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Abstract

In this note we extend and clarify some identities in law for Brownian motion proved
by V. Seshadri [8] using a new identity in law obtained by H. Matsumoto and M. Yor [6].
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1 Introduction

Let B = (Bt)t�0 be a one-dimensional standard Brownian motion with B0 = 0. For a real
constant � and t � 0, set

A
(�)
t =

Z t

0

exp(2(Bs + �s)) ds and At = A
(0)
t :

Let e be a standard exponential random variable independent from B and let Lt denote the
local time of B at 0.

Recently, Matsumoto and Yor [6] proved the following result concerning the joint law of
(At; Bt).

Theorem 1.1 (Matsumoto-Yor) For �xed t > 0, the following identity in law holds:

(e e�BtAt; Bt)
law
= (cosh(jBtj+ Lt)� cosh(Bt); Bt): (1.1)

Our aim in this note is to show that this result helps us to �nd a nontrivial extension of
some identities in law (see Theorem 2.1 below) �rst proved by V. Seshadri. Motivated by the
aim to study the joint law of (At; Bt) Matsumoto and Yor [6] focused on the left-hand side of
the identity (1.1). Here on the contrary we shall be mainly concerned with the right-hand side
of this identity.

We also note that Donati-Martin et al. ([1], [2]) used the identity (1.1) in their computations

to rederive the expression for the moments of A
(�)
t earlier obtained by Dufresne [3].

2 Main Result

We begin by recalling Seshadri's identities in law [8], following closely the presentation given by
M. Yor [10].

Theorem 2.1 (Seshadri) For t � 0 given and �xed, the following identities in law hold:

(jBtjLt; Lt � jBtj) law
= (t e=2; Bt) (2.1)

�Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark,
e-mail: raouf@imf.au.dk

yDepartment of Mathematical Sciences, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark
and Centre for Mathematical Physics and Stochastics (funded by the Danish National Research Foundation),
e-mail: matseg@imf.au.dk

1



�2jBtj+ Lt

2
� Lt

2
; jBtj

�
law
=
�2Lt + jBtj

2
� jBtj

2
; Lt

�
law
= (t e=2; jBtj): (2.2)

Remarks:
1) Seshadri's result (2.1) asserts that for a �xed t > 0, the two variables jBtjLt and Lt�jBtj

are mutually independent, and jBtjLt is exponentially distributed with parameter � = 2=t. A
similar explanation goes for (2.2).

2) Note that jBtj and Lt play a symmetric role in (2.2).

To understand better the title of this note, we reformulateMatsumoto-Yor 's result as follows

�1
c
sinh

�p
c � 2jBtj+ Lt

2

� � sinh �pc � Lt

2

�
; jBtj

�
law
=
�
e=2 e�

p
cBt

Z t

0

e2
p
cBsds; jBtj

�
by means of the scaling property of B and simple hyperbolic identities, where c > 0. Letting
now c tend to zero, the result 2.2 of Seshadri follows.

Similarly we have:

Theorem 2.2 For t � 0 given and �xed, the following identity in law holds for all c > 0:

�1
c
sinh

�p
cjBtj

�
sinh

�p
cLt

�
; Lt � jBtj

�
law
=
�
e=2 e�

p
cBt

Z t

0

e2
p
cBs ds;Bt

�
(2.3)

Proof: A scaling argument shows that only the case c = 1 need to be considered. Recalling
that jBtj = �t+Lt where �t =

R t

0
sgn(Bt) dBt (see e.g. [9]) we can rewrite (2.1) in the following

manner:

(jBtj (jBtj � �t);��t) = (jBt jLt; Lt � jBtj) law
= (t e=2; Lt � jBtj)):

Recalling the well-known result concerning the joint law of (Bt; �t) (see e.g. [9])

P (Bt 2 dx;�t 2 dy) = 2jxj � yp
2�t3

exp
n
� (2jxj � y)2

2t

o
1fy�jxjg dxdy

and consequently

(Bt 2 dx;Lt 2 du) = jxj+ up
2�t3

exp
n
� (jxj+ u)2

2t

o
1fu�0g dxdu

it follows that

P (Bt 2 dx j�t = y) =
2jxj � y

t
exp

n
� (2jxj � y)2

2t
+
y2

2t

o
1fjxj�yg dx

for all y 2 R. Thus for every bounded Borel function f we have for all y by substituting
u = 2jxj � y and using another well-known hyperbolic identity that

E[ f (sinh(jBtj) � sinh(Lt)) j jBtj � Lt = y] = E[ f (sinh(jBtj) � sinh(jBtj � y)) j�t = y]

=

Z 1

jyj

u

t
exp

ny2
2t

o
exp

n
� u2

2t

o
f( (cosh(u)� cosh(y))=2 ) du

Z 1

0

v + jyj
t

exp
ny2
2t

o
exp

n
� (v + jyj)2

2t

o
f( (cosh(v + jyj)� cosh(jyj))=2 ) dv

= E[f ((cosh(jBtj+ Lt)� cosh(jBtj)=2) jBt = y]

which by (1.1) equals

E[f
�
e=2 e�BtAt

� jBt = y] = E[f

�
e=2 e�Bt

Z t

0

e2Bs ds

�
jBt = y]:
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Alltogether we have proved that for every bounded Borel function f the following identity

E[ f (sinh(jBtj) � sinh(Lt)) j jBtj � Lt = y ] = E[f

�
e=2 � e�Bt

Z t

0

e2Bs ds

�
jBt = y ]

is true for all y 2 R from which the result follows observing that Bt and jBtj�Lt are identically
distributed.

3 Moments of A
(�)
t

In this section we compute moments of certain exponential Brownian functionals connected
to the evaluation of Asian options. The techniques used are very simple compared to former
proofs (see e.g. [4], [11]) of the same results and furthemore they can be applied in more general
situations.

We shall compute all moments of the random variable
R t
0
exp((Bs + �s))ds i.e. we shall

determine the numbers

E[(

Z t

0

exp((Bs + �s))ds)n]

for all n � 1 with � 2 R and t > 0 given and �xed.
The computation will be based on the following well-known simple fact:

Lemma 3.1 If (Mt) is a non-negative right-continuous martingale and (Ct) a continuous in-
creasing process such that C0 � 0, then

E[

Z t

0

Ms dCs] = E[Mt Ct]

for all t � 0.

Since the arguments apply not only to the Brownian motion we will assume that we are
given a probability space (
;F ; P ) and a right-continuous process X = (Xs)0�s�T de�ned on
(
;F ; P ) that starts at 0 and has stationary independent increments (shortly called a L�evy
process).

Here we assume that the L�evy exponent  of X de�ned by

E[exp(aXt)] = exp(t (a))

for t 2 [0; T ] and a 2 R is �nite. In the case when X is a standard Brownian motion we have
 (a) = a2=2.

Straightforward calulations show that

(Ms) := (exp(Xs � s (1))0�s�T

is a non-negative right-continuous martingale starting at 1 and that (Xs)0�s�T is a L�evy process

on [0; T ] under eP , where eP denotes the probability measure on (
;F) de�ned by

d eP :=MT dP:

The corresponding L�evy exponent e is easily seen to be given by

e (a) =  (a+ 1)�  (1) (for a 2 R):

Theorem 3.1 Let (Xs)0�s�T be a L�evy process on [0; T ] wih exponent  . De�ne for n � 1;
t 2 [0; T ] and � 2 R

Cn(t; �;  ) = E[
�Z t

0

exp(Xs + �s) ds
�n

]
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Then for n � 2 we have the following recursive relation:

Cn(t; �;  ) = n

Z t

0

Cn�1(s; �; e ) exp( (1)s+ �s) ds (3.1)

for all t 2 [0; T ] and all � 2 R.

Proof: Using Lemma 3.1 and the integration by parts formula we obtain for n � 2:

Cn(t; �;  ) = E[
�Z t

0

exp(Xs + �s) ds
�n

]

= n �E[
Z t

0

(

Z s

0

exp(Xu + �u) du)n�1 exp(Xs + �s) ds]

= n �E[
Z t

0

Ms(

Z s

0

exp(Xu + �u) du)n�1 exp( (1)s+ �s) ds]

= n �E[Mt

Z t

0

(

Z s

0

exp(Xu + �u) du)n�1 exp( (1)s+ �s) ds]

= n

Z t

0

eE[(Z s

0

exp(Xu + �u))du)n�1] exp( (1)s+ �s) ds

i.e.

Cn(t; �;  ) = n

Z t

0

Cn�1(t; �; e ) exp( (1)s+ �s) ds:

�

Using induction in (3.1) the recursive formula for (Cn(t; �;  ))n�1 can be found, and in the
Brownian case we obtain the following closed expression.

Corollary 3.1 For all n � 1 and t � 0 we have:

Cn(t; �; a
2=2) = E[

�Z t

0

exp(Bs + �s) ds
�n

] = n!

nX
j=0

1Qn

i=0; i6=j(a
�
j � a�i )

exp(ta�j )

where for each 0 � i � n

a�i =  (i) + i� =
i2

2
+ i�:

Remark:
A negative answer to the long time unsolved question of whether or not the law of A

(�)
t is

determined by its moments has recently been given by A. Nikeghbali [7].
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