[v]
by the formula

Hx =
X
y2W

hy;xHy:

Note that hy;x(0) 6= 0 if and only if x = y. Further, if y < x the leading
coeÆcient of hy;x is 1 and deg hy;x = l(x)� l(y).
Recall thatW0 is a parabolic subgroup ofW , so each right coset ofW0nW

has a unique representative of minimal length. We denote the set of these
representatives by W 0. Multiplication gives a bijection W0 �W 0  !W .

2.2. The Hecke module

Let H0 denote the Hecke algebra of S0;W0. It is a subalgebra of H. We
have a surjective Z[v; v�1]-algebra homomorphism, ��v : H0 �! Z[v; v�1],
mapping each generator si 2 S0 to �v. This gives Z[v; v�1] a H0-module
structure, and by induction we obtain a right H-module

N = Z[v; v�1]
H0
H:

So N has a basis consisting of fNx = 1
Hx j x 2 W 0g, and the action of
Cs 2 H is given by

Lemma 2.2.

NxCs =

8><
>:
Nxs + vNx xs > x and xs 2 W 0

Nxs + v�1Nx xs < x and xs 2 W 0

0 xs =2W 0

The next step is to de�ne an involution on N by a
H = a 
H . This
involution is H-skewlinear (ie NH = N H for N 2 N ; H 2 H). We say
that N is selfdual if N = N .

Theorem 2.3. There is a unique selfdual element Nx in N such that

Nx 2 Nx +
X
y<x

vZ[v]Ny:

In this way we get a new basis of N . De�ne polynomials ny;x 2 Z[v]
by Nx =

P
y2W 0 ny;xNy. The next lemma links the polynomials ny;x and

hy;x.
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Lemma 2.4. Let x; y 2 W 0. Then

ny;x =
X
w2W0

(�v)l(w)hwy;x:

2.3. Right cells

Having de�ned the polynomials hy;x, we can now de�ne right cells. If
hy;x = vl(x)�l(y)+ � � �+a1v with a1 6= 0, we say that hy;x has a linear term.
We write x� y if either hx;y or hy;x has a linear term.

Definition 2.5. We de�ne a pre-order: Write x �R y if there exist

x = w0 � w1 � � � � � wr = y

such that R(wi) * R(wi+1) for each i. We write x sR y if x �R y �R x.

Note that sR is an equivalence relation. An equivalence class is called
a right cell. As an example: xs < x belongs to the same right cell when
R(x) = fsg, since R(xs) and R(x) intersect trivially and hxs;x = v.
Let C denote the set of elements in W with a unique reduced expression,

and let C(si) denote the subset with reduced expression beginning with si:

C(si) = fw 2 C j L(w) = fsigg

In the following proposition, 2. and 3. are direct consequences of the de�-
nition. As for 1. we refer to [18].

Proposition 2.6 (Properties of C(si)).

1.C(si) is a right cell.

2.jL(w)j = jR(w)j = 1 for each w 2 C(si).
3.Suppose w 2 C(si). If ws < w then ws 2 C(si) or ws = e.

We have C(s0) � W 0 and this right cell is central in the rest of this
paper. The reduced expression of each element in C(s0) may be obtained
from table 1. The right order �R on the aÆne Weyl group induces a
partial order on the set of right cells: C1 �R C2 if w1 �R w2 for all w1 2 C1,
w2 2 C2. In this ordering C(s0) is second among the right cells ofW 0, since
for any right cell C1 �W 0 di�erent from feg we have

C1 �R C(s0) �R feg:
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TABLE 1.

The table list the reduced expression of elements in C(s0). Used together
with proposition 2.6 3., it yields the reduced expression of all

elements of C(s0). Note that s0 corresponds to the highest
short root in the rootsystem.

Type Reduced expression jC(s0)j

A1 (s0s1)
m, m � 1 1

An, n � 2 (s0sn : : : s1)
m, m � 1 1

(s0s1 : : : sn)
m, m � 1

Bn s0s1s0 1

(s0s1s2 : : : sn�1snsn�1 : : : s2s1)
m, m � 1

Cn, n � 3 s0s2s1 2n+ 1

s0s2s3 : : : sn�1snsn�1 : : : s2s0

s0s2s3 : : : sn�1snsn�1 : : : s2s1

Dn s0s2s1 n + 1

s0s2s3 : : : sn�2sn�1

s0s2s3 : : : sn�2sn

E6 s0s2s4s3s1 7

s0s2s4s5s6

E7 s0s1s3s4s2 8

s0s1s3s4s5s6s7

E8 s0s8s7s6s5s4s2 9

s0s8s7s6s5s4s3s1

F4 s0s4s3s2s1 8

s0s4s3s2s3s4s0

G2 s0s1s2s1s2s1s0 8

s0s1s2s1s0

2.4. Calculations in N

For later use we derive some results about the coeÆcients of NxCs,
expressed in the basis fNy j y 2W

0g. For reasons, which become clear in
section 3, we denote the coeÆcient of Ny by [NxCs : Ny], such that

NxCs =
X
y

[NxCs : Ny]Ny:

The last assertion in the following proposition is the key to all the results
in this paper.
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Proposition 2.7. Fix x 2W 0 and s 2 S such that xs > x.

1.Let y 2 W 0. [NxCs : Ny] 6= 0 implies ys < y.
2.Let t 2 S, xt < x. Then

[NxCs : Nxt] =

(
1 if xts < xt

0 if xts > xt

3.[NxCs : Ny] 6= 0 implies y �R x.
4.Suppose z 2 C(s0). Then [NxCs : Nz] 6= 0 if and only if z = xt for

some t 2 S, xts < xt and x 2 C(s0) [ feg.

Proof. 1. and 2. are easy calculations.
We prove 3.. [NxCs : Ny] 6= 0 implies ys < y. Hence R(y) 3 s =2 R(x)

and so R(y) * R(x). By lemma 2.2 we have

NxCs =
X

w 6=y;ys

nw;xNwCs + ny;x(Nys + v�1Ny) + nys;x(Ny + vNys):

So [NxCs : Ny] = (v�1ny;x + nys;x)jv=0.
If nys;x has a nonzero constant term, then x = ys. Now x�y and y �R x

follows.
If ny;x has a linear term, then, by lemma 2.4, so does hy;x, hence y � x

and y �R x.
We turn to part 4., where we leave the 'if' part to the reader. Assuming

[NxCs : Nz] 6= 0 we have z �R x (hence z � x) and zs < z (hence
R(z) = fsg). Then either x = e or R(x) * R(z); in the last case x �R z
and therefore x 2 C(s0). We have x 2 C(s0) [ feg.
It remains to prove z = xt for some t 2 S. If z > x then z = xs. If z < x

then nz;x has a linear term. Pick a t 2 S such that xt < x. Then zt > z
since R(z) = fsg. If we assume that z 6= xt then the next lemma produces
in�nitely many y with z < y < x. This is a contradiction and we are
done.

Lemma 2.8. Assume zt > z.
Suppose xt < x, x 6= zt and that nz;x has a linear term.
Then there is a y < x with yt < y, y 6= zt and such that nz;y has a linear

term.

Proof. Recall from the construction of Nx that if

NxtCt = Nx +
X
y<x

n0yNy
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then

Nx = NxtCt �
X
y<x

n0y(0)Ny:

From this we get that

nz;x = vnz;xt + nzt;xt �
X
y<x

n0y(0)nz;y: (3)

Note that x 6= zt implies that nz;xt has constant term 0. Now suppose
nzt;xt has linear term av. We get

n0zt(0) = (v�1nzt;xt + nz;xt)jv=0 = a:

That is, the linear term of nzt;xt in equation (3) cancels with that of
n0zt(0)nz;zt. We have

linear term(nz;x) = �
X

y<x; y 6=zt

n0y(0) linear term(nz;y):

When nz;x has a linear term, there is a y < x, y 6= zt such that nz;y has
a linear term. Note that [NxCs : Ny] = n0y(0) and hence that n

0
y(0) 6= 0 im-

plies yt < y.

3. TILTING MODULES

Recall that G is an almost simple algebraic group over k. For a �xed
torus, let X denote the weight lattice; now X contains the root system
of G and, corresponding to a choice of simple roots f�1; : : : �ng, we have
the dominant weights, denoted X+. Let � denote the half sum of the
positive roots. Let s� denote re
ection in the hyperplane perpendicular to
the root �, and abbreviate s�i to si. Then the �nite Weyl group W0 is
generated by fs1; : : : sng. Let �0 denote the highest short root and de�ne
s0 by s0(�) = s�0(�) + p�0. The aÆne Weyl group is the group generated
by fs0; s1; : : : ; sng. The aÆne Weyl group divides E = X 
R into alcoves,
on which it acts through the dot-action w:� = w(�+ �)� �. This action is
simply transitive. Let

C0 = f� 2 E j 0 < h�+ �; �_i < p for all positive roots �g

denote the �rst (or standard) alcove. The �rst alcove contains a weight
when p � h, h denoting the Coxeter number of the rootsystem of G.
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For each dominant weight � we have a Weyl-module V (�), an induced
module (or dual Weyl module) H0(�) and an indecomposable tilting mod-
ule T (�), all with highest weight �. A tilting module is, by de�nition, a
module with a �ltration by Weyl modules and a �ltration by dual Weyl
modules. Tilting modules have the following key properties ([7] is a conve-
nient reference)

� dimT (�)� = 1.

� Any summand of a tilting module is tilting.

� A tilting module is fully determined by its character.

� The family of tilting modules is closed under tensor products.

Let A = Z[v](p;v�1), and consider UA, the A-form with divided powers of
the quantum group corresponding to G. The �elds k and C are A-modules,
with v acting by multiplication of 1 2 k and q 2 C , respectively; q denotes
a primitive p'th root of unity. We consider two specializations of UA:

Uq = UA 
A C

Uk = UA 
A k

Each UA-module M gives rise to a Uq-module M 
A C and a Uk-module
M 
A k. We identify the weight lattices of G and the three quantum
groups in question. Using results of Lusztig [19, 20], the category of �nite
dimensional G-modules is identi�ed with the category of �nite dimensional
Uk-modules. Thus V (�) and T (�) are regarded as Uk-modules. As for the
quantum groupsUA and Uq we may to each dominant weight associateWeyl
modules VA(�), Vq(�), induced modules (or dual Weyl modules) H0

A(�),
H0
q (�) together with indecomposable tilting modules TA(�); Tq(�). The

tilting modules are de�ned as for the algebraic group, and they have the
same properties as their modular counterparts.
The Weyl module VA(�) is a free module overA, and we have VA(�)A
A

k ' V (�) and VA(�)
AC ' Vq(�). Thus the character of the Weyl modules
is the same in all three cases and given by Weyls character formula. It
follows that the tilting modules of UA are free over A. Further TA(�)
A C
and TA(�) 
A k are tilting. In fact TA(�)
A k is indecomposable (see [1]
for a proof); this does not necessarily hold for TA(�) 
A C . Now weight
considerations give for some nonnegative integers a�

TA(�) 
A k ' T (�)

TA(�) 
A C ' Tq(�) �
M
�<�

a�Tq(�):
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This shows that the tilting modules of G lift to tilting modules of UA.
That is, for a tilting G-module Q there exists a tilting UA-module QA
with the property QA 
A k ' Q. We denote by Qq the tilting Uq-module
QA 
A C . In this way each tilting G-module Q gives rise to a tilting
Uq-module Qq with the same character.
We may now compare the characters of the modular tilting modules and

tilting Uq-modules. This is particular interesting since the character of
the indecomposable tilting Uq-modules is known. This is due to Soergel
[26, 27]. In the notation of Section 2, the formula reads

Theorem 3.1. For a weight � 2 C0 and x; y 2 W 0 we have

[Tq(x:�) : Vq(y:�)] = ny;x(1):

Remark 3.2. There is a related formula for the multiplicities of the wall-
crossed tilting modules. Keeping the notation of the theorem and assuming
xs > x we have

[�sTq(x:�) : Tq(y:�)] = [NxCs : Ny]: (4)

The results of Soergel rely on an equivalence of categories between aÆne
Lie algebra modules and quantum group modules established in [15], [16]
together with results from [21] and [14].

3.1. Reductive groups

We will brie
y consider reductive groups. So G denotes here a connected
reductive group over k. Let T be a maximal torus and B a Borel subgroup
containing T . By G0 we denote the derived group (G;G). The intersection
B0 = B \G0 is a Borel subgroup of G0 and T 0 = T \G0 is a maximal torus
of G0 contained in B0. It is convenient here to denote the induced modules
by IndGB(�) instead of H0(�).
The induced modules of G and G0 are closely related. From [6] we have

for any character, �, of T

IndGB(�)jG0 = IndG
0

B0(�jB0):

This remarkable result immediately implies that the tilting modules of G
remains tilting under restriction to G0. Further a G-module is indecompos-
able if its restriction to G0 is indecomposable. Thus

TG(�)jG0 = TG0(�jT 0 ):
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Hence many questions on the tilting multiplicities of G may be answered
by considering the restrictions to the connected semisimple group G0. In
turn, the representation theory of a semisimple group is determined by that
of its almost simple components.

3.2. Comparing modular and quantum tilting modules

We will use the translation functors, so assume throughout that p is at
least the Coxeter number. Fix � 2 C0 and write Tq(x) for Tq(x:�), with
similar notation for the modular tilting modules. Further, divide W 0 into
three disjoint sets:

W 0 = feg [ C(s0) [ Crest:

That is, Crest is the union of the remaining right cells.
For completeness we begin with results about the \�rst" cell feg.

Lemma 3.3.

1.Let Q be a modular tilting module. Then

[Q : T (e)] = [Qq : Tq(e)]:

2.For any x 2W 0 we have [�sTq(x) : Tq(e)] = 0.

Proof. As noted in the introduction, there is a formula for [Q : T (e)].
There is a quantum analogue of this formula, see [3]. With Q denoting a
quantum tilting module,

[Q : Tq(�)] =
X

x2W; x:�2X+

(�1)l(x)[Q : Vq(x:�)]: (5)

Now the �rst claim follows by a comparison with equation (1) from the in-

troduction. The second claim follows from (5).

The following result is merely a restatement of proposition 2.7, in the
language of quantum tilting modules using remark 3.2.

Corollary 3.4. Let z 2 C(s0). Then [�sTq(x) : Tq(z)] 6= 0 i� z = xt
for some t 2 S, zs < z and x 2 C(s0) [ feg.
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Theorem 3.5.

1.Let z 2 C(s0) and zs > z. There is a unique t 2 S such that zt < z
and

�sTq(z) = Tq(zs)� ÆTq(zt)�
M

y=2C(s0)

ayTq(y);

Here ay denotes nonnegative integers and Æ equals 1 when zts < zt and 0
when zts > zt.

2.Assume type An�2, Dn, E6, E7, E8. Let z < zs 2 C(s0). Then for
some nonnegative integers ay

�sTq(z) = Tq(zs)�
M

y2Crest

ayTq(y):

3.All types. Let e 6= x =2 C(s0). Then for some nonnegative integers ay

�sTq(x) =
M

y2Crest

ayTq(y):

Proof. The �rst and the last assertion follows directly from corollary
3.4. To see the second it suÆces to check that Æ = 0 for all z 2 C(s0) in type

An�2, Dn, E6, E7 and E8. Use the description of C(s0) given in table 1.

Note that this settles Theorem 1.1 of the introduction.

Theorem 3.6. Assume type An�2, Dn, E6, E7 or E8. Let z 2 C(s0).
Then for some nonnegative integers ay

T (z)q = Tq(z)�
M

y2Crest

ayTq(y):

Proof. Note that T (s0)q = Tq(s0). Now pick zs 2 C(s0), zs 6= s0 with
zs > z. Then z 2 C(s0) by proposition 2.6. We use that the results holds
for z by induction. Note the identity (�sT (z))q = �s(T (z)q); both modules
are quantum tilting modules with the same character. By induction and
Theorem 3.5 2. and 3. we get

�s(T (z)q) = �sTq(z)�
M

y2Crest

by�sTq(y)

= Tq(zs)�
M

y2Crest

b0yTq(y):
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We also have

(�sT (z))q = T (zs)q �
M
x2W 0

cxT (x)q:

This proves the claim, since Tq(zs) is a summand of T (zs)q.

Remark 3.7. Consider type G2. Let z 2 C(s0) and recall that C(s0)
consists of only 8 elements. We claim that T (z)q = Tq(z). In fact, if
zs < z (such s is necessarily unique) then

chT (z) = �(z) + �(zs) = chTq(z):

Here �(z) denotes the character of the Weyl module. Pick a weight � 2 C
with stabW f�g = fsg; then the sumformula reveals that V (z:�) is simple.
The claim follows and we have actually proved that Theorem 3.6 holds in
type G2 too.

Remark 3.8. Erdmann [10] has computed the characters of the modular
tilting modules in type A1. Outside the lowest p2-alcove, the characters of
the quantum and modular tilting modules disagree in general. This shows
that Theorem 3.6 cannot hold in type A1; the set Crest is empty in type A1.

Theorem 3.9. All types. Let x 2 Crest. Then for some nonnegative
integers ay

T (x)q =
M

y2Crest

ayTq(y):

Proof. Suppose that x > xs 2 Crest. By induction

T (xs)q =
M

y2Crest

ayTq(y):

Then using theorem 3.5 3. we get

�s(T (xs)q) =
M

y2Crest

ay�sTq(y)

=
M

y2Crest

a0yTq(y):
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On the other hand T (x)q is a summand of (�sT (xs))q and we conclude
that

T (x)q =
M

y2Crest

a00yTq(y):

It remains to consider x, where x > xs implies xs =2 Crest. Then xs 2 C(s0).
If jR(x)j = 1, it is easy to see that x 2 C(s0). Thus, there is a t 6= s such
that x > xs and x > xt 2 C(s0). Since R(x) n fsg � R(xs) we have
R(xs) = ftg and similarly R(xt) = fsg. We will have to consider two
cases.

� xtst < xts and xsts < xst.

� xtst > xts or xsts > xst.

Suppose xsts > xst. Using Theorem 3.5 1. we get

�s(T (xs)q) = �sTq(xs)�
M

y2Crest

ay�sTq(y)

= Tq(x)�
M

y2Crest

a0yTq(y):

Recall that T (x)q is a summand of (�sT (xs))q . Hence we conclude that if
xsts > xst (or similarly xtst > xts) then T (x)q =

L
y2Crest

a00yTq(y).
Suppose that xtst < xts and xsts < xst. Since xts 2 C(s0) we have

xts 6= xst by Proposition 2.6. Using Theorem 3.5 1. we get

�s(T (xs)q) = �sTq(xs)�
M

y2Crest

ay�sTq(y)

= Tq(x)� Tq(xst)�
M

y2Crest

a0yTq(y):

Similarly

�t(T (xt)q) = Tq(x)� Tq(xts)�
M

y2Crest

a00yTq(y):

Recall that xts 6= xst and that T (x)q is a summand of (�sT (xs))q as well as

a summand of (�tT (xt))q . The result follows.

Theorem 3.10. Assume type An�2, Dn, E6, E7, E8, G2.
Let z 2 C(s0) and let Q be a tilting G-module. Then

[Q : T (z)] = [Qq : Tq(z)]:
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Proof. Since Q is a direct sum of indecomposable tilting modules,
it is enough to check the result for all Q = T (x), x 2 W 0. If x = e
both sides of the equality is zero. If x 2 C(s0) we may apply Theorem

3.6 and Remark 3.7. Finally x 2 Crest is handled with Theorem 3.9.

This proves Theorem 1.2 of the introduction. The last theorem in this
section is a generalization of theorem 3.10 above to weights with nontrivial
stabilizer.

Theorem 3.11. Assume type An�2, Dn, E6, E7, E8 or G2.
Consider a weight � 2 C0 and assume that z 2 C(s0) is maximal among

fzw j w:� = �g. Then, for any modular tilting module Q we have

[Q : T (z:�)] = [Qq : Tq(z:�)]:

Proof. The proof relies on the following results. With the notation from
the theorem and with � 2 C0 we have

T �
�T (z:�) = T (z:�)

T �
�Tq(z:�) = Tq(z:�):

The �rst result is stated in [2] Proposition 5.2. For the quantum analogue,
see [26] Remark 7.2 (2). To prove the claim it is enough to check the
identity

[T �
�Q : T (z:�)] = [(T �

�Q)q : Tq(z:�)]:

But this identity follows directly from Theorem 3.10.

4. SCHUR-WEYL DUALITY

In this section we apply the results of the �rst part of the paper to the
special case of a rootsystem of type An�2. Let f�i;j j1 � i 6= j � n + 1g
denote the set of roots. Let

�1 = f(sos1 : : : sn)
ms0s1 : : : sk j m � 0; n � k � 0g [ feg

�2 = f(sosn : : : s1)
ms0sn : : : sk j m � 0; n � k � 0g [ feg
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and observe that according to table 1 we have C(s0) [ feg = �1 [ �2.
De�ne

D1 = f� 2 E j 0 < h�+ �; �_1;ni < p and 0 < h�; �_i i for i = 1 : : : ng

D2 = f� 2 E j 0 < h�+ �; �_2;n+1i < p and 0 < h�; �_i i for i = 1 : : : ng:

Theorem 4.1. Suppose that � 2 D1 or � 2 D2 and that Q is a tilting
module. Then

[Q : T (�)] = [Qq : Tq(�)]:

Proof. The Theorem follows from Theorem 3.10 and Theorem 3.11
together with the following claims:

x:C0 � D1 () x 2 �1

x:C0 � D2 () x 2 �2

The claims are equivalent, so we sketch a proof of the �rst.
It is an essential ingredient in the proof to see that x:C0 � D1 and

xs < x implies xs:C0 � D1. Interpret l(x) as the number of hyperplanes
separating C0 and x:C0; then note that x:C0 � D1 and xs:C0 * D1 implies
l(xs) = l(x) + 1.
A calculation shows that (s0s1 � � � sn)m:C0 � D1 thus establishing the

'if'-part. The 'only if'-part is proved by induction in the length of x.
Choose s 2 S such that xs < x. Now x:C0 � D1 implies xs:C0 � D1

and hence xs 2 �1. This shows that xt < x implies xt 2 �1. But �1 has
only one element of each length and we conclude that R(x) = fsg. Then
x sR xs and hence x 2 �1 [ �2. It is not diÆcult to exclude the case
x 2 �2.

4.1. The symmetric group

Consider the general linear group GLn(k). Fix the subgroup of diagonal
matrices as torus and let �i denote the character that takes a diagonal
matrix to its (i; i)'th entry. The weight lattice of GLn(k) is the free Z-
module with basis f�1; : : : �ng and the rootsystem is of type An�1.
Let V denote the natural GLn(k)-module. It is a simple Weyl module

and hence tilting. Then, by the properties of tilting modules, so is V 
r.
We thus obtain a decomposition

V 
r =
M
�2X+

m�TGLn(k)(�):
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Note that we denote the indecomposable tilting GLn(k)-modules by TGLn(k)(�),
thus reserving the notation T (�) for the indecomposable tilting modules of
the almost simple group SLn(k).
Let �r denote the symmetric group on r letters. The GLn(k)-module

V 
r carries also a structure of �r-modules, given by permutation of the
factors. The action of the general linear group and the action of the sym-
metric group commutes, and (see [5, Theorem 4.1]) we have a surjective
ring homomorphism

k[�r] �! EndGLn(k)(V

r): (6)

By ring theory �r has a simple module for each isomorphism class of inde-
composable GLn(k)-modules appearing in the decomposition of V 
r. The
dimension of this simple �r-module is given by the multiplicity of the inde-
composable GLn(k)-module. We observed above that the indecomposable
summands of V 
r are tilting; it remains to describe the simple �r-module
with dimension equal to the multiplicity in V 
r of a given indecomposable
tilting module.
Recall that a weight n1�1 + � � � + nn�n of GLn(k) is dominant when

n1 � � � � � nn and polynomial if all ni � 0. This establishes a bijection
between polynomial dominant weights and partitions with at most n part;
the weight n1�1 + � � � + nn�n corresponds to the partition (n1; n2; : : : nn).
With this bijection in mind, we make no distinction between elements of
the two sets. The size of a weight n1�1+ � � �+ nn�n is the sum

P
1�i�n ni.

Note that the weights of V 
r are polynomial of size r; hence the tilting
summands of V 
r are parametrized by dominant polynomial weights of
size r.
We can now state the precise correspondence between simple �r-modules

and indecomposable tilting summands of V 
r. Recall that the simple �r-
modules are parametrized by p-regular partitions; we denote the simple
module corresponding to a partition � by D�. In this notation we have

dimD� = [V 
r : TGLn(k)(�)]: (7)

In fact [V 
r : TGLn(k)(�)] = 0 when � is p-singular. A convenient reference
for the theory outlined above is [23, section 11].
Theorem 4.1 provides a formula for the multiplicities of a tilting mod-

ule for the almost simple groups of type An�2. Accordingly, we consider
SLn(k), the derived group of GLn(k). We write � for the restriction of a
GLn(k)-weight �; thus � = n1�1+ � � �+nn�n gives � = (n1�n2)!1+ � � �+
(nn�1 � nn)!n�1, where !i denotes the i'th fundamental weight. By 3.1
we immediately have

TGLn(k)(�)jSLn(k) = T (�): (8)
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Furthermore, at most one GLn(k)-weight of V

r restricts to the SLn(k)-

weight �. This shows

[V 
r : TGLn(k)(�)] = [V 
r : T (�)]: (9)

Theorem 4.2. Let p � n and let � = (n1 � � � � � nn � 0) denote a
partition with at least three parts. We can compute dimD� whenever

�n1 � nn�1 < p� n+ 2 or

�n2 � nn < p� n+ 2.

Explicitly we have

dimD� = [V 
rq : Tq(�)]:

Proof. The partition � satis�es n1�nn�1 < p�n+2 if and only if the
SLn(k)-weight � belongs to D1. Likewise � satis�es n2 � nn < p � n + 2

if and only if � 2 D2. The theorem follows by (7), (9) and Theorem 4.1.

4.2. Quantum Schur-Weyl duality

The formula of theorem 4.2 provides a closed formula for the dimension
of D�. In practice the formula may be tedious to work with; we reformulate
it in theorem 4.3 below. See also [23, section 15].
Let Hq denote the Hecke algebra of �r, with q a primitive p'th root of

unity. The representation theory of Hq resembles that of the symmetric
group. In particular, the simple modules of Hq are indexed by p-regular
partitions of r and denoted by D�

q . There is also a quantum analogue of
(6): By [9, Theorem 6.3] we have a surjective homomorphism of rings

Hq �! EndUq(gln)(V

r): (10)

As in the modular case, the multiplicities of V 
r determines the dimension
of the simple modules of Hq . By [8, Proposition 2.7] we may embed Uq =
Uq(sln) into Uq(gln), and by imitating the arguments of (9) we get

[V 
r : TUq(gln)(�)] = [V 
r : Tq(�)]: (11)

Theorem 4.3. Let p � n and let � = (n1 � � � � � nn � 0) denote
a partition with at least three parts. Assume n1 � nn�1 < p � n + 2 or
n2 � nn < p� n+ 2. Then

dimD� = dimD�
q : (12)
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Proof. We argue as follows, using the equations and theorems above.

dimD� = [V 
r : TGLn(k)(�)]

= [V 
r : T (�)]

= [V 
rq : Tq(�)]

= [V 
rq : TUq(gln)(�)]

= dimD�
q

This proves Theorem 1.3 of the introduction. The dimension of D�
q is

known; see [17] and [4].

Remark 4.4. Jensen [13] shows the multiplicity formula of Theorem
4.1 in type A2; see Proposition 2.2.3 and the remark following it in loc.cit.
The corresponding dimension result about simple �r-modules parametrized
by Young diagrams with three lines is the subject of [12].
Note also that Theorem 4.3 proves a special case of conjecture 15.4 in

[23].
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