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Abstract

The Probabilistic Satis�ability problem (PSAT) can be considered as a probabilistic
counterpart of the classical SAT problem. In a PSAT instance, each clause in a CNF
formula is assigned a probability of being true; the problem consists in checking the
consistency of the assigned probabilities. Actually, PSAT turns out to be computation-
ally much harder than SAT, e.g. it remains di�cult for some classes of formulas where
SAT can be solved in polynomial time. A column generation approach has been pro-
posed in the literature, where the pricing sub-problem reduces to a Weighted Max-SAT
problem on the original formula.

Here we consider some easy cases of PSAT, where it is possible to give a compact
representation of the set of consistent probability assignments. We follow two di�erent
approaches, based on two di�erent representations of CNF formulas.

First we consider a representation based on directed hypergraphs. By extending a
well-known integer programming formulation of the Max-SAT problem, we solve the
case in which the hypergraph does not contain cycles.

Then we consider the co-occurrence graph associated with a formula. We provide
a solution method for the case in which the co-occurrence graph is a partial 2-tree.
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1 Introduction

Two of the main problems in arti�cial intelligence, logic and computational complexity are
the satis�ability problem (SAT) and the probabilistic satis�ability problem (PSAT). These
two problems can be formulated as follows:

� Satis�ability problem - SAT:

Suppose we have a collection C = fC1; C2; : : : ; Cmg of m clauses on n proposi-
tional variables X = fx1; x2; : : : ; xng. Determine whether or not there exists a
truth assignment for the n propositional variables in X such that all m clauses
in C are simultaneously satis�ed.

� Probabilistic satis�ability problem - PSAT:

Suppose we have a collection C = fC1; C2; : : : ; Cmg of m clauses on n proposi-
tional variables X = fx1; x2; : : : ; xng. Assign probabilities �1; �2; : : : ; �m to the
m clauses in C. Determine whether or not this assignment of probabilities to the
clauses is consistent.

Notice that PSAT is a generalization of SAT. We obtain SAT from PSAT by assigning
the probabilities (�1; �2; : : : ; �m) = (1; 1; : : : ; 1) to the m clauses. It is well known that SAT
is an NP-complete problem [8]. It immediately follows that also PSAT is NP-complete.

Probabilistic satis�ability is far from a new problem. In fact it dates back to George
Boole [12] in the nineteenth century. These days the problem is formulated in terms of a
linear programming model [12, 18], which were not known by George Boole at the time;
nonetheless, he was almost able to formulate it in today's terms. The problem continues
to be just as relevant as ever. It is well known that SAT has a wide range of applications.
One example is checking the consistency of clauses in expert system knowledge bases. To
the best of our knowledge there has been no direct application of PSAT as such, but one
possible application might be checking the consistency of probabilities assigned to clauses in
knowledge bases. It may very well be that one does not know that a particular clause is true
with certainty but one is able to assign a probability that the clause is true. In this context,
a signi�cant tractable fragment of PSAT may be useful for supporting speci�c applications,
in analogy with what happens for Horn clauses in traditional knowledge bases.

Since its introduction, PSAT has been considered to be computationally hard [18]; solu-
tion methods for PSAT still require substantial improvements, comparable to those obtained
for SAT in the last few years. As SAT is a special case of PSAT one may hope that the
methods to solve SAT can be modi�ed to take care of the generalized problem PSAT. This,
however, is certainly not the case: SAT is by nature a purely combinatorial problem, whereas
PSAT is an inherently continuous problem. Therefore PSAT cannot take advantage of most
of the techniques developed for SAT. The solution methods for PSAT proposed in the liter-
ature are primarily based on column generation schemes [13, 14, 16]. In this context, it has
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been shown that the pricing problem can be reduced to an instance of weighted Max-SAT.
This implies that PSAT can be solved in polynomial time (via the ellipsoid method) for those
classes of formulas where weighted Max-SAT can be solved in polynomial time. It follows
that every advance in the research on Max-SAT has a direct impact on the solution of PSAT
problems. However, it is not likely that computational methods for Max-SAT (which is a
purely combinatorial problem, as SAT is) may be adapted to the solution of PSAT.

Nevertheless, the research on PSAT can utilize several tools that have been originally
developed within, or succesfully applied to, the research on satis�ability problems and related
areas. In fact, the techniques we develop in this paper are based on several such tools.

For example, directed hypergraphs have been widely applied, both as a modelling and
an algorithmic tool, to many classes of satis�ability problems. Besides the general SAT
problem, these applications include (but are not limited to): polynomially solvable cases
and variants [19]; the Max-SAT problem for Horn formulas [10]; Horn formulas with uncer-
tainty [4]; solvable fragments of �rst order logic [20].

Furthermore, balanced matrices have been used [6] to de�ne a class of formulas where
several logical problems, including SAT and Max-SAT, can be solved by linear programming.

Finally, co-occurence graphs are commonly adopted for representing logical formulas as
well as pseudo{Boolean functions [7]. Based on co-occurrence partial k-trees, classes of
polynomially solvable instances have been de�ned, e.g. for Max-SAT and PSAT [11] and for
pseudo-Boolean programming [7].

The outline of the paper is as follows. In Section 2 we introduce our notation. In Section
3 we consider the case where the clauses are represented by a directed hypergraph. If the
hypergraph does not contain any cycles, we solve the PSAT problem by extending a well-
known integer programming formulation of the Max-SAT problem. In Section 4 we consider
the co-occurrence graph associated with a set of clauses. In the particular case where the
co-occurrence graph is a partial 2-tree we provide a solution method for PSAT. The method
is based on a reduction scheme for the partial 2-tree. Section 5 contains the conclusions.

2 The Probabilistic Satis�ability Problem

Let X be a set of propositional variables, or propositions; a positive literal is a variable x 2 X ,
and a negative literal is a negated variable :x, x 2 X . A clause is a disjunction of literals;
we assume that a clause contains at least one literal, and does not contain both literals x
and :x. A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses, and is
denoted by the pair � = (X ; C), where C is a set of clauses.

We write x 2 C if clause C contains literal x; X (C) denotes the set of variables that
appear in C, either as positive or negative literals. The length of a clause is the number of
literals it contains; a unit (binary) clause has length one (two). We say that � is a kSAT
formula if the length of its clauses is at most k. We denote by L the length of �, that is the
sum of the lengths of the clauses.

Given a formula � = (X ; C), where X = fx1; : : : ; xng and C = fC1; : : : ; Cmg the clause-
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variable incidence matrix A of � is an m� n f0;�1g matrix in which:

Aij =

8><
>:
�1 if :xj appears in Ci

+1 if xj appears in Ci

0 otherwise.

Denote by n(E) the vector that gives the number of �1 in each row of an m � n f0;�1g
matrix E, and denote by 1 the vector of dimension m with entries +1. It is well known
that the maximum satis�ability problem (Max-SAT) can be formulated as an Integer Linear
Programming (ILP) problem as follows:

(P ) =

8><
>:

min1�
A�+ � � 1� n(A)
� 2 f0; 1gn; � 2 f0; 1gm

The intuition behind problem (P ) is that variable xi is set to true (false) if �i = 1 (�i = 0),
and �i = 1 if clause Ci is not satis�ed. Note that the satis�ability problem (SAT) corresponds
to �nding a solution of (P ) with � = 0.

A truth assignment or, equivalently, a possible world, is an assignment of values ftrue,falseg
to the variables in X . If jX j = n we denote by Wn the set of possible worlds. Notice that
the number of possible worlds is N = 2n.

For a given truth assignment (possible world) the truth value of a clause C is 1 if C is
satis�ed by the truth assignment, and 0 otherwise.

A vector y 2 f0; 1gm is a (feasible) truth vector for � if, for at least one possible world, yi
is the truth value of clause Ci for 1 � i � m. We denote by Y = fy1; y2; : : : ; yNg the set of
N truth vectors corresponding to the set of possible worlds Wn (some of the truth vectors
might be identical). Denote by M the m�N matrix with columns fy1; y2; : : : ; yNg.

A probability assignment to the possible worlds Wn is a non-negative N -vector p which
contains the probabilities of the possible worlds. The sum of the entries in p is equal to 1.
Note that p gives a convex combination of the vertices of the unit hypercube in IRn, i.e. it
de�nes a vector r(p) in the hypercube. In particular, r(p)i gives the probability that variable
xi is true under the probability assignment p.

Let p be a particular probability assignment to the possible worlds Wn. Then the prob-
ability �i of a clause Ci is the sum of the probabilities of the possible worlds in which the
clause is true.

We denote by � � IRm the polyhedron containing the feasible probability assignments �
to clauses in �. Clearly � = conv(Y ) = f� 2 Rm :Mp = �; 1p = 1; p � 0g.

Suppose that � 2 [0; 1]m is an assignment of probabilities to the clauses in �. The
probabilistic satis�ability problem (PSAT) is to determine if � 2 �. If this is the case we
say that the assignment of probabilities � to the clauses in C is consistent, i.e. there exists a
probability assignment p to the possible worlds Wn such that the probability of clauses Ci

is equal to �i, for 1 � i � m.
Now let � = (X ; C) be a CNF formula. Assume we consistently assign a probability

vector � to the formulas in C. Then we might ask the following question:

What is the minimum (maximum) probability we can assign to a propositional
variable x 2 X , given that the clauses in C have the probabilities �?
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This question can be answered by mimimizing (maximizing) a linear programming prob-
lem [3]. The minimum probability we can assign to xi 2 X is found by solving the problem:

min a � p
s.t.

Mp = �

1p = 1
p � 0

(1)

where a is an N -vector with the j'th entry equal to 1 if propositional variable xi is true in
the j'th possible world and 0 otherwise. In practice, problem (1) asks to �nd the assignment
p that yields the maximum value r(p)i.

In the same way, we can �nd the minimum (maximum) probability that we can (consis-
tently) assign to a particular clause Ci 2 C, given that the probabilities of the other clauses
in C are �xed to the values given by �. For example, suppose we want to �nd the minimum
probability for clause C1 while keeping the probabilities of clauses C2; C3; : : : ; Cm equal to
the values �2; �3; : : : ; �m. Let m1 be the �rst row in M . We minimize the linear function
m1 �p subject to all the constraints in (1) except the �rst one (which has become the objective
function instead). This is usually referred to as the entailment problem [18].

3 Directed Hypergraphs

A (directed) hypergraph H is a pair (V; E), where V is the set of nodes and E is the set
of (directed) hyperarcs; a hyperarc is a pair e = (T (e);H(e)), where T (e) � V is the tail
of e, and H(e) � V n T (e) is its head. Only the basic de�nitions used in the paper are
reported here; the interested reader is referred to the paper by Gallo et al. [9] for a detailed
introduction to directed hypergraphs.

We write u 2 e if hyperarc e contains node u, i.e. u 2 T (u) [ H(e). We denote the
cardinality of hyperarc e by:

jej = jT (e)j+ jH(e)j;

we assume that jej � 1, i.e. either T (e) or H(e) may be empty, but not both. We de�ne the
size of H as the sum of the cardinalities of its hyperarcs:

size(H) =
X
e2E

jej:

Given a hypergraph H = (V; E), where V = fv1; : : : ; vng and E = fe1; : : : ; emg the
(hyperarc-node) incidence matrix I(H) of H is an m� n f0;�1g matrix where:

Iij =

8><
>:
�1 if vj 2 T (ei);
+1 if vj 2 H(ei);
0 otherwise.

An undirected path (or, simply, a path) Pst, of length q, in the hypergraph H = (V; E) is a
sequence:

Pst = (v1 = s; e1; v2; e2; : : : ; vq+1 = t)
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where, for 1 � i � q, ei 2 E, vi 2 ei and vi+1 2 ei. Nodes t and s are connected by Pst.
A path Pst is a cycle if s = t. A hypergraph is acyclic if it does not contain any cycle; an
acyclic hypergraph is a hypertree if each pair of nodes is connected by a path. Note that
jVj < jEj in a hypertree.

A cycle is simple if the following conditions hold:

1. the nodes fv1; v2; : : : ; vq+1g are distinct, except for v1 = vq+1;

2. the hyperarcs fe1; e2; : : : ; eqg are distinct;

3. vi 2 ej ) i 2 fj; j + 1g.

The last condition means that a hyperarc ej does not contain any node in the cycle except
vj and vj+1. A hyperarc ej is called a bridge if either vj; vj+1 2 T (ej) or vj; vj+1 2 H(ej). A
simple cycle is odd if the total number of bridges is odd.

Hypergraphs provide a simple way of representing CNF formulas. Given a formula � =
(X ; C), we associate a node uj with each variable xj 2 X . For each clause Ci 2 C, we de�ne
a hyperarc ei whose tail and head contain the nodes associated with negative and positive
literals in Ci respectively. In other words, uj 2 H(ei) if xj 2 Ci, and uj 2 T (ei) if :xj 2 Ci.
The hypergraph H� = (V�; E�) representing � is de�ned as follows:

- V� = f ui : xi 2 X g;

- E� = f ei : Ci 2 C g.

Note that the incidence matrix I(H�) is in fact the clause-variable incidence matrix A of
formula �. Remark that a di�erent representation is often used in the literature, see e.g. [9,
19].

3.1 Balanced Matrices and Hypergraphs

Let us brie
y recall some basic results about balanced matrices (see e.g. [21, 6]). We say that
a f0;�1g matrix is a cycle matrix if it contains exactly two non-zeroes in each row and in
each column. Clearly, in a cycle matrix the sum of the non-zeroes modulo four is either zero
or two. A matrix is balanced if, in each cycle sub-matrix, the sum of the non-zeroes modulo
four is zero. Given a balanced m� n matrix B, de�ne the polyhedron:

Q(B) = fx 2 IRn : Bx � 1 � n(B); 0 � x � 1g:

Recall that a non-empty polyhedron is integral if all its vertices are integral. The following
result holds true:

Theorem 3.1 ([6] Th. 2.4) The polytope Q(B) is integral.

We say that a hypergraph H is balanced if its incidence matrix I(H) is balanced. In the
following, we give a characterization of balanced hypergraphs in terms of simple cycles.

Theorem 3.2 There is a one-to-one correspondence between simple cycles in H and cycle
submatrices of I(H).
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Proof: ()) Given a simple cycle (v1 = s; e1; v2; e2; : : : ; vq+1 = s) in H, consider the square
submatrix of I(H) whose rows and columns correspond to hyperarcs e1; e2; : : : ; eq and nodes
v1; v2; : : : ; vq respectively; since the cycle is simple, each row and column contains exactly
two non-zeroes.
(() consider a cycle submatrix C of I(H); assume w.l.o.g. that the rows of C correspond
to hyperarcs e1; e2; : : : ; eq in this order, and that the columns of C correspond to nodes
v1; v2; : : : ; vq in this order, moreover:

- row i, 1 � i < q, contains the non-zero entries Cii and Cij, j = i+ 1;

- row q contains the non-zero entries C1q and Cqq.

It is easy to see that (v1; e1; v2; e2; : : : ; vq+1 = v1) is a simple cycle in H. 2

Theorem 3.3 A hypergraph H is balanced if and only if it does not contain odd simple
cycles.

Proof: It follows from Theorem 3.2, observing that in a cycle sub-matrix of I(H) the sum of
the non-zeroes modulo four is two if and only if the corresponding simple cycle is odd. 2

It follows immediately from Theorem 3.3 that every hypertree is balanced. In the follow-
ing, we de�ne a particular class of balanced hypergraphs, obtained by suitably extending hy-
pertrees. Given a hypergraph H = (V; E), we obtain the extended hypergraphHE = (VE; EE)
as follows. For each hyperarc e 2 E we add a new node u(e). Then, for each node u 2 T (e)
we add a hyperarc:

eT (u) =
�
;; fu; u(e)g

�
;

while for each node u 2 H(e) we add a hyperarc:

eH(u) =
�
fug; fu(e)g

�
:

Finally, we add node u(e) to the tail of e, obtaining a new hyperarc

eE =
�
T (e) [ fe(u)g;H(e)

�
:

Note that for each hyperarc e 2 E there are jej+ 1 hyperarcs in EE; an example is given in
�gure 1. In formal terms, we have:

VE = V [ fu(e) : e 2 Eg;

EE = feE : e 2 Eg [ feT (u) : e 2 E; u 2 T (e)g [ feH(u) : e 2 E; u 2 H(e)g.

Theorem 3.4 The extended hypergraph HE obtained from a hypertree H is balanced.

Proof: In light of Theorem 3.3, we shall show that HE does not contain odd simple cycles.
Let C be a cycle in HE. Since H is acyclic, all the nodes in C must belong to the same
hyperarc eE 2 EE , moreover, C must contain hyperarc eE (see �gure 1). Therefore, in order
to be simple, C must contain at most two nodes, and consequently it has one of the following
forms:

C =
�
u(e); eE; u; eT(u); u(e)

�
u 2 T (a)

C =
�
u(e); eE; u; eH(u); u(e)

�
u 2 H(a)

In both cases, C is not odd, and the theorem follows. 2
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Figure 1: Hyperarcs in EE

3.2 A PSAT Formulation for Hypertrees

We consider formulas represented by hypertrees, and we propose a formulation that reduces
the PSAT problem to the solution of a set of linear inequalities. Our approach is similar to
the one proposed in [1, 2], i.e. we give a description of the polyhedron � � IRm containing the
feasible probability assignments. However, in our formulation we obtain � as the projection
onto IRm of a polyedron in IRm+n. In this way we obtain a compact representation of �,
where the number of variables and constraints is linear in n.

Consider a formula � = (X ; C), where X = fx1; : : : ; xng and C = fC1; : : : ; Cmg. We
introduce two vectors of binary variables, x 2 f0; 1gn, and y 2 f0; 1gm. The x vector
represents a truth assignment for the propositional variables, i.e. xj 2 X is set to true
(false) if xj = 1 (xj = 0). Moreover, y represents a truth vector, i.e. yi = 1 if clause Ci is
satis�ed, and yi = 0 otherwise. The variables x and y are related by means of the following
sets of constraints:

i) Ax � y � n(A)
ii) yi � xj 8Ci 2 C; xj 2 Ci;
iii) yi � (1� xj) 8Ci 2 C; :xj 2 Ci;

(2)

where A is the clause-variable incidence matrix of �. Constraints (2.i) mean that if yi = 1
then clause Ci must be satis�ed by the truth assignment given by x. Indeed, by setting
� = x and � = 1 � y we obtain the constraints of the ILP formulation (P ) of Max-SAT.
Constraints (2.ii) and (2.iii) mean that if yi = 0 then clause Ci must not be satis�ed, hence
it must be xj = 0 for each positive literal xj 2 Ci, and xj = 1 for each negative literal
:xj 2 Ci. Note that the constraints (2) can be rewritten as follows:

i) Ax� y � 1� (n(A) + 1)
ii) �xj + yi � 0 8Ci 2 C; xj 2 Ci;
iii) xj + yi � 1 8Ci 2 C; :xj 2 Ci;

(3)
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it is easy to see that constraints (3) can be written as:

B[x; y] � 1� n(B) (4)

where B is an (m+ L)� (n+m) f0;�1g matrix.
As discussed above, A is the incidence matrix of the hypergraph H� representing the

formula �: row i represents the hyperarc ei associated with clause Ci 2 C, and column
j represents node uj. In fact, B is the incidence matrix of the expanded hypergraph HE

�

obtained from H�. To see why this is true, assume that each variable yi represents the node
u(ei) added to the tail of ei in HE

� . Then the (row of B corresponding to) constraint (3.i) for
clause Ci represents the hyperarc eEi 2 E

E. Moreover, for each positive literal xj in clause Ci,
the constraint (3.ii) represents the hyperarc eHi (uj) 2 E

E . Finally, for each negative literal
:xj in clause Ci, the constraint (3.iii) represents the hyperarc eTi (uj) 2 E

E .
In light of the above observations and of Theorem 3.4, we can state the following:

Lemma 3.1 If formula � is represented by a hypertree, the matrix B in constraints (4) is
balanced.

Denote by S the set of vectors [x; y] 2 f0; 1gn+m satisfying the constraints (2):

S =
n
[x; y] 2 f0; 1gn+m : B[x; y] � 1� n(B)

o
:

Let us de�ne the projection of S onto the y variables space:

Sy =
n
y 2 f0; 1gm : 9x 2 f0; 1gn; [x; y] 2 S

o
:

Clearly, Sy is the set of feasible truth vectors for �, i.e. Y = Sy. Note also that conv(Sy) is
the projection onto the y space of conv(S):

� = conv(Sy) = conv(S)y =
n
y 2 [0; 1]m : 9x 2 [0; 1]n; [x; y] 2 conv(S)

o

Consider now the solutions of the linear relaxation of constraints (2), i.e. the set S of vectors
[x; y] 2 [0; 1]n+m satisfying (2):

S =
n
[x; y] 2 [0; 1]n+m : B[x; y]� 1� n(B)

o
:

De�ne the projection of S onto the y variable space, i.e. the polyhedron:

Sy =
n
y 2 [0; 1]m : 9x 2 [0; 1]n; [x; y] 2 S

o

It is well known that conv(S) � S, and therefore conv(S)y � Sy, but conv(S)y 6= Sy in
general. However, if the polyhedron S is integral, we have conv(S) = S and � = conv(S)y =
Sy. This is the case, in particular, if the matrix B is balanced. In light of Lemma 3.1, we
can state the following theorem:

Theorem 3.5 Given a formula � represented by a hypertree, a vector y 2 [0; 1]m is a feasible
probability assignment if and only if there exists an x 2 [0; 1]n such that [x; y] 2 S.
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In order to check whether a given vector � 2 [0; 1]m is a feasible probability assignment,
we must �nd a feasible solution x 2 IRn for the system B[x; �y] � 1� n(B), where �y = �. In
practice, x must satisfy the following system of inequalities:8><

>:
Ax � �y � n(A)
�xj � ��yi 8Ci 2 C; xj 2 Ci;
xj � (1 � �yi) 8Ci 2 C; :xj 2 Ci;

(5)

It is not di�cult to see that (5) can be reduced to a system of at most 2n + m < 3n
inequalities:(

Ax � �y � n(A)
l � x � u

(6)

where :
lj = maxf0; max

:xj2Ci

(1� �yi)g; uj = minf1; min
xj2Ci

�yig:

Moreover, we can �nd the maximum (minimum) probability for a proposition xj by solving
an LP problem where the feasible region is de�ned by (6), and xj is the objective function
to be maximized (minimized).

Consider now the problem of �nding the maximum (minimum) probability of a clause
Ci. Since we have to maximize or minimize the value of yi, the inequalities (2) involving
yi cannot be rewritten as in (5). In practice, we have to add these constraints to a system
(6) obtained from the inequalities (2) not involving yi. Since yi appears in at most n + 1
inequalities, we obtain an LP problem with n+ 1 variables and at most 4n constraints.

Result 1: for a CNF formula � = (X ; C) represented by a hypertree, with jX j = n:

� the PSAT problem can be reduced to solving a system of at most 3n inequalities in n
variables;

� the maximum (minimum) probability for a propositional variable can be obtained by
solving an LP problem with n variables and at most 3n constraints;

� the maximum (minimum) probability for a clause can be obtained by solving an LP
problem with n+ 1 variables and at most 4n constraints.

4 Partial 2-trees

In this section, we consider a representation of CNF formulas based on co-occurrence graphs.
In particular, we investigate the case where the graph representing a formula � is a partial
2-tree. We reduce PSAT to the solution of a system of equations (in non-negative variables)
whose size is linear in the number of variables of �. The de�nitions and properties concerning
partial 2-trees given below, are taken from the tutorial paper by Bodlaender [5], where the
reader can �nd a more detailed survey of several related topics.
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4.1 Partial 2-trees and co-occurrence graphs

An undirected graph G = (N;A) is a partial 2-tree if and only if it can be reduced to an
empty graph by means of the following graph reduction operations:

series operation series(i; k; j): given three nodes i; j such that (i; k) 2 A, (k; j) 2 A, and
k has degree two, delete arcs (i; k); (k; j) and node k; if (i; j) 62 A, add (i; j) to A;

tail operation tail(i; j): given two nodes i; j such that (i; j) 2 A and j has degree one,
delete arc (i; j) and node j;

node operation node(i): delete the isolated node i.

>From now on, we assume that G is connected. Let jN j = n and jAj = m. Since each
series and tail operation deletes exactly one node, and returns a connected graph, a reduction
sequence R = fr1; r2; : : : ; rn�1g of exactly (n � 1) series and tail operations reduces G to a
single node. Note that rn�1 is a tail operation, therefore we have at most (n � 2) series
operations in R. As a consequence, it is m � mD � 2n � 3, where mD is the total number
of arcs deleted by reduction operations.

In �gure 2 we show a partial 2-tree (actually a 2-tree) and the graphs obtained by the
reduction sequence:

R =
n
series(u; y; v); series(u;w; v); tail(u; v)

o
:

series

u

y w

tail

v

u

w

v v

u u

(  ,  ,  )u y v (  ,  ,  )u v (  ,  )u v
(d)(c)(a) (b)

series w

Figure 2: Reduction of a partial 2-tree.

Observe that no reduction operation can be applied to a complete graph of four nodes (K4);
thus if G contains K4 as a subgraph, then it is not a partial 2-tree. In fact, G is a partial
2-tree if and only if it does not contain K4 as a minor ([5] Th. 17(ii)).

Given a CNF formula � = (X ; C), the corresponding co-occurrence graph G� = (N�; A�)
contains one node for each variable x 2 X , and one arc (x; x0) for each pair of variables that
appear (either as positive or negative literals) in the same clause. In formal terms:
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- N� = X ;

- A� =
n
(x; x0) : 9C 2 C : fx; x0g � X (C)

o
.

Observe that G� does not provide a complete representation of �, indeed positive and nega-
tive literals are not distinguished. Moreover, unit clauses are not represented at all. In fact,
the same co-ocurrence graph can represent several di�erent formulas. As an example, the
partial 2-tree in �gure 2 represents the 2SAT formula:

� =
n
(u _ y) ^ (:u _ w) ^ (u _ :v) ^ (w _ v) ^ (:y _ v) ^ (y)

o

as well as the 3SAT formula:

�0 =
n
(y _ :u _ v) ^ (:w _ u _ :v)

o
:

A clause of length four induces a complete subgraph K4 in G�. Therefore the co-
occurrence graph of � is a partial 2-tree only if the maximum clause length is three. In
the following, we denote by 2T-SAT the class of formulas represented by a co-occurrence
partial 2-tree.

4.2 A PSAT Formulation for 2T-SAT

Let V � X a set of propositions, and W a set containing exactly one literal, either x or :x,
for each x 2 V . Let jV j = jW j = k. The set W represents a partial truth assignment on the
propositions V , where for each x 2 V :

x =

(
true if x 2 W

false if :x 2 W:

In practice,W represents the 2n�k possible worlds where the truth values of the variables in
V are �xed as above. For a generic W , the probability variable pW denotes the sum of the
probability values assigned to the possible worlds represented by W . In other words, pW is
the probability that the variables in V are assigned truth values as speci�ed by W . Note
that there are 2k possible truth assignments for V ; the corresponding set of 2k probability
variables will be denoted by fpV g.

It must be remarked that pW is not a probability assignment for a clause, however, we
can write the probability assignment for a clause in terms of probability variables. Consider
the case where V = fu; vg; we have 2k = 4 possible partial truth assignments, represented
by the sets fu; vg, f:u; vg, fu;:vg and f:u;:vg. Accordingly, the set fpuvg contains four
probability variables, denoted as:

puv; p�uv; pu�v; p�u�v

where, for x 2 X , �x denotes :x. The probability assignment ��uv for clause C = (:u _ v) is
the total probability value assigned to possible worlds where C is true, and is given by:

��uv = puv + p�uv + p�u�v = 1� pu�v :

11



In general, the probability assignment of a clause C can be written as

�C = 1� pC ; (7)

where pC 2 fpX (C)g, and C denotes the unique truth assignment to variables in X (C) that
falsi�es C.

In principle, the number of partial truth assignments W is very large, namely O(3n).
However, the underlying idea of our solution method for 2T-SAT is that only a small number
of probability variables pW need being introduced. Some of these variables are associated
with nodes and arcs of the graph G�; the probability assignment of each clause can be written
in terms of these variables, according to (7). Further variables and equations are introduced
in order to relate probability variables to each other. This is done according to a reduction
sequence for G�: the probability variables associated with deleted nodes and arcs are related
to variables associated with elements remaining in the graph. Our approach is described in
the following example.

We have the following set of clauses:

� =
n
(u _ y) ^ (:u _ w) ^ (u _ :v) ^ (w _ v) ^ (:y _ v) ^ (y)

o
represented by the co-occurrence graph G� shown in �gure 2. Assume that the reduction
sequence R for G� is given by R = fseries(u; y; v); series(u;w; v); tail(u; v)g. First of all we
need equations expressing the probability �C of each of the six clauses C 2 � in terms of the
probability variables p �C . The equations are:

�yu = 1� p�y�u
�w�u = 1� p �wu

��vu = 1� pv�u
�wv = 1� p �w�v

��yv = 1� py�v
�y = 1� p�y

Next we need to express the fact that the probability px of a propositional variable x 2
fy;w; v; ug plus the probability of its negation p�x must be equal to one. This gives rise to
the set of four equations:

py + p�y = 1
pw + p �w = 1
pv + p�v = 1
pu + p�u = 1

The �ve arcs in G� give rise to a set of equations. Let (x; x0) be an arc in G�. We need
to express the fact that the sum of the probabilities of the four possible combinations of
propositions x and x0 sum to one. We therefore get the equations:

pyu + p�yu + py�u + p�y�u = 1
pvu + p�vu + pv�u + p�v�u = 1
pwu + p �wu + pw�u + p �w�u = 1
pyv + p�yv + py�v + p�y�v = 1
pwv + p �wv + pw�v + p �w�v = 1

12



series(u; y; v)

For the series operation (u; y; v), it is necessary to relate probability variables for arcs
(y; u); (y; v) and (v; u) to each other. To this aim we introduce the probability variables
fpyvug, whose probability must sum to one:

pyvu + pyv�u + p�yvu + p�yv�u + py�vu + py�v�u + p�y�vu + p�y�v�u = 1

pyv = pyvu + pyv�u
p�yv = p�yvu + p�yv�u
py�v = py�vu + py�v�u
p�y�v = p�y�vu + p�y�v�u
pyu = pyvu + py�vu
p�yu = p�yvu + p�y�vu
py�u = pyv�u + py�v�u
p�y�u = p�yv�u + p�y�v�u
pvu = pyvu + p�yvu
p�vu = py�vu + p�y�vu
pv�u = pyv�u + p�yv�u
p�v�u = py�v�u + p�y�v�u

The fact that the proposition y disappears under the series operation gives rise to the
following two equations:

py = pyvu + py�vu + pyv�u + py�v�u
p�y = p�yvu + p�y�vu + p�yv�u + p�y�v�u

series(u;w; v)

We get a set of constraints similar to the ones obtained for operation series(u; y; v).

pwvu + pwv�u + p �wvu + p �wv�u + pw�vu + pw�v�u + p �w�vu + p �w�v�u = 1

pwv = pwvu + pwv�u
p �wv = p �wvu + p �wv�u

pw�v = pw�vu + pw�v�u
p �w�v = p �w�vu + p �w�v�u

pwu = pwvu + pw�vu
p �wu = p �wvu + p �w�vu

pw�u = pwv�u + pw�v�u
p �w�u = p �wv�u + p �w�v�u

pvu = pwvu + p �wvu

p�vu = pw�vu + p �w�vu

pv�u = pwv�u + p �wv�u

p�v�u = pw�v�u + p �w�v�u
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pw = pwvu + pw�vu + pwv�u + pw�v�u
p �w = p �wvu + p �w�vu + p �wv�u + p �w�v�u

tail(u; v)

In this case we just need to relate the probabilities of propositions u and v to the prob-
ability variable for arc (u; v) to each other in this way:

pu = pvu + p�vu
p�u = pv�u + p�v�u
pv = pvu + pv�u
p�v = p�vu + p�v�u

All together we have introduced 44 probability variables and 49 equations; some of them
are, however, redundant. Consider for example the equations stating that the sum of the
variables in a set fpV g is one: the four ones for V = fxg, x 2 fy;w; v; ug, as well as the two
ones for V = fy; v; ug and V = fw; v; ug, are implied by the remaining equations. Moreover,
some of the variables may be rewritten in terms of other variables.

What follows is a formal description of our method for the case where the clause length
is at most two; the extension to 3-SAT is given later. Given a 2T-SAT formula � = (X ; C),
represented by the co-occurence graph G�, let R be a reduction sequence for G�. We de�ne
the set P (�;R) of non-negative probability variables containing:

� for each node u 2 G�, two variables pu and p�u;

� for each arc (u; v) 2 G�, and for each arc (u; v) 62 G� added by a series operation, the
set fpuvg, i.e. four variables puv , p�uv, pu�v and p�u�v;

� for each series reduction series(u; z; v), the set fpuvzg, i.e. eight variables puvz , puv�z ,
p�uvz, p�uv�z, pu�vz, pu�v�z, p�u�vz and p�u�v�z.

Recall that R contains at most (n � 2) series operations, and that mD � 2n � 3. Thus the
total number of variables is at most 2n+ 4(2n � 3) + 8(n � 2) = (18n � 28). We de�ne the
following sets of equality constraints:

i) for each clause C 2 C, the corresponding equation (7);

ii) for each node u 2 G�, an equation

pu + p�u = 1;

for each arc (u; v) 2 G�, and for each arc (u; v) 62 G� added by a series operation, an
equation:

puv + p�uv + pu�v + p�u�v = 1;

for each series reduction series(u; z; v), an equation:

puvz + puv�z + p�uvz + p�uv�z + pu�vz + pu�v�z + p�u�vz + p�u�v�z = 1;
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iii) for each tail reduction tail(u; v), two pairs of equations:

a) pu = puv + pu�v; p�u = p�uv + p�u�v;
b) pv = puv + p�uv; p�v = pu�v + p�u�v;

iv) for each series reduction series(u; z; v), three sets of four equations:

a) puv = puvz + puv�z ; p�uv = p�uvz + p�uv�z ; pu�v = pu�vz + pu�v�z; p�u�v = p�u�vz + p�u�v�z;
b) puz = puvz + pu�vz; p�uz = p�uvz + p�u�vz; pu�z = puv�z + pu�v�z; p�u�z = p�uv�z + p�u�v�z;
c) pvz = puvz + p�uvz; p�vz = pu�vz + p�u�vz; pv�z = puv�z + p�uv�z; p�u�z = pu�v�z + p�u�v�z;

and a set of two equations:

d) pz = puvz + p�uvz + pu�vz + p�u�vz; p�z = puv�z + p�uv�z + pu�v�z + p�u�v�z:

Constraints (i) express probability assignments in term of probability variables, while con-
straints (ii) require that probabilities sum up to one. The constraints (iii) and (iv) are related
to reduction operations. For a tail reduction tail(u; v), constraints (iii) relate the variables
for node v and arc (u; v) to variables for node u. For a series reduction series(u; z; v), con-
straints (iv) relate the variables for node z and arcs (u; z), (v; z) to variables for arc (u; v).
Observe that these relations are written in terms of the probability variables fpuvzg.

It is not di�cult to see that for each arc (node) of G� we have at most four di�erent binary
clauses (two unit clauses respectively). Thus we have at most 4(2n � 3) + 2n = (10n � 12)
constraints (i), and at most n+(2n� 3) + (n� 2) = (4n� 5) constraints (ii). Moreover, the
number of constraints (iii) and (iv) is at most 4 + 14(n � 2) = (14n� 24). Overall, we have
at most (28n � 41) constraints.

As shown by the previous example, some of the variables and constraints we introduced
are redundant, and might be eliminated. However, we believe that a certain degree of
redundancy could make the presentation more compact and clear.

Extension to 3SAT formulas We can easily extend our method to 2T-SAT formulas
containing clauses of length three. In practice, it su�ces to add a constraint (i), i.e. an
equation (7), for each such clause C. Indeed, we can show that it is not necessary to add
new probability variables in this case.

Consider a clause C with X (C) = fu; v; zg; this clause induces a clique of cardinality
three in G�. Clearly, we need at least one series operation to reduce the clique. In particular,
any reduction sequence R contains a series operation series(x1; x2; x3), where fx1; x2; x3g =
fu; z; vg. It follows that the probability variables fpuvzg belong to P (�;R). Recall that
constraint (i) for clause C is �C = 1� pC , and pC 2 fpuvzg.

Since we have at most (n� 2) series operations, and we can build eight di�erent clauses
with variables fu; v; zg, a 2T-SAT formula contains at most (8n�16) clauses of length three.
In conclusion, for a general 2T-SAT instance we generate at most (36n � 57) constraints.

We denote by S(�;R) the linear system of equations (i){(iv) on the non-negative variables
P (�;R). Next we show that solving S(�;R) is equivalent to solving PSAT.

15



De�nition 4.1 Given a solution of the system S(�;R), we say that a probability assignment
to possible worlds in Wn is consistent with the probability variable pW 2 P (�;R) if the value
of pW gives the sum of the probabilities assigned to the possible worlds represented by W .

Theorem 4.1 For every solution of the linear system S(�;R), there exists a probability
assignment to Wn consistent with each probability variable in P (�;R).

Proof:
We use induction on the number of nodes n in G�.

For n = 2 we have four probabilities: puv; pu�v ; p�uv; p�u�v. This gives a consistent as-
signment of probabilities to the four possible worlds. The theorem clearly holds true in this
case.

Now assume the theorem is valid if the number of nodes is n� 1. We prove it to be valid
if the number of nodes is equal to n. We only consider the series operation, the proof for the
tail operation is similar.

Let u be the �rst node deleted by the reduction sequence R. Assume that the neighbours
of node u are v and z. Recall that there are four equations expressing relations between v; z
and u, namely:

pvz = puvz + p�uvz; p�vz = pu�vz + p�u�vz; pv�z = puv�z + p�uv�z; p�u�z = pu�v�z + p�u�v�z:

Denote by W the set of 2(n�1) possible worlds for the propositions X n fug. >From each
W 2 W we obtain two possible worlds Wu and W�u in Wn, where u is set to true and false
respectively.

By the induction hypothesis, there exists a probability assignment for W which is con-
sistent with all the probability variables not involving proposition u. Consider the possible
worlds in W represented by fv; zg, i.e. where v and z are set to true. The overall proba-
bility assigned to these worlds (i.e. pvz) must be split between the possible worlds in Wn

represented by fu; v; zg and f�u; v; zg, according to equation pvz = puvz + p�uvz. This can be
obtained as follows.

Let �W be the probability assigned to a possible world W 2 W represented by fv; zg.
We assign to Wu a probability:

�W
puvz

pvz
;

and we assign to W�u a probability:

�W
p�uvz

pvz
:

A similar process can be repeated for the possible worlds in W represented by fv;:zg,
f:v; zg, and f:v;:zg. In this way we obtain a probability assignment to Wn which is
consistent with the variables fpuvzg and with the variables not involving proposition u.

Since the value of any probability variable involving the proposition u is written in terms
of the variables fpuvzg (see constraints (iv)) this completes the proof.

2

Corollary 4.1 A probability assignment � to the clauses of a 2T-SAT formula � is feasible
if and only if the system S(�;R) has a solution.
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Result 2: for a 2T-SAT formula � = (X ; C), with jX j = n:

� the PSAT problem can be reduced to solving a system of O(n) equations in O(n)
non-negative variables;

� the maximum (minimum) probability for a proposition or a clause can be obtained by
solving an LP problem with O(n) equality constraints and O(n) non-negative variables.

5 Conclusions, and further work

In this paper we identi�ed some easy cases of the probabilistic satis�ability problem. In
particular, for two classes of formulas, we provided a compact representation of the set of
feasible solutions, i.e. the set of consistent probability assignments. This allows to reduce
PSAT to solving a system of linear equations or inequalities, whose size is linear in the
number of propositional variables. Moreover, �nding the maximum (minimum) probability
for single clauses or propositions can be reduced to an LP problem with the same compact
set of constraints.

It must be remarked that the Max-SAT problem can be solved e�ciently for the classes of
formulas we consider here (see [17, 7]). Therefore, for these classes a polynomial algorithm
for PSAT is available [11]; this algorithm is, however, mainly of theoretical interest. For
practical purposes, standard column generation algorithms can be used [16]. By contrast,
our methods reduce PSAT to checking the consistency of a (small) set of equations and
inequalities. This can be done in polynomial time, e.g. by a polynomial algorithm for linear
programming. Still, we could not provide a purely combinatorial polynomial algorithm for
at least one class of PSAT instances. Actually, such an algorithm has to our knowledge not
yet been proposed for any reasonable class of formulas. This will be the subject of further
research.

In our opinion, our methods can be extended (up to a certain extent) to wider classes of
formulas. One possible direction is the use of partial k-trees with k > 2. As discussed in [7],
both SAT and Max-SAT can be solved in polynomial time (in n and 2k) if the co-occurrence
graph of the given formula is a partial k-tree. Moreover, besides the co-occurrence graphs,
one may consider other representations of formulas, such as the clause linked graphs [17].

On the long term, we may consider the following (admittedly ambitious) goal: provide
a compact representation of the feasible set for each class where a purely combinatorial,
polynomial Max-SAT algorithm is known. A relevant and challenging example are the
formulas whose associated hypergraph is a directed graph; for these formulas, Max-SAT
can be reduced to a Max-Flow problem [15].

On the other hand, we cannot expect to extend our results to all e�ciently solvable
Max-SAT classes. For example, consider the formulas represented by balanced hypergraphs;
for this class, Max-SAT can be solved by linear programming [6]. However, it is easy to �nd
formulas represented by balanced hypergraphs whose extended graph is not balanced.

In conclusion, probabilistic satis�ability is an interesting area for further research, both
from a theoretical and a computational point of view. The results described in this paper
seem to con�rm that e�ective solution methods for PSAT require substantially new ideas and
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ad-hoc techniques that, however, can utilize several tools succesfully applied to satis�ability
problems in the past.
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