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LEFSCHETZ THEOREMS AND DEPENDENT RATIONAL

POINTS ON CURVES OVER FINITE FIELDS.

JOHAN P. HANSEN AND GILLES LACHAUD

Abstract. For a smooth curve C over a �nite �eld Fq , we prove that the proba-
bility that a randomly chosen set of � rational points impose dependent conditions
on a given linear system of dimension � is asymptotically equal to 1

q
.

The proof involves a geometric construction and a Lefschetz theorem for quasi-
projective varieties.

The result has applications in the assessment of the performance of decoding
algorithms for algebraic geometry codes.

Let C be a smooth and absolutely irreducible curve of genus g de-
�ned over the �nite �eld Fq and let D be a Fq-rational divisor on C
with l(D) = � .
Let X be � -tuples of pairwise di�erent points on C, i.e.

X = f(P1; : : : ; P� )j Pi 6= Pj for i 6= jg

and let Γ � X be � -tuples of pairwise di�erent points on C failing to
impose independent conditions on the linear system of divisors equiv-
alent to D. Speci�cally, if Fq(C) denotes the �eld of rational functions
on C, then

Γ = f(P1; : : : ; P� ) 2 Xj9f 2 Fq(C) : div(f) +D � (P1 + : : : + P�) � 0g:

Let jX(Fqj )j and jΓ(Fqj )j denote the number of Fqj -rational points on
X and Γ. Then we prove that
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Theorem 1. In the notation above assume that deg(D) � 2g + 1
and let � = deg(D) + 1 � g. Assume Γ 6= ;: There is a constant c
(independent of j), such that

��jX(Fqj )j � qj jΓ(Fqj )j
�� � c (qj)

�+1
2 : (1)

The bounding term c (qj)
�+1
2 can not in general be replaced by a

smaller power of qj, as the following example show.

Example 2. Let C be an elliptic curve with jC(Fq)j = 1 + q and let
D = 3P0. Then � = 3 and Γ is triples of collinear points on C. In this
case we have

jX(Fq )j = jC(Fq)j(jC(Fq)j � 1)(jC(Fq)j � 2) = q3 � q

jΓ(Fq)j = (jC(Fq)j � 9)(jC(Fq)j � 1� 4) =

(q � 8)(q � 4) = q2 � 12q + 32

assuming that the 2-torsion and 3-torsion points are Fq-rational. This
follows from the fact that 3 points on C are collinear if and only if
they have sum 0 in the group structure on the elliptic curve. Vi now
have for all uneven j, that

jX(Fqj )j � q jΓ(Fqj )j = �12(qj)2 � 36qj :

A result of the above type has applications in the assessment of
the performance of decoding algorithms for algebraic geometry codes
according to [JNH].
Central to the proof of the theorem is the following lemma, which is

obtained through a geometric construction.

Lemma 3. In the notation above

i) XnΓ is a�ne.
ii) Γ is smooth if deg(D) � 2g + 1

Proof. Let (ai;1 : : : : : ai;� ) be homogenous coordinates on the i'th copy
of P��1 in P��1� : : :�P��1 and let V � P��1� : : :�P��1 be the closed
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subscheme de�ned by the vanishing of the determinant
�������

a1;1 : : : a�;1
a1;2 : : : a�;2
: : : : : : : : : : : : :
a1;� : : : a�;�

�������

Consider for a moment the Segre embedding

��foldz }| {
P��1� : : : � P��1 Segre

��! PN; N = � !� 1

the morphism de�ned by

(a1;1 : : : : : a1;�) � : : : � (a�;1 : : : : : a�;� ) 7! (: : : : a1;i1 � a2;i2 � : : : � a�;i� : : : : ):

Then we see, that V � P��1 � : : : � P��1 is the inverse image of a
hyperplane H 2 PN:
By assumption deg(D) � 2g+1, therefore � = l(D) = deg(D)+1�g

by Riemann-Roch, and the divisorD de�nes an embedding of the curve
C as a smooth curve in P��1:

� : C ! P��1:

By the de�nition of X and Γ, we have that (P1; : : : ; P� ) is in Γ if and
only if �(P1); : : : ; �(P�) are linear dependent in P�, equivalently lie
in a hyperplane L � P�, therefore we have the cartesian diagrams of
intersections:

X ��!

��foldz }| {
C � : : : � C

��:::��
����!

��foldz }| {
P��1� : : : � P��1 Segre

��! PN

x??
x??

x??
x??

Γ ��! (�� : : : � �)�1(V ) ��! V ��! H
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and we note the important fact that

XnΓ =

��foldz }| {
C � : : : � C n (�� : : : � �)�1(V ):

It follows that XnΓ is isomorphic to the complement of a hyperplane
section in a projective variety and therefore a�ne, which was the �rst
assertion.
As for assertion on smoothness, assume to the contrary that (P1; : : : ; P�) 2

Γ is a singular point on Γ, this implies that H (and thereby V ) do not
intersect X transversally at (P1; : : : ; P�).
Let L be a hyperplane in P��1 through P1; : : : ; P� , which exist as

(P1; : : : ; P� ) 2 Γ. All � -tuples of points in L are linear dependent, i.e.
for all j, therefore we have

Lj := P1 � : : : Pj�1 � L� Pj+1 � : : : � P� � V � P��1� : : : � P��1:

Consider the Cartesian diagrams of intersections in P��1� : : :�P��1:

X ��! P��1� : : : � P��1

x??
x??

Γ ��! Vx??
x??

P1 � : : : Pj�1 � L \ C � Pj+1 � : : : � P� ��! Lj

As the intersection between X and V isn't transversal at (P1; : : : ; P� ),
the intersection between X and P1� : : : Pj�1�L�Pj+1� : : :�P� can't
be either, consequently L is a tangent hyperplane to the curve C at Pj.
This is true for all P1; : : : ; P� , i.e. , there exists a rational functions
in L(D) vanishing to at least second order at P1; : : : ; P� , therefore
l(D � (2P1 + : : : 2P� )) > 0, however this contradicts the assumption



LEFSCHETZ THEOREMS AND DEPENDENT RATIONAL POINTS 5

as
deg(D � (2P1 + : : : 2P�)) =deg(D)� 2l(D)

=deg(D)� 2(deg(D) + 1 � g)

=2g � 2� deg(D) < 0:

Assume that the prime l is di�erent from the characteristic of the
ground �eld. Let Ql denote the l-adic numbers. For a constructible
sheaf F of Ql-vector spaces H

i(X;F) (resp. Hi
c(X;F)) denote the �etale

l-adic chomology groups (resp. the �etale l-adic chomology groups with
compact support), see [M].
Finally for an integer c we denote by F(c) the Tate twist of F and

Hi(X;Ol(c)) = Hi(X;Ol(c))
 Ol(c)

The second main ingredient in the proof is a Lefschetz Theorem for
quasi-projective varieties. We have not been able to �nd a reference
for it and gives a proof along the lines of [J, Corollaire 7.2], see also
[G-L] for related results.

Lemma 4. A Lefschetz Theorem for quasi-projective varieties.
Let X � PN be a quasi-projective, smooth scheme of dimension n and
let Y = X \ H be a smooth hyperplane section, such that XnY is
a�ne. Then there are isomorphisms:

Hi�2
c (Y;Ql(�1))! Hi

c(X;Ql )

for i � n + 2.

Proof. For any locally constant sheaf F of Z=(l)-modules, the inverse
image morphisms:

Hi(X;F)! Hi(Y;F) (2)

are isomorphisms for i � n � 2 as follows from the long exact coho-
mology sequence using the assumption that XnY is a�ne. As both
X and Y are assumed to be smooth, Poincar�e duality applied to (2)
gives the result.
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We are ready to prove Theorem 1.

Proof. The ground �eld is the �nite �eld Fq and Hi
c(X;Ol) is endowed

with an action of the Frobenius morphism Frob. The Lefschetz trace
formula [M, p.292] by A. Grothendieck determines the number of Fq-
rational points in terms of the traces of Frob on the �etale cohomology
spaces.
We have accordingly

jX(Fq)j =
2�X
i=0

(�1)i Tr(Frob j Hi
c(X;Ql)) (3)

q jΓ(Fq)j = q

2��2X
i=0

(�1)i Tr(Frob j Hi
c(Γ;Ql)) (4)

As for the high dimensions, we obtain from Lemma 4 applied to X
and Γ, that

q
2��2X
i=�

(�1)iTr(Frob j Hi
c(Γ;Ql)) =

2��2X
i=�

(�1)i Tr(Frob j Hi
c(Γ;Ql(�1))) =

2�X
i=�+2

(�1)iTr(Frob j Hi
c(X;Ql))

Combining this with (3) and (4) gives:

jX(Fq)j � q jΓ(Fq)j =
�+1X
i=0

(�1)iTr(Frob j Hi
c(X;Ql ))� q

��1X
i=0

(�1)i Tr(Frob j Hi
c(Γ;Ql))

Deligne's main theorem [D] gives that the eigenvalues of Frob's action

on the i'th cohomology group have absolute values � q
i
2 . This imme-

diately implies (1) of Theorem 1 as the dimensions on the cohomology
groups do not depend on the power j of q and the highest power of q
being q

�+1
2 .
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