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Preface

Preface

A hand has key points such as finger tips and indentations between fingers. Objects
like biological cells and cell nuclei with no such obvious landmarks are called feature-
less. In malignancy grading of cancer tissue the shape of cells and cell nuclei is a
crucial parameter and more generally characterisation of biological shape variation
is of great importance in clinical medicine. By means of the deformable template
model Ulf Grenander has provided a tool for describing shape variability. This Ph.D.
thesis is concerned with the use of Grenanders model for exploring shape variability
of featureless objects.

The thesis consists of a review together with six independently written enclosed
papers and is submitted to the Faculty of Science, University of Aarhus. The purpose
of the review is to provide an introduction to the statistical analysis of featureless
objects and to present the main results of the accompanying papers. The core of the
thesis is the enclosed papers, where various different representations and modelling
strategies for featureless objects are presented and discussed.

During the four years of my Ph.D. study I have had the fortune of learning from
several people. First of all I am deeply grateful to Eva B. Vedel Jensen for excellent
supervision. Her committed guidance and constant support throughout the whole
period is greatly acknowledged. I am also grateful to Jan Pedersen for joyful collab-
oration and many stimulating discussions. I want to thank John T. Kent and Ian L.
Dryden from Leeds University and Ulf Grenander from Brown University for sharing
their knowledge with me and for hospitality during my stays abroad. Many thanks
are also due to Niels Vaever Hartvig for various kinds of feedback and a gentle intro-
duction to the programming language IDL. The main part of my work is grounded
in biomedical problems, and I would like to thank Hans Jgrgen Gundersen, Jens R.
Nyengaard and Flemming B. Sgrensen for providing data and insight into the applied
aspects of my research.

Finally I would like to thank Mette Lena Olsen for steadfast emotional support
and encouragement.

Arhus, January 31, 2002. Asger Hobolth
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Summary

Summary

In a wide variety of disciplines it is of great practical importance to measure, describe
and compare the shape of objects. Statistical shape analysis involves methods for
studying the shape of objects. Here, shape refers to geometrical properties which are
invariant under a translation, rotation and scaling of the object. Spatial objects with
no obvious landmarks are called featureless, and perhaps the most familiar examples
are biological cells and cell nuclei. This thesis is concerned with statistical shape
analysis of featureless objects.

The first ingredient in shape analysis is the choice of an appropriate object rep-
resentation. Many reasonable representations apply but the deformable template
representation, advocated by Ulf Grenander, has played a dominant role. Grenan-
ders basic idea is to consider an observed object as a deformation of a template. To
be more specific, suppose the outline of a planar object is given in terms of a number
of vertices. The vertices could be chosen equally spaced in terms of arc length or
from rays emanating from a centre of the object relative to a fixed axis. To remove
any translation effect one could also consider the edges of the object. Using the de-
formable template representation the vertices or edges are measured relative to an
underlying template. The resulting vertex or edge transformation vector is a useful
representation for analysing the shape of the planar object.

Having decided on the shape description vector the next topic is model speci-
fication. It is often desired to capture the most important object features such as
boundary smoothness and local and global deviations from the template with a few
model parameters. For the planar vertex or edge transformation vectors the classical
model is the Gaussian first-order Markov model, where only neighbouring terms con-
tribute to the probability density function. If the objects can be described as a small
deformation of a circle then rotational symmetry is also desirable.

The literature on shape representation vectors and corresponding models is grow-
ing rapidly and increasingly realistic and complex methods are being formulated. This
thesis discusses a variety of representations and models and provide insight to their
mutual relationships. A part of the thesis is concerned with the use of planar object
representations with underlying circular templates, and a complex linear relationship
between the circular vertex and edge representations is derived. Descriptions in terms
of ellipses or other non-circular templates are also discussed and corresponding mod-
els and probability distributions provided. Finally a continuous generalised p-order
model is suggested as a more widely applicable model than the discrete Gaussian
first-order Markov model.

With the increasing availability of digital images an important applied area of
study is the interpretation of images. In high-level Bayesian image analysis, shape is
an important element of prior modelling, and the use of planar deformable templates
for object recognition is discussed.
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Summary

Biological cells and cell nuclei are three-dimensional objects and some can be
viewed as small deformations of a sphere. In this case it is useful to represent the
object by a global translation and scaling together with a normal deformation of a
sphere. A Gaussian model with the desired rotational symmetries can be derived from
the physical laws of pressure fields acting on thin membranes. It is of interest to make
statistical inference about the shape parameters from a finite number of systematic
or random measurements of the surface. The thesis presents a detailed investigation
of the spherical deformation model.

Stereology is concerned with methodology for making statistical inference about
a population of spatial objects from geometric samples of the objects such as line
and plane sections. The objective is not to reconstruct the objects, but instead to
make inference about quantitative properties such as volume or surface area. In
classical design-based stereology very few assumptions are made about the shape of
the objects. Statistical shape analysis provides a promising alternative model-based
tool for investigating quantitative properties of populations of objects, as discussed
in the thesis.

The thesis consists of a review and six independently written papers published
or submitted for publication in international statistical journals. Co-authours of
the papers are my supervisor Eva B. Vedel Jensen and Jan Pedersen from Aarhus
University, John T. Kent from Leeds University and Ian L. Dryden from Nottingham
University.
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2D representations

1 Introduction

A face has easily recognisable points such as the nose, lips, ears and eyes, and sim-
ilarly a hand has landmarks such as finger tips and indentations between fingers.
Objects with no obvious landmarks like biological cells and cell nuclei are called fea-
tureless. The purpose of this review is to summarise and discuss statistical methods
for analysing featureless objects.

The literature on statistical analysis of featureless objects is growing rapidly, and
increasingly realistic and complex stochastic models are being formulated. Choosing
an appropriate shape representation is the first step towards a high standard shape
analysis and the deformable template representation, advocated by Ulf Grenander,
has played a dominant role. Grenanders basic idea is to represent the observed object
as a deformation of an underlying template. In particular the hand and mitochon-
dria studies (Grenander, Chow and Keenan, 1991, and Grenander and Miller, 1994)
demonstrate the huge potential of the template representation and have inspired many
researchers.

The shape representation generates a shape description vector and the next step
in the analysis is to specify a model for this vector. It is desired to capture impor-
tant object features such as boundary smoothness and global and local deviations
from the template with a few model parameters. This review discusses a variety of
representations and models and provide insight to their mutual relationships.

The paper is organised as follows. In Section 2 representations of planar objects
are presented and compared. The representations are classified into deformations
of circular and non-circular templates. Section 3 is concerned with models for the
shape vectors from Section 2, and in particular Markov random field models are
discussed in detail. Spherical and non-spherical template deformations for objects
in three-dimensional space are considered in Section 4 and the corresponding models
are described in Section 5. In Section 6 two applications of deformable templates are
presented. First the problem of recognising an object in a noisy or blurred image
is described and second an application in model-based stereology is discussed. The
paper concludes with a description of dynamic space-time shape models.

2 2D deformable template representations

Consider a closed curve V = {v(t) € C: 0 <t < T}, which is the boundary of a solid
object in the complex plane indexed in an anti-clockwise manner. There are several
possible choices of the index ’time’ ¢ such as arc length or angle of rays emanating from
a centre of the object relative to a fixed axis. Similarly let V° = {0%(¢) : 0 < ¢t < T}
be the template curve in the complex plane and recall that the fundamental task is
to describe V as a stochastic deformation of V. In this section we first discuss the
case when V? is the unit circle and next we discuss the non-circular case.
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2.1 Deformable circle representations

Let V° = {e?™ . 0 < t < 1} be the unit circle and suppose the boundary V is
only known at n > 3 points v; = v(t;), 0 < ¢, < --- < ¢, <T. In this subsection
we present several ways of describing the polygon P = (v;) as a deformation of the
regular polygon P° = (v9). Here, v) = v°(j/n) = ¢*™/™ are regularly spaced vertices
on the unit circle. The most useful representations for exploring shape variability are
the standardised vertex and standardised edge transformation vectors. A complex
linear relation between the transformation vectors is also provided.

2.1.1 Circular vertex transformation vectors

We now recall the construction of the standardised vertex transformation vector in-
troduced in Hobolth, Kent and Dryden (2002). First we centre the polygon P by
translating to the vertices

@j:Uj_U(w; ij,...,n—l, (21)

where v,, = Z?;& vj/n. Next define the complex-valued vertez transformation vector
d = (d;) by

dj =0;/vj, j=0,...,n—1. (2.2)
In order to remove effects due to rotation and scaling we define the standardised vertex
transformation vector u = (u;) with entries

U :dj/d(w, ij,...,n—l,
where d,, = Z;:& d;/n. It is easily verified that the original vertices can be written

Vj = Ugy +dav(1+uj)v?, j=0,...,n—1,

and thus the positions of the original vertices are separated into location v,,, orienta-
tion and size d,,, and a standardised vertex transformation vector u = (u;) providing
the deformation of P° to the shape of P. Note that Re(u;) = r; determines the
component of the jth vertex of P tangential to da,,v;-) while Im(u;) = s; determines
the normal component. The transformation vector u is invariant under a translation,
rotation and isotropic scaling of the object, and therefore it only contains shape infor-
mation. Due to the standardisation and centring there are two (complex) constraints
on the transformation vector, and they can be written

n—1 n—1
Zuj =0 and Zuje%ij/" = 0. (2.3)
=0 =0

An often used method of describing the boundary V is the radial representation as
described below. Suppose the object is star-shaped relative to the centre of gravity ¢ €
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C, i.e. the radial vectors from c to V all remain inside the object. Find the vertices
at V by rays starting at ¢ with angles 27j/n relative to some fixed axis. Then the
sequence of distances d;,j = 0,...,n — 1, provides a description of the boundary.
Consider the polygon given by the vertices

oy =djv}, d;jeR, j=0,...,n—1 (2.4)
The standardised vertex transformation vector of this polygon is given by
w;=d;/dew—1€R, j=0,...,n—1, (2.5)

and there is variability in the tangent component r = Re(u) of the vertex trans-
formation vector only. Note that in this construction of the vertex transformation
vector we avoid centring the vertices as in (2.1), but take (2.2) as our starting point.
This minor violation of the construction of the standardised transformation vector
implies that the average of the vertices is only approximately zero, and therefore the
second equation in (2.3) only holds approximately. If the average of the vertices de-
fined from the centre of gravity is not approximately zero, then we suggest iterating
the construction until a centre is found with the property that the average of the
corresponding vertices is approximately zero.

In the limit when n tends to infinity we have that d(¢),0 < ¢ < 1, is the distance
from ¢ to V in direction 27t, where 27t is the angle between a fixed axis and a ray
starting in ¢. The standardised radius-vector function {r(¢) : 0 < ¢ < 1} is obtained
from

r(t) = d(t)/de — 1, 0<t <1,

where dg, = fol d(t)dt is the mean distance length.

There is a large amount of literature on vertex transformation vectors and usually
the radial representation is used. The prior model in Rue and Syversveen (1998) is
one example. In a procedure for identifying cells in a digital image, the regular n-
sided polygon P? is deformed and the generated object is determined by (2.2), where
the vertex transformation vector d = (d;) € R" is real and follows a multivariate
normal distribution, which is invariant under cyclic permutation. Note that when
the components of d are real and positive then the generated objects are star-shaped
relative to the origin. Some other examples are given by Stoyan and Stoyan (1994, p.
80), Mardia and Qian (1995) and Mardia et al. (1996) who use radial representations
for modelling sand grains, leaves and mushrooms.

2.1.2 Circular edge transformation vectors

We now change the focus from the vertices to the edges and recall the standardised
edge transformation vector introduced in Kent, Dryden and Anderson (2000). Focus-
ing on the edges implies location invariance immediately. The edge vector e = (e;)
of the polygon P has components

€ = VUjq1 — Vj, jZO,...,TL—l, (26)
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whereas the edge vector of the regular polygon P° is given by

0 0

0 _ P —
e]—UJ+1_U], ]—0,...,71—1.

All subscripts throughout the paper are interpreted modulo n. The complex-valued
edge transformation vector t = (t;) is obtained by

ti=ej/el, j=0,...,n—1. (2.7)

Invariance under changes in scale and rotation is obtained by dividing with ¢,, =
Z;:& tj/n leading to the standardised edge transformation vector z = (z;) defined by

Zj:tj/t(w—l, ij,...,n—l.

The standardisation and the closure constraint Z?;& e; = 0 imply two complex con-
straints on z given by

[y

n—

n—1
z; =0 and sze%ij/" =0, (2.8)
=0

<.
I
=)

and therefore z has 2n — 4 free parameters. Note that the constraints on z and u are
the same. As in the previous subsection it follows from

ej =tw(l+2z)e), j=0,...,n—1, (2.9)

that Re(z;) = z; determines the component of the jth edge of P tangential to taye}
while Im(z;) = y; determines the normal component.

Another way of defining vertices on V is in terms of equal arc length, and if the
boundary is a small deformation of a circle, then the value of the tangent component x
of the edge transformation vector z is approximately zero. In practice, one finds the
full edge transformation vector z = x + iy of the object and consider the normal
component y as the data. This way of describing the boundary is known as the
constant length representation and is closely related to the tangent angle function, cf.
Zahn and Roskies (1972) or Stoyan and Stoyan (1994, p. 69).

If there is no variability in the normal component y of the standardised edge
transformation vector, the angles between successive edges in P are the same as
for the regular polygon P° and equal to 2w/n. This is called the constant angle
representation and all realised configurations are convex objects.

The full edge transformation vector is used in Grenander and Miller (1994) for
Bayesian object recognition of mitochondria, while Kent et al. (2000) use the constant
length representation to explore shape variability for a sample of sand grains and
ceramic material particle sections. Hansen et al. (2000) also report on an object
recognition study and essentially use the constant angle representation for describing
arteries in a sequence of images.
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2.1.3 Relations between circular transformation vectors

We now have two different ways of describing the shape of P relative to the regular
polygon PP the standardised vertex transformation vector u and the standardised
edge transformation vector z. The edges are determined by the vertices and, together
with a specification of the location, the edges determine the vertices. Hobolth, Kent
and Dryden (2002) derive a complex linear relation between the two vectors. Letting

zj=x;+1y;, uy=r;+1s;, j=0,...,n—1,

the relation can be written in real coordinates as

1 )
25, = rtn+ (s G20l (210
and
) L )+ 841+, =0 L (211)
L = - (r. — 7T Ss Si, =U,...,n— 1. .
Yy tan(1/n) j+1 3 j+1 i J

If the radial representation is used, the standardised vertex transformation vector is
real. Furthermore if the objects are small deformations of a circle, the (real) vertex
transformation vector is approximately zero, and for large n we obtain

n .
z; =0, yjz—ﬂ(rﬂl—rj), j=0,...,n—1. (2.12)

When the radius-vector function is considered we get
z(t) =0, y(t) =~ —r'(t), 0<t <1, (2.13)

and thus the angular change of V relative to V° approximately equals the derivative
of the radius-vector function.

In conclusion the circular vertex and edge transformation vectors are useful for
representing an object as a deformation of a circle. The full representations are
needed when the vertices are arbitrarily spaced, but choosing the radial or constant
length representation leads to a more succinct description of the data and reduces
the dimension from 2n to n. Finally there is a complex linear relation between the
two transformation vectors, and for a large number of regularly spaced vertices the
derivative of the radius-vector function approximately equals the angular change of
the object boundary relative to the circular template.

2.2 Deformable non-circular representations

Recall that the basic idea is to describe the observed boundary V = {v(t) : 0 <t < T}
as a stochastic deformation of a closed template curve V° = {0°(¢) : 0 < ¢t < T}
Stoyan and Stoyan (1994, p. 90) and Hobolth, Pedersen and Jensen (2001) consider
objects given by

v(t) = (r(t) +r°()°(t), v°(t) = e*™, 0<t <1, (2.14)

5
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where 70(t) represents the template (for example an ellipse), and 7(t) is a zero mean
stochastic fluctuation around the template. A basic assumption for this representation
to hold is that the deviations appear in the radial direction.

Hobolth and Jensen (2000) represent the boundary as a normal deformation

v(t) =) +r(t)’(), 0<t<T, (2.15)

where w(¢) is the outer unit normal vector to V° at v%(¢), and 7(t) is the signed
distance between v(t) and v°(¢). In Subsection 2.1.1 the curve VY was the unit circle
and {r(t) : 0 < ¢ <1} the standardised radius-vector function. It can be shown that
a similar result as (2.13) holds. To be more precise, Hobolth and Jensen (2000) show
that if the deformations are small then

r'(t) & Qyo(t) — v(t),

where ®y0(t) and @y, (t) are the angles that V(¢) and V'(t) make with a fixed axis.

In an application concerning defect detection in potatoes Grenander and Man-
beck (1993) describe an edge deformation model. The template P° = {v} € C :
j=0,...,n—1} is a discretized ellipse with fixed eccentricity, and the allowed de-
formations of the template edges ) = v, — v consist of global scaling s, global
rotation # and local rotations ;. Since the local rotations 6; are expected to be small
the following approximation holds

e = sewewfeg ~ set? (1 + i9j)62, j=0,...,n—1. (2.16)

A comparison with (2.9) show that this representation is closely related to the circular
constant length representation, but with a non-circular template. In order to ensure
the outline to be closed the constraint Z;:Ol e; = 0 needs to be imposed.

Rue and Hurn (1999) use a similar representation as the prior in a Bayesian object
recognition problem. They represent an object by

e;=se’(1+2)e), z,€C, j=0,...,n—1, (2.17)

where the edges e? are the edges of an ellipse or a circle. Since z; € C this represen-
tation is related to the full circular edge representation.

Whereas most of the circular representations generalise to non-circular represen-
tations it should be stressed that handling the constraints due to template fitting
gets more difficult. Consider for example the representation (2.17). Using a circular
template we have

62 — U;')—H _ ’U;-) — e27ri(j+1)/n _ eQm’j/n — (e2m'/n _ 1)62m'j/n’
and the closure constraint Z;:& e; = 0 is given by Z;’:—g zje?™/m = () in terms of z.
When the circulant symmetry no longer applies the closure constraint in terms of z is
more complicated. Similarly the representations (2.14) and (2.15) implicitly assumes
that the template and the observed boundary have been aligned, but the alignment
procedure usually implies complicated constraints on the stochastic fluctuation.
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3 2D deformation models

In this section some commonly used models for the standardised transformation vec-
tors and standardised transformation functions are described. Emphasis is on the
pth-order Markov Random Field model and its various extensions.

3.1 Circular deformation models

Suppose the vector r € R" from the radial representation follows a multivariate
normal distribution N, (u, K) with mean p € R" and n x n covariance matrix K. The
lack of features on the object implies that any statistical model should be invariant
under cyclic permutation of the vertices. Therefore the mean Er; = p; should not
depend on i, and together with the first constraint in (2.3), with u; replaced by r;,
this implies that p = 0. Similarly the covariance Cov(r;, r;1;) should only depend on
7, and therefore the covariance matrix K becomes a circulant matrix.

The circulant symmetry implies that it is useful to analyse the models in the
spectral domain. Suppose n is odd and write r in terms of a Fourier series

(n—1)/2
ri=ag+V?2 Z (ak cos(27kj/n) + by sin(2mkj /n)), (3.1)
k=1
where
1 n—1
ay = EZT’]', (32)
7=0
n—1
2
a = injcos(%rjk/n), k=1,...,(n—1)/2, (3.3)
n
=0
n—1
2
by = V2 > risin(@rjk/n), k=1,...,(n—1)/2. (3.4)
n
=0
Since ag and ag, by, k = 1,...,(n—1)/2, represent a rotation from the original coordi-

nates r to the orthogonal eigenvectors of K they are all independent random variables
with mean zero and variances )\, determined by

n—1 n—1
1 1 y
= ;0 k", = 2;0 k¥ cos(2mik /n) cos(2mjk/n), k=1,...,(n—1)/2, (3.5)
where K=! = (k¥). One reason why it is useful to formulate the models in the

spectral domain is that the constraints (2.3), with u; replaced by r;, are easy to
take into account. They imply that ay = a; = by = 0, which is fulfilled by setting
Ao = A1 = 0. In applications the high frequency Fourier coefficients are often poorly
determined due to digitization effects, and therefore only the low frequency Fourier
coefficients are used for subsequent analysis. A description of Fourier series analysis
of radial vector functions can also be found in Stoyan and Stoyan (1994, p. 80).

7
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3.1.1 Parametric models

Grenander and Miller (1994) use the standardised circular edge transformation vector
z = X + 1y to represent the outline of mitochondria. They assume that z follows
a zero mean complex symmetric normal distribution, which means that (x,y) ~
Now(p, K) with Ky = Ky and Ky = — Ky, cf. Goodman (1963). Hobolth, Kent
and Dryden (2002) use the complex linear relation (2.10) and (2.11) between z and
the standardised vertex transformation vector u = r + ¢s to show that the complex
symmetric edge transformation model can be rewritten as a complex symmetric vertex
transformation model.

A very useful class of parametric models for the radial vector r is the Gaussian
Markov random field (MRF) model, sometimes also referred to as conditional autore-
gression (CAR) model, cf. Besag (1974). A multivariate normal model with a real
circulant n X n covariance matrix K is a pth order MRF model if

k" = 0 unless |(i — j) mod n| < p,

where (i — j) mod n is interpreted to lie in the interval | — n/2,7n/2] and p < n/2.
The first-order MRF model can be written as

e
K= curc(—0 + 2040, —ayn,0,...,0,—ayn), ag,aq > 0, (3.6)
n
where we use the notation circ(ag,...,a, 1) for a circulant matrix with first row
(ag,--.,an1). With the reparametrization
) n 2nay

o + 2n2a;’ = oy + 2n2a;’

the conditional distribution of the first-order model is given by
., ]
ril{ri i # j} ~ N(g(rj—l +7j41),0%),

and therefore the distribution of r; given all the remaining coordinates of r depends
only on its first-order neighbours. For a pth-order MRF model it holds that the
conditional distribution of 7; given all the remaining coordinates depends only on
its p nearest neighbours. Note that

1 n—1 n—1
r’ K7'r = op— E i +an E (rjt1 —rj)” = aoSo + a1 St
n
j=0 §=0

and thus the sufficient statistic (Sp, S1) has a nice geometric interpretation. The
statistic Sy is a discrete measure of the distance between V and V° and it follows
from (2.12) that S; is a discrete measure of the angular changes of V relative to V°.
It follows from (3.5) that the variances of the first-order MRF model (3.6) decrease
as

1/ A = g + 20qn?*(1 — cos(27k/n)), k=0,...,(n—1)/2. (3.7)

8
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The radial representation with a first-order MRF model was used by Mardia and
Qian (1995) to model the shape of leaves. A full edge representation with a complex
symmetric version of the first-order MRF model was used by Rue and Hurn (1999)
for modelling cells. The same model was used by Hansen, Mgller and Tggersen (2001)
for the shape of the artery, but it was found that the model had too much variability
and it was refined to what is essentially a constant angle representation with a first-
order MRF model. Kent et al. (2001) and Hobolth, Kent and Dryden (2002) fitted a
truncated constant length first-order MRF model and a truncated radial second-order
MRF model to the shape of sand grains.

3.1.2 Continuous models

In the limiting case when n tends to infinity the sums in (3.2)-(3.4) become integrals
with the discrete variable j/n replaced by a periodic variable ¢ € [0, 1], and the Fourier
series expansion takes the form

r(t) = ag + \/ﬁi (ak cos(2mkt) + by sin(27kt)), 0<t¢<1. (3.8)

k=1

Similarly the multivariate normal model with mean zero and circulant covariance ma-
trix is replaced by a zero mean periodic stationary Gaussian process with covariance
function

o(t) = Cov(r(0),r(t)) = Ao + 2 io: Mg, cos(2mkt). (3.9)

Rue and Syversveen (1998) describe a procedure for identifying cells in a digital
image. The standardised radius-vector function is modelled by a zero mean periodic
stationary Gaussian process with covariance function

2e Pt cos(4 <t<1/2
(1) = °e Ptcos(4mt), 0<t<1/2, (3.10)
o(l—1), 1/2<t<1,
where 72, 3 > 0. In terms of eigenvalues the model is given by
N oo 287 1—e P2 k=0,2,4,..., (3.11)
FT R nk)? T \14+e?, k=1,3,5,.... '

Hobolth, Pedersen and Jensen (2000) consider various extensions of the continuous
pth-order MRF model. From a first-order Taylor expansion of (3.7) it follows that
the zero mean periodic stationary process obtained in the limit from the discrete
first-order MRF model (3.6) is given by

1//\k:oz0+a1(27rk)2, keNy, ag >0, ag > 0.

9
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In general the limiting process of a pth-order MRF model has eigenvalues given by

p
e =00+ Y a(2rk)*, k € Ny,

=1

where the parameters ap,, > 0 and the remaining parameters oy, l = 1,...,p — 1,
are chosen such that all eigenvalues are positive. The sample paths are continuous
for the first-order MRF model, and in general p — 1 times continuously differentiable
for a pth-order MRF model. Note that the eigenvalues (3.11) of Rue and Syversveen
(1998) are decreasing according to p = 1, and thus the sample paths are continuous,
but not differentiable. In most applications the two parameter model with oy = --- =
ap—1 = 0 and eigenvalues

/A =a+B@2rk)*, keNy, a>0, 3>0,

is sufficiently flexible. If the parameter p > 1/2 is allowed to take real values it
determines the fractal dimension of the sample paths.
Letting

ar = /24, cos(2mkby), by = \/2A,sin(27kby), k € N,

we obtain the continuous polar form

r(t) = ap + 22 \/ Ay, cos (27rk(t — Hk)), 0<t<1,
k=1

of (3.8), where Ay = (ai +b2)/2 > 0 and 60 € [0,1/k[, K € N. Under the normal
model A, follows an exponential distribution with mean A, while 6 is uniformly
distributed on the interval [0,1/k[. In Hobolth, Pedersen and Jensen (2000) the ade-
quacy of the exponential distribution for a particular sample of objects is investigated
by considering the more general class of generalised gamma distributions I'(y, p,9).
The density of a I'(y, p, §) distribution is given by

S0 T
f(z) = WGXP(—(;) ), >0,
where 7,0 > 0 are shape parameters and p > 0 is a scale parameter. The ordinary
gamma distribution is obtained for § = 1, the Weibull distribution for v = 1, and the
exponential distribution corresponds to 6 = v = 1. Hobolth, Pedersen and Jensen
(2000) conclude that the phase amplitudes has a tendency towards heavier tails than
the exponential distribution (corresponding to estimated values of § less than 1), but
the tendency is not significant.

3.2 Non-circular deformation models

Grenander and Manbeck (1993) model the local rotations §; € R of the elliptical
template edges in (2.16) by a first-order MRF model. Rue and Hurn (1999) also work

10
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with an elliptical template. They model the edge transformation vector z € C" in
(2.17) by a complex normal distribution with K, = 0 and a first-order MRF model
for the real and imaginary part of z.

Hobolth, Pedersen and Jensen (2001) derive distributional results for the repre-
sentation (2.14) of Stoyan and Stoyan (1994). Let

Rt)=r"t)+r(t), 0<t <1,

be the radius-vector function of the object, where {r°(¢) : 0 < ¢ < 1} represents the
template and {r(¢) : 0 < ¢ < 1} represents the stochastic fluctuation around the
template. Furthermore let

o0

r(t) = af + \/§Z (ap cos(2mkt) + by sin(27kt)),
k=1

and
r(t) = ag + \/§Z (ak cos(27kt) + by sin(27kt)),
k=1

be the corresponding Fourier series expansions. Suppose the stochastic fluctuation is
a zero mean stationary Gaussian process. Then ag and ag, by, k € N, are all mutually
independent, ay ~ N(0,\) and ax ~ by ~ N(0,);), & € N. It follows that the
Fourier expansion of R has the same distributional properties as those of r, except
that zero mean values are substituted by the relevant Fourier coefficients from the
template.

For a polar Fourier expansion

R(t) = VAo + 22 V Apcos(2mk(t — 0;)), 0 <t <1,
k=1

where Ay > 0 and 6 € [0,1/k[ we have that Ay and Ay, bk, k € N, are all independent.
Furthermore the observed phase amplitudes

A, = (CI,() + CL8)2, k= 0,
P ((ak +a)? + (b +50)?) /2, k€N,

follow a non-central y2-distribution with mean
FA, = Ag + Mg, k €Ny,

where A} is the kth phase amplitude of the template. Finally, the conditional distri-
bution of 6 given A is given by

2,/A, A7
k| Ay ~ v M (27kbD, %), keN,
k

11
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where 09 € [0,1/k[ is the kth phase angle of the template. Here, vM (u, k) stands
for the von Mises distribution with mean p € [0,27[ and concentration parameter
k > 0, c¢f. Mardia and Jupp (2000, p. 36). For k = 0 we get the uniform distribution
on [0,27[ while for x > 0 large the distribution is concentrated around the mean
direction. If the template is a circle, then af = b) = 0 = A, k € N. In this case Ay
and 6, are independent, A; follows an exponential distribution with mean \; and 6,
is uniformly distributed on [0, 1/k[, k € N.

By equating the first and second moments the distribution of A; can be approxi-
mated by a (A + M) x?(fx)/ fr-distribution, where

5 = (AR + \e)?
k= 2433 o540y °

A2+ 240\,
cf. e.g. Jensen (1991). For a circular template it holds that A) = 0, f; = 2, and
the result is exact. If Ag > A; then f; will be large and the distribution of Ay
is concentrated around AY. Note that the result justifies the use of the generalised
Gamma distribution used in Hobolth, Pedersen and Jensen (2000) to model the am-
plitudes. The reason why a sample of phase amplitudes follows a generalised Gamma
distribution, but not an exponential distribution, could be a non-circular template!

3.3 Solid deformation models

Solid deformation models are not only defined on the boundary of the object, but
the interior is also taken into account. The elastic deformation model arises from
physical properties of elastic materials while Gibbs pizel-particle model is defined in
terms of motion invariant geometrical functionals.

3.3.1 Elastic deformation model

Continuum mechanics is concerned with the deformation of continuous materials un-
der some external effect. For some materials, the deformation caused by the appli-
cation of moderate loads disappears with the removal of the load; this property is
known as elasticity. It is useful to think of the material as a sheet of rubber. Let
Q% C R? be the material (template) before the load has been applied. The idea is
to consider the observed object ) as an elastic deformation of the material, and the
deformation takes the form

Q= {(x,y) + (f(x,y),g(m,y)) : (a:,y) € QO}’

where f(z,y) is the displacement in the z-direction and g(z,y) is the displacement
in the y-direction. The penalty function (also called the energy) associated with an
elastic deformation is

E(Q) = / Q0{()\ +2u)(f2 + g7) + 2M fagy + u(fy + 92)° Ydady, >0, A> —p,

12
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where p and A are the Lame elastic material constants, cf. e.g. Lai et al. (1993). Here
we use the notation f, = 0f(x,y)/0x and similar for f,, g, and g,. The ratio A\/u
determines the appearance of the deformations. Suppose the boundary of the material
has been displaced at a localised place. If A/u is small the resulting deformation is
very localised, remaining in the region of the original displacement, whereas when the
ratio increases, the deformation spreads further throughout the whole region.
Another example of a penalty function is the simple sum of squared derivatives

B@) = [ [ 12+ 5+ o2+ gydady,

cf. e.g. Glasbey and Mardia (1998). Glasbey and Mardia (2001) suggest using
these penalties as priors to ensure smooth transformations when warping images.
They also suggest various modified forms of the penalty functions in order to ensure
desired properties such as invariance under bilinear or affine transformations.

Godwin (2000) demonstrate how the elastic deformation model can be used to
recover the deformation of the interior of an object when only the boundary displace-
ments are known. Miller et al. (1993) seek a transformation of one anatomy (e.g. a
template brain) into another (e.g. the brain of a patient), and use an elastic defor-
mation model as a prior for the transformation. When the displacements are not too
large a penalty based on the energy of an elastic body ensures a resulting smooth de-
formation, but the elastic deformation model may result in a ’folding’ of the material
for severe or large deformations. Christensen et al. (1996) use fluid dynamics to give
a method for handling severe or large deformations.

3.3.2 Gibbs pixel-particle model

In real data examples a planar object €2 is often represented as a connected set of
pixels without holes on a lattice Z2. The Gibbsean probability measure of a pixel-
particle is given by

1
P@) = e, z=3" ",
Q

where E is the penalty function (or energy) and Z is a normalizing constant often
referred to as the partition function. We assume that each admissible configuration (2
includes all spatial shifts of the same particle, and the sum is taken over all these
admissible configurations.

Many interesting choices of penalty functions can be defined. Anastassiou and
Sakrison (1981) consider the choice

E(Q) = bU(Q) + h\/A(Q), (3.12)

where U(2) is the length of the perimeter, A(Q2) is the area, and b and h are pa-
rameters of the model. Bearing in mind that area and perimeter length are perhaps
the two most important quantities when describing a planar object and that the
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area-perimeter ratio A(Q)/U(Q2)? is an efficient shape-ratio for determining the devi-
ation from circular shape this choice seems sensible. In applications A(f2) is simply
the number of pixels in {2, while more care has to be taken when calculating the
perimeter length. In particular a line with a 45° tilt with respect to a horizontal line
will appear in a staircase manner with a length equal to v/2 times its real length,
independent of the resolution of the lattice. It is interesting to note that

_ LN @ /Aoy = 192
mean (U(Q)) = XQ:P(Q)U(Q) = zﬂ:e U(@) ===
and thus a statistical quantity such as the mean boundary length can be expressed in
terms of the partition function Z(b, h). Similar formulas are available for the second
moment of the boundary length and first and second moments of the square root
of the area, but unfortunately no closed form expression for the partition function
exists.

Stoyan et al. (2001) consider a penalty function given by

(AQ) —pa)® | (UQ) —pw)* | (T(Q) = pr)?
202 + 202, + 202

E(Q) = , (3.13)

where T'(2) is the number of towers and hollows, p 4, v, pr are preferred area, perime-
ter and tower parameters, while 0 4, o7, o7 are the remaining model parameters. Note
that the energy only depends on motion invariant geometrical functionals. Anastas-
siou and Sakrison (1981) and Stoyan et al. (2001) give examples of random samples
from the probability distributions determined by (3.12) and (3.13) for various choices
of model parameters. Since the probability distribution is only known up to a con-
stant they apply Metropolis-Hastings algorithms (Gilks et al., 1996) to simulate from
the model. It still remains to clarify how statistical inference should be performed in
the class of Gibbs pixel-particle models.

4 3D deformable template representations

Consider a regular surface M C R?, which is the boundary of a solid object in three-
dimensional space, and let M° C R? be a regular template surface. Loosely speaking
the boundary of a solid object is a regular surface if it can be obtained by taking pieces
of a plane, deforming them in a smooth way and arranging them so that the resulting
surface has no sharp points, edges or self-intersections, c¢f. Carmo (1976, p. 52). Asin
the planar case the basic idea is to describe M as a stochastic deformation of M°. It
is not immediate obvious how to generalise the planar situation to three-dimensional
space, the main obstacle being the loss of index-time. Whereas the vertices in the
plane can be arranged in an anti-clockwise order, there is no simple way of arranging
the vertices on a regular surface. In this section we first discuss the situation where
the observed objects are star-shaped and the template surface is the unit sphere.
Next we discuss the non-spherical case.
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4.1 Deformable sphere representations

Suppose the surface M C R? is star-shaped relative to ¢ € R?, i.e. the radial vectors
from c to the boundary all remain inside the object. Using spherical coordinates the
surface is determined by

{c+d(#,9)w(@,¢): 0<0 <21, 0< ¢ <7},

where w(#, ¢) = (cosf sing, sinfl sing, cos¢) is the vector on the unit sphere with polar
longitude # and polar latitude ¢, and d(0, @) is the distance from ¢ to M in direction
w(f, ). It is useful to express the radius-vector function d(f,¢) in terms of the
spherical harmonics

{(p;rzn(05¢) nENO: m = _na"'an}:

which constitute an orthonormal basis on the sphere. The spherical harmonics are
given by

k|nm|P,Lm‘(cos¢) cosmb, m=-n,...,—1
©n(0,0) = ¢ Kk2P%(cose), m=0
kP (cosg) sinmf, m=1,...,n,

where

1 2 1 2 1(n—m)!
k= ——, k0 = n , kM n+ (n ),nEN,mzl,...,n, (4.1)
2 4 n—l—m)’

are normalizing constants and P are the associated Legendre functions of the first
kind. Now consider the Fourier-Legendre series expansion

DI

n=0 m=—n

of the radius-vector function, where the Fourier-Legendre coefficients are given by

_ /O 7 /0 " d(6, 6) 0™ (0, 6) singdebdo. (4.2)

The mean radius-vector length is determined by

CLO,

2w
Aoy = / d(0, ¢) sinpdpdd = \/ﬂ
and hence a) can be used as a measure of the size of the object. To remove size one
may consider the standardised radius-vector function d(6, ¢)/ds, — 1
As in the planar case the choice of centre implies constraints on the radius-vector
function. If ¢ is the centre of mass of the object then the constraints can be written
explicitly, as shown in the appendix of Hobolth (2002). In this case the constraints
involve the fourth power of the radius-vector function, but assuming that the ob-
ject is a small deformation of a sphere, a first-order Taylor expansion leads to the
approximate constraints ai* ~ 0, m = —1,0, 1.
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4.2 Deformable non-spherical representations

For a small deformation of a regular template surface it may suffice to extend the
planar representation (2.15) of Hobolth and Jensen (2000) to three-dimensional space.
Then the object M can be represented by

M ={z+U(2)’() : 2 € M"}, (4.3)

where w%(z) is the outer unit normal vector to M at z € M. The function {U(z) €
R :z € M°} determines the transformation from M° to M.

Joshi et al. (1997) suggest another representation of non-spherical objects. In
order to describe the shape of the cortical and hippocampal surfaces of macaque and
human brains they first establish a cortical or hippocampal template M. Second a
complete orthonormal basis ¢,, n € N, of the template is determined. Joshi et al.
(1997) suggest choosing the basis functions to correspond to eigenfunctions associated
with a differential operator L, derived from thin elastic shell theory. Thus Ly, =
Men, N € N, where 7, is the eigenvalue associated with the eigenfunction ¢,. A
cortical or hippocampal surface is then represented by

M={z+U(zx):z € M, (4.4)

where the function {U(z) € R®* : z € M°} is given by
Uz) =Y anpn(z), € M, (4.5)
n=1

in terms of the orthonormal basis ¢,, n € N. Note that while the value of the trans-
formation function U(z) is real in (4.3) it belongs to R? in (4.4).

5 3D deformation models

In this section we introduce non-parametric and parametric rotational symmetric
models for the standardised radius-vector function. Next the non-spherical represen-
tations are considered and models for the transformation functions {U(z) : z € M°}
are discussed.

5.1 Spherical deformation models
Consider the Fourier-Legendre series expansion of the standardised radius-vector func-
tion
o n
r(0,¢) = Z Z a’nmgpnm(g’ 9)-
n=1m=-n
As argued in Subsection 4.1 the three Fourier-Legendre coefficients corresponding to

n = 1 are approximately zero if ¢ is the centre of mass and the object is a small
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deformation of a sphere. Alternatively one could choose the centre as the point
satisfying a* = 0, m = —1,0,1 (assuming the object is star-shaped relative to this
point). In any case these coefficients are treated as non-random nuisance parameters,
and the remaining coefficients

ar ~ NO,A\7), n>2, m=-n,...,n,

are modelled as independent Gaussian random variables with mean zero (the average
shape is a sphere) and variance A". We also suppose that we have stationarity on the
sphere, in the sense that the covariance between two points on the sphere depends
only on the angle between the points. Stationarity is obtained by assuming

A=A >0,n>2 m=-—n,...,n, (5.1)

and the covariance becomes

Cov(r(fn, d1),m(0262)) = D An >, @61, 610 (62, 62)
n=2

m=—n

—

*

= Z A (K2)? P, (costpra), (5.2)

~

where costp = w(b1, ¢1) - w(bs, P2), and we at (%) have used the addition theorem, cf.
Miiller (1966, Theorem 2).

The covariance is thus determined by the variances ),, and to proceed further we
seek a parametric model for the variances. Miller et al. (1994) use a model induced
from Poisson’s equation for pressure fields acting on thin membranes. The potential
associated with the model is given by

B(r) = % /0 7 /0 " 1L (0, 6) P singdgdd,

where

0% cosf O 1 02
90 T 5in0 90 T 5in20 092
is the Laplacian operator on the surface of the sphere. Since ¢7'(f, ¢) is an eigen-
function of the Laplacian operator with eigenvalue 7, = —n(n + 1) the potential
corresponds to a model where the variances decrease as 1/\, = n2 = (n(n + 1))
Grenander and Miller (1998, Section 5.3) suggest obtaining more general models
by introducing polynomials p(L) = aol + a1 L + - - + aqL? of the basic operator L.
The bi-harmonic operator is for example obtained by choosing p(L) = L?. For such
models the variances decrease as 1/\, = p(n,)>.
Hobolth (2002) suggest letting the variances decrease according to

1/ \p=a+pn’, n>2,p>2 >0, a>—F2". (5.3)
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There are several reasons why this is expected to be a good model. The parameter p
makes the model very flexible with regard to the smoothness of the radius-vector
function. From Stein (1999, Chapter 2) it follows that the degree of mean square
differentiability is determined by the behaviour of the covariance function and its
derivatives near the origin. By making repeated use of the relation

P ()= (2n+1)P(2) + P,_y(z), -1<z <1,

and using Py(z) = 1, Pi(z) = z and P,(1) = 1 it can be shown that the radius-vector
function is k£ times mean square differentiable when 2(k + 1) < p < 2(k + 2). When
2 < p < 4 the radius-vector function is mean square continuous. Note that in the
model used by Miller et al. (1994) the variances decrease according to p = 4, while
for the bi-harmonic operator the variances decrease according to p = 8.

For fixed p the value of 3 determines the ’local’ shape of the object since the
variances with large indices are determined by 3. The third parameter in the model
is most easily interpreted when making the reparametrization & = o + 2P, in which
case & controls the first few variances, and thereby the 'global’ shape of the object.

5.2 Non-spherical deformation models

For the normal representation of Hobolth and Jensen (2000) the transformation
{U(z) € R : z € M°} is considered a random field on a regular surface. It seems
appropriate to let the covariance Cov(U(zy),U(x2)), 1,72 € M, depend on geo-
metrical quantities such as the geodesic distance on M? between x; and z, and the
principal curvatures and directions at x; and x5, but an explicit model still needs to
be formulated.

Joshi et al. (1997) consider two models for the Gaussian random variables a,,, n €
N in (4.5). In both models the random variables are independent with zero means,
but in the first model the variances )\, are chosen to be the inverse of the squared
eigenvalues 1/), = n2 and in the second model the variances are estimated empiri-
cally from a sample of surfaces. The relation to the spherical deformation model is
obtained by letting M° = S? and letting the operator L be the Laplacian operator
with eigenfunctions ¢,, n € N, equal to the spherical harmonics. In the spherical
deformation model the independence assumption is reasonable on ground of rota-
tional symmetry, but in general the assumption seems rather arbitrary and should be
justified.

6 Applications

In this section two applications of deformable template models are considered. First
the problem of recognising an object in a noisy or blurred image is treated. We take
a Bayesian approach and use deformable templates as prior distributions. Second
the problem of variance estimation in stereology is discussed, and it is demonstrated
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how tools from model-based stereology may improve the methods used at present in
design-based stereology.

6.1 Bayesian object recognition

In this subsection we discuss the Bayesian object recognition problem following Kent,
Mardia and Walder (1996). Suppose we do not observe the outline itself, but a digital
image

Yy = {ys:S: (81582)71 Ssl SSI:]- §S2 S SQ}
A simple observation model is
Ys ~ N(,U,l,0'2), s € Q7 Ys ~ N(,u'270-2)7 S ¢ Qv

where €2 is the interior of the polygon P = (v;) in the plane defined by the vertices (v;).
This model is called the blur-free independent noise model, and the log-likelihood is
given by

L= g (S~ ) + 0~ mo)?). (6:1)

sEN s¢Q

Suppose the object is given in terms of the standardised radial representation (2.3),
with u; replaced by r;, together with a specification of scale and orientation dg,
and position v,,. Furthermore assume the standardised radial vector r follows the
first-order MRF model (3.6). Then the log-prior becomes

n—1 n—1

1
Q= 9 (0405 ZTJQ +ain Z(rj+1 - 7“]-)2>, oy >0, a; >0, (6.2)

§=0 §=0
and the log-posterior density of P given the image y equals
Q+ L, (6.3)

plus an irrelevant constant. The goal in Bayesian object recognition is often to de-
termine the maximum a posteriori (MAP) estimate which maximizes (6.3) over P.
A locally-based iterative method for finding the MAP estimate can be developed by
updating the values of 7, j = 0,...,n — 1, several times. This algorithm is an exam-
ple of the iterative conditional modes (ICM) algorithm of Besag (1986), and a good
starting point is essential for the algorithm to achieve useful results.

During the last decade this simple Bayesian object recognition problem has been
generalised in various ways. In order to handle digital images with several objects
Baddeley and van Lieshout (1993) embedded the deformable template model in a
marked point process framework. For a marked point process each object is specified
as a marked point, where the point gives the location and the mark determines the
shape and size of the object.
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The point process is responsible for the number of objects and the spatial relation-
ship between objects. The reference process is the Poisson point process, where the
number of objects are Poisson distributed and, conditional on this number, the loca-
tions of the objects are independent and uniformly distributed. To avoid clustering
of objects around each true object (called 'multiple response’) the area-interaction
point process, the hard-core point process or the Strauss point process are often used.
Baddeley and van Lieshout (1993) in an application concerning pellets in an image
use the Strauss point process. The pellets are modelled by a circle of fixed radius and
the observation model is a blurred independent noise model.

The distribution of the marks is often given by a deformable template model. Ex-
amples include Mardia et al. (1997) where mushrooms in a growing bed are analysed.
The mushrooms are modelled by the radial representation with a Gaussian first-order
MRF model. In Rue and Syversveen (1998) cells in a confocal microscopy image are
located and the radial representation with the zero mean stationary Gaussian radius-
vector process given by (3.10) is used. A third example is provided by Rue and Hurn
(1999), where two types of cells are located. The templates are either a circle or an el-
lipse with fixed eccentricity and the edge tranformations follow a Gaussian first-order
MRF model.

Perhaps the prior model has attracted too much attention in the literature com-
pared to the treatment of the observation model. A first extension is to relax the
independence assumption of the observation model, and for this purpose a local MRF
model where neighbouring pixels are dependent is often used. For an application of
a combined low-level MRF model and a high-level deformable template model see
Qian, Titterington and Chapman (1996), where an irregular boundary of a magnetic
domain is identified. Husby (2001) also use carefully defined realistic observation
models together with a deformable templates in applications concerning ultrasound
images.

There are close relations between the theory of snakes (Kass et al.,, 1988) and
Bayesian object recognition with Markov Random Field priors. A snake is a curve in
an image which minimizes a certain energy. Often the energy takes the form (6.3),
where (6.1) is called the image energy and connects the snake to the image, the first
term in (6.2) forces the snake to have a shape similar to a template snake, and the
second term in (6.2) ensures the snake to be smooth. Several other energies can be
added in order to ensure certain desired properties of the snake.

6.2 Model-based stereology

Stereology is a collection of methods for making inference about a population of
spatial objects from geometric samples of the objects such as line and plane sections.
The interest is in quantitative properties such as volume or surface area in three-
dimensional space and area or boundary length in two-dimensional space. If a typical
object from the population can be regarded as a realization of a stochastic process R,
then the quantity of interest can be expressed as a function f of R. Using a geometrical
design ¢, independent of R, a design-unbiased predictor f (R, @) of f(R) can often be
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constructed such that f (R, ¢) has the property

E(f(R,9)|R) = f(R).

To fix ideas let R = {R(27t) : 0 < t < 1} be some power of the radius-vector
function and suppose the parameter of interest is f(R fo (2rt)dt. For instance
the area of the boundary can be represented in this manner. Furthermore suppose R
is only measured in the points ¢+ j/n, j =0,...,n—1, with ¢ uniformly distributed
in [0,1/n]. Then

1

R(2m(¢ + j/n)). (6.4)

n

F(R,¢) =

1
n

<.
Il
)

is design-unbiased for f(R).

In most cases it is of interest to make statements about the population of objects
and not only about the sampled objects. A relevant quantity is here the prediction
error

E(f(R, ¢) — f(R))*.

Using that f (R, ¢) is design-unbiased the prediction error can be rewritten as

E(f(R,¢) — f(R))?

= Var( f(R,$) — f(R))

= Var(E(f(R, ¢) — f(R)|R)) + E(Var(f(R, ¢) — f(R)|R))

= E(Var(f(R, ¢)|R))

= EO’R. (6.5)

It is also part of the methodology of design-based stereology to construct a design-
unbiased estimator 6%(¢) of the conditional variance

op, = Var(f(R, ¢)|R). (6.6)

From (6.5) and (6.6) it is evident that 6%(¢) or an average of such estimators for
a sample of objects can be regarded as an unbiased estimator of the prediction er-
ror. In design-based stereology the predictor 6%(¢) is often based on the empirical
covariogram, cf. Gual-Arnau and Cruz-Orive (2000), but Hobolth and Jensen (2001)
demonstrate that a model-based statistical setting may lead to more efficient estima-
tors.

Gual-Arnau and Cruz-Orive (2000) use the design-based setting. Translated to a
model-based setting they suggest to model R by a stationary, random periodic process
with mean g and covariance function (3.9) with variances given by

(2p)!

/\ozﬁo—QZ)\k, Ap = L:2p

k=1

5 B keN,
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where A\, 3 > 0 and p € N. In terms of model parameters Hobolth and Jensen (2001)
show that the prediction error is given by

B(f(R,¢) — F(R))? = (-1 2m)? By 6. (67

where Bs, is the Bernoulli number of order 2p. Hobolth and Jensen (2001) suggest
using the maximum likelihood estimate of 8 of 3. Taking aliasing into account

N G
6—n_1; A= 1)/(n =), (6.:8)

where

_ (2p)! _
Klk—ZW, k—l,...,n—l,

JEL

and ay, by are given by (3.3) and (3.4). Since § is a function of the sufficient statistics
it follows from the Rao-Blackwell theorem that it is also the unique unbiased minimum
variance estimator of 3. By plugging the estimator (6.8) of 3 into (6.7) we obtain an
estimator of the prediction error, and since the distribution of 3 is known we can also
supply the point estimator with a confidence interval.

7 Spatio-temporal shape models

In recent years the evolution of shapes over time has been studied, and there is
an extensive engineering literature dealing with space-time noisy image sequences.
In these studies the Bayesian approach is often used. Kervrann and Heitz (1999)
present a model for the evolution in shape and motion of the heart ventricle where
the prior consists of a deformable template representation of the heart ventricle and
the motion is modelled by an affine velocity field. Furthermore Kervrann and Heitz
(1999) derive a procedure for finding maximum likelihood estimates for shape and
motion parameters.

Another challenging problem is to model the growth of shapes. Cressie and Hulting
(1992) define a random-set growth model to describe the growth of human breast
cancer tumors. A tumor X, at time ¢ is a Boolean model

with circular grains D of fixed radius and germs {s; € R* : i =1,...,n}. Here we use
the notation D@ s; = {d+s; : d € D}. The model is Markovian in time and the step
from X;_1 to X; is given by letting the number of grains n be Poisson distributed
with parameter \ - area(X; ;) and letting the germs be independent and uniformly
distributed in X; ;. A radial growth model somewhat similar in spirit to Cressie and
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Hulting (1992) is defined in Stoyan et al. (2002), where small sub-particles of varying
shapes and sizes are added to the radius-vector function.

The growth of star-shaped objects in three-dimensional space can be described
by the radius-vector function d(6,¢) with polar longitude 6 and polar latitude ¢
considered in Subsection 4.1. The dynamic radius-vector function is given by

(6, 6;1) = daw()(1+ D Y ap(t)en(8,9)), t€N,, 0<0<2m, 0<p<,

n=1m=-n

where dg,(t) determines the size and {a"(t) : n € Nym = —n,...,n} the shape of
the object at time ¢. Several models for the shape of an object at a given time were
discussed in Subsection 5.1, and interesting questions for a dynamic model include
how size and shape changes over time, and whether shape depends on size. If shape
does not change over time, then a reasonable model for {a™(t) : ¢ € N} could be a
general pth-order autoregressive AR(p) process.
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with an application to cancer diagnostics
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Abstract

Often, the statistical analysis of the shape of a random planar curve is
based on a model for a polygonal approximation to the curve. In the present
paper, we describe instead the curve as a continuous stochastic deformation
of a template curve. The advantage of this continuous approach is that the
parameters in the model do not relate to a particular polygonal approximation.
A somewhat similar approach has been used in Kent et al. (1996), who describe
the limiting behaviour of a model with a first-order Markov property as the
landmarks on the curve become closely spaced, see also Grenander (1993). The
model studied in the present paper is an extension of this model. Our model
possesses a second-order Markov property. Its geometrical characteristics are
studied in some detail and an explicit expression for the covariance function is
derived. The model is applied to the boundaries of profiles of cell nuclei from a
benign tumour and a malignant tumour. It turns out that the model with the
second-order Markov property is the most appropriate, and that it is indeed
possible to distinguish between the two samples.

Keywords: Cancer diagnostics, cyclic stationarity, deformable templates, fea-
tureless objects, Markov random field, shape, stochastic geometry.

1 Introduction

In the grading of malignancy of cancer tissue, many morphological parameters may
be used. At low magnification the architecture of the cellular tissue may be consid-
ered while on a medium scale of magnification the variation in cell nuclear size is an
important feature. At high magnification the shape, size and colour of each single
nuclei are studied. Stereological techniques may be used to determine the size of
nuclei, cf. e.g. Srensen (1991) and Jensen (1998). The remaining parameters are,
however, usually subjectively estimated by the pathologists without using any quan-
titative methods. The pathologists’ opinions may differ, and particularly in the cases
where the malignancy is in an intermediate stage this leads to different grading. In
order to make precise diagnoses there is therefore a need for supplementary methods,
which may objectively quantify important features at each scale of magnification.
This paper presents a method of describing stochastic changes of the shape of solid
objects in the plane with no obvious landmarks. The method is applied to nuclear
profiles, obtained by sectioning normal tissue and cancer tissue from the human skin.

The basic idea is to model an observed planar curve F = {F(t) : 0 < ¢t < T},
which is the boundary of a solid object, as a stochastic deformation of a non-random
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closed template curve C = {c(t) : 0 <t < T}. One of the stochastic geometry models
considered takes the form

Ft) =c(t) + X(tw(t), 0<t<T,

where w(t) is the inner unit normal vector to C at c(t), cf. Figure 1. Note that X (¢)
is the signed distance between F(t) and c¢(¢), and may therefore be regarded as a
residual. The challenge is to model the residual process {X (t) : 0 <t < T}.

Figure 1: The observed curve is a realisation of a stochastic deformation of a template.

We will assume that the residual process is distributed as
{TX,(t/T):0<t<T},

where the distribution of the 'normalized’ process {Xi(¢) : 0 < t < 1} belongs to
a parametrized class P = {P : # € O} of distributions of cyclic and stationary
stochastic processes with zero mean. Since the curves considered are closed, the
residual process should be cyclic. In the application, the residual process is assumed
to be Gaussian with zero mean and with a second-order Markov property. Recall that
a Gaussian process { X (¢)} with zero mean is stationary if and only if the covariance
between X (¢) and X (s) depends on (¢, s) through s —t only. Stationarity is a natural
requirement when the object has no obvious landmarks and hence no reference point.

Note that under translations, rotations and rescaling in the plane, the normalized
process {X;(t) : 0 < ¢t < 1} remains unchanged. Therefore, this process describes the
stochastic changes in curve shape of the observed curve F relative to the template
curve C, and the changes can be quantified by estimating the parameter of the distri-
bution P of the normalized process. One of the major advantages of this continuous
type model is its independence from the need to specify the number of landmarks.
The idea of relating to a continuous process has also been used in e.g. Kent et al.
(1996), Rue and Hurn (1997) and Rue and Husby (1998).

The idea of describing objects such as potatoes, cells, hands or leaves as defor-
mations of a template has been advocated by Ulf Grenander. His work on pattern
theory has been collected in Grenander (1993), see also Grenander and Miller (1994).
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In the above mentioned examples the template is a closed polygon, representing the
outline of a typical object. Grenander and Manbeck (1993) use a discretized ellipse
with fixed eccentricity as template in an application concerning defect detection in
potatoes. In order to determine whether an object has the shape of a potato, the
angles of the edges of the discretized object are compared with the angles of the edges
of the template. In our model a similar comparison naturally occurs when we consider
the derivative of the residual process.

In Rue and Syversveen (1998) an example of a stochastic geometry model of the
type described in the present paper is considered. The template curve C is a circle
with a radius r, and the residual process

{X(t):0<t<2mr=T}

is a cyclic and stationary Gaussian process with zero mean, variance r?0? and corre-
lation function

(h) = e~ M7 cos(4rh/T), 0<h<T/2,
PRV = ot = 1), T/2<h<T,

where a > 0.

Kent et al. (1996) consider multivariate normal models for edges and vertices of
a closed polygonal outline in the plane. The inverse covariance matrix of the edges
is a circulant matrix with a first-order Markov property. They describe the limiting
behaviour when the vertices become closely spaced. We extend this approach to the
case where the inverse covariance matrix is a circulant matrix with a second-order
Markov property. This turns out to be a better choice for our purpose. The general
second-order model, described in the Appendix of the present paper, contains as a
special case a second-order model suggested by Grenander (1993).

Kass et al. (1988) provide through the theory of snakes a way of performing
boundary detection in an image. A snake is a curve in an image which minimizes a
certain energy functional. In our set-up F is the snake while C can be regarded as a
template snake. A very first choice of the energy functional could take the form

T
:nake = / (OéX(t)2 + /6‘>(I(t)2 + Eimage(t))dta «, /6 > 0. (1)
0

The first term represents an external constraint energy, which forces the snake to
have a shape similar to the template snake. The next term represents an internal
energy and makes the snake smooth. The last term connects the snake to the image.
A simple image energy functional could be

Eimage(t) = 01(F(t)), 0<t<T,

where I(z) is the intensity of the image at the position z. Depending on the sign of §
the snake is attracted to either black or white pixels. This approach is very similar to
a Bayesian algorithm for object detection with the first-order Markov model described
in Section 4.1 below as the prior model.
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In Section 2 the data is described, and an ellipse is fitted to each of the objects.
In Section 3 the stochastic geometry models are presented, and some geometrical
characteristics of the residual process are explored under these models. In Section 4
we consider first- and second-order Markov models for the residual process, and they
are fitted to the data in Section 5. Finally in Section 6 we discuss further properties
of the models considered in Section 4 and consider topics for future work.

2 The data

The data set consists of 27 nuclear profiles from a malignant tumour and 27 nuclear
profiles from a benign tumour of the human skin. The profiles were observed using
light microscopy. The silhouettes were traced manually because light microscopic
images are very complex with low contrast, containing many other components than
the profiles of interest. The data have previously been analysed with respect to size
and variability of size in Jensen and Srensen (1991) and Srensen (1991).

By visual inspection the nuclear profiles were smoothed and rescaled such that an
area of approximately 75,000 pixels was obtained for each profile, cf. Figure 2. As
may be seen from Figure 2, nuclear profiles from the malignant tumour appear to be
less smooth than those from the benign tumour.

A EKX X X X
(N B W AN B X
PO OrOoNd
dooaxVeoeo o
VO V=Qecsooee
' R WA N NN

Figure 2: The nuclear profiles after scaling and smoothing. The upper panel is from
the malignant tumour while the lower is from the benign tumour.

As a first analysis we fitted an ellipse to each of the profiles, using n = 50 (approx-
imately) equidistant points (z1,...,7,) € R*® on the boundary of the profile. Let
C =C(a,b,0,x0,1y0) be an ellipse with semi-axes a, b, orientation 6 and center (zo, ¥o),
and denote by ¢;(a, b, 8, xq,yo) the point on C closest to z;, i =1,...,n, cf. Figure 3.
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The fitted ellipse was then determined as that having parameter values (a, b, 6, x¢, yo)
that minimizes

Z ‘xl - Ci(a’ ba 9, Zo, Z/O)|2>

Figure 3: The fitted ellipse minimizes the sum of squares of the indicated distances.
Left: An initial fit. Right: The fitted ellipse.

The ratio between the minor axis and the major axis of the fitted ellipses of the
profiles does not show significant difference between the two samples, cf. Figure 4.
Therefore, a study of the residual process is needed in order to describe the difference
in shape of the two samples. Note also that the simpler description of the profiles by
means of circles does not seem to be adequate.

© eccocoemecemence o oo
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Figure 4: The ratio between the minor axis and the major axis of the fitted ellipses
of the profiles. The upper points are from the profiles from the malignant tumour
while the lower points are from the profiles from the benign tumour.

3 Stochastic geometry models for random curves

When modelling featureless objects using templates some of the frequently posed
questions concern the choice, matching and number of landmarks. We propose a
model where the observed curve F is matched to the template curve C by a per-
pendicular projection. A continuous type description makes it possible to study
how the parameters of the finite-dimensional distributions depend on the number of

5
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landmarks. There are several ways of choosing the landmarks. In Model T below
we parametrize C by arc length, which in the application corresponds to choosing
the landmarks equidistantly on C. In Model II we take the reverse approach and
parametrize F by arc length.

3.1 Model 1

The observed curve F = {F(t) € R? : 0 <t < T} is assumed to be a realization of a
stochastic process
Ft)=c(t)+ X({t)w(t), 0<t<T. (2)

Here, C = {c(t) € R* : 0 < t < T} is a non-random closed (c(0) = ¢(T')) smooth
curve in the plane parametrized by arc length. Furthermore, w(t) is the inner unit
normal vector to C at ¢(t),0 <t < T, and

(X() eR: 0<t < T}

is a real-valued cyclic and stationary stochastic process with zero mean. The process
{X(t)} models the deviations between the observed curve F and the expected curve
C. We will call {X(¢)} the residual process.

Note that the construction (2) puts some restrictions on how ’wild’ the random
curve F may look. Thus, each point ¢(t) € C generates exactly one point on the
random curve, positioned on the line ¢(¢) + span{w(¢)}. In particular, if C is a circle
with center e and radius r and X (¢) < r, then F will be the boundary of a random
set which is star-shaped relative to e.

The model is closed under translations and rotations in R?. Under such trans-
formations, the curve C will be translated and rotated correspondingly, while X (¢) is
unaffected. The model is also closed under scale transformations in R?

(z,y) = a(z,y) = (az,ay), o> 0.

Thus, parametrizing the rescaled curve aC by arc length and letting c,(t) = ac(t/«),
we have
aC = {co(t) : 0 <t < aT}.

Furthermore, if we likewise define F,, and X,, but let w,(t) = w(t/a), the equation
for the scale-transformed process becomes

Fa(t) = calt) + Xa(t) - wa(t), 0<t<Ta,

where T, = oT.
The features of the model (2) which are invariant under changes in location,
orientation and scale are thus the shape of C and the distribution of the process

Xi(t) = X(Tt))T, 0<t<1.

The latter process will be called the normalized residual process.
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In order to analyze the model (2) we need to find, for selected values of ¢ € [0, T,
the point F'(t) on the line ¢(t) + span{w(t)}. If the fluctuations of F(t) around c(t)
are not too large, then F'(¢) is expected to be the point on ¢(t) + span{w(¢)} which is
nearest to c(t).

The process { X (t)} and its derivatives (if they exist) contain interesting geometric
information about the difference between the random curve F'(¢) and its expectation

c(t).

Proposition 1 Suppose that X(t) is differentiable. Let C be orientated anti-clockwise.
Furthermore, let ®p(t) and Oc(t) be the angles that F'(t) and ¢/ (t) make with a fized
azxis, respectively. Then,

X'(t) = tan W(£)(1 — k(1) X (1)), 3)
where U (t) = ®p(t) — Pe(t) and ke(t) is the curvature of C at c(t).
Proof. Using that
F(t) = FR)+F @)t —1t)+or(—1)
ct) = ct)+ @)t —1t)+oc(t—1t)
we find that
2X(H)X'(t) = (X(1)?)
o X X0
i—t 4

-1
= 2AF(t) - c(t), F'(t) - ¢ (1)),

where (-, -) is Euclidean inner procuct. Therefore,
F(t) = c(t)
X(t)

© FO-cl)
G RO (4)

_ FO) =) F'@)

where at (x) we have used that ¢/(t) L F(t) — ¢(t).
Since C is parametrized by arc length, |¢/(t)| =1 and

X' = ,F(t) = (1))

d(t) = (cos Dc(t),sin Dc(t)).
It follows that
' (t) = @L(t)(—sin B¢ (t), cos e (t)) = ke (t)w(t).
Using that

F(t)
[E"(2)]

= (cos ®p(t),sin @p(t))
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we therefore find

On the other hand, "
4 Ft = cos(® - &

and rewriting the left-hand side of (5)

LGRS
')

(¢(t),

(3) follows immediately. O

Note that if the variance of X (t) is small then ®x(t) — ®c(t) is also expected to
be small and
X'(t) = ®p(t) — Pe(t)

can be approximated by the process of angular differences. These differences have
been considered in a discrete set-up by Grenander and Manbeck (1993). If X(¢) is
twice differentiable, then under the same assumption

X'(t) ~ @p(t) — De(t) = [F'(t)|kr(t) — kie(t) = £r(t) — ke(t)-

3.2 Model 11

As an altervative, we may take a reverse approach and parametrize F by arc length.
The idea is then to construct F from a residual process {X (¢) : 0 <t < T} such that
X (t) is the signed distance from F'(¢) to C and the parameter ¢ represents arc length
on F. It is evidently also necessary in order to start the construction to specify a
point ¢ € C such that F'(0) has signed distance X (0) to c.

Asin Model I, {X (¢) : 0 < ¢ < T} is a real-valued cyclic and stationary stochastic
process with zero mean. Under Model II it is therefore natural to sample points on
F which are equally spaced in terms of arc length on F. Such data points are, for
instance, also used for the shape model described in Grenander and Manbeck (1993)
and for the constant length or articulated model described in Kent et al. (1998).

Notice that it is not always possible to construct F in this way. As a simple
example, suppose that C is a circle of radius . Then, to avoid pathological cases we
must assume X (¢) < r. Furthermore, for small € > 0, we also need

IX(t+e€) — X(1)| < e,

cf. Figure 5. In particular, if X (¢) is differentiable, then | X'(¢)| < 1.

8



Figure 5: Illustration of the condition on X ().

Note that as under Model I, the ’shape features’ of Model II are the shape of C
and the distribution of the normalized process {X(Tt)/T:0 <t <1},

Similarly to the case where C is parametrized by arc length, the process X'(¢) can
be approximated by the process of angular differences.

Proposition 2 Suppose that X (t) is differentiable. Let C be orientated anti-clockwise.
Furthermore, let ®p(t) and Oc(t) be the angles that F'(t) and ¢/ (t) make with a fized
azxis, respectively. Then,

X'(t) =sin (),

where U (t) = Op(t) — De(t).
Proof. Since F is parametrized by arc length, |F'(t)| = 1 and
F'(t) = (cos ®r(t),sin ®r(1)).

Using that

) (cos @ (1), sin Be(t)) L w(t)
we see that
w(t) = (—sin @¢(t), cos e (t)).

The proposition now follows from (4). O

4 Statistical inference

We will assume that the normalized residual process {X;(¢) : 0 < ¢ < 1} has a distri-
bution belonging to a parametrized class of cyclic and stationary Gaussian processes
with zero mean. In what follows we will omit the index 1 which should not cause any
confusion.
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There are as many choices of classes of Gaussian processes as there are parametrized
classes of covariance functions. We will here concentrate on classes, having the prop-
erty that the finite-dimensional (multivariate normal) distributions have a first- or
second-order Markov property.

4.1 First-order Markov model

One such class which has been suggested, among others, by Grenander (1993, p. 476)
and Kent et al. (1996) has the property that the finite-dimensional distributions have
a first-order Markov property, approximately.

The class is characterized by the fact that X (¢) has zero mean, variance 72 and
correlation function

o(h=1/2) | o= (h=1/2)¢

p(h) = X (), X (¢ 1) =

0<h<1, ¢>0. (6)

Note that the correlation p(h) is always positive and it is a decreasing function on
the interval [0,1/2]. Note also that p(h) = p(1 — h) which is a general property of
cyclic and stationary processes on [0, 1].

In the proposition below, it is shown that the finite-dimensional distributions of
{X(t)} have a first-order Markov property, approximately. Recall that a multivariate
normally distributed random vector

(Xo, e aXn—l) ~ Nn(O, E)

has a first-order Markov property if (X1);; = 0 unless j = (i+k) mod n with |k| <1,
cf. e.g. Lauritzen (1996).

For a n X n circulant matrix we use the notation circ (ag, a1, - - -, a,_1) if its first
row is (ag, a1, - -, Gp_1)-

Proposition 3 Let {X(t)} be a cyclic and stationary Gaussian process with zero
mean, variance 7> and correlation function (6). Furthermore, let {X™ ()} be the
cyclic Gaussian process defined by

X = (X0 (tg), ..., X (1)) ~ Na(0, 5),

,-..,n — 1, with linear interpolation between t; and t;11, and with
1). Here, %, is the reqular n X n matriz with inverse

1 = circ (a/n +28n, —fn,0,...,0,—6n), «a,B3>0. (7)

Then, X™ is first-order Markov and {X™ (t)} converges weakly to {X (t)}. The 1-1
correspondence between (72, ¢) and (o, ) is

¢*=a/f T'= eV’ + &0
205(e?? — e=9/?)’

10



A proof of Proposition 3 may be found in Grenander (1993, p. 476-480). It follows
immediately from the form of 37! that X is first-order Markov.

The parameters 72 and ¢ contain, under the model given in Proposition 3, the
information about the deviation of the random curve shape from C, cf. Section 3. The
parameter 72 is a measure of the overall difference while ¢ regulates the smoothness
of the random curve. The smaller the value of ¢, the smoother the curve, cf. Figure 6.

logT*=3.0 logT*=4.5 logT*=6.0

logp=3.5 ¢ Yo Y F D
/ 1

\\\(\ . //// \ \i;\/—vf_//// ( ‘/ \{\fx\/v \§

o e RS
o I 7N
logp=2.0 { ot Nt

logp=1.0 /// N \ ’/ 7 \\‘ ,/://’/\KA >
0ge= ' } ( )
Nl / \ hN 7

Figure 6: Simulations from the first-order Markov model for different values of ¢ and
72. We have simulated from Model I, cf. Section 3.1, with C taken to be an ellipse.

Estimation of the parameters (72, ¢) or equivalently (a, ) can be done by an
approximate likelihood analysis. Let

Xn = (X(to),- .., X(tar)).

Then, because of Proposition 3, we can approximate the distribution of X, with that
of X and use the likelihood based on X ™

1
Ln(a, 8) = (2m) "/2det(S,1) exp(— 5 X;%, X,

where 31 is given by (7). Denoting the eigenvalues of X! by \;,s = 0,...,n — 1,
we get the log likelihood

1
lo(a, B) = —= log (27) Zlog §X;E;1Xn.

The actual form of the eigenvalues is given in the Appendix. The maximum of
ln(c, B) can be found by standard numerical methods. Usually, it will be a good idea

11
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to estimate « and 3 for a collection of values of n and as a model check investigate
whether the estimation is stable. Given that the model is suitable it appears to be a
good idea to base the estimation on an n as large as possible.

Note that
n—1 n—1
_ 1 1=, X(t)— X (t;i_1)
X5 X, = a= ) X)) +6-) (& —)?

= aYn + ﬁZm

say. The sufficient statistics (Y;,, Z,) have a nice geometrical interpretation. Thus,
Y, is a discrete measure of the distance between the observed and the expected curve
while Z,, compares local orientation,

where U; = ®p — @, and ®p, and P, are the angles that the line segments F(¢;) —
F(t;1) and ¢(t;) —c(t; 1) make with a fixed axis, respectively. Furthermore, f=tan or
sin, depending on whether X (¢) has been constructed using Model I or IT of Section 3.
Note also the connection between X*3 1 X, and the sum of the external and internal
energy from the theory of snakes, cf. (1).

4.2 Second-order Markov model

In Grenander (1993, p. 484) a model class with an approximate second-order Markov
property is suggested. This class is characterized by the fact that {X(¢)} has mean
zero, variance 72 and correlation function, cf. Figure 7,

sty — (ot a0 () (1) + (s — () (1)

1Py + Y314 ’
v>0 0<h<1,

(8)

where we use the notation

i (h) = cos(¥(h —1/2)), P5(h) = sin((h — 1/2)), ¢s(h) = cosh(4(h - 1/2)),
a(h) = sinh(¢p(h — 1/2)), ¥ = $i(1), i=1,...,4.

The explicit form of the correlation function is not given in Grenander (1993), but
can be derived from the spectral density of X (¢), as demonstrated in the Appendix.
Note that the correlation function only depends on ).

In Grenander (1993, p. 484), it is mentioned that the finite-dimensional distri-
butions of X (¢) have a second-order Markov property, approximately. Recall that a
multivariate normally distributed random vector

(Xo, e aXn—l) ~ Nn(O, E)

has a second-order Markov property if Ei’jl = 0 unless j = (i+k) mod n with |k| < 2.
The result by Grenander is formulated in the proposition below.

12
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Figure 7: Correlation functions for the second-order Markov model for different values

of .

Proposition 4 Let {X(t)} be a cyclic and stationary Gaussian process with zero
mean, variance T2 and correlation function (8). Furthermore, let X™(t) be con-
structed as in Proposition 3, but with

2;1 = circ (a/n + 6777'3’ _4777'3’ 7n3, Oa T 0, 7”35 _47”’3)’ o,y > 0. (9)

Then, X™ = (X™(t5),..., X™(t,_1) is second-order Markov and {X™(t)} con-
verges weakly to {X(t)}. Here, the 1-1 correspondence between (72,1) and ()

N _ Y it + st
200 (21)3)” + (1904)*

Wit =a/y 1

As in the first-order case the parameter 72 is a measure of the overall difference,
while 1 regulates the smoothness of the curve, cf. Figure 8.
Similarly to the first-order case we can estimate the parameters by an approximate
likelihood analysis. In this case
n—1
1 Z(X(ti) —2X (tim1) + X (ti2)

n 2 W/n)? )

n—1
1
X3 X, = a= ) X()?
o Ozn; (t:)" +~
= aY,+vV,.

V. can be interpreted geometrically as a discrete measure of the change in local
orientation
n—1

1 Z(f(‘l’z') — f(¥i1)

n — (1/n)?

where f and U; are defined as in the first-order case.

)%,

13
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Figure 8: Simulations from the second-order Markov model for different values of 1
and 72. We have simulated from Model I, cf. Section 3.1, with C equal to an ellipse.

5 The application

For each nuclear profile we calculated the boundary length 7" and considered the
n = 50 points

(F(Tto),,F(Ttn_l)), tZ:Z/’I'L, Z:O,,’I'L—l,

collected (approximately) equidistantly on the boundary of the nuclear profile. For
C we chose the ellipse from Section 2. This is the set-up in Model II, cf. Section 3.2.
The reason for preferring Model II to Model I was that Model IT was expected to be
a more sensitive tool for distinguishing between the profiles from the malignant and
the benign tumour since under Model I curve segments from F which are close to
being perpendicular to C are undersampled.

Now consider the corresponding n observations from the normalized residual pro-
cess

X, = (X(Tto), ..., X(Tta))/T, ti=i/n, i=0,...,n—1.

Our initial model was a general second-order Markov model
My : X, ~ N,(0,%,),
where

Y. 1 =circ (a/n + 26n + 6yn®, —Bn — 4yn®,yn*,0,...,0,yn°, —fn — 4yn?),
o > O’ /67’-}/ Z 07

see also the Appendix. Note that this model contains as special cases both the model
described by (7) and that described by (9). For all the profiles, we estimated the
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covariance matrix, using the ellipses fitted in Section 2. For some of the profiles, the
ellipse and the covariance were also estimated simultaneously. The ellipses fitted in
this way did only differ slightly from those determined in Section 2.

Y

f o S5 e®
®

—14.0F o ‘ e -

“Io ¥ Fyo

—W5.0;Q7 @ “y Q- i

logy

L | | Q | | | L]
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Figure 9: The estimates of («,) under the two parameter second-order Markov
model. The white nuclei are from the malignant tumour while the black nuclei are
from the benign tumour.

To see whether the first- or second-order Markov model from Section 4 could be
used we tested the two hypotheses

Hi:v=0 H,:3=0.

We found that the second-order Markov model with 8 = 0 described in Section 4.2
was the most appropriate. Since the nuclear profiles look like the ones simulated in
Figure 8 this was of course not surprising. Figure 9 shows the estimates of («, )
under the two parameter second-order Markov model. Note that it is indeed possible
to distinguish between the two samples.

To verify that the estimates do not depend on the number n of landmarks, we
fitted the model for landmark numbers between 30 and 90. From Figure 10 it is clear,
that the estimation is stable.
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Figure 10: The estimates of log 72 and log ) for different numbers of landmarks.

6 Discussion

The smoothness of the sample paths of the residual process is an important topic
when constructing realistic models. It follows from (15) in the Appendix below that
the first- and second-order processes considered in Sections 4.1 and 4.2 have a spectral
density of the form

(a+ B(2ms)?) 1, s=0,+1,... (10)
(o +y(2ms)H) 71, s=0,%+1,..., (11)

respectively, c¢f. Cramer and Leadbetter (1967, p. 126-128). Since (10) decreases
as 1/s and (11) decreases as 1/s* the sample paths of the first type of process are
continuous, while the sample paths of the second type are continuously differentiable,
cf. Cramer and Leadbetter (1967, p. 181). For each nuclear profile it seems natural
to assume that the observed curve F is differentiable, and since the expected curve
C is infinitely often differentiable the model from Section 4.2 appears to be the most
appropriate in our application, also from the point of view of smoothness.

The simulations presented in Figures 6 and 8 involve the generation of an n-
dimensional normally distributed random vector with mean zero, constant variance
72 of its coordinates and correlation matrix determined by (7) and (9). It is however
also posssible to simulate from the continuous process, cf. Hobolth and Pedersen
(1999). Furthermore, it is part of our future research plans to develop estimation
procedures based on observations of the continuous process.

The model suggested in the present paper seems to provide the right framework
for solving our original problem, viz. quantifying in a simple manner the shape
differences between the two samples of nuclear profiles. It should however be noticed
that our model appears to be difficult to use as a prior model in a Bayesian object
recognition problem with an unknown number of objects, c¢f. Rue and Hurn (1997,
p. 10). See also the related papers on Bayesian object recognition, Rue and Husby
(1998) and Rue and Syversveen (1998).
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Kent et al. (1998) describe a deformable template model with a circle as template.
An object is described by edge deformations of the template. The model, which is
used for exploring shape variability, is only valid for samples of objects which can be
regarded as deformations of a circle. The sample of objects from the benign tumour
as well as from the malignant tumour cannot be regarded as deformations from a
circle.

The objects in Kent et al. (1998) and in the present paper are assumed to be
observed without measurement error. In a Bayesian approach, Hurn et al. (1999)
consider parameter estimation in deformable template models for objects observed
with measurement error. The object prior is described by edge deformations of the
template. The distribution of the edges are assumed to have a first-order Markov
property similar to the one described in the present paper.

Our model for the normalized residual process {X;(¢) : 0 < t < 1} may be
generalized in various ways. Instead of having zero mean a mean value of the residual
process given by either

pi(t) = agcos(6mt +wy), 0<t<1,

or
po(t) = agcos(8mt +wq), 0<t <1,

or a sum of p;(t) and ps(t) would allow for a systematic variation from the shape
of an ellipse. Still modelling the correlation structure by the second-order Markov
property it might be even more easy to distinguish between the two samples. Another
generalization would be to let the residual variance depend on the curvature of the
template curve.
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Appendix

In this appendix we will derive the explicit form (8) of the correlation function for the
second-order model. We will use an approach such that we at the same time derive
p(h) for the first-order model, cf. (6).

Thus, consider the matrix

Yt = cire (a/n + 28n + 6yn®, —Bn — 4yn® yn® 0,...,0,yn?, —Bn — 4yn?),
a>0, 3,7y>0.
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For v = (vg,...,v, 1) € R” we have that

—_

n—

= a/nZv + ﬁnz = 0im1)? Y (v — 201 + vimg)?,

i

Il
o

where v_; = v,,_; and v_y = v,,_5. Therefore, 3! is positive definite. Note that v = 0
is the case treated in Proposition 3 and 8 = 0 is the case treated in Proposition 4.

Since X! is circular we have that ¥, is also circular. The eigenvalues of X! are
given by, cf. Anderson (1958, p. 280, 282),

A = (a/n +20n + 6yn®) — (Bn + 4yn®)2 cos(2ms/n) + yn*2 cos(4ns/n),

with corresponding orthonormal (complex) eigenvectors us,s = 0,...,n — 1, where
(us); = €™ [ \/n, 1=0,...,n—1.
Note that ug = (1,...,1)/y/n. Let
Ug

A = diag(Xo, ..., A1) and U =

Up—1
Then, we have for [ = 0,1,...,n — 1 that
n—1 n—1 : n—1
—x 1 e2mlsi/n cos(2mls/n)
2 )0 = (UA™! =S A, =S N OSEmE) q9
(En)io = (UATU o =(UA™), > - > o (12)

Il
)

s s=0 s=0

Now, we will study a sequence X () of cyclic Gaussian processes, constructed
as in Propositions 3 and 4. Thus, let

(XnO; R Xn(n—l)) ~ Nn(Oa En)
and define a continuous process {X™(¢) : 0 <t < 1} by
XM(G/n)=Xp j=0,...,n—1,

with linear interpolation in between, and with X (0) = X (1). Using (12), we find
the following expression for the covariance between X™(0) and X ([nh]/n),0 <
h <1,

Cov(X(0), X fnhl/n)) = Cov(Xoo, Xagiu) = Y 2o H2l1),

Assuming that at least one of the parameters 5 and + is positive, we obtain, using
dominated convergence,

h
B Cox0, X = 25 g
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By construction X™(¢),0 <t < 1, is given by
XO(t) = Xy + n(t — [t]/1)(Xn(tr1) — Xn(na))-
Hence we have

(X (R) = Xuap| = n(h = [2h]/7)| Xngan41) = Xngan)|
| Xn(mhy+1) — Xn(mh)|

IN

and

E((Xn(nn) = Xa@uap)®) = B((Xn1 = Xno)?)
= 2(Vaan0 — COV(an, XnO))

n—1 n—1
1 cos(2ms/n)
= 2 N2
L n )
— 0 for n — oc. (14)

From (13) and (14) it is clear that the limiting covariance function is given by the
Fourier series

cos(2mhs)
== 0<h<I1. 15
+ Z a+ B(2ns)2 +y(2mws)t” T~ (15)

In order to find an explicit expression of o(h) note that in the sense of generalized
functions and the theory of distributions

ao(h) — po"(h) + vy (k) =142 Zcos(%rhs) = Z cos(2mhs) Z Js,

s=1 §=—00 §=—00

where ¢, denotes the §-function at s. Therefore, o(h) is the solution of a homogeneous
linear differential equation with constant coefficients, cf. Hirsch and Smale (1974, p.
138). In general, o(h) is thus a linear combination of exponential and trigonometric
functions depending on the roots of the characteristic polynomial

a— By +yyt=0.

We will for simplicity only consider the two cases previously mentioned, # > 0,7 =0
and 5 =0,7 > 0.

Before treating these two cases, it is convenient to change the interval from [0, 1]
to [—1/2,1/2]. Thus, let

o.(h) =0c(h+1/2), -1/2<h<1)2

The function o, (h) is the solution to the same homogeneous linear differential equa-
tion,

ao,(h) — Bo" (k) + 70" (k) = 0. (16)
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First consider the case 3 > 0,7 = 0. With ¢?> = o/ the solution of (16) is given
by, cf. Hirsch and Smale (1974, p. 139),

0. (h) = c1e® + e -1/2< h<1/2.
From o(h) = o(1 — h),0 < h <1, it follows that
o.(h) = o.(—h), -1/2<h<1/2,

and hence we have ¢; = ¢, = ¢. Using that the first Fourier coefficient is given by
1/« we can find ¢ from the equation

1o =2 / Y ()i, (17)

and we obtain the form (6) of p(h), stated in the main text, and the correspondence
between (72, ¢) and («,<y) given in Proposition 3.

Now consider the case # = 0,7 > 0. Again, using o,(h) = o.(—h) and letting
4p* = o/, the solution of (16) is given by, cf. Hirsch and Smale (1974, p. 139)

o.(h) = c1(e?" + e ") cos(h) + co(e?™ — e ) sin(yh), —1/2 < h < 1/2.

The constants ¢; and ¢, can be found from (17) and o’ (1/2) = 0, and we obtain the
explicit form (11) of p(h) and the correspondence between (72,) and (c,7) given in
Proposition 4.
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ABSTRACT. Objects in the plane with no obvious landmarks can be de-
scribed by either vertex transformation vectors or edge transformation
vectors. In this paper we provide the relation between the two transfor-
mation vectors. Grenander and Miller (1994) use a multivariate normal
distribution with a block circulant covariance matrix to model the edge
transformation vector. This type of model is also feasible for the vertex
transformation vector and in certain cases the free parameters of the two
models match up in a simple way. A vertex model and an edge model are
applied to a data set of sand particles to explore shape variability.

Key words: Circulant symmetry, complex symmetry, deformation, edge transforma-
tion, featureless objects, outline, shape, vertex transformation.

1 Introduction

Consider a solid object in the plane with no obvious landmarks. Suppose the object
can be regarded as a stochastic deformation of a circle. It is often fruitful to describe
the object by deforming an n-sided regular polygon using either vertex transforma-
tions or edge transformations. In order to describe the variability in shape, it is useful
to standardize the edge transformation vector, cf. Kent et al. (2000). A standardized
edge transformation vector is invariant under a translation, rotation and isotropic
scaling of the object. In this paper we standardize the vertex transformation vectors
similarly, and we establish a linear relation between the transformation vectors. An
immediate advantage of this unification is that it allows for a comparison of strengths
and weaknesses of models independently of whether they are defined as vertex or edge
transformation models.

Grenander and Miller (1994) use a multivariate normal distribution to model the
edge transformation vector, which is also a feasible model for the vertex transfor-
mation vector. The lack of features on the object implies that any statistical model
should be invariant under a cyclic permutation of the vertices and this invariance
implies that the mean should be zero and that the covariance matrix should be block
circulant. To limit the number of free parameters one can propose symmetries or re-
strictions to the model. We demonstrate how easy it is to go back and forth between
the free parameters in the edge and vertex models in some of these cases.

By spacing the vertices in certain ways the data analyst can reduce the dimension
of the data from 2n to n. This choice of spacing also enables the data analyst to focus
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on real shape differences rather than differences of the object due to vertex spacing.
A vertex and an edge representation of such spacings are presented and in order to
compare the two representations we apply them to a data set of sand particles.

Many examples of shape modelling of objects without landmarks can be found in
the literature. The objects under study in Grenander and Manbeck (1993), Grenander
and Miller (1994), Stoyan and Stoyan (1994, ppl167), Mardia et al. (1996), Rue and
Syversveen (1998), Hansen et al. (2000) and Hobolth and Jensen (2000) are potatoes,
mitochondria, sand grains, mushrooms, cells, arteries and cell nuclei, respectively, and
they all fall in this category. This list also suggests the wide range of applications of
the type of models considered in this paper.

In Section 2 the vertex and edge transformation vectors are defined and two simple
representations are described. In Section 3 the relationship between the transforma-
tion vectors is established. In Section 4 we describe the model proposed by Grenander
and Miller, and in Section 5 we consider some special cases of the model where it is
easy to go back and forth between the free parameters of a vertex and an edge rep-
resentation. In Section 6 we apply and compare the two simple representations on a
data set of sea sand particles collected from a beach at the Baltic Sea.

2 Transformation vectors

In Figure 1 we show a collection of objects with no obvious landmarks. Furthermore,
the objects can be regarded as deformations of a circle. The sample consists of 24
sand grains collected from a beach at the Baltic Sea, as given by Stoyan (1997). In
this section we demonstrate how standardized transformation vectors can be used to
describe the shape variability of this type of object.

N N N N N N W
Y NN N K N N
QO 69000

Figure 1: A sample of 24 sand grains from the Baltic Sea. The sand grains are scaled
so that they all have approximately the same area.

The transformation vectors are defined from a number of vertices collected on the
boundary of the object. For arbitrarily chosen vertices, the dimension of the vectors is
2n, but under certain regular arrangements of the vertices the data analyst can reduce
the dimension to n. Examples of such spacings include the radial representation and
the constant length representation, which are described in Section 2.1 and Section 2.2.



2.1 Vertex transformation vectors

Consider an object P in the complex plane with n > 3 vertices v;,7 =0,...,n — 1,
located round the outline of the object in an anti-clockwise order. First, make the
vertices independent of the location by translating to the new centred vertices

1 n—1
vi=0——Y %, j=0,...,n—1 (2.1)
"o
The sample mean of the vertices is now located at the origin. Let P° denote the
regular n-sided polygon with vertices
o) =e*mim i =0,...,n—1 (2.2)

The basic idea is to describe the object P as a stochastic deformation of the polygon
P°. One way of doing this is through a complex-valued “vertex transformation vector”

d = (d;) defined by
d; = v;/vj, j=0,...,n—1. (2.3)

We want to explore the variability in shape and thus we have to investigate the
effect of a scaling and rotation of the vertices. Scaling and rotating the vertices by
a € C leads to

av; = adjv} = (1+u;)v;, j=0,...,n—1,
where
U]:ad]_l, j:O,...,n—l.

One possible standardization for « is to rescale and rotate so that

Ugy = %jgouj =0, (2.4)
which implies
=
o=~ ;Odj = dyy-

Thus, replacing d by the “standardized vertex transformation vector” u = (u;) with
components

Uj:dj/d(w—l, j:(),...,’fl—l, (25)

gives invariance under changes in scale and rotation. The representation in terms of
u breaks down if d,, = 0, but since d,, = 0 only for extreme deformations from P°
this does not pose a practical problem.
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The translation (2.1) implies that

which can be recast in terms of u as

n—1 n—1 n—1 n—1
0= Zvj/dm, = Z(l + uj)v] = Zuﬂ? = Zuje%ij/”, (2.6)
§=0 §=0 §=0 §=0
where in the third equality we have used
n—1 n—1
v;-) = e?miim — ),
§=0 §=0

The complex standardization constraint (2.4) and the complex translation constraint
(2.6) imply that u has 2n — 4 free (real) parameters. Note that from

vj:dav(l—i-uj)vg, j=0,....,n—1,

it follows that Re(u;) = r; determines the component of the jth vertex of P tangential
to d(wv;-) while Im(u;) = s; determines the normal component.

One often used method of describing a boundary is the radial representation as
described below. Let ¢ € C be the centre of gravity of the solid two-dimensional
object. Find the vertices of the object by rays starting at ¢ with angles 27j/n,j =
0,...,n—1, relative to some fixed axis. Suppose the object is star shaped relative to
the centre of gravity, i.e. the radial vectors from a single central point to the boundary
all remain inside the object. Then the sequence of distances d;,j = 0,...,n — 1,
provides a description of the boundary. Consider the polygon given by the vertices

Uj:djv;), djER, j=0,...,n—1.

The standardized vertex transformation vector of this polygon is given by
Uj:dj/d(w—leR, 7=0,...,n—1. (27)

Hence, there is variability only in the tangent component r = (r;) of the vertex
transformation vector, cf. Figure 2. Note that in this construction of the vertex
transformation vector we avoid centering the vertices as in (2.1), but take (2.3) as
our starting point. We recommend living with this minor violation of the assumptions
since the average of the vertices defined from the centre of gravity is usually close
to zero. If the average of the vertices defined from the centre of gravity is not close
to zero, then we suggest iterating the construction until a centre is found with the
property that the average of the corresponding vertices is close to zero.

There is a large literature on vertex transformation models and usually the radial
representation is used. The prior model in Rue and Syversveen (1998) is one example.

4
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Figure 2: Left: The rays from the center of gravity determine the vertices. Right: The
value of the tangent component r of the standardized vertex transformation vector.

In a procedure for identifying cells in a digital image, the regular n-sided polygon P°
is deformed and the generated object is determined by (2.3), where the vertex trans-
formation vector d = (d;) € R” is real and follows a multivariate normal distribution,
which is invariant under cyclic permutation. Note that when the components of d
are real and positive then the generated objects are star shaped relative to the origin.
Some other examples are given by Rohlf and Archie (1984), Johnson et al. (1985),
Mardia and Qian (1995) and Mardia et al. (1996) who use such representations in
modelling mosquito wings, mouse vertebrae, leaves and mushrooms. A description of
Fourier series analysis of radial vector functions is given by Stoyan and Stoyan (1994,
pp80), applied to sand grains. Fourier series analysis has close connections to the
analysis of radial vectors, as seen in Section 5.4.

2.2 [Edge transformation vectors

We now change the focus from the vertices to the edges and recall the standardized
edge transformation vector as introduced in Kent et al. (2000). Focusing on the
edges removes any translation effect immediately. The vector of edges e = (e;) for
the object P has components

€; = Ujp1 — Yy, j=0,...,n—1, (28)
whereas the vector of edges for the regular polygon P° are given by
ef = vy, —vf = (/" — D)e*/m j=0,...n—1.

All subscripts throughout the paper are interpreted modulo n. The complex-valued
“edge transformation vector” t = (¢;) can be defined by

tj = ej/e], j=0,...,n—1. (2.9)

5
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Dividing t by t,, = %Z?;& t; gives invariance under changes in scale and rotation
and leads to the “standardized edge transformation vector” z = (z;) defined by

Zj:tj/tav—l, j:O,...,n—l.

There are two complex constraints on z. As in (2.4) the standardization implies
that

1 n—1
= 2= 24 =0. (2.10)
(s

Secondly, to ensure that the outline P is closed we also require z to satisfy

n—1 n—1 n—1 n—1
0= Z ej/taw = Z(l +zj)e] = Y zje] = z;e?mm (2.11)
=0 =0 =0 =0

and therefore z has 2n — 4 free parameters. Note that the constraints on z and u are
the same. As in the previous subsection it follows from

ej:ta,,(l—i—zj)e?, j=0,...,n—1,

that Re(z;) = x; determines the component of the jth edge of P tangential to t(weg
while Im(z;) = y; determines the normal component.

ool A o
NATRMN

0O 10 20 30 40 50
J

Figure 3: Left: The vertices are equally spaced in terms of arc length. Right: The
value of the normal component y of the standardized edge transformation vector.

Another way of collecting vertices on a boundary is that of equal spacing in terms
of arc length. If the deformations from a circle are small, the length of each edge
remains constant, to first order. This implies that the value of the tangent component
x of the standardized edge transformation vector is zero to first order, and it suffices
to consider the normal component y. In practice, one finds the edge transformation
vector z = x + iy of the object and consider y = Im(z) as the data, cf. Figure 3.
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This way of describing the boundary is called the constant length representation, and
is closely related to the tangent angle function, cf. Zahn and Roskies (1972).

Applications of edge transformation models may be found in Kent et al. (2000),
where data from sand grains and ceramic material particle sections are analyzed, in
Grenander and Miller (1994) who describe mitochondria, or in Hansen et al. (2000)
where images of arteries are considered.

3 The relation between the transformation vectors

We now have two different ways of describing the shape of the object P relative to the
regular polygon P°, the standardized vertex transformation vector u and the stan-
dardized edge transformation vector z. The edges are determined by the vertices and,
together with a specification of the location, the edges determine the vertices. In this
section we show a 1-1 correspondence between the two standardized transformation
vectors.

To derive the relationship between the transformation vectors we first note that

0 _ (,2ni/n 0 _ (,2ri/n ~2ni/n, 0
e; = (e / —1v; = (e m_1)e2m/ Vi1
From (2.3), (2.8) and (2.9) it now follows that

(627ri/n — 1)t] = 62m/ndj+1 — dj ] = 0, N (A 1,

which gives a complex linear relation between t and d. The relation implies that
taw = dgy, which shows that the edges and vertices are scaled and rotated in the same
way to obtain invariance. Division by t,, = dg, yields the complex linear relation

(2™ — 1)z = ¥ /My y ) — uj, J=0,...,n—1, (3.1)

between the standardized vertex transformation vector z and the standardized edge
transformation vector u. Let B be the circulant n x n matrix

B = circ(0,1,0,...,0).
Then equation (3.1) can be written as
(e2™/" — 1)z = (e*/"B — I,)u. (3.2)
The eigenvalues of B are given by, cf. Anderson (1971, p. 280-282),

e = e ki k=0,...,n—1,

with corresponding unit eigenvectors wy, £ = 0,...,n — 1, with components
(Wg); = L627”’7"“/" j=0,...,n—1. (3-3)
J \/ﬁ ) ’ )
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Note that wy is also an eigenvector for B” with corresponding eigenvalue Jiy, k =

0,2..../,n — 1, where 7z, denotes the complex conjugate of p;. The eigenvalues of
(e*™™B — I,) are therefore
Ap = w,’;(ezm/"B —L)wy = Zmikt/n _ 1 k=0,...,n—1,

where w; = Wi is the transposed complex conjugate of wy. Since Ay = 0 for k = n—1
and A\, # 0 otherwise the matrix has a singularity corresponding to the eigenvector
w,_1. The constraints (2.6) and (2.11) can be written as

* *

w, z=w, ;u=0_0,

and thus the mapping (3.2) is 1-1 on the domain of z and u. The two other constraints
(2.4) and (2.10) can be written in terms of the eigenvector wy and thus the 1-1
correspondence between the two standardized transformation vectors follows.

We now recast the relationship between the transformation vectors in terms of
real coordinates. Using the equality

1 — cos(27/n)

t =
an(r/n) sin(27/n)
it is straightforward to show that
e2mi/n 1 i 1 1 i

_ = (1 - — d ———=—(1
e2mi/n — 1 2( tan(w/n)) e emin 1 2( *

).

From (3.1) it now follows that the relation between the vertex transformation vector
u and the edge transformation vector z is given by

tan(m/n)

22zi = (1 — ———)u, 1+ ——)u;, =0,...,n—1. 3.4
2= tan(w/n))uﬁl—'—( * tan(w/n))uj’ J A (3:4)
Letting
Zj=$j+iyj, ’U,j:T'j-i-’l:Sj, j=0,...,n—1,
we can write (3.4) in real coordinates as
1 .
233] = ’f‘j+1+’f'j+m(8j+1—8]‘), j=0,...,n—1, (35)
and
1 ,
2y, = —m(rj+1—rj)+5j+1+sj, j=0,...,n—1 (3.6)
If we let
A 1 1/ tan(m/n)
~ \ —1/tan(xw/n) 1 ’

then the 2n equations (3.5) and (3.6) can be written as

2(§>:(A®B+AT®In)(;>, (3.7)

where ® denotes the Kronecker product. The basic equations (3.5) and (3.6) can also
be justified using Figure 4.



2y, sin(7t/n)

2x%; sin(m/n)

Figure 4: Illustration of the interpretation of r;, s; and z;, y; in the case d4, = 1. The
factor 2sin(7/n) comes from the fact that the length of € is 2sin(7/n). The basic
equations (3.5) and (3.6) can be found from this figure.

4 A model for the transformation vectors

In this section we consider a multivariate normal model for the standardized vertex
transformation vector (r,s). The considerations for a model for the standardized edge
transformation vector are similar. To a large extent we follow Kent et al. (2000, p. 529-
531), but formulate the results in terms of vertices.

It is convenient to partition the (2n) x (2n) covariance matrix of (r,s) by

r K)o g(rs)
Var( s ) =K = ( Kon KGs |-
The lack of features on the object implies that any statistical model should be
invariant under cyclic permutation of the vertices. Cyclic invariance implies that

E(rj,s;)T =0 and
T; o oy aj bj
. < Si > (it sieg) = ( ¢ d; )

cannot depend on ¢. Hence there exist numbers a;, b;,¢;,d;,7 = 0,...,n—1 such that
KT = circ(a;), K™ = cire(b;), K& = cire(c;), K% = cire(d;),
where circ(a;) denotes the circulant n x n matrix with first row (ao, ..., an—1). The

scale and rotation constraint (2.4) leads to a rank 2 deficiency in K. The translation
constraint for the vertices (2.6) leads to another rank 2 deficiency in K.

9
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Since the four partitioned matrices are all circulant we can make a partial diago-
nalization of K by the unitary matrix

W = (wg,...,Wpn_1), (4.1)

where wy, is the coloumn vector defined in (3.3), c¢f. Anderson (1971, p. 280,281).

Let W* = W' be the transpose of the complex conjugate of W. Then there exist
numbers oy, Bk, Pk, Or such that,

. diag(cy) diag(m))
LeWHK(Lew)=( : ~ D, 4.2
(F2 JK(Iy ) ( diag(px) diag(dy) (4.2)
where diag(ay) denotes the diagonal n x n matrix with «y,...,a, ;1 on the main

diagonal.
By diagonalising the blocks

Dwy:<% m)

)

one can obtain a complete diagonalization of K. Denote the eigenvalues of D(k) by
k1 and Koy and write the eigenvectors in the form

_ cos 0, _ — sin 6,
Yk = ( ei(Pk—7/2) gin 0, ) o Yok = ( ePr—7/2) cog 0, ) y 0Ok, 0 <,

for suitable choices of 6y and ¢;. It then follows that +,,, ® w; is an eigenvec-
tor of K for kmyx,m = 1,2. The conditions on {aj,b;,¢;,d;} imply conditions on
{a, Bk, pr, Or }, which can also be expressed as conditions on {Km k, Ok, dx }. It turns
out that for 1 < k < n/2, D(k) and D(n—k) have the same eigenvalues Kk, ,,m = 1,2
with eigenvectors 7, ,,m = 1,2 and %, ,,m = 1,2, respectively. Together with
Wy, = Wy, this implies that k,, g, m = 1,2 has multiplicity 2 for 1 < k < n/2. Fur-
thermore, the standardization constraint (2.4) implies that the eigenvalues for £ =0
must vanish, k19 = kg9 = 0. Similarly, the translation constraint (2.6) implies that
for k =1 the first eigenvalue must vanish, x;; = 0.

In total, the eigenvalues and eigenvectors of D(k) satisfy the following conditions:

k=0: /-61,0:/{27020;
Oy, g irrelevant.

k=1: k11 = 0,K2,1 > 0 a free parameter;
01 = 37T/4,§251 =0.

1<k<n/2: Emgk > 0,m =1, 2, free parameters;

0 € [0, 7|, ¢x, € [0, [ free parameters.
k=mn/2, (neven): Kppnpo>0,m=1,2, free parameters;
0n/2 € [0, 7[ a free parameter; ¢y, /o = 7/2.

( Z ) ~ Ny (0, K).

10
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With R = A® B+ A" ® I, it follows from (3.7) that
X 1
~ Ny, (0, =RKR").

In general, the free parameters {r,, x, 0k, ¢} for K do not match up in a simple way
with the free parameters in a similar diagonalization of RK RT /4.

5 Special cases

To limit the number of free parameters one can propose symmetries or restrictions to
the model. In this section we consider such cases. We demonstrate how easy it is to
go back and forth between the free parameters of the edge and the vertex model in the
complex symmetric case and in the radial representation. The eigenvalues are often
restricted through a Markov random field (MRF) model. We show that a first-order
MRF model for the edges implies a second-order MRF model for the vertices in the
complex symmetric and in the radial representations.

5.1 Complex symmetry

A complex Gaussian random vector u = r+¢s with mean 0 is said to possess complex
symmetry if

E(rjirj,) = E(sjis5,), E(rjs5,) = —E(sjrp,), 0<j1,52<n-1
This property implies that u and e’u have the same distribution for any 6. If u
possesses complex symmetry then from (3.5) and (3.6) it is straightforward to show
that z = x + iy also possesses complex symmetry. In the complex symmetric case it
can be shown, see Kent et al. (2000, p.532), that the blocks of D(k) take the form

—ifk oy

D(k)z( W w’“), 1<k < [n/2],

where o, > 0, B € R, —ay, < B, < ay and /2 = 0 (n even). Thus, the eigenvalues
of D(k) are oy £ (B with corresponding unit eigenvectors

_ 1 1 d .
Ch—ﬁ i anda qz = qq.

In this case the blocks of D can be expressed in the following parameters:

k=20: K10 = Koo = 0;
0o, ¢ irrelevant.

k=1: k11 = 0,K21 > 0 a free parameter;
01 = 37T/4,¢1 = 0.

1<k<n/2: KEmgk > 0,m =1, 2 free parameters;
Hk :7r/4,gf)k =0.

k=mn/2, (neven): Kppnp>0,m=1,2free parameters;
0n/2 =0, ¢n/2 = 7T/2-

11
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Hence, the complex symmetric model is determined by the sequence of eigenvalues
ki1 and kgk. The covariance matrix of u and the covariance matrix of z have the
same eigenvectors and the eigenvalues r;, , and k;, , are related by the following
proposition.

Proposition 1 In the complexr symmetric model the free eigenvalues for the vertex
transformation vector ky, . and the free eigenvalues for the edge transformation vector

ki, are related by
’{ik = gl(k)’iqf,kﬂ 2<k< [n/Q]’
and
K’g,k = QQ(k)/ich, 1<k< [n/2]’
where
1 1 1 1 sin(27k/n)
B)=-(14+—— )+ -(1—- ——eos(2rk/n) — 21TV
9:(k) 2( * tan(w/n)Z) * 2( tan(w/n)2)cos( mk/n) tan(m/n) ’
and
1 1 1 1 sin(27k /n)
- (14— )4+ ~(1— ——— cos(2 a7
92(k) 2( + tan(w/n)z) + 2( tan(w/n)Q) cos(2mk/n) + tan(7/n)

Proof. First note that q; and qs are also eigenvectors of A (defined in (3.7)) with
corresponding eigenvalues

wy =1+i/tan(w/n) and wy = w;.

The Proposition now follows from a direct calculation since
1
Kip = (@® Wk)*ZRKRT((h ® Wi)

1
= Z(ql QW) (A®B+AT@L)K(A" @ B" + A® I,)(q1 ® wy,)

1

= Z(wlﬂk + @) (@i, + wi) (d1 ® wi)*K (g1 @ wy)

= gk, 2<k<[n/2].

The relation between &3, and k3 ; is shown in a similar way. An alternative proof can
be based on the complex representation (4.3). The quantities g;(k) and go(k) appear
as the squared absolute eigenvalues of (e>™/"B — I,,)/(e**/™ — 1) for the eigenvectors
W,_i and wy, respectively. O

Note that g; and g are non-linear and largely monotonic (except near k = n/2). For
large n and small k the relationship is approximately quadratic, as g;(k) ~ (k — 1)?
and go(k) ~ (k + 1)?; see Figure 5.

The complex symmetric model is a rather restrictive model since it forces the
tangential and normal components r;,s; (zj,y;) of the standardized vertex (edge)
transformation vector to have the same variance and to be uncorrelated.

12
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Figure 5: Plot of ¢;(k) and go(k) for n = 50.

5.2 Complex symmetry with a MRF structure

One way to impose further structure on the eigenvalues is through a pth-order Markov
random field (MRF) model. The complex form of this model for an n-vector u takes
the form

Eu =0, Euu® = 2%,
where 7! = (07%) is banded with nonzero entries
oIt = FIthi = o, [=0,...,p.

Here ap > 0 and a4, ..., o, are allowed to be complex. The eigenvalues 7, of this
circulant covariance matrix are given by

p
1/mg = ap + QZRe(ale%ikl/”), k=0,....,n—1.
=1
In the terminology of Section 4, ki, = nj_, ko, = 1. The oy parameters must be
chosen to ensure the eigenvalues are positive in order to guarantee a positive definite
covariance matrix. A sufficient condition is 2>, || < .

We now describe how to include the constraints (2.4) and (2.6), or equivalently
(2.10) and (2.11). Let

Y = Wrdiag{n}W

be the spectral decomposition of a complex covariance matrix satisfying the MRF
assumption. Then the covariance matrix

W*dlag{oa nga HRI nZ—Qa O}W

with the eigenvalues for £ = 0,n — 1 replaced by 0 satisfies the required constraints.
Note that the parameter space for the a; parameters is larger in the constrained model
since fewer eigenvalues are required to be positive.

13
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Consider for simplicity the complex symmetric first-order MRF model for the edge
transformation vector z given by

ap =1/0%, an = —/(207),

and subject to the constraints (2.10) and (2.11). A sufficient condition for positive
definiteness for the covariance matrix is

0*>0, fe€Cand |B] <1,
but note that this parameter space can be enlarged as just described.

Proposition 2 The constrained complex symmetric first-order MRF model for the
edge transformation vector z corresponds to a constrained complex symmetric second-
order MRF model for the vertex transformation vector u given by

0 = R+ )~ (L ) Re(6) + 2 (1)
o = {1- W) ~ (4 )Y ()
o = {=5(1= B} (40,
Proof. In terms of z and u we can write (3.4) as
2 = (1— W)Bu +(1+ m)u,

and the proposition follows from the change of variables formula. Another way to
prove Proposition 2 is to use the real version of the model and apply the relationship
between the eigenvalues established in Proposition 1. O

Thus, a conditioned first-order MRF model for the edge transformation vector is
equivalent to a conditioned second-order MRF model for the vertex transformation
vector. Note that in general a pth-order MRF model for the edge transformation
vector corresponds to a (p + 1)th-order MRF model for the vertex transformation
vector. A similar result can be found in Kent et al. (1996).

An example application of the complex symmetric edge transformation model is
given by Hurn et al. (1999) who use the model as the prior for one type of cell. The
complex symmetric edge transformation model has a MRF structure with § € R, and
their model incorporates a constraint for closure, but not for size and rotation.

5.3 The radial representation

Suppose there is variability only in the radial component r of the vertex transforma-
tion vector u = r 4 ¢s and no variability in the normal component s. This restriction
leads to zero entries in K apart from K (7). Denote the eigenvalues of the covariance
matrix K" by ] with corresponding eigenvectors wy, k = 0,...,n—1. Similarly, let
k% and k) denote the eigenvalues of the covariance matrix of the tangent component
x and the normal component y of the edge transformation vector z = x + 7y.

14



Proposition 3 In the radial representation the free eigenvalues of the tangent com-
ponent of the vertez transformation vector, K}, and the free eigenvalues of the tangent
and normal component of the edge transformation vector, ki and kY, respectively, are
related by

1
Ky = 5(1 +cos(2nk/n))ky, k=0,...,n—1,

and

1 — cos(2mk/n)
v = . k=0,...,n—1. 1
Ky Ztan(w/n)z K 0: y T (5 )

Proof. Since there is no variability in the normal component of the vertex transfor-
mation vector s = 0, and we get from (3.5) that

2x = (B+ I)r. (5.2)
A direct calculation gives
Ky = WZK(w’w)Wk
= %w;;(B + DKT™)(BT + Iwy,
= Ll + D)+ WK

1
= 5(1+cos(27rk/n))/<;;, k=0,...,n—1

From (3.6) we have that

1

~ tan(r/n) (B =D, (5:3)

2y =

and (5.1) follows from a similar calculation. O

Note that for large n and small k we have k¥ ~ k} and k! ~ k*k;. The major part
of the variability from a circle is described by the eigenvectors with small and large
k. Thus, in the radial representation with many landmarks the large part of the
variability from a circle is in the normal direction of the edge transformation vector.

5.4 The radial representation with a MRF structure

The real form of a pth-order model for an n-vector r takes the form
Er =0, Errl =%,
where ¥7! = ¢/* is banded with non-zero entries
oBitt = githi — @, [=0,...,p.

15



Hobolth, Kent & Dryden (2002)

Here ap > 0 and ay, ..., o, are real and chosen to ensure the eigenvalues

k= 1/(ap + 2204 cos(2mkl/n))

=1

of the covariance matrix are positive.

A periodic stationary stochastic process can be derived by letting n — oo and
letting the oy vary with n. The limiting process is most simply described as a random
Fourier series

r(t) = Z{Cﬁ(/@,(fo))lﬂ cos(2mkt) + C,ﬁ(mioo))lﬂ sin(27kt)},
keZ

where the (£, ¢; are iid N(0,1) random variables and the eigenvalues take the form

p
1/’4’1(900) = Qo + Z al(27rk)2l,

=1

and the a; are real. If this process is restricted to the equally-spaced points t =
2nj/n,j =0,...,n— 1, for some value of n, then a circulant random vector results,

(©)

with eigenvalues k7, say, given by

1/"‘320) = Z 1/“l(co—:imﬂ

meZ

after taking aliasing into account.

Consider the radial model with no variability in the normal component of the
vertex transformation vector. The relation between y and r is then given by (5.3).
The constraints on r are

n—1 n—1 n—1
er = er cos(2mj/n) = er sin(27j/n) = 0,
§=0 §=0 §=0

and these constraints can be recast in terms of y as
n—1 n—1 n—1
D yj = yjcos(2mj/n) =) y;sin(2mj/n) = 0.
§=0 §=0 §=0

As in the complex symmetric case the constraints are most simply implemented in
the spectral domain where they correspond to setting xkj = k7 = &]_; = 0.

For simplicity let the model for the normal component of the edge transformation
vector be a first-order MRF model given by

Oy = 1/0’2, o = —,8/(20'2),
with the sufficient condition
0?>0, 3€Rand 8| <1,

for positive definiteness for the covariance matrix.
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Proposition 4 The constrained radial first-order MRF model for the normal com-
ponent of the edge transformation vector corresponds to a constrained second-order
MRF model for the tangent component of the vertex transformation vector given by

ag=c(2+ ), oy = —c(1+ B), ag =cf/2,
where 1/c = 402 tan(7/n)?.
Proof. From Proposition 3 it follows that

1 —cos(2mk/n) 1
2tan(m/n)? kY
2+ 03— (14 B)2cos(2mk/n) + B cos(4nk/n)
402 tan(mw/n)?

1/ky,

1 . T B o T2
= ka<(2+ﬁ)fn—(1+ﬂ)(3+3 )+§(B + (B )))Wk,

k=2,...,n—2.

The proposition can also be shown directly from (5.3) and the change of variables
formula. O

6 Data analysis

6.1 Data representation and model specification

For arbitrarily spaced vertices around the outline of an object, the full normal models
for the edge and vertex representations are interchangeable. However, in practice the
data analyst can often choose the spacing of the vertices. Choosing the vertices to
be regularly spaced, or the edges to have constant length, leads to a more succinct
description of the data. In Section 2.1 and 2.2 we discussed the radial and the constant
length representations. They both have the advantage of reducing the dimension of
the data from 2n to n without losing any important information.

Consider the radial representation. Since there is no variability in the normal
component s of the standardized vertex transformation vector we have zero entries
in K apart from K. As in the previous section denote the eigenvalues of K" by

Kkl with corresponding eigenvectors wi, k = 0,...,n — 1. Since K" is symmetric
and circulant and wy = W,_j we have k], = k],_,,k = 1,...,[n/2]. Therefore we
only have to consider &g, ..., K, 5. The constraints (2.4) and (2.6) imply xj = ] =

k;_1. The considerations for the constant length representation are similar. For the
constant length representation there is no variability in the radial component x of
the standardized edge transformation vector, and thus we only have to consider the
normal component y, which is modelled by the symmetric and circulant covariance
matrix K@% with the same constraints.

To impose further structure on the eigenvalues we consider a real version of the

pth-order continuous MRF model discretized to n points as described in Section 5.4.
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The general pth-order model has p+ 1 parameters, but from exploratory fits we found
that in our application a two parameter pth-order model with a; = ---=a,_; = 01is
sufficiently flexible. Thus, the free eigenvalues are given by

1
DBy T (R

Ky =

2 < k< [n/2]. (6.1)

The continuous two parameter first-order model with p = 1 was considered in Kent
et al. (2000) and the continuous two parameter second-order model with p = 2
was considered in Hobolth and Jensen (1999), although without taking aliasing into
account (i.e. only the term with m = 0 is present). The parameter space is given by

/6 > 07 o > _(47r)2p/67

to ensure that the eigenvalues are positive. The parameters «, # determine the overall
shape variability. The parameter 3 in (6.1) determines how fast the eigenvalues are
decreasing and can be viewed as a smoothness parameter. The parameter « is mainly
important for the first few eigenvalues and therefore reflects global shape variability.

It is often useful to consider the marginal likelihoods for the first few eigenvalues
only. Following Kent et al. (2000) we shall label the model Full(k*) when we ignore
the eigenvalues with indices greater than k*, where k* satisfies 2 < k* < [n/2].
Similarly the two parameter model with eigenvalues given by (6.1) is labelled two
parameter CM RF (p, k*) when we ignore the eigenvalues with indices greater than k*.

6.2 Statistical inference

Next we consider statistical inference for some of the radial models. Inference in
the full normal model of Section 4 may be found in Kent et al. (2000). Consider
a random sample of N standardized vertex transformation vectors from the radial
representation

rl:(Tl,O;Tl,l,---,Tz,n—l)T, l=1,...,N,
drawn independently from the multivariate normal model
r; ~ N(0, K""), l=1,...,N,

where K (") is a symmetric, circulant n X n matrix with the constraints kjj = k] =
kI, = 0. The maximum likelihood estimator (m.l.e.) of K(") is given by

=

1 L
b= o )

=1

S

i
[e=)

where rl ) denotes r; cyclically permuted by p sites, ie.

(P)_(

T
Tl,pa Ty JA4py - rl,nfl—i—p) )
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and the sample eigenvalues are
RZ:WZK(T’”wk, k=0,...,n—1.

Ignoring the components j and ] = k], _; and using }, = k] _,.k = 2,...,[n/2], the
marginal likelihood becomes

[n/2] N [n/2] ar
(T 2m(si)™)—72 exp(— > Tk,{—f), (6.2)
k=2 k=2 k

where 7, = 2,1 < k < [n/2], and 7,/ = 1, the last term being present only for n even.
Thus, under the radial representation the m.l.e.s of the parameters x},, k = 2, ..., [n/2]
are the sample eigenvalues R}, k = 2,...,[n/2].

The likelihood for the more restricted two parameter CM RF(p, k*) is given by
(6.2) with [n/2] replaced by k* and &, given by (6.1). To calculate the m.l.e.s of (¢, 3)
we use numerical maximization of the log-likelihood.

Testing if the two parameter CM RF(p, k*) is a reasonable simplification of the
Full(k*) is carried out using a classical likelihood ratio test. Let L; be the maximized
likelihood under the Full(k*) with v; = k* —1 free parameters and L, the maximized
likelihood under the two parameter CM RF (p, k*) with vy = 2 free parameters. For
a large sample size N we have the chi-squared approximation

—2log (La/Ly) =~ X{

(v1—v2)

6.3 Application

We consider inference for the parameters in the models using the sand particle data
for illustration. For each of the N sand grains we first determine the vector

— T —
rl_(Tl,OaTl,la---arl,n—l) , l—]_,...,N,

using the radial representation described in Section 2.1. Each sand grain is represented
by a binary image (1 for an object grey level and 0 for a background grey level). The
centre of gravity of the image is obtained, and then equally spaced radii are traced
out to the boundary. A boundary point is defined as the pixel location before the
first zero is obtained. The number of vertices n on each outline should be chosen high
enough to capture the shape of the object, but since the objects are only represented
as binary images not much extra information is gained by choosing a very high n.
We have chosen the rather high n = 50.

Now consider the constraints. From Z?;Ol r; = 0 it follows that kK = 0. If the
sample mean of the vertices is zero then we get from (2.6) that &f = &]_;, = 0.
In practice the sample mean of the vertices is only approximately zero and hence
K] = k] _, is only approximately zero.

In order to avoid the effect of digitization it is useful to consider only the first few
well-determined eigenvalues. The choice of the truncation value £* is based on the
eigenvalues, which should be truncated when they are essentially determined by noise
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Figure 6: Plot of the logarithm of the eigenvalues under the F'ull(10) (line with filled
points) and under the two parameter CM RF(p,10) (line without points) for the
radial (p = 2, left) and constant length (p = 1, right) representations.

due to digitization effects. We choose £* = 10. Note that when £* is small compared
to [n/2] then the specific choice of n is less important. The sample log-eigenvalues
logk}, are shown in Figure 6 for £ = 2,..., k™.

A two parameter CMRF(2,10) is fitted to the data and the m.Le.s are (&, 3) =
(1.108,0.000120). To see whether the two parameter CM RF(2,10) is reasonable the
likelihood ratio test is carried out. We obtain —2log(Ly/L1) = 4.34 and accept the
MRF model on v; — vy = 7 degrees of freedom, the p-value being 0.74. In Figure 6 we
have plotted the log-eigenvalues under the fitted two parameter C M RF'(2,10) model.
Similarly one can fit a two parameter CM RF(1,10) or a two parameter C M RF'(3,10)
to the data and it turns out that neither of these models is appropriate.

A similar analysis as for the radial vertex representation was carried out for the
constant length edge representation. For each of the N sand grains we first determine
the vector

yi = (yl,(): .- 'ayl,nfl)T, = 0, .. .,N,

as described in Section 2.2. As before we denote the eigenvalues of K@% by kY. The
constraints are as in the radial representation. From (2.10) it follows that &) = 0.
Furthermore, since (2.11) holds approximately with z; replaced by y; we have & =
kY | =~ 0. The two parameter C M RF(p,10) is then fitted to the data. In this case
it turns out that the first-order model with p = 1 is appropriate and the m.l.e.s are
(&, B) = (0.125,0.0077). When we test the two parameter C M RF(1,10) against the
Full(10) we obtain the likelihood ratio —2log(Ly/L;) = 10.56 and accept the two
parameter CM RF(1,10) on 7 degrees of freedom, the p-value being 0.16. In Figure 6
we have plotted the fitted log-eigenvalues under the full model and under the first-
order MRF model. Bearing the results from Section 5 in mind it should be no surprise
that a first-order MRF model for an edge model ‘corresponds’ to a second-order MRF
model for a vertex model.
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An effective way of examining a model is to inspect random samples from the
model. In Figure 7 we have simulated outlines from the fitted MRF models. The
outlines from the radial and constant length representations look like realistic sea
sand grains. Furthermore the simulated samples from the two representations look
very much alike. The simulated outlines are a little smoother than the sand grains,
but this was expected because of the truncation. From the simulations it seems that
both models are adequate for the sea sand grains.

ONONOCRCHECNINECEARONS
OC Q000 0 Q0O

Figure 7: Simulated objects under the fitted MRF models. The first row shows
simulations from the radial second-order MRF model and the second row is from the
constant length first-order MRF model.

In comparing the two methods it does seem that in this particular application the
radial vertex representation follows the second-order MRF model more closely than
the constant length edge representation follows the first-order MRF model (although
both are deemed reasonable fits from the tests). The radial vertex representation also
has the advantage that in general it is easier to construct the discrete data from a
continuous outline, although the representation is restricted to star shaped objects.

6.4 Recommendation

The shape of objects in the plane with no obvious landmarks can be described by
a variety of different methods. In this paper we have concentrated on an approach
based on the standardized edge or vertex transformation vector. When deciding
which model to use for the transformation vector one has to take into account how
the vertices have been collected. If there is variability in both the real and imaginary
part of the transformation vector, then the full normal model described in Section
4 is needed. This model has the required circulant symmetries, but is also rather
complicated with many (2n — 4) free parameters. One way of imposing constraints
on the free parameters is through the more restrictive complex symmetric or even
complex symmetric Markov random field models. The complex linear 1-1 relation
between the standardized transformation vectors makes it possible to recast any edge
model in terms of a vertex model and vice versa. In the general model the free
parameters do not match up in a simple way, but in the complex symmetric models
there is a simple correspondence as described in Proposition 1 and Proposition 2 of
Section 5. See Table 1 for a summary of the possible representations and models
when the vertices are arbitrarily spaced.

Choosing the vertices to be regularly spaced, or the edges to have constant length,
leads to a more succinct description of the data than when the vertices are arbitrarily
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Representation ‘ Data ‘ Models
vertex u=r-+4:1s General | Complex symm. | Complex symm. MRF
edge z =x+ 1y | (Section 4) | (Section 5.1) (Section 5.2)

Table 1: Table summarizing the possible representations and models when the vertices
are arbitrarily spaced.

spaced. The radial and the constant length representations have the advantage of
reducing the dimension of the data from 2n to n without losing any important infor-
mation, and furthermore they allow the data analyst to focus on honest differences
rather than differences due to the vertex spacing. Unfortunately the vertex spacing
is different in the two representations so a direct comparison of the full radial model
and the full constant length model is not possible. Instead of the full models we might
again impose restrictions on the eigenvalues of the covariance matrix through Markov
random field models. For the sand grains the radial representation follows a MRF
model more closely than the constant length representation, but this outcome would
have been hard to predict. If the vertex spacing can be decided by the data analyst
then we suggest analysing both the radial and the constant length model before de-
ciding on a final model. See Table 2 for a summary of the possible representations
and models when the vertices are regularly spaced or the edges have constant length.

Representation | Data | Models
Radial vertex r Full(k*) CMRF (p, k*) two parameter CM RF (p, k*)
Constant length edge | 'y | (Section 6.1) | (Section 5.4 and 6.1) (Section 6.1)

Table 2: Table summarizing the possible representations and models when the vertices
are regularly spaced or the edges have constant length.
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Abstract

In the present paper we propose a flexible continuous parametric shape
model for a star-shaped planar object. The model is based on a polar Fourier
expansion of the normalized radius-vector function of the object. The expected
phase amplitudes are modelled by a simple regression with parameters hav-
ing simple geometric interpretations. The model is a generalization of first-
and second-order Gaussian shape models and is called the generalized p—order
model. In particular, non-Gaussian errors are allowed. The statistical analysis
is straightforward, as demonstrated on a data set concerning shape discrimina-
tion of two cell populations.

Keywords: Cancer diagnostics; Featureless objects; Fourier descriptors; Radius-
vector function; Shape; Star-shaped objects.

1 Introduction

Recently, shape modelling of featureless objects has attracted a lot of attention in the
statistical literature. The Gaussian model with cyclic invariance properties, described
by Grenander & Miller (1994), has played a predominant role.

One line of research has been concerned with the application of the Gaussian
model as a prior model in Bayesian object recognition. Such an application has been
discussed in Grenander & Miller (1994). The group around Havard Rue has also
contributed significantly to this research, cf. e.g. Rue & Syversveen (1998) and Rue
& Hurn (1999). In Hansen et al. (2000) a similar Bayesian analysis is performed
where also the time aspect has been taken into account.

Another line of research has dealt with likelihood analysis of the Gaussian model.
This approach is useful for describing rather than finding the objects. A very im-
portant contribution is the paper by Kent et al. (2000) where the model is used for
modelling the standardized edge transformation vector, see also Kent et al. (1996).
(The standardized edge transformation vector only contains shape information.) In
particular, the eigendecomposition of the circulant covariance matrix is described.
In the follow-up paper Hobolth et al. (1999) the corresponding theory is developed
for the standardized vertex transformation vector. Likelihood analysis has also been
considered in Hurn et al. (1999).

In Hobolth & Jensen (2000) a continuous approach is used, which may have a gen-
eral appeal because the model and its parameters do not relate to a particular choice
of the number of landmarks. Apart from that it appears natural to represent the
boundary of an object continuously. The continuous counterpart of the standardized
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vertex transformation vector is the so-called normalized residual process, as intro-
duced in Hobolth & Jensen (2000). Continuous models have also been mentioned in
Hobolth et al. (1999) and Kent et al. (2000).

In the present paper we represent the shape of a random planar star-shaped object
in terms of the normalized radius-vector function R = (R(t))sc[,1)- A flexible contin-
uous statistical model is proposed for R. Generally R need not be Gaussian. The
main reason for choosing a specific representation of the object is that this allows us
to analyse in detail the relationship between the model assumed for the normalized
radius-vector function and the random geometry of the object.

Our approach rely on a polar Fourier expansion of the normalized radius-vector
function

R(t) =14 2\/c1cos(2n(t — dy)) + 2 f: VG, cos(2ms(t — Dy)), te0,1].

We show that the first phase amplitude ¢; and the first phase angle d; play a special
role as parameters of asymmetry and discuss in detail how the remaining random
phase amplitudes C; and phase angles D, influence the shape of the random object.
The model proposed is called the generalized p—order model. Under this model the
expected phase amplitudes \; = E(C) satisfy the simple regression equation

M =a+B(s?—-2%), s>2

where o > 0, > 0 and p > 1/2. It will be shown that p determines the smoothness
of the boundary of the object while the parameters o and 3 determine the ‘global’
and the ‘local’ shape, respectively.

The phase angles D, are assumed to be uniformly distributed. There are, how-
ever, no restrictions on the distributions of the phase amplitudes Cs. Exponentially
distributed amplitudes correspond to a Gaussian normalized radius-vector function.
Generalized gamma distributed amplitudes offer a simple extension which allows for
both heavier and lighter tails than the exponential ones.

In Section 2, the geometry of the radius-vector function is analysed in detail. This
analysis is the basis for the construction of the generalized p-order model in Section
3. Its statistical inference is discussed in Section 4. The model is applied in Section 5
to a data set of normal mantle cell nuclei and cell nuclei from a mantle lymphoma. It
turns out that the cell nuclei from the mantle lymphoma are more ‘irregular’ than the
normals cells (significantly different 3-values in the two groups). Shape discrimination
of these two cell nuclei types was our original motivation for studying the continuous
shape model. Section 6 contains some ideas for future research.

2 The geometry of the radius-vector function

Let K be a compact subset of R2. Let us suppose that K is star-shaped with respect
to z € K, i.e. the intersection between every line through z and K is a line segment.



We will describe K in terms of its radius-vector function (rx(t; 2))scp0,1) With respect
to z, where

rx(t; z) = max{r : z + r(cos 2nt,sin 27t) € K}, te€[0,1].

The value 7, (t; z) is the distance from z to the boundary of K along the ray, starting
at z and with angle 27t relative to a fixed axis. Because K is star-shaped we can
reconstruct K from rg(-; z).

The radius-vector function is well-known in the shape literature, cf. e.g. Stoyan
& Stoyan (1994, p. 63), Lestrel (1997), Loncaric (1998) and references therein. It is
also an important quantity in local stereology and geometric tomography, cf. Jensen
(1998, Chapters 4 and 5) and Gardner (1995, Section 0.7). The radius-vector function
is in geometric tomography called the radial function.

Using Hobolth & Jensen (2000, Proposition 1) it can be seen that the derivative
(if it exists) of the radius-vector function contains interesting geometric information

e (t; 2) = 2w cot(px (t; 2) — 2mt)ri (t; 2),

where @ (t; z) is the angle that the tangent of the boundary point of K at position ¢
makes with a fixed axis. The tangent-angle function ¢k (-; z) is therefore obtainable
from the radius-vector function. The reverse statement is also true, but then the
radius-vector function is only determined up to a multiplicative constant. The second
derivative of 7k (-; z) involves the local curvature of K.

The area and boundary length of K can be expressed in terms of the radius-vector
function

AK) = W/ITK(t;Z)th
B(K) = 27r/0 {ric(t;2)? + (2m) 2% (t; 2) 2}/ 2dt

= 27T/0 ri(t; 2)/| sin(ek (t; z) — 2wt)|dt.

The formula for area holds without further assumptions, while the formula for bound-
ary length holds under mild assumptions about K, including that the boundary of K
is smooth, cf. Stoyan & Stoyan (1994, p. 64) and Jensen (1998, Proposition 5.4). It
is also possible to express the total curvature of K in terms of rg(-; 2).

The definition of the radius-vector function can be extended to not-necessarily
star-shaped sets K, cf. Gardner et al. (1995). The extended function is the radius-
vector function of a star-shaped set associated with K, called the directed chordal
symmetrical.

The radius-vector function is invariant under translation and rotation. To be more
specific, let z; € R? and

[ cos2mty —sin 2wty
 \ sin27ty  cos 2wty

), to € [0,1].
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Then,
TAK+z(t; Az 4+ 20) = T ((t — o) mod 1;2), & € [0,1].

A scaling transformation yields
rax (t;az) = arg(t;z), te€[0,1], «a>0.

The shape of K is thus, up to shifts in ¢, represented by the normalized radius-vector
function

rk(t; 2)
fol i (u; 2)du
Note that the normalized radius-vector function is a continuous analogue of a stan-
dardized vertex transformation vector, cf. Hobolth et al. (1999). Below we will
simply write r(-) for 7x(+; z) in cases where it will cause no confusion.

A more detailed description of the shape of K can be obtained from a Fourier

series expansion of the normalized radius-vector function 7, cf. e.g. Stoyan & Stoyan
(1994, p. 80-88) and Lestrel (1997),

?K(t; Z) = ; te [0, 1]

r(t) =1+ \/52 as cos(2mst) + \/52 bssin(2mst), t€[0,1],
s=1 s=1
where the Fourier coeflicients are

\/_/ ) cos(2mst)dt, by = \/_/ )sin(27st)dt, s> 1. (2.1)

The Fourier coefficient at phase 0 is 1 because of the normalization of the radius-vector
function. Letting

as = V/2¢scos(2msds),  bs = /2¢ssin(2wsds), s> 1,
we obtain the polar form
r(t)=1+2 Z cs cos(2ms(t — dy)), te€]0,1], (2.2)
s=1

where ¢, = (a2 +b2)/2 > 0 and ds € [0,1[, s > 1. (If a; = b, = 0, let d; = 0.)
The coeflicient c; is called the sth phase amplitude and ds the sth phase angle. It is
immediate from (2.2) that the cgs are invariant under shifts in ¢.

Writing z = (21, 22), the boundary of K can be represented as

(f1(t), f2(t)) = (21, 22) + qr(t) (cos(2nt),sin(27t)), t € [0,1],

where ¢ is the integral of the radius-vector function. Combining this with (2.1) it

follows that
(al, b1 </ [f1 — Zl]dt / [fg — 29 dt)
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Figure 1: The values of the phase amplitudes c; are shown as a function of s for an
asymmetric object (left) and a fairly symmetric object (right).

Thus, if K is symmetric (with respect to z) then a; = by = ¢; = 0. Conversely, a high
value of ¢; indicates a high degree of asymmetry relative to z, cf. Figure 1. The left
object in Figure 1 is an example of an object which is symmetric around the x—axis,
but rather asymmetric around the y—axis. If the angle 27t is measured relative to the
x—axis this means that a is rather large while by = 0. In the Appendix we show that
the Fourier coefficients a; and b; can also be expressed as integrals on the interior of
K.

To analyse the geometry of the higher order phase amplitudes let us consider an
object for which all but the sth phase amplitude are zero such that

r(t) = 14 24/c; cos(2ms(t — dy)). (2.3)

For such an object we have that z is the centre of gravity, cf. the Appendix. Moreover,
r(t) possesses an s-fold symmetry,

r(t) =r(t+é) =---=r(t+ %), te [0,%[.

The 2-fold symmetry is the usual type of symmetry. In Figure 2 we have plotted
objects with radius-vector function of the form (2.3), corresponding to different values
of s, dys = 0 and varying values of ¢;. In Figure 3 we have illustrated how the s—fold
symmetric objects contribute for small s to the ‘global’ shape of a given object K
and for large s to the ‘local’ shape.

To sum up, we can interpret c,, s > 1, as shape parameters. For s = 1, ¢, is an
asymmetry parameter. For s > 2 small, ¢; determines the ‘global’ shape of K while
for s large ¢, affects the ‘roughness’ of the boundary of K. Up to a shift in ¢, dj,
s > 1, are also shape parameters. For s > 2, they determine the relative orientation
of the s—fold symmetric objects associated with K.

In Zahn & Roskies (1972) the geometric interpretation of a Fourier expansion of
the tangent-angle function is studied in a similar way.

Let us conclude this section by discussing how z can be chosen. In some applica-
tions z is ‘given by nature’. An important example comes from local stereology where
K is actually a planar section through a biological cell, passing through the nucleus
or nucleolus of the cell, cf. Jensen (1998, Chapter 7). In other cases z is defined from

5
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Figure 2: Objects with radius-vector function of the form (2.3) with dy = 0. In each
row the value of s is constant (s = 2,3,4,5). The value of logc, is indicated in the
interior of the object.
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Figure 3: The upper row shows the objects of the form (2.3) for s =1,...,6 (left to
right) associated with the object K shown in the lower row. The values of log ¢, are
indicated in their interior. In the lower row, the reconstruction of K from the first s
Fourier coefficients is also shown.

K, typically as the centre of mass, cf. Loncaric (1998) and Hobolth et al. (1999). In
the latter paper it is used that with z equal to the centre of gravity the first phase
amplitude of 7 (-; z) is approximately zero when K is a small deformation of a circle.
In the Appendix it is shown that the centre of mass of K can in fact be characterized
by the property that the first phase amplitude of 7x(-; 2)? is zero.
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3 The generalized p-order model

We will now consider a random planar object K with normalized radius-vector func-
tion (R(t))se[0,1]- Below we introduce the parametric statistical model to be used for
R.

The starting point is the polar expansion (2.2) of the normalized radius-vector
function. As argued in the previous section the first phase angle d; and phase am-
plitude ¢; play a special role as asymmetry parameters. We shall treat c¢; and d;
as non-random nuisance parameters. The expansion of the normalized radius-vector
function in polar form therefore becomes

R(t) =14 2y/cicos(2m(t — dy)) + 2 i VC,cos(2ms(t — Dy)), t€[0,1].  (3.1)

The remaining amplitudes C and angles Dy, s > 2, will be modelled by distributions
on R, and [0,1/s], respectively.

The expansion (3.1) makes it possible to construct a variety of shape models. A
generalized p—order model is a parametric model which satisfies that

Cy ~ AZs, Dy ~U[0,1/s], s> 2, (3.2)

where the error variables Z; have mean 1 and U[0,1/s] is the uniform distribution
on the indicated interval. Furthermore, C,, D,,s > 2, are all independent and the
expected phase amplitudes \; = E(C;) decrease as

M =ap+ B, s> 2.

The parameters satisfy o > —32% and 8 > 0 such that A\, > 0 for all s > 2. We
further assume p > 1/2, which implies that R has finite variance, as will be discussed
below.

In order to facilitate a geometric interpretation of the regression parameters we
use the reparametrization

MNi=a+B(s®-2%), s>2 (3.3)

where a > 0,6 > 0,p > 1/2. The parameter « determines the ‘global’ shape of
the object. If « is high objects of circular shape are expected while a low value
corresponds to an elongated or, in the extreme, a ‘peanut-shell’ shape. The reason is
that under (3.3), o determines the expected phase amplitudes A\, = E(C;) for small
s and Cy governs the global shape for small s, cf. Section 2. As discussed below
p determines the smoothness of the boundary of K. For fixed p the parameter 3
determines the ‘local’ shape of the object since it controls the behaviour of Ay when s
is high. Precisely, as s — oo, we have that (log s, log ;') behaves as a line with slope
2p and intercept log 3. For small values of § rather irregular objects are expected
while high values yield regular objects.

The random phase angles D, determine the relative orientation of the s—fold
symmetric objects associated with K, cf. Section 2. The uniform distribution on the

7
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angles implies that these objects do not have a ‘preferred orientation’. A generalized
p—order model is therefore expected to be appropriate for describing a population of
objects which does not have a predominant non-circular shape. The shape variability
of K is influenced by the variation of the error variables Z;.

In Figure 4 simulations from the model (3.1)-(3.3) with exponentially distributed
error variables, p = 2 and ¢; = 0 are shown. The values of o and 3 are typical for
the objects studied in the data section. It is seen that in the corner corresponding
to high values of o and [ the simulated objects are smooth and ‘circle’-like, while in
the opposite corner the simulated objects are irregular.

o 0 O 0O O
90 o0 o0
P a0 0D
Qa0 oo
IR

Figure 4: Simulated objects under the second-order model with ¢; = 0, exponentially
distributed error variables and the indicated values of v and f.

To study the distribution of the radius-vector function let

Ri(t) = zi VC,cos(2ms(t — Dy)), telo,1],

contain all the random Fourier terms of R(¢). Using (3.2) and independence of the
phase angles and amplitudes it follows that R, is a stationary process with covariance
function

o(t) = cov(Ry(t), Ri(0)) =2 A,cos(2mst), t€[0,1]. (3.4)

s=2
The process R; has zero Fourier coefficients at phases 0 and 1. Similar constraints
were used by Hobolth et al. (1999) and Kent et al. (2000) in a discrete time model.
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Properties such as continuity and differentiability of R; (and hence also of R) are
determined by the parameter p as follows from Cramér & Leadbetter (1967, Section
4.2 and 4.3).

Equation (3.4) gives the relation between the expected amplitudes and the covari-
ance function. As an alternative to parametric specification of the Ass as in (3.3) one
may suggest a simple parametric form of the covariance function o, cf. e.g. Rue &
Syversveen (1998). Since the amplitudes relate to the random geometry of the object
we believe it is more natural to specify directly a parametric model for the expected
amplitudes. Furthermore, the constraints on R, are easier to handle and interpret in
the spectral domain.

In the shape literature a random object is often modelled by a multivariate normal
distribution with a circulant covariance matrix or by a stationary Gaussian process in
continuous time, cf. Grenander & Miller (1994), Hobolth et al. (1999), Rue & Hurn
(1999), Hobolth & Jensen (2000), Kent et al. (2000). We now show that a Gaussian
model is obtained by letting the error variables Z; be exponentially distributed. This
model will therefore be called the normal p—order model. Using (2.2) and (3.2) it
follows that if Z; is exponentially distributed then

Ri(t) = \/§Z Ay cos(2mst) + \/iz Bysin(27st), t € [0,1],
s=2 §=2

where Ag, Bs, s > 2, are all mutually independent and A; ~ By ~ N(0,As). This
representation shows that R; is a stationary Gaussian process. By (3.3) and Rogers
& Williams (1994, Theorem 1.25.10), it follows that for the normal p—order model the
sample paths of R;, and hence also of R, are k times continuously differentiable where
k is the integer satisfying p €]k — 1/2,k + 1/2]. In particular, if p is an integer then
p = k. In the normal first-order model, the sample paths of R are continuous while
in the normal second-order model the sample paths are continuously differentiable.

The first- and second-order normal models have been studied in the literature
(most often without the constraint Ay = A\; = 0). In particular, these models appear
as limits of discrete time first- and second-order Markov models, cf. e.g. Grenander
(1993, p. 476 and 484).

4 Some remarks on statistical inference

Maximum likelihood estimation of the parameters of the normal p—order model, based
on a continuously observed normalized radius-vector function, has been discussed in
an unpublished research report by two of us (A. Hobolth and J. Pedersen) from Lab-
oratory for Computational Stochastics, University of Aarhus, 1999. (In this report,
we also suggest the regression equation (3.3), which was later used in Hobolth et al.
(1999).) For the first- and second-order normal models it is shown that with contin-
uous observations (3 is determined with certainty from observable quantities. Thus,
only « has to be estimated and a closed-form equation for the maximum likelihood
estimate of « is given in the research report.

9
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Although the likelihood-based estimates have several good properties in theory,
they may perform poorly in practice. Thus, as expected from the interpretation of
the parameter (3 as a local shape parameter, § is determined from differences between
observations very close together at the boundary of the object under study. If only
a digitized version of the object is available such differences cannot be determined
accurately.

To avoid this obstacle one can use a so-called low-pass filter, cf. e.g. Bloomfield
(1976). The idea is to determine the parameter estimates from the low frequency
Fourier coefficients only which are robust against digitization effects. For the normal
p—order model, the analysis is particularly simple. Recall that in this case the phase
angles D are uniform in [0,1/s] and the phase amplitudes C; are exponentially
distributed with mean A,. Note in particular that the distribution of the phase
angles does not depend on unknown parameters. Using the first S phase amplitudes
the likelihood function becomes

s
L(As;c5) = H)\s_le_’\s_lCS. (4.1)
§=2

Defining the expected amplitudes by (3.3) the maximum likelihood estimates for
(c, B,p) can be found by standard numerical methods. A likelihood function of the
same form has been considered in Hobolth et al. (1999) and Kent et al. (2000).

If the normalized radius-vector function is only known at the data points ¢t =
0/n,1/n,...,(n —1)/n, the phase amplitudes ¢, = (a2 + b%)/2 can be approximated
by using discretized versions of the integrals (2.1). The specific value of n is not
important, just as long as it is reasonably high. That is, different values of n give
approximately the same value of c;.

5 Data analysis

The data set consists of 50 normal mantle cell nuclei and 50 cell nuclei from a mantle
lymphoma (tumour in the mantle zone of a lymph node), cf. Figure 5. The nuclei
from each of the groups were sampled from a microscopic section among those with
sectioned boundary in focus. The normalized radius-vector function r(t) with respect
to the centre of mass was for each nucleus determined at ¢ = 0,1/n,...,(n — 1)/n.
Unless otherwise stated we used n = 100. The nuclei are rather homogeneous in size
(about 15um in diameter), so the normalization factor was almost the same for all
the nuclei.

5.1 Analysing each nuclear profile individually

First, each nuclear profile was analysed individually using the likelihood function
(4.1). The choice of cut-off value S is important. If S is too small we are not using
important shape information; if on the other hand S is too large the results will be

influenced by digitization effects, see also Figure 3. Unless otherwise stated we used
S =15.
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Figure 5: The 50 normal mantle cell nuclei (upper panel) and the 50 cell nuclei from
a mantle lymphoma (lower panel).

For each object we found the estimates of («, 3,p). In both samples the estimates
of p were close to 2 for all nuclei. For the normal sample the average was 2.07 with a
standard deviation of 0.21 while for the lymphoma sample the average was 2.02 and
the standard deviation 0.28. Therefore we fixed p = 2 and considered the normal
second-order model only.

log & logB
av. | s.d. | av. | s.d. | corr.
normal 5.35 1 0.84 | 2.26 | 0.72 | 0.27
lymphoma | 4.94 | 1.11 | 1.09 | 0.81 | 0.03

Table 1: The average, standard deviation and correlation of (log &, log B) for each
sample.

The estimates of («, #) under the second-order model are shown for each nucleus
in Figure 6 and summarized in Table 1. The estimates of the local shape parameter
[ are on average lowest in the lymphoma sample. This was to be expected from the
geometric interpretation of 3 given in Section 3. A ¢-test for identical s, based on the
distribution of log 8, shows a significant difference between the two samples (p-value
less than 0.05%). On average the estimates of the global shape parameter « are also
lowest in the lymphoma sample, but the difference is not as significant (p-value close
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Figure 6: The estimates of («, 3) under the normal second-order model. The hatched
nuclei are from the normal mantle cells while the white nuclei are from cells in the
mantle lymphoma.

to 5%). Furthermore we see that the estimates of a from the lymphoma sample vary
over a somewhat larger range than the estimates from the normal sample.

We also investigated how the choice of cut-off value S influences the analysis.
Since the estimate of « is determined by the first few amplitudes the estimate of this
parameter only changes slightly when S is larger than 8, say. From Figure 7 it is seen
that the estimate of # does change with S, but the changes are rather small.

The number of data points n should be high compared to S, but otherwise the
specific choice is less important. In Figure 8 we see that for S = 15 the estimates are
stable, and the analysis is robust to the specific choice of n > 50.

12



o
o
X
; L
>
o0
N
(@]

Figure 7: The estimates of 3 as a function of S for the 11 nuclei shown.

350 100 150

N
(@)
O

Figure 8: The estimates of 5 as a function of n for the 7 nuclei shown.

5.2 Analysing the profiles under an iid-assumption

We now investigate whether the profiles within each of the groups can be regarded as
independent and identically distributed realizations from a normal p—order model.
Let the indices (4,7) denote the jth nucleus (j = 1,..., N = 50) in the normal sam-
ple (¢ = 1) or the lymphoma sample (; = 2) and let ¢y;; be the corresponding phase
amplitudes of the normalized radius-vector function. If we let Exp(\) be the nota-
tion used for the exponential distribution with mean A, we then want to investigate

13
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whether
Csij ~ Exp(\si), j=1,...,N, (5.1)

foreach s=2,...,Sand i =1,2.
We will examine (5.1) by considering the more general model

CSij ~ F(’Ysiapsia 552'), _] =1,.. .,N,

where T'(v, p,d) is the notation used for the generalized gamma distribution with
density
) oy—1

L(v)p™

Here, 7,0 > 0 are shape parameters while p > 0 is a scale parameter. The ordinary
gamma distribution is obtained for 6 = 1, the Weibull distribution for v = 1, while
the exponential distribution corresponds to 6 = v = 1.

The class of generalized gamma distributions is in fact rather flexible. When
d <1 (> 1) the tails are heavier (lighter) than the exponential tails. When dy <1
the density f(y) is strictly decreasing in y. Moreover lim,_, f(y) exists and is finite
if and only if v > 1. When 4 > 1 the density has a mode.

Plots of the empirical survival functions of c,;; for fixed s and 7 showed that the
distributions of the phase amplitudes had somewhat heavier tails than expected under
(5.1) (the estimated values of 6 were less than 1). In each sample the tendency was
only significant for a few high values of s. Thus it seems reasonable to consider expo-
nentially distributed error variables, at least for low frequencies. The same conclusion
was obtained by testing (5.1) by Bartlett tests.

Assuming that the phase amplitudes c;;; are Exp()y;)-distributed, the next step
in the analysis is to fit a p—order model within each group,

fly) = eXp{—(%)‘s}, y > 0.

N =+ B (s =27 s=2,...,5, i=1,2. (5.2)

The likelihood function is given by

N S s
Asi; Csij) H H )\Szl exp( )\s_ilcsij) = {H A;il exp(—)\s’ilési.)}N,
s=2

j=1s5=2

where ¢,;. = N1 Z;VZI Csij is the average of the amplitudes within the ¢th group at
phase s and Ay is given by (5.2). As expected the estimated value of p is close to 2
in both samples (2.0 in the normal and 1.8 in the lymphoma sample), and again we
consider the second-order model. The estimated regression lines are shown in Figure
9 and in Table 2 the estimates and approximate standard errors and correlation
coefficients based on the observed information are summarized.

As in the previous subsection we observe a significant difference between the two
samples in the value of 3. The difference in « is not as significant.
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Figure 9: The estimated regression A, = [& + 3(s? — 2%)]~" in the normal p-order
model (solid) and the estimated regression under the normal second-order model
(dashed) is shown together with the average phase amplitudes as a function of s
for the normal sample (lower curve) and the lymphoma sample (upper curve). The
vertical lines are the 95% confidence limits.

log & logﬁ
est. | conf.int. | s.e. | est. | conf.int. | s.e. | corr
normal 5.08 | 4.81-5.35 | 0.14 | 1.97 | 1.89-2.05 | 0.04 | -0.10
lymphoma | 4.52 | 4.27-4.77 | 0.13 | 0.82 | 0.74-0.90 | 0.04 | -0.13

Table 2: The estimates and approximate confidence intervals, standard errors and
correlation of (log &, log 3).

5.3 Simulations from the normal second-order model

In the normal second-order model truncated at S = 15 we have
Cs ~ Exp();), s=2,...,15, independent,
with
M =a+8(s" = 2Y). (5.3)

In order to investigate the model more closely we made the following simulation
study. For each sample we calculated A; according to (5.3) with (o, 3) replaced by
the average estimated value from Table 1 and simulated Cs ~ Exp()\;),s = 2,...,15.
From the values of Cy we calculated the maximum likelihood estimates of a and S.
This procedure was repeated 500 times for each of the samples and the results are
shown in Figure 10 and summarized in Table 3.

When we compare Figures 6 and 10 it is seen that the variation in log & is almost
the same for the observed and simulated data for both groups. The variation range
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Figure 10: Simulated distribution of (&, B) under the normal second-order model is
shown for the normal sample (o) and the lymphoma sample (o).

log & logﬁ
av. | s.d. | av. | s.d. | corr.
normal 5.36 | 1.01 | 2.28 | 0.30 | -0.14
lymphoma | 4.89 | 0.95 | 1.10 | 0.30 | 0.03

Table 3: The average, standard deviation and correlation of (log &, log B) for each
sample.

of log ﬁA is smaller in the simulation study than in the samples. One explanation is
that the local shape variability in the data is somewhat higher than predicted from
the normal model, i.e. the assumption that the error variables are exponential is not
appropriate at high phases. Another reason might be that a well located ‘blob’ results
in many high phase amplitudes.
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6 Perspectives

The generalized p-order model is expected to be useful for describing a population
which does not have a predominant non-circular shape. Let us stress, though, that the
Fourier expansion (3.1) of the normalized radius-vector function makes it possible to
construct a variety of shape models. If, for instance, one considers a population with a
dominant triangular shape, it would be natural to use a model where on average C’5 is
the highest amplitude. A more challenging task is to model objects with a dominant
elliptical shape. An ellipse has vanishing amplitudes at odd phases and decreasing
amplitudes at even phases. Thus, to model elliptical shape one should probably let
the odd and even amplitudes decrease at different rates. Moreover, the even phase
angles should have approximately the same values. Elliptical models were studied by
Hobolth & Jensen (2000). We leave a concrete model as a topic for future research.
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Appendix

Characterization of asymmetry and centre of mass
1
Let x = (x1, ) denote a generic point in R? and let ||z|| = (22 + z2)2.

Proposition Let z = (z1,2) be an interior point of a compact subset K of R
Let K be star-shaped with respect to z and let the radius-vector function r(t; z) be
continuously differentiable in t.

(i) We have
T — !
T Z||2dac1dac2 = 27r/ ri (t; 2) cos(2mt)dt (A.1)
- 0
To — 29
T H2d$1d.’1?2 27r/ ri (t; z) sin(27t)dt. (A.2)
- 0

(ii) If z is the centre of mass of K then

1 1
/ ri(t; 2)® cos(2nt)dt = / ri(t; 2)% sin(27t)dt = 0. (A.3)

0 0
Conversely, if z is such that (A.3) is satisfied then z is the centre of mass of K.
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(iii) Let rg(t;z) = 1 + 2\/c5cos (2ms(t — dy)), where s > 2,0 < ¢; < 1/4 and
ds € |0, %[ Then z is the centre of mass of K.

Proof. Let F :[0,1]> — R? be defined by
F(v,t) = (21, 22) + vrk(t; 2)(cos(27t), sin(27t)) .

Then F is onto K and |det(F'(v,t))| = 2mork(t;2)%. In order to prove (A.1) note
that if x = (x1,z2) € K is such that © = F(v,t) then

1 —z1 _ cos(2mt)

|z —2||2 wrk(t;2)’
and from the transformation theorem we get

_ 1
L’Zlgdmdxg = 27r/ ri (t; z) cos(2mt)dt.
K ||z — 2|l 0

The result (A.2) is proved similarly.
The same kind of arguments show that

( /K (21 — 21)dzrdas, /K (22 — ZQ)daclda:g) (A.4)

_27T

3 ( /0 1 ri (t; 2)° cos(2mt)dt, /0 1 ri(t; 2)° sin(27rt)dt> _

The left-hand side is zero if and only if z is the centre of mass of K. Therefore (ii) is
an immediate consequence of (A.4).

To prove (iii) one has to show that r(t; 2) = 1+2,/¢5 cos(2ms(t —d;)) satisfies the
condition (A.3). This follows from elementary calculations, and is left to the reader.
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Abstract

This paper suggests a high-level continuous image model for planar star-
shaped objects. Under this model, a planar object is a stochastic deformation
of a star-shaped template. The residual process, describing the difference be-
tween the radius-vector function of the template and the object, is allowed to be
non-stationary. Stationarity is obtained by a time change. A parametric model
for the residual process is suggested and straightforward parameter estimation
techniques are developed. The deformable template model makes it possible
to detect pathologies as demonstrated by an analysis of a data set of cell nu-
clei from a benign and a malignant tumour, using stochastic deformations of
ellipses.

Keywords: Deformable template model, ellipse, Fourier analysis, non-Gaussian
errors, non-stationarity, shape, time change.

1 Introduction

In high-level image modelling, the objects of an image are modelled directly. A very
powerful approach is the deformable template model suggested by Ulf Grenander and
the group around him, cf. e.g. [3, 4, 5]. The basic idea is to model the observed
object as a stochastic deformation of a template, and the challenging task is to model
the deformation mechanism.

Deformable template models for featureless objects have attracted a lot of atten-
tion in the statistical literature recently, cf. e.g. [4, 5, 7, 8, 11, 15, 16|, and the focus
has mainly been on circular templates. In the present paper we suggest a deformable
template model for a random star-shaped planar object K which is useful in the case
of non-circular templates. The radius-vector function R = {R(t)}sc[,1) of K is mod-
elled as R(t) = r(t) + X (t) where r(t) is the deterministic radius-vector function of
the template and X (¢) is a random residual process. For non-circular templates it is
not natural to assume that X (¢) is stationary, as will be demonstrated in a simula-
tion study. We therefore introduce a time change y(¢) such that X,(t) = X (v7(¢))
is stationary. This is a generalization of the approach described in [17], p. 90.

Modelling of Xy (t) is based on a Fourier expansion. For elliptical templates it is
assumed that the Fourier coefficients of X, (t) at the phases s = 0,1, 2 are small. The
remaining Fourier coefficients are modelled as normal variables with mean zero and
variance )\s at phase s given by the regression equation

N =a+p(s?-3%), s>3,
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where «, (3, p are unknown parameters. We discuss how the parameters influence the
random geometry of the object and consider various choices of time changes. In [6]
elliptical templates were also studied, but the approach deviates significantly from
ours as will be discussed in Sections 3 and 4. The papers [7, 8, 11, 18], are based on
Fourier expansions of either the tangent-angle function or the radius-vector function.
The statistical models proposed in these papers describe a circular rather than an
elliptical shape.

In Section 2 we define the general model. Various distributional results will be
provided when X is Gaussian and extensions to the non-Gaussian case will be dis-
cussed. In Section 3 we specialize to elliptical templates. The suggested model is used
in the analysis of a data set concerning cancer diagnostics in Section 4. We conclude
with some perspectives concerning Bayesian object recognition.

2 A deformable template model

Let a random planar object K be star-shaped relative to z € K such that K is
determined by the radius-vector function R = {R(t) }+c[o,1] with respect to z, where

R(t) = max{u : z + u(cos 27t,sin 27t) € K}, t€[0,1].

For a detailed description of the radius-vector function, see [8] and references therein.
We suppose that the radius-vector function of K is on the form

R(t) =r(t) + X(t), telo,1], (2.1)

where 7 = {r(t) }+co,1] is the radius-vector function of the template and X = {X (¢) }scpo,1]
is a residual process which is periodic and has mean zero. Furthermore, we as-
sume that there exists an increasing transformation y of [0,1] onto [0, 1] such that
{X (v71(t)) }tepo,1 is stationary. In particular, the correlation between X (y~!(¢1)) and
X (y7(t2)) depends on t, — t; only. We say that X is y—stationary. An obvious
choice of 7(t) is the distance travelled on the boundary of the template between the
points with index 0 and ¢, ¢ € [0,1]. With this choice of 7, the correlation between
X (t1) and X (t2) only depends on the distance along the template between the points
indexed by t; and ts.

In the stochastic process literature v is referred to as a time change, cf. e.g. [14],
and we will use the same terminology here.

We can rewrite (2.1) as

Ro(t) :To(t)+X0(t), te [0, 1],

where Ry(t) = R(y~'(t)) and similarly for the other quantities. Note that X, =
{Xo(t) }tepo,1) is stationary in the ordinary sense. Let us suppose that the residual
process is Gaussian. Let

ro(t) = ag + \/52 a, cos(2mst) + V2 Z bs sin (27 st)
s=1 s=1

2
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and

Xo(t) = Ao + \/ii A cos(2mst) + ﬁi B sin(27st) (2.2)

be the Fourier expansions of o and Xj. Since X, is Gaussian, Ag and A, Bs, s > 1,
are all mutually independent, Ay ~ N(0,)) and Ay ~ Bs ~ N(0,)s),s > 1. Tt
follows that the Fourier expansion of Ry has the same distributional properties as
those of X, except that zero mean-values are substituted by the relevant Fourier
coefficients from the template.

For a polar Fourier expansion

Ry(t) = /Cy+2 zoo: VG, cos(2ms(t — D)), telo,1],

where Cs > 0 and D, € [0,1/s), we have under the Gaussian assumption that Cy and
(Cs, Ds), s > 1, are all independent. Furthermore, the observed phase amplitude

| (ap+ Ap)? s=0
€= { ((as + Ag)2 + (bs + B,)?) /2 s> 1,

follows a non-central y2—distribution with mean
Ecs:cs"l')\s: 3207

where ¢, is the sth phase amplitude of the template. Finally, the conditional distri-
bution of D, given C; is given by, cf. the Appendix,

2nsD;s | Cs =c¢ ~ vM(Qwsds,Q@), s>1, (2.3)
S
where ds; € [0,1/s) is the sth phase angle of the template. Here, vM(u, ) is the
notation used for the von Mises distribution with mean direction p € [0,27) and
concentration parameter x > 0. For k = 0 we get the uniform distribution on [0, 27)
while for k > 0 large the distribution is concentrated around the mean direction.
Other properties of this distribution are described in [12], p. 36.
If the template is a circle, then a;, = b, = 0 = ¢,, s > 1. Therefore, in this case,
C, and D, are independent, C, follows an exponential distribution with mean A\, and
Dy is uniformly distributed on [0,1/s),s > 1.
The distribution of Cy can for s > 1 be approximated by a (c; + A;)x%(fs)/ fs-

distribution where \
C
—of(1ae "
fs ( +)\§+2cs)\s)’

cf. e.g. [9]. Note that for a circular template, ¢s = 0, f; = 2 and the result is exact.
If ¢; > Ag, then f; will be large and the distribution of C is concentrated around c;.
The distributional results obtained above for (Cj, Ds) in the Gaussian case moti-
vate extensions of our model to the non-Gaussian case. Instead of the (cs+X;)x2(fs)/ fs-
distribution one might use a generalized gamma distribution as a model for Cj, cf.

3
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[10], Section 8.4. Under a Gaussian assumption the phase angles are von Mises dis-
tributed as indicated in (2.3). An extension is here to consider a von Mises distribution
of the type vM(2msdy, ksv/c) where the parameter ks > 0 is arbitrary, allowing for
larger and smaller variation than in the Gaussian case.

3 Elliptical templates

From now on we consider the special case where the template is an ellipse.

Let us start by introducing some notation for an ellipse. Assume the centre z is
located at the origin, let the lengths of the the axes be denoted by ¢ > b and the
eccentricity be € = (1 — b?/a?)'/2. If the major axis of the ellipse has an angle of 270
relatively to the first axis, 6 € [0,1/2), then the boundary of the ellipse is given by

(z(t),y(t)) = r(t) (cos(2nt),sin(27t)), ¢ € [0,1],

where the radius-vector function is

b
r(t) = d . (3.1)
Va2sin? (27 (t — 0)) + b2 cos?(2n(t — 0))
The boundary length between the points with indices 0 and ¢ is
t
1) = [ V)T @)
0
t=0 (44 sin2(2 + b cos2(2 1/2
= 27mb/ (a”sin” (27u) cos™( Wu))?)/?du. (3.2)
—0 (a?sin®(2mu) + b2 cos?(27u))

The time change v will be taken to be either the relative boundary length, (t) =
I(t)/1(1), or the identity. In both cases one easily shows that at odd phases the time
changed radius-vector function r¢(¢) = r(y~(¢)) has vanishing Fourier coefficients. In
fact, if the eccentricity is not too large then the elliptical shape is mainly determined
by the Fourier coefficients at the phases s = 0 and s = 2 for these two choices of time
change.

Recall that the time changed radius-vector function Ry of the random object K is
Ry(t) = ro(t) + Xo(t). We want to specialize the general Gaussian model for X, such
that K has a pronounced elliptical shape. As noted above this should be reflected
in the Fourier coefficients at phases s = 0 and s = 2. We assume that X, has small
Fourier coefficients when s = 0 and s = 2 such that at these phases R is described
almost entirely by the terms from the ellipse. Moreover, typically K will be rather
symmetrical with respect to the centre z, and arguing as in Section 2 of [8] this implies
that the Fourier coefficients of Ry at phase s = 1 are small.

We hence consider the Gaussian model (2.2) with variances g, A1, A2 small. The
remaining variances are modelled by the simple regression model

AN =a+B(s* -3%), s>3. (3.3)

4
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The parameter o determines the ’global’ deviation from the template while 3, p de-
termine the 'roughness’ of the boundary. The reason is that when s > 3 is small then
As is mainly determined by «. A small value of o gives a large value of Ay which
typically implies a high ’global’ fluctuation in Xy(¢). Similarly when s is large A, is
merely determined by  and p. Large values of these parameters yield small variances
As such that the boundary of K will be rather smooth. In [8] it is discussed how p
relates to continuity and differentiability of the trajectories of X, see in particular
Section 3 of that paper. The regression model is called a p-order model because it
appears as the limit of discrete time p-order Markov models, cf. [8].

OO OO
OO0 OD
OO0 OO
OO0 OO0 DO
[l oNoNollelolelwete
OO OO OTHLOD

9 10111213
loga

9 10111213
loga

9 10111213
logo

Figure 1: Simulations from the model (2.2) with A, = B; = 0,s < 2, A given by
(3.3) and an elliptical template with unit perimeter. In the first three rows the time
change is y(t) = t while in the last three rows 7(t) = [(¢). The values of ¢, and 3
are as indicated and p = 2.5.

In the statistical shape literature a Gaussian model is commonly used, cf. e.g.
[4,5,6,7, 8,11, 15, 16, 17]. The papers [7, 8, 11] considered Gaussian models with
Fourier coefficients at phase s = 0, 1 close to zero. The additional constraint on s = 2
here is due to the choice of template. Compared to [7, 8, 11] we have also introduced
the time change +. In [6] a template ellipse was considered but the constraints on the
Fourier coefficients were not incorporated.

An effective way of checking that a model has the right properties is to inspect
random samples from the model. In Figure 1 we show simulations using both ~(t) = ¢
and y(t) = 1(¢)/l(1). All templates were scaled such that the perimeter was (1) = 1.
For ¢ = 0 the two time changes are identical and therefore yield the same model.
However, at high eccentricities it is apparent that v(¢) = t results in some undesirable
small ’blobs’ in K near the minor axis of the template ellipse. In the following we
will therefore mainly use y(t) = {(¢)/I(1) as our time change.

5
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4 Data analysis

The data consists of 27 profiles of cell nuclei from a malignant tumour and 27 cell
nuclei from a benign tumour of human skin, cf. Figure 2 and [6], where the data
has previously been analysed. The cell nuclei from the benign tumour seem to be
small deformations of ellipses with varying eccentricities while the nuclei from the
malignant tumour are larger deformations of ellipses. Our model should be able to
capture this difference.

CROOOOQOoO
COOQ0OQCO OQO
CooQ0o0o QO
Hooodx D e 0 0
QQO=Q OO0 00O
OO0 000 9Q

Figure 2: The upper panel is profiles of cell nuclei from a malignant tumour while the
lower is from a benign tumour. The cell nuclei have been scaled so that they have
approximately the same size.

For each profile we chose z as the centre of mass and calculated the radius-vector
function R at the points t = 0,1/n,...,(n — 1)/n, where n = 50. We tried several
different ways of fitting the ellipse. The elegant method described in [2] was imple-
mented, the least squares method described in [4] was also used, but we ended up
fitting the ellipse using the Fourier coefficients at the phases s = 0,2 only. However,
the three methods resulted in almost the same template ellipse.

Since we are only interested in the shape we scaled the resulting residual process
X (t) = R(t) — r(t) by the perimeter of the ellipse. Finally we calculated the Fourier
coefficients of the normalized time changed process Xy (t) = X (y7'(t)), where we used
v(t) = 1(t)/1(1). The Fourier coefficients are

A, =3 / ' Xo(t) cos(2nst)dt = 3 / X cos@rsy®) (Bd, (41)

and the expression for B is similar.
It remains to fit the regression model (3.3), based on A, Bs, s > 3. The Fourier co-
efficients at high phases are poorly determined due to digitization effects, cf. e.g. [7, 8,

6
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11]. We therefore considered the well-determined Fourier coefficients As, Bs, ..., Ag, Bg
only, where S is a reasonable cut-off value. In practice it turned out that relatively
few Fourier coefficients are well-determined and we used S = 11. Since the Fourier
coefficients are zero mean Gaussian it follows that the likelihood function for a profile
is

S

1 A2 + B?

L(e, B,p) = H 2\ exp (—T> ) (4.2)
s—3 S S

where )\ is given by (3.3).

For each profile we found the estimates of («, ,p) by maximising (4.2). For the
malignant sample the average of p was 2.72 with a standard deviation of 0.68, while
for the benign sample the average was 2.49 and the standard deviation 0.79. We
therefore fixed p = 2.5. The estimates of («, 8) under the p-order model with p = 2.5
are shown in Figure 3 and summarized in Table 1. The estimates of the local shape
parameter 3 are on average significantly lower in the malignant sample (p-value for
identical s in the two samples is less than 0.01 %). This was to be expected from
the simulations and geometric interpretation of  given in Section 3.

log & logﬁ
av. | s.d. | av. | s.d. | corr.
benign 11.59 | 1.42 | 4.68 | 0.53 | 0.43
malignant | 10.65 | 1.10 | 3.66 | 0.88 | 0.45

Table 1: The average, standard deviation and correlation of (log&,log B) for each
sample.

On average the estimates of the global shape parameter « are also lowest in
the malignant sample, and again the difference is significant (p-value close to 1%).
Furthermore the variance of log ( is significantly larger in the malignant sample.

5 Perspective

The deformable template model considered in the present paper can be embedded in
the marked point process framework described in [1] and thereby used in Bayesian
object recognition. In this set-up the observed digital image y depends on the true
scene of interest x through the likelihood f(y|z). Inference for x is made using the
posterior

p(z|y) o< f(ylz)p(z),

where p(z) is the prior distribution of z. The scene z is represented as a finite set of
m objects, x = {x1,...,Tm}, where m is unknown. Each object z; is specified as a
marked point where the point gives the location and the mark determines the object.
The basic distribution is the Poisson object process, where the number of objects

7
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Figure 3: The estimates of («, 3) when p is fixed at p = 2.5 The hatched nuclei are
from the benign sample while the white nuclei are from the malignant sample.

are Poisson distributed and, conditional on this number, the locations of the objects
are independent and uniformly distributed. The distribution of the marks is often
given by a deformable template model. Examples include [13] where mushrooms in a
growing bed are analysed. Here, the mushrooms are modelled as discrete circles and
the deformation is through scaling only. In [16] cells in a confocal microscopy image
are located and discrete circles of different sizes are used, but a residual process similar
to the one presented in this paper is also added. A third example is provided by [15]
where the template is a discrete circle or a discrete ellipse with fixed eccentricity. The
residual process, which determines the deformation of the template edges, is a discrete
first-order Markov process. Our analysis can be viewed as a detailed investigation of
the deformable template model with an ellipse as template. In particular we found
that a time change is needed if the eccentricity is high and the radial representation
is used.
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Appendix
Let Y; ~ N(a,\) and Y5 ~ N(b,\) be independent random variables and let
a=1cosu, b=1Isinyu, Y1 = Rcos®, Yy = RsinO.

We show that l
O|R=r ~vM(p, Xr)

From the change of variables formula it follows that the density function of (R, ©) is

r —r2 — 1?2 4+ 2lrcos(f —
fR,@ (Ta 0) = €xXp ( ( M)) )

21 A 2\

and by integrating with respect to 6 we get

2 g2
fr(r) = %exp (TTZ) Iy (%ﬂ),

where I, denotes the modified Bessel function of the first kind and order 0. The result
now follows immediately.
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Abstract

Recently, systematic sampling on the circle and the sphere has been studied
by Gual-Arnau and Cruz-Orive (2000) from a design-based point of view. In
this note, it is shown that their mathematical model for the covariogram is
in a model-based statistical setting a special case of the p-order shape model,
suggested in Hobolth et al. (1999, 2000) for planar objects without landmarks.
Benefits of this observation include an alternative variance estimator, applicable
in the original problem of systematic sampling. In a wider perspective, the
paper contributes to the discussion concerning design-based versus model-based
stereology.

Keywords: covariogram, circulant matrix, Fourier series, planar objects, shape,
stationarity, stereology, systematic sampling.

1 Introduction

In stereology, the aim is typically to make inference about a population of spatial ob-
jects from geometric samples of the objects such as line and plane sections. The objec-
tive is not to reconstruct the objects, but instead to make inference about quantitative
properties such as volume or surface area. If a typical object from the population can
be regarded as a realization of a stochastic process R, then the quantitative property
of interest can be expressed as a function f of R. Using a geometric sampling design
#, independent of R, a predictor f (R, ¢) of f(R) can often be constructed, based on
reasoning from stochastic geometry, which is design-unbiased, i.e.

E(f(R, ¢)|R) = f(R).

It is part of the methodology of design-based stereology to construct a design-unbiased
estimator 6%(¢) of the conditional variance

o% = Var(F(R, )| R).
The estimator 6%(¢) thus satisfies
E(6%(¢)|R) = 0.

Usually 6%(¢) is based on the empirical covariogram.

In most cases it is of interest to make statements about the population of objects
and not only about the sampled objects. A relevant quantity is here the prediction
error

E(f(R,¢) — f(R))>

1
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Using that f (R, ¢) and 6%(¢) are design-unbiased, the prediction error can be rewrit-
ten as

E(f(R,) - f(R))? (1.1)
= Var(f(R, ¢) — f(R))

= Var(E(f(R, ¢) — f(R)|R)) + E(Var(f(R, ¢) — f(R)|R))

= E(Var(f(R, ¢)|R))

= Eo% = E6%(9). (1.2)

Therefore, 6%(¢) or an average of such estimators for a sample of objects can be
regarded as an unbiased estimator of the prediction error.

In the present paper we propose the alternative of using a likelihood-based method
of estimating the prediction error. The discussion is centred around the example
where R = {R(2nt) € R: 0 <t < 1} is a 27 periodic stochastic process and

1
F(R) = / R(2rt)dt
0
is the quantity of interest. Based on n > 2 equally spaced measurements

{R(27(¢+3j/n)):j=0,...,n—1}

of the stochastic process R, with ¢ uniformly distributed in [0,1/n], Gual-Arnau
and Cruz-Orive (2000) have recently suggested a design-unbiased estimator of the
conditional variance of

R(2m(¢+j/n)). (1.3)

In this paper we suggest a parametric model for R with a covariance structure similar
to that of Gual-Arnau and Cruz-Orive (2000). The prediction error is estimated by
inserting the maximum likelihood estimates of the model parameters into a closed
form parametric expression for the prediction error. The proposed estimator of the
prediction error is optimal under the suggested model for R.

The paper is organised as follows. In Section 2 we recall the design-based variance
estimation of Gual-Arnau and Cruz-Orive (2000), while the likelihood-based variance
estimation is carried out in Section 3. In Section 4 it is shown that the proposed model
is a special case of the p-order shape model, suggested in Hobolth et al. (1999, 2000)
for planar objects without landmarks. It is also pointed out that a similar discussion
about estimation procedures has taken place in the geostatistical community during
the last decade.

2 Design-based variance estimation

Let R = {R(2nt) € R:0 <t < 1} be a 27 periodic stochastic process, which is of
bounded variation, square integrable and piecewise continuous, and let ¢ ~ U[0,1/n]

2



be independent of R. If we define f(R, ¢) as in (1.3), then Cruz-Orive and Gual-Arnau
(2000) treat the problem of estimating the conditional variance Var(f(R, ¢)|R = r).
In particular they show that, c¢f. Gual-Arnau and Cruz-Orive (2000, Corollary 2.1),

Var(f(R,¢)|R=71) = Z Ckn, (2.1)

keZ\{0}

where

1
Ck =/ g(t)e > dt, k € Z,
0

are the Fourier coefficients of the covariogram
1
g9(t) = / r(2rh)r2m(h+t))dh, 0 <t < 1.
0

Here and throughout the paper we use periodic extensions of the functions (i.e.
r(2n(x + k)) = r(2nx), k € Z). Note that ¢, is real and ¢, = c_j because
g(1 —t) = g(t). The covariogram

Z cke®™ " = ¢y + 2 Z ¢k cos(2mkt), (2.2)

kEZ

is modelled by a polynomium of order 2p, p € N. The fact that g(t) = g(1 —t) causes
restrictions on the coefficients of the polynomium. Gual-Arnau and Cruz-Orive (2000,
p. 635) show that in fact the polynomium only depends on two real parameters [y, 5,
and that the Fourier coefficients of g take the form

o= Y =05 ke (o), 2.3
keZ\{0}

where ¢g, 3 > 0. Unbiased estimators of g(0) and ¢g(1/n) are obtained by

n—1

30) = S r(en(o+ /)
> r(2n(6 + §/n))r(2n(o+ (G + 1)/m)

oafm = -

and using the formula for the Bernoulli polynomium, cf. e.g. Abramovitz and Stegun
(1970, p. 805),

Boy(t) = (—1)1071(210)!2 i cos(2mkt)

0<t<1 eN
(27T)2p k2p ) st 4L, p ’

k=1
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an unbiased estimator of Var(f(R, ¢)|R = r) given by

90) = §@n/n) 1
W 1= By(1/n)/Bay 24)

is obtained, where By, = By,(0) is the Bernoulli number of order 2p. Note that
n—1
=0

and thus the estimator is based on first-order differences.

3 Model-based setting

Now we recast the models and estimation procedures of Gual-Arnau and Cruz-Orive
(2000) in terms of a stationary, random periodic process R with mean y and covariance
function

o(t) = Z)\kGZWikt =X+ QZ/\k cos(2mkt), 0 <t <1.
ke k=1

Note that the )\’s are real because o(1 — t) = o(t). If we make a Fourier expansion
of the random covariogram

G(t) = /01 R(2mh)R(2m(h +t))dh = Cy + 2 z‘x’: C cos(2mkt)

then ECy, = A, k > 1, and ECy = \g + p?. Accordingly, the covariogram model
(2.3) corresponds to a covariance function o(t) with

(2p)!
k2p

M=06o— D A M= B8, k € Z\{0}. (3.1)

keZ\{0}

Note that

a0) =X+ Y M=o,

kezZ\{0}

which means that 5, determines the variance and [/, the correlation structure.
In a model-based setting, the aim is to estimate the error involved in using

n—1

f(R6) =~ S" R(2m(d+/m)

=0



as a predictor of f(R) = [, ! (27Tt)dt In terms of model parameters the prediction
error is given by, cf. (1.1), (2.1) and (3.1),
¢) -

E(f(R,¢) - f(R))> = E(Var(f(R,9)R))
kezZ\{0}
= 8 Z

kEZ\{O}

- (—1)1’—1(2%)2?32,,%5. (3.2)

Note that the prediction error will be the same if we fix ¢ = 0, say.

We can use the procedure suggested by Gual-Arnau and Cruz-Orive (2000) for
obtaining an unbiased estimator of the prediction error in the model-based setting.
Another approach is to estimate § in the parametric model for R by maximum like-
lihood estimation. Suppose for instance that the process R is Gaussian. Then the
vector

R, = (R(27¢), R2n(¢ +1/n)),..., R2r(¢ + (n—1)/n)))"

follows a multivariate normal distribution with mean (i, ..., )T = pl1? and an n x n

circulant covariance matrix

S = cire(o(0),0(1/n),...,o((n —1)/n)).

The covariance matrix can be diagonalised by the complex n x n discrete Fourier
transform matrix W with entries w;; = e?™*/* /n, 0 < j,k < n—1, cf. e.g. Wei (1990,
Chapter 10). Let wy denote the (£ + 1)’th coloumn of W so that W = [wy, . .., w,_1]
and let W* =T denote the complex conjugate of W. Then

W*EW = dlag()\o,... A 1)

is a diagonal matrix with
\; = = wiYw; = Z’\J+nk’ j=0,. -1,
kEZ

on the diagonal. Note that only the parameter § is present in the expression of
/\J, j=1,...,n—1, while both 8 and f3, are present in the expression of \y. Similarly
we find that

(Rp — pl,)* T YR, — ply,) = (Rp — plp) nWW*S 'aWW*(R, — pl,)
(F—m N
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where
f=Ff(R¢), N\j=N(R ¢)=wR,Riw;, j=0,...,n—1,
and
j=1,...,n—1. .
2; j+nk s (3.3)

Thus the sufficient statistic is given by

According to the Rao-Blackwell theorem any function of 7" is the minimum variance
estimator of its mean value. Furthermore it follows from the theory of exponential
families that T is complete, and hence

|
—

—
3
Gl R

b=

-1

Jlj

is the unique unbiased estimator of # with minimum variance. Using the real discrete
Fourier transform matrix similar calculations show that 3 follows a 8x2(n—1)/(n—1)
distribution, and therefore we can supply the point estimate of 3 with a confidence
interval. This is an important option which does not exist in a design-based setting.

The likelihood-based estimator of 3 is a weighted sum of the squared length of
the discrete complex Fourier coefficients j\j. It is clear from (3.3) that the weights &;
depend crucially on the order 2p of the polynomium. Below we discuss how p relates
to the smoothness of the sample paths, and may be considered as a third parameter
in the model.

We estimate the prediction error by, cf. (3.2),

(1P (2n)? By . (3.4)

It is worth noticing that for n = 2 and n = 3 this estimator actually coincides
with the estimator (2.4) of Gual-Arnau and Cruz-Orive (2000). Note also that in a
design-based setting, (3.4) is an unbiased estimator of Var(f(R, #)|R = r) under the
covariogram model (2.3).

4 Discussion

4.1 The p-order shape model

The model (3.1) is a special case of the p-order model suggested in Hobolth et al.
(1999, 2000) which appears to be very natural for modelling the shape of planar

6



objects K without landmarks. In this setting K is assumed to be star-shaped with
respect to a fixed point z € K, and R(27t) is the radius-vector function evaluated at
27t i.e. the distance from z to the boundary of K along a line with angle 27t relative
to a fixed axis. In the p-order model the \;’s are determined by

o >0, \t=a+Bk?, ke Z\{0}, (4.1)

where & > 0, 8 > 0, p > 1/2. Note that in this model p is a parameter and not
a fixed integer as in (2.3). For & = 0 and 1/8 = (2p)!8 we get the model (3.1). In
Hobolth et al. (2000) it is discussed how the parameters (@, 3, p) relates to the shape
of the object. The parameter p determines the smoothness of the object boundary.
In the Gaussian case the sample paths are k£ times continuously differentiable, where
k is the integer satisfying p €]k — 1/2,k 4+ 1/2|[. For fixed p, & determines the global
shape while 3 determines the local shape. Furthermore, it can be argued that A\,
relates to asymmetry of K relative to z € K, so the regression model (4.1) should
for geometrical reasons only be considered for |k| > 2. In Hobolth et al. (2000) it is
demonstrated how the three parameters can be estimated using maximum likelihood.
Based on the observed information it is also possible to determine confidence intervals
of the parameters.

In geometric examples, R is typically a power (2 or 3) of the radius-vector function.
In such cases, a Gaussian assumption may not be appropriate. Hobolth et al. (2000)
provide tools for analysing non-Gaussian processes in this context.

4.2 Covariogram versus likelihood-based methods

The estimation procedure of Gual-Arnau and Cruz-Orive (2000) is based on the em-
pirical covariogram, while we suggest a likelihood-based method. In the geostatistical
community a discussion of the two procedures have taken place during the last decade,
and has resulted in a move towards the adoption of likelihood-based methods (Dig-
gle et al., 1998, p. 305). We refer the interested reader to the recent monograph
Stein (1999) and references therein for more information on parameter estimation
using covariogram- or likelihood-based methods. We believe that a corresponding
discussion is needed among the stereologists and we hope with this paper to have
contributed in a constructive manner to such a discussion.
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The spherical deformation model
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Abstract

Miller et al. (1994) describe a model for representing spatial objects with no
obvious landmarks. Each object is represented by a global translation and a
normal deformation of a sphere. The normal deformation is defined via the
orthonormal spherical-harmonic basis. In this paper we analyse the spherical
deformation model in detail and describe how it may be used to summarise
the shape of star-shaped three-dimensional objects with few parameters. It
is of interest to make statistical inference about the three-dimensional shape
parameters from continuous observations of the surface and from a single central
section of the object. We use maximum likelihood based inference for this
purpose and demonstrate the suggested methods on real data.

Keywords: deformable templates, shape, spherical harmonic, stationarity.

1 Introduction

Miller et al. (1994) describe a model for representing three-dimensional amoebae in
optical sectioning microscopy. Each amoeba is represented by a global translation
and a normal deformation of a sphere. The Gaussian model for the normal deforma-
tion is defined via the spherical-harmonic basis and possesses rotational symmetry.
The purpose of this paper is to give a more detailed investigation of the spherical
deformation model, and to use the model to explore shape variability. Here shape
refers to the geometrical properties of an object which are invariant under translation,
rotation and isotropic scaling.

Shape modelling of planar objects with no obvious landmarks has attracted much
attention recently. Grenander and Miller (1994) propose a model where a planar
object is represented by n vertices around its perimeter, and is described by de-
forming an n-sided regular polygon using edge transformations. The edge model of
Grenander and Miller (1994) is analysed in detail in Kent et al. (2000), who use the
model to explore shape variability. In Hobolth et al. (2002) the object is described
using vertex transformations, and it is concluded that Fourier analysis of the stan-
dardized radius-vector function is an efficient way of exploring shape variability for
star-shaped planar objects. In this paper the three-dimensional spherical counterpart
of the planar circulant Fourier analysis is investigated. It is also demonstrated how
to perform statistical inference about the three-dimensional shape parameters from
central sections of the object.

The paper is organised as follows. In Section 2 the two samples of data are
described. The first data sample consists of the surfaces of five neurons from the
human hippocampus, and the second data sample consists of ten central sections of
neurons from the human hippocampus. Section 3 is concerned with the geometry
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of the spherical-harmonic basis. In Section 4 the spherical deformation model is
specified, and in Section 5 the model is fitted to the first data sample. The relation
between the circulant and the spherical methods is outlined in Section 6, and in
Section 7 the relation is used to fit the spherical deformation model to the second
data sample. The paper is concluded with a discussion on the use of the spherical
deformation model.

2 The data

Optical sectioning microscopy (OSM) is a widely used tool to get access to the
3D structure of biological specimens. In OSM a series of focal planes spanning the
specimen are acquired. This paper is devoted to the study of neurons from the human
hippocampus. Hippocampus is the part of the brain concerned with recent memory
and the ability to learn new facts and skills. A hippocampus neuron can be viewed as
a small deformation of a sphere with a typical diameter of 10-15 um. The focal planes
of a 70 um thick glycol methacrylate section were viewed in an Olympus BX 50 light
microscope. The microscope is mounted with a 100X oil objective with a small focal
depth (NA 1.4), a motorized microscope stage, and a 3 CCD video camera connected
to a personal computer. We collected the images of 5 neurons where the focal planes
were 0.5 pum apart, and the magnification was chosen so that the central section of
each neuron had a diameter of around 400 pixels. Due to the substantial amount of
optical distortion the boundary of each neuron was traced manually when the focal
depth was at the top or bottom of the neuron while a simple thresholding was suf-
ficient to obtain the boundary at the remaining focal depths. We also collected the
boundary of the central section of 10 neurons. The data is shown in Figure 1 and
Figure 2.

CLOOL

Figure 1: Surfaces of five neurons from the human hippocampus.

YAVANRVACANRORCENRY,

Figure 2: Central sections of ten neurons from the human hippocampus.



3 Spherical harmonics

Consider a solid object K C R? and suppose that K is star-shaped relative to z € K,
i.e. every point on the surface of K is visible from z. Using spherical coordinates the
surface is determined by

{z+7(0,0)w(0,¢): 0<0<2m, 0< ¢ <7},

where w(#, ¢) = (cosf sing, sinfl sing, cos¢) is the vector on the unit sphere with polar
longitude # and polar latitude ¢, and (6, ¢) is the distance from z to the surface
of K in direction w(f, ¢). It is useful to express the radius-vector function (6, @) in
terms of the spherical harmonics

{7 (0,¢): ne Ny, m=—n,...,n},

which constitute an orthonormal basis on the sphere. The spherical harmonics are
given by

k™ P™ (cosg) cosmf, m = —n, ..., —1
o' (0,6) = < k2PY(cosg), m =0
kP (cosg) sinmf, m=1,...,n,
where
1 2 1 2 1(n—m)!
K= —— K = nt k™ \/n—l— r m),nEN,mzl,...,n, (3.1)
(n+m)!

are normalizing constants and P;* are the associated Legendre functions of the first
kind.
Now consider the Fourier-Legendre series expansion

=D > alen(l

n=0 m=—n

of the radius-vector function, where the Fourier-Legendre coefficients are given by

2 ™
= /O /O (0, ¢) o™ (0, ¢) singdpdd. (3.2)

The mean radius-vector length is determined by

/ / (6, ¢) singdodd = \/_ao,

and hence a) can be used as a measure of the size of the object. To remove size one
may consider the standardized radius-vector function r(6, ¢) /7.

The choice of centre implies constraints on the radius-vector function. If z is the
centre of mass of the object then the constraints can be written explicitly, as shown in

3
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the appendix. In this case the constraints involve the fourth power of the radius-vector
function, but assuming that the object is a small deformation of a sphere, a first-order
Taylor expansion leads to the approximate constraints af* ~ 0, m = —1,0, 1.

To understand the geometry of the Fourier-Legendre coefficients a]* with index
n > 2 it is useful to consider objects given by

r(0,0) =1+ a0 (0, ). (3-3)

In general these objects are quite complicated. An example is given in Figure 3.

P2(cosg) _ 2
10 2 r(8,0)=1+P5(cos¢)cos20
0.5 10
0.0 ¢
0.5+
-0.5
*WO 0.0}
005115
W 57 ~0.5}¢
' cos’6
1.00
OO F ( ) ~ S
-0.5¢ T -
7WO’ S — ~
-15 ‘ == = =

-1.5 -05 05 1.5

Figure 3: Illustration of the geometry of an object given by (3.3) with m = —2 and
n = 2. To the left the Legendre function P?(cos¢), 0 < ¢ < 7, and the trigonometric
function cos26, 0 < 0 < 27w, are wrapped around the semicircle and the circle. To the
right the resulting surface is shown. The four accentuated curves correspond to fixed
¢=m/2,m,31/2and 6 = 0.

4 The spherical deformation model

Consider the Fourier-Legendre series expansion of the standardized radius-vector
function

r0,6) =1+ Y arer(,¢).

n=1m=-n

As argued in the previous section the three Fourier-Legendre coefficients correspond-
ing to n = 1 are approximately zero if z is the centre of mass and the object is a
small deformation of a sphere. Alternatively one could choose the centre as the point
satisfying a* = 0, m = —1,0,1 (assuming the object is star-shaped relative to this
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point). In any case these coefficients are treated as non-random nuisance parameters.
The remaining coefficients

apy ~ N(O,\"), n>2, m=—-n,...,n,

are modelled as independent Gaussian random variables with mean zero (the average
shape is a sphere) and variance A7". We also suppose that we have stationarity on the
sphere, in the sense that the covariance between two points on the sphere depends
only on the angle between the points. Stationarity is obtained by assuming

A=A2>0,n>2 m=-n,...,n, (4.1)

and the covariance becomes

Cov(r(f,¢1),m(0262)) = D An >, @61, 610 (62, 62)
n=2

m=—n

= Z A (K2)? P, (costpra), (4.2)

n=2

—
=

where cost1s = w(b1, ¢1) - w(bs, P2), and we at (x) have used the addition theorem, cf.
Miiller (1966, Theorem 2).

The covariance is thus determined by the variances \,, and to proceed further we
seek a parametric model for the variances. Miller et al. (1994) use a model induced
from Poisson’s equation for pressure fields acting on thin membranes. The potential
associated with the model is given by

27 ™
0)=5 [ [ 1Er@.0) singdsas

where

B 0? cosf 0 1 02

=5 " smo 90 T sm20 002

is the Laplacian operator on the surface of the sphere. Since ¢7'(f, ¢) is an eigen-
function of the Laplacian operator with eigenvalue 7, = —n(n + 1) the potential
corresponds to a model where the variances decrease as 1/\, = n2 = (n(n + 1))%

Grenander and Miller (1998, Section 5.3) suggest obtaining more general models
by introducing polynomials p(L) = aol + a1 L + - - - + agL? of the basic operator L.
The bi-harmonic operator is for example obtained by choosing p(L) = L?. For such
models the variances decrease as 1/, = p(n,)%

In this paper we suggest letting the variances decrease according to

1/ Ap=a+pn’, n>2,p>2, >0, a>—[32". (4.3)

There are several reasons why we believe this is a good model. The parameter p
makes the model very flexible with regard to the smoothness of the radius-vector

5
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function. From Stein (1999, Chapter 2) it follows that the degree of mean square
differentiability is determined by the behaviour of the covariance function and its
derivatives near the origin. By making repeated use of the relation

Prii(x) = 2n+1)Py(z) + P,y (), -1 <2 <1,

and using Py(z) = 1, Pi(x) = z and P,(1) = 1 it can be shown that the radius-vector
function is & times mean square differentiable when 2(k 4+ 1) < p < 2(k + 2). When
2 < p < 4 the radius-vector function is mean square continuous. Note that in the
model used by Miller et al. (1994) the variances decrease according to p = 4, while
for the bi-harmonic operator the variances decrease according to p = 8.

For fixed p the value of § determines the 'local’ shape of the object since the
variances with large indices are determined by 3. The third parameter in the model
is most easily interpreted when making the reparametrization & = o + (32P, in which
case & controls the first few variances, and thereby the ’global’ shape of the object. In
Figure 4 simulations of central sections {r(#,7/2) : 0 < § < 27} from the model (4.3)
with fixed p = 4 and varying & and (3 are shown.

00000
JOo00O0
OO0 000
OO0 0
0A3LC0

Figure 4: Simulated central sections under the model (4.3) with p = 4 and indicated
values of & and f.
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5 Application I: Observing the whole surface

Statistical inference in the spherical deformation model is straightforward when the
observations of the object takes the form of (approximately) continuous measurements
of the radius-vector function. The data from Figure 1 is used to illustrate the methods.
As explained in Section 2 we begin by tracing the boundary of the neuron in each
section and thus represent the neuron by a binary volume (1 for a neuron voxel and 0
for a background voxel). From the centre of mass of the neuron equally spaced radii
(in terms of ¢ and @) are traced to the boundary. A boundary point is defined as the
voxel location just before the first zero is obtained. The number of boundary points
on the object should be chosen high enough to capture the shape of the neuron, but
since the neuron is only represented as a binary volume not much extra information
is gained by choosing a very high number.

The Fourier-Legendre coefficients ay'), for each neuron £ = 1,...,5 = K are
obtained from discrete versions of the integrals in (3.2) where the standardized radius-
vector function is used. The variances A, are calculated from the Fourier-Legendre
coefficients

A 1
Sk = 57 D (@8 ~ A’ +1)/(2n+1), 0 > 2.

m=—n

Suppose the objects are independent and identically distributed. Then the common
variances ), are estimated by averaging the variances of the single neurons

K
N 1 N 9
=2 ];An,k ~ X (2n+ 1)K)/(2n+ 1K), n > 2.

In Figure 5 the estimated log-variances are displayed.

In order to avoid effects due to the discretization of the neuron we choose to
proceed with variances A, of indices less than n* = 10 only. The variances with
indices above n* are judged as being too noisy. The cutting off of the high frequency
components in the spectrum is well known in the analysis of time series, where it
is referred to as low-pass filtering since only the low frequency components are used
for subsequent analysis. The (correspondingly truncated) model (4.3) is fitted to the
variances 5\2, een, /A\n* using maximum likelihood. The maximum likelihood estimates
of (&, 3,p) are (24.9,2.2,3.9), and Figure 5 displays the log-variances under the fitted
model. Carrying out a goodness of fit test of the (truncated) model (4.3) under the
(truncated) model (4.1) assuming stationarity we obtain a likelihood ratio testor equal
to 6.4 on (n* —1) — 3 = 6 degrees of freedom. Under the x?(6) approximation of the
testor the 'p-value’ is 0.38, and so one can consider the model (4.3) as a reasonable
way of describing the decrease of the variances.

7



Hobolth (2002)

Figure 5: Plot of the estimated log-variances of the stationary model (4.1; solid line)
and the regression model (4.3; dotted line) for the 3D surfaces.

6 Relation to the circular deformation model

Suppose we want to estimate the spherical variances A, of (4.1) from continuous
measurements of the central sections

{r(0,7/2):0 <6 < 27}

only. This task is of considerable interest since the optical distortion complicates
the reconstruction of the boundary at the top and bottom of the neurons. Whereas
the spherical harmonics constitute the orthonormal basis on the sphere, the most
convenient orthonormal basis on the circle is the Fourier basis

1
cosnb, sinnf : n € N}.

v

Similar to the spherical case we can write the radius-vector function in terms of the
Fourier basis

bo 3 ; —smn
r(@,7/2) = Nor: Z( fcosn0+b N 0),

where the Fourier coefficients are given by

2 1
be = 0,m/2)——db,
; / r(0.7/2)

2w 1 2 1
b = / r(0,m/2)—= cosnfdf, b; :/ r(0,m/2)——sinnfdf, n € N. (6.1
i ( /)\/7? i ( /)\/7? (6.1)

As in Section 2 we remove size by considering the standardized radius-vector
function 7(60,7/2)/Tx /2, where

1 [ 1
P = %/0 r(0,7/2)d0 = b
8




Furthermore the choice of centre implies constraints on the radius-vector function.
As in 3D the centre could be chosen as the point fulfilling b = b = 0. Another
possibility is to choose the centre of mass in which case we have b{ ~ 0 and b] = 0,
provided that the central section is a small deformation of a circle. The last result
is derived in the appendix of Hobolth et al. (2000), where a careful treatment of the
geometry of the radius-vector function in the plane can also be found.

We now determine the distribution of the remaining Fourier coefficients. From

o

27
by = / (6, 7T/2)—s1nn0d0—/ Z Z a7 (6, 7T/2)7 sinnfdf
0

=0 m=-—1
= VT Y _KP0)a ~ N(0,7 ) (KFPM0)°A), n>2,
l=n

l=n

and a similar calculation of b¢ it follows that if we assume stationarity on the
sphere (4.1) then the variances of b and b2 are equal and given by

20+ 1(1—n)! )
= E R P > 2. 2
n - 9 (l—|—n)' l (0) Al, n -~ (6 )

Note that the relation between the circular variances k,, and the spherical variances A,

is linear. Despite the linearity, the relation is rather complicated. Since P}, ,,(0) =

0, s € Ny, we have that x, depends linearly on A1 95, s € Ny, only. Furthermore in our

application the spherical variances )\, are decreasing rapidly, and therefore the most

important term when calculating x,, is the first, which equals a constant times \,,.
The covariance function in terms of the circular variances &, is given by

o0

Cov(r(6y,m/2),r(02,7/2)) =Y mn% cos(n(fy — 01)),

n=2

and we have stationarity on the circle in the sense that the covariance between two
points on the circle depends only on the angle between the points. This is of course
a direct consequence of the stationarity on the sphere.

7 Application II: Observing the central section

Consider the ten central sections of neurons from the human hippocampus shown in
Figure 2. The Fourier coefficients are obtained from discrete versions of the integrals
n (6.1), where the standardized radius-vector function is used. Estimates of the
circular variances k,j for each of the ten objects £ = 1,...,10 = K are calculated
from the Fourier coefficients

c 2 S 2
+
Rnp = ( ”’k) 5 ( "’“) ~ Hn,kXQ(Q)/Qa n > 2.
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Suppose the objects are independent and identically distributed. Then the common
variances k, are estimated by averaging the variances of the individual neurons

K
fon = %ka ~ knX’(2K) /2K, n>2.
k=1
The assumption of equal variances can be verified by a Bartlett test. Another possi-
bility is to use the fact that a x?(2)/2 distribution is an exponential distribution with
mean one and consider the empirical survival function for each n. In Figure 6 the
estimated log-variances are displayed (upper solid lines). As in Section 4 we choose
to truncate at n* = 10 since the variances with indices larger that n* are subject to
noise due to digitization effects.

Figure 6: Plot of the estimated log-variances of the stationary model (4.1; solid lines)
and the regression model (4.3; dotted lines) for the 2D central sections. Both the
estimated circular variances &, (top) and the spherical variances A, (bottom) are
plotted.

Using the linear relationship (6.2) it is possible to find approximate estimates of
the spherical variances \,. The estimates are only approximate because the sum
in (6.2) needs to be truncated. In Figure 6 the estimated spherical variances are
displayed where we have truncated at [ = 15 (lower solid lines). The similarity of
the decrease of the variances in Figure 5 and Figure 6 is worth noticing. Note that
the relation between the spherical variances and the circular variances is similar to
the relation between mean squares and variance components in ANOVA estimation
of variance components from balanced data, cf. e.g. Searle, Casella and McCulloch
(1992, Chapter 4). In particular Satterthwaite’s procedure (Satterthwaite, 1946) can
be applied to approximate the distribution of the spherical variance estimates by
x%(p)/p distributions, and thereby to determine confidence intervals for the spherical
variances.
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The linear relationship (6.2) also makes it possible to fit the (truncated) regres-
sion model (4.3). We fitted the model using maximum likelihood, and obtained the
maximum likelihood estimates (d, B,ﬁ) = (20.2,0.9,4.4). Figure 6 displays the circu-
lar and spherical log-variances under the fitted model (upper and lower dotted lines).
Carrying out a goodness of fit test of the regression model (4.3) under the model (4.1)
assuming stationarity we obtain a likelihood ratio testor equal to 3.7 on 6 degrees of
freedom. Under the x?(6) approximation of the testor the 'p-value’ is 0.72, and so
we again judge the model as being a reasonable way of describing the decrease of the
variances.

In order to validate the regression model a simulation study was carried out.
Figure 7 shows random samples from the regression model (4.3), where the maximum
likelihood estimates from the central sections was used for (o, 3,p). The random
samples show the same shape variability as that seen in the observed central sections
in Figure 2.

OO OO0O0QO00O0QO0
OQ0QDOOOO0OO

Figure 7: Random samples from the regression model (4.3) with the fitted parameters
from the ten central sections of neurons from the human hippocampus.

8 Discussion

In this paper we have analysed the spherical deformation model using two particular
types of observations from an object, namely continuous observations of the surface
or continuous observations of a central section. It should be emphasized that the
spherical deformation model can also be analysed using a finite number of random
or systematic observations of the surface. Suppose r; = r(6;,¢;), 1 = 1,...,n, is
a set of measurements of the radius-vector function of an object, and assume that
the vector (rq,...,r,) follows a multivariate normal distribution with mean y € R”
and n X n covariance matrix K. Under rotational symmetry (or stationarity) the
entries K;; = Cov(r;, ;) of the covariance matrix K should only depend on the angle
1 between the two vectors w(6;, ¢;) and w(f;, ;) on the unit sphere. Among the
many possible families of covariance functions which could be proposed, this paper
has mainly been concerned with the three-parameter regression model given by (4.2)
and (4.3).

In Joshi et al. (1997) a stochastic model for representing non-spherical objects is
introduced in order to describe the shape of the cortical and hippocampal surfaces of
macaque and human brains. First a cortical or hippocampal template M is estab-
lished. Second a complete orthonormal basis ¢,, n € N, of the template has to be
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determined. Joshi et al. (1997) suggest choosing the basis functions to correspond
to eigenfunctions associated with a differential operator L, derived from thin elas-
tic shell theory. Thus Ly, = n,¢,, n € N, where 7, is the eigenvalue associated
with the eigenfunction ¢,. A cortical or hippocampal surface is then determined by
{z +U(z) : x € M}, where the Gaussian random field {U(z) : z € M} is given by

Uz) = Zangon(x), e M.

Joshi et al. (1997) consider two models for the Gaussian random variables a,, n € N.
In both models the random variables are independent with zero means, but in the first
model the variances \, are chosen to be the inverse of the squared eigenvalues 1/, =
n? and in the second model the variances are estimated empirically from a sample
of surfaces. The relation to the spherical deformation model is obtained by letting
M = 5? and letting the operator L be the Laplacian operator with eigenfunctions
©vn, n € N, equal to the spherical harmonics. In the spherical deformation model
the independence assumption is reasonable on ground of rotational symmetry, but in
general the assumption seems rather arbitrary and should be justified.
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Appendix: Characterizing the centre of mass

Proposition Suppose K C R? is a star-shaped object with respect to z € K, and let
(0, ¢; 2) be the corresponding radius-vector function. If z is the centre of mass of K
then

2m ™
/ / r(6, 6: 2)*o™(0, §) singddd = 0, m = —1,0, 1. (A1)
o Jo
Conversely, z is the centre of mass if (A.1) is fulfilled.
Proof. Let F : [0,27] x [0,7] x [0,1] — R® be defined by
F(0,¢,v) =z +vr(0, ¢;2)w (b, ¢)

Then F'is onto K and elementary calculations show that the absolute value of the
Jacobian determinant is v?r (6, ¢; 2)®sing. Now if z = (z1,79,23) = F(v,0,¢) € K
then

K — 21 = 1)7"(0, (b, Z) COSQ singb = ’1)7'(0, ¢7 2)901_1(97 ¢)7

and by applying the transformation theorem we obtain

/ (.’L’1 — Zl)d$1d$2d$3 =
K

2 ™ 1
/ / / vr(0, ¢; 2) e, 10, d)v*r (0, ¢; 2)® singdvdedd, (A.2)
o Jo Jo

which is zero if z is the centre of mass. The two remaining equations in (A.1) are
obtained by replacing (1 —z1) in (A.2) by (22 — 22) and (x3 — z3), and making similar
calculations. O

By making a first-order Taylor expansion we get

r(0,9)* ~ T + 471 (6, ¢),

and it follows from the proposition that aT* ~ 0, m = —1,0, 1 if z is close to the centre
of mass. The Taylor expansion is adequate when the objects are small deformations
of a sphere.
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