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TWISTING FUNCTORS ON O

HENNING HAAHR ANDERSEN AND CATHARINA STROPPEL

Abstract. This paper studies twisting functors on the main block of the
Bernstein-Gelfand-Gelfand category O and describes what happens to (dual)
Verma modules. We consider properties of the right adjoint functors and show
that they induce an autoequivalence of derived categories. This allows us
to give a very precise description of twisted simple objects. We explain how
these results give a reformulation of the Kazhdan-Lusztig conjectures ([KL79])
in terms of twisting functors.

Introduction

In the following we study the structure of certain modules for a semisimple
complex Lie algebra arising from twisting functors and explain connections to mul-
tiplicity formulas for composition factors.
We fix a semisimple complex Lie algebra g and choose a Borel and a Cartan subal-
gebra inside g. We consider the corresponding BGG-category O of g-modules with
certain finiteness conditions ([BGG76]). For any element w of the corresponding
Weyl group we define following [Ark] an endofunctor Tw of O which is given by
tensoring with a certain g-bimodule Sw (a semiinfinite analog of the universal en-
veloping algebra of g). Such functors can be defined in a very general setup. In
[Soe98], for example, they were used to get character formulas for tilting modules
for Kac-Moody algebras. Moreover, they also exist in the quantised situation (see
[And]) and our results should carry over to that case. But in this paper we restrict
ourselves to describing their properties in the ordinary category O.
In [AL02] it is shown what happens to a Verma module under these twisting func-
tors. The resulting modules are called twisted Verma modules since their characters
are again characters of Verma modules. They turn out to be exactly the principal
series representations which play a crucial role in representation theory ([Jos94],
[Irv93]). They can also be realised as local cohomology groups of line bundles on
the corresponding flag variety (see [AL02]) and are exactly the Wakimoto modules,
i.e. modules with certain vanishing properties for the semiinfinite cohomology (see
[Vor99], and [FF90] for the affine case).
Although, there are several different constructions of twisted Verma modules, their
“intrinsic” structure (like socle- and radical filtrations) is in general unclear. For
dual Verma modules, however, the situation is easier, since twisting functors sta-
bilise the set of dual Verma modules (Theorem 2.3).
As a first general result, we deduce (Corollary 4.2) that each twisting functor in-
duces an autoequivalence on the bounded derived category (as stated by Arkhipov
in [Ark]). This result is a very strong tool for computing homomorphism spaces
and extensions between (twisted) objects. In particular, we can use it to show that
any indecomposable module with Verma flag stays indecomposable under twisting.
For instance, all twisted Verma modules are indecomposable, and so are the twists

1



2 HENNING HAAHR ANDERSEN AND CATHARINA STROPPEL

of indecomposable projective objects. Since the functors satisfy braid relations we
can consider them as a functorial braid group action via autoequivalences (in the
sense of [KS02]).
If s is a simple reflection the composite TsTs is far away from being the identity.
However, the alternating sum Σ(−1)iLiTs defines an involution on the Grothendieck
group of O. Using the right adjoint functor of Ts we get a description of all simple
objects annihilated by Ts (Theorem 5.1). Moreover, the trivial simple module L
has the following kind of “Borel-Weil-Bott” vanishing property (Corollary 6.2)

LiTwL ∼=

{

L if i = l(w)

0 if i 6= l(w).

The interesting case, however, are the nonzero twisted simple modules. Theorem 6.3
gives a very explicit description of such twisted simple objects. These modules are
important for understanding the whole category; they cover all the categorical
information of O: We get as the main application of the paper a reformulation of
the Kazhdan-Lusztig conjecture ([KL79]) in terms of twisted simple objects. At
the first look this statement might not show the significance and impact which it
really has, namely:

Claim. For all x ∈ W not maximal, there exists a simple reflection s such that
L(x.0) is a submodule of TsL(sx.0).

A proof of this Claim would imply a proof of the Kazhdan-Lusztig conjecture.

1. Notations and preliminaries

Let g be a finite dimensional complex semisimple Lie algebra with a chosen Borel
and a fixed Cartan subalgebra. Let g = n− ⊕ b = n− ⊕ h ⊕ n be the corresponding
Cartan decomposition. We denote by U(L) the universal enveloping algebra for any
complex Lie algebra L. Let M be a U(g)-module. For λ ∈ h∗ we denote by Mλ =
{m ∈ M | h.m = λ(h)m, ∀h ∈ h} the λ-weight space of M . If M =

⊕

λ∈h∗ Mλ,
then M is called h-diagonalisable.
Let R+ ⊂ R denote the subset of positive roots inside the set of all roots. If
we consider g as a U(g)-module via the adjoint action we get by definition n− =
⊕

α∈R+
g−α and n =

⊕

α∈R+ gα. We fix a Chevalley basis {xα, hα | α ∈ R} of g.

Let σ : g → g be the corresponding Chevalley antiautomorphism.
The positive roots define a partial ordering on h∗ by letting λ ≥ µ if and only if
λ − µ ∈ NR+. Let W be the Weyl group corresponding to R with set of simple
reflections S generating W and length function l. We denote the shortest element
in W by e and the longest by wo. Let ρ ∈ h∗ be the half-sum of positive roots.
The dot-action of W on h∗ is given by w · λ = w(λ + ρ) − ρ, where the action on
the right hand side is the usual action of the Weyl group on h∗. For λ ∈ h∗, we
denote by Wλ = {w ∈ W | w · λ = λ} the stabiliser of λ under the dot-action. If
Wλ = {e}, then λ is called regular. A weight λ ∈ h∗ is called integral if 〈λ, α̌〉 ∈ Z

for any simple root α. Let h∗
dom = {λ ∈ h∗ | 〈λ + ρ, α̌〉 ≥ 0 for any simple root α}

be the set of dominant weights.
We consider the category O from [BGG76], i.e. the full subcategory of the category
of U(g)-modules, where the objects are precisely the modules which are

(1) finitely generated,
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(2) h-diagonalisable, and
(3) U(n)-locally finite, i.e. dimC U(n)m < ∞ for all m ∈ M .

For λ ∈ h∗ we denote by Cλ the corresponding one-dimensional h-module consid-
ered as a b-module with trivial n-action. Let M(λ) = U(g) ⊗U(b) Cλ denote the
Verma module with highest weight λ; it is an object in O, its unique simple quotient
is denoted by L(λ). The modules L(λ), where λ ∈ h∗, are pairwise non-isomorphic
and constitute a full set of isomorphism classes of simple modules in O. We denote
by P (λ) and I(λ) the projective cover and injective hull respectively of L(λ).
Let M be a U(g)-module which is h-diagonalisable. We denote by d(M) the
largest submodule of M∗ = HomC(M, C) which is h-diagonalisable, i.e. d(M) =
⊕

λ∈h∗(Mλ)∗. The module d(M) becomes an object in O with g-action given

by x.f(m) = f(σ(x)m) for any x ∈ g, m ∈ M and f ∈ d(M). Moreover, d
defines a duality on O fixing simple modules and preserving characters. We let
∇(λ) = d ∆(λ) denote the dual Verma module with submodule L(λ). (For details
see [BGG76],[Jan79], [Jan83])
In the following tensor products and dimensions are all meant to be (as vector
spaces) over the complex numbers if not otherwise stated.

2. Translation and Twisting functors

The action of the centre Z of U(g) gives a block decomposition

O =
⊕

χ∈MaxZ

Oχ,(2.1)

where the blocks are indexed by maximal ideals of the centre of Z and where Oχ

contains all modules annihilated by some power of χ ∈ MaxZ . The Harish-Chandra
isomorphism ([Dix96, 7.4.6] shifted by ρ) defines a natural isomorphism ξ between
the set of maximal ideals of Z and the orbits of h∗ under the dot-action of W ,
which are in bijection to the set of dominant weights. Under these bijections the
decomposition (2.1) coincides with

O =
⊕

λ∈h∗
dom

Oλ,

where objects in Oλ have only composition factors of the form L(w ·λ) with w ∈ W .
Let λ, µ be dominant such that λ−µ is integral. The translation functor θµ

λ : Oλ →
Oµ is defined on objects M ∈ Oλ by θµ

λ(M) = prµ(M ⊗E(µ−λ)), where E(µ−λ)
denotes the finite dimensional g-module with extremal weight µ− λ and prµ is the

projection onto the block Oµ. By definition, these functors are exact and θµ
λ is left

and right adjoint to θλ
µ.

Let s be a simple reflection. Let λ be integral and regular and choose µ such that
λ − µ is integral and Wµ = {e, s}. We denote by θs the translation through the
s-wall; i.e. θs = θλ

µθµ
λ : Oλ → Oλ. Up to a natural isomorphism this functor is

independent of the choice of µ. (For details see [Jan79], [Jan83], [BG80].)

Twisting functors Tw. For each w ∈ W we define a twisting functor Tw : O → O
as follows: Let nw = n− ∩ w−1(n+) and Nw = U(nw) its universal enveloping
algebra. We consider g as a Z-graded Lie algebra such that g1 =

⊕

gα, where the
sum runs over all simple roots α. This induces uniquely a grading on Nw. Let
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N~
w =

⊕

n∈Z
HomC

(

(Nw)i, C
)

be its graded dual, i.e. (N~
w )i = ((Nw)−i)

∗. With
U = U(g), the corresponding semiinfinite U-bimodule Sw is then defined as

Sw = U ⊗Nw
N~

w .

That this is a U-bimodule is not obvious, for a proof see [And] and [Ark, 2.1.10]; or
the special case [Soe98, Theorem 1.3]; moreover Sw

∼= N~
w ⊗Nw

U as right U-module.
For a simple reflection s corresponding to α let U(s) be the Ore localisation at the

set {1, xi
−α | i ∈ N}. It contains naturally U as subalgebra. There is a U-bimodule

isomorphism ([Ark], compare [AL02, Theorem 6.1])

U(s)/U→̃Ss.(2.2)

The twisting functor Tw corresponding to w ∈ W on the category of g-modules is
given on objects by

M 7−→ φw(Sw ⊗U M),

and on morphisms by

f 7−→ 1 ⊗ f,

where φw means that the action of g is twisted by an automorphism of g corre-
sponding to w. Up to isomorphism the functor is independent of this particular
choice.
The main properties of twisting functors are given by the following

Lemma 2.1. Let w ∈ W .

(1) Tw is right exact.
(2) Tws

∼= TwTs if ws > w and s is a simple reflection.
(3) Tw preserves O and even each individual block Oλ for any λ ∈ h∗

dom.
In fact [Tw∆(λ)] = [∆(w · λ)] in the Grothendieck group of O.

(4) Tw commutes with tensoring with finite dimensional g-modules E, i.e. there
is an isomorphism of functors Tw(• ⊗ E) ∼= (• ⊗ E)Tw.

(5) Tw commutes with translation functors.

Proof. The first statement is clear by definition. For (2) and (3) see [AL02]. State-
ment (5) is then clear from (3) and (4). We prove (4) in a more general context in
Theorem 3.2. (It is stated without a complete proof in [AL02]). �

Because of the second statement of the previous Lemma we restrict ourselves to
study the functor Ts for any simple reflection s. Moreover, we mainly consider its
restriction to a regular integral block, say Oo. Therefore, we also write ∆(x), L(x),
∇(x), etc. instead of ∆(x · 0), L(x · 0), ∇(x · 0) respectively.
In [AL02] is described what happens to Verma modules when applying Tw. In the
easiest case, where x ∈ W and s is a simple reflection such that sx > x, it is (see
[AL02, Lemma 6.2])

Ts∆(x) ∼= ∆(sx).(2.3)

As it was seen in [AL02], twisted Verma modules (e.g. their socle- and radical
filtrations) are not well understood in general. However, it is known ([AL02, 6.3])
that for sx > x they fit into a four step exact sequence of the form

0 → ∆(sx) −→ ∆(x) −→ Ts∆(sx) −→ Ts∆(x) → 0.(2.4)
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First properties of Ts and LTs. Recall that category O has enough projec-
tives. Hence we may consider the left derived functors LiTw of Tw. It is clear
from Lemma 2.1 that LiTw preserves Oλ for any i > 0 and λ ∈ h∗

dom. Likewise,
Lemma 2.1 (4) and (5) generalise to all LiTw. If we look at the functor LTs for a
simple reflection s, the situation becomes quite easy:

Theorem 2.2. We have LiTs = 0 for any i > 1. If λ ∈ h∗, then LiTs∆(λ) = 0
for i > 0.

Proof. Since Ss
∼= N~

s ⊗Ns
U , the functor Ts is exact on Ns-free modules. Hence it

is exact on Verma modules and on modules with a Verma flag. Since Ns = C[x−α]
is a principal ideal domain for any simple reflection s, the functor Ts is even exact
on submodules of projective modules. Let M ∈ O and let P→→M be its projective
cover with kernel K. By definition of LTs we get LiTsM = Li−1TsK for i− 1 > 0.
Since K is a submodule of a projective object in O, the latter vanishes and the
theorem follows. �

For dual Verma modules the situation is very nice:

Theorem 2.3. Let x ∈ W and s be a simple reflection. There are isomorphisms
of g-modules

Ts∇(x) ∼=

{

∇(x) if x < sx

∇(sx) if x > sx;

and for i > 0

LiTs∇(x) ∼=

{

Kx,sx if x < sx and i = 1

0 otherwise,

where Kx,sx denotes the kernel of the (unique up to a scalar) nontrivial (surjective)
map ∇(x) → ∇(sx) in the case x < sx.

Proof. Let us start to prove both parts by (descending) induction on the length
of x. If x = wo, then ∇(wo) is self-dual, hence L1Ts∇(wo) = 0 by Theorem 2.2,
and Ts∇(wo) = Ms(swo) ∼= Mwo(swo) ∼= ∇(swo) by [AL02, Lemma 6.2] (using the
notations defined there).
Let now x 6= wo and choose a simple reflection t ∈ W such that xt > t. Translation
through the wall gives a short exact sequence of the form

0 → ∇(xt)
f

−→ θt∇(xt) −→ ∇(x) → 0,(2.5)

where f is the adjunction morphism and therefore we get, using Theorem 2.2 and
Lemma 2.1 (5), a long exact sequence of the form

0 → L1Ts∇(xt) −→ θtL1Ts∇(xt) −→ L1Ts∇(x)

−→ Ts∇(xt)
Tsf
−→ θtTs∇(xt) −→ Ts∇(x) → 0.(2.6)

Note, that Tsf is always the adjunction morphism, since we have naturally (for any
M ∈ Oo, and θon = θλ

0 , where Wλ = {e, t})

HomO(M, θtM) = HomO(θonM, θonM)
f 7→Tsf
−→ HomO(TsθonM, TsθonM)

= HomO(θonTsM, θonTsM) = HomO(TsM, θtTsM).
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Under this chain the adjunction map goes to the adjunction map.
Consider first the case sxt < xt. By induction hypotheses, (2.6) is of the form

0 → L1Ts∇(x) −→ ∇(sxt)
Tsf
−→ θt∇(sxt) −→ Ts∇(x) → 0.

If sxt > sx (i.e. sx < x), then Tsf is injective with cokernel ∇(sx), hence
L1Ts∇(x) = 0 and Ts∇(x) ∼= ∇(sx).
If sxt < sx, then Tsf has to be the composite of the surjection ∇(sxt)→→∇(sx)
between two ‘neighbouring’ dual Verma modules and the adjunction morphism
∇(sx) ↪→ θt∇(sxt); hence L1Ts∇(x) ∼= Ksxt,sx and Ts∇(x) ∼= θt∇(sxt)/∇(sx) ∼=
∇(sxt). Our assumptions force sxt = x by the Exchange Condition of W (see
[Hum90]). Hence we have proved the theorem in the case sxt < xt.
Consider now the case sxt > xt. We have l(sx) ≥ l(sxt)− 1 = l(xt) = l(x) + 1, i.e.
sx > x. On the other hand Ts∇(xt) ∼= ∇(xt) by induction hypotheses, hence the
adjunction morphism Tsf is injective with cokernel ∇(x), i.e. Ts∇(x) ∼= ∇(x) and
the first terms of (2.6) provide by induction hypotheses a short exact sequence of
the form

0 → Kxt,sxt
a

−→ θtKxt,sxt −→ L1Ts∇(x) → 0,(2.7)

where a is the restriction of the adjunction morphism. Consider the commutative
diagram with exact rows and surjection p:

∇(xt)

p

����

adj // θt∇(xt)

θtp
����

// // ∇(x)

��
∇(sxt)

adj // θt∇(sxt) // // ∇(sx)

By definition of Kxt,sxt the kernel-cokernel sequence is of the form

0 → Kxt,sxt
a

−→ θtKxt,sxt −→ Kx,sx → 0.

By comparing it with (2.7), it follows that L1Ts∇(x) ∼= Kx,sx. Now, we proved
all the statements concerning LiTs for i ≤ 1. The vanishing of LiTs for i > 1 is
Theorem 2.2. �

3. Tensoring with finite dimensional modules

To prove that the twisting functors behave well with respect to tensoring with
finite dimensional modules we need a comultiplication on the ‘completion’ of the
localisation of U .
Recall that U is a Hopf algebra with comultiplication ∆(u) = 1 ⊗ u + u ⊗ 1,
antipode S(u) = −u and counit c(u) = 0 for elements u ∈ g. Note that ∆(un) =
∑n

k=0

(

n
k

)

un−k ⊗ uk, for u ∈ U .

We can consider U(s) (and hence U(s) ⊗ U(s)) as a left C[(x−α)−1]-module. We

denote by U(s)⊗̂U(s) its extension to a module over the ring of formal power series

C[[(x−α)−1]]. There is a unique (and obvious) extension of the algebra structure of
U(s) ⊗ U(s) to U(s)⊗̂U(s). The following result defines a comultiplication map from

U(s) into the completion U(s)⊗̂U(s) of U(s) ⊗ U(s):
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Lemma 3.1. Let s = sα be a simple reflection. The following map defines an
algebra homomorphism

∆̃ : U(s) −→ U(s) ⊗̂ U(s)

y−nu 7→
(

∑

k≥0

(−1)k

(

k + n − 1

k

)

y−n−k ⊗ yk
)

∆(u),

for y = x−α and any u ∈ U .

Proof. Direct calculations show that the map is well-defined and defines an algebra
homomorphism. �

Theorem 3.2. Fix w ∈ W . For any finite dimensional g-module E, there exists an
isomorphism of functors tE : Tw ◦(•⊗E) −→ (•⊗E)◦Tw such that for any M ∈ O
and any finite dimensional g-modules E and F the following diagrams commute

1.)

Tw(M ⊗ E ⊗ F )
tF (M⊗E) //

tE⊗F (M) **U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

Tw(M ⊗ E) ⊗ F

tE(M)⊗id

��
Tw(M) ⊗ E ⊗ F

2.)

Tw(M ⊗ E ⊗ E∗)
tE⊗E∗ (M)

//
OO

Tw(id⊗ ev)

Tw(M) ⊗ E ⊗ E∗

OO

id⊗ ev

Tw(M ⊗ C)
tC(M)

// Tw(M) ⊗ C,

where ev : C → E ⊗E∗ is given by 1 7→
∑d

i=1 ei ⊗ e∗i for a fixed basis (ei)1≤i≤d

of E with dual basis (e∗i )1≤i≤d.

Proof. By Lemma 2.1 it is enough to consider the case where w = s is a simple
reflection. Let M ∈ Oo and let E be any finite dimensional g-module. Let s be the
simple reflection corresponding to α. Set y = x−α. We consider the following map

U(s) ⊗U (M ⊗ E) −→ (U(s) ⊗U M) ⊗ E

y−n ⊗ (m ⊗ e) 7−→
∑

k≥0

(−1)k

(

n + k − 1

k

)

y−n−k ⊗ m ⊗ yke.

By Lemma 3.1 this map is well-defined and a U-morphism. It is even an isomor-
phism. To see this one has to choose r, a ∈ N such that ya annihilates E and
(r−1)a ≥ n−1. Then ar−n−k > ar−n−a ≥ −1 for any k < a. We can define a
map in the opposite direction by (y−n⊗m)⊗e 7→ y−ar⊗

∑

k≥0

(

ar
k

)

yar−n−km⊗yke.
Direct calculations show that this map does not depend on the actual choice of a
and r and that it defines an inverse.
We check the commutativity of the first diagram: For m ∈ M , e ∈ E and f ∈ F ,
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the diagonal map is given by

y−n ⊗ m ⊗ e ⊗ f 7→
∑

k≥0

(−1)k

(

n + k − 1

k

)

y−n−k ⊗ m ⊗ yk(e ⊗ f)

=
∑

k≥0

∑

j≥0

(−1)k

(

n + k − 1

k

)(

k

j

)

y−n−k ⊗ m ⊗ yk−je ⊗ yjf.(3.1)

On the other hand the composite of the horizontal and vertical map is given by

y−n ⊗ m ⊗ e ⊗ f 7→
∑

j≥0

(−1)j

(

n + j − 1

j

)

y−n−j ⊗ (m ⊗ e) ⊗ yjf

7→
∑

s≥0

∑

j≥0

(−1)j

(

n + j − 1

j

)

(−1)s

(

n + j + s − 1

s

)

y−n−j−s ⊗ m ⊗ yse ⊗ yjf

=
∑

k≥0

∑

j≥0

(−1)k

(

n + j − 1

j

)(

n + k − 1

k − j

)

y−n−k ⊗ m ⊗ yk−je ⊗ yjf,

(by taking k = j + s). Since
(

n+j−1
j

)(

n+k−1
k−j

)

=
(

n+k−1
k

)(

k
j

)

the diagonal map and

the composition are the same and the diagram commutes.
For the second diagram we use formula (3.1) for F = E∗. We start with an element
y−n⊗(m⊗1) ∈ Ts(M⊗C). By definition of the vertical map this element is mapped

to
∑d

i=1 y−n ⊗m⊗ ei ⊗ e∗i . We apply the upper horizontal map to it. Since ev is a
morphism of g-modules the resulting summands given by formula (3.1) are all trivial

except for k = 0. Hence the composition maps y−n⊗(m⊗1) to
∑d

i=1 y−n⊗m⊗ei⊗e∗i
which is obviously the same as what happens via

(

id⊗ ev
)

◦ tC(M). Therefore, the
second diagram commutes. �

4. The adjoint functor G

In the following we want to describe the right adjoint functors of twisting func-
tors. Note that since Tw is not left exact, there exists no left adjoint functor
of Tw. The right U-module structure on Sw defines a left U-module structure
on HomU (Sw, φ−1

w (M)) for any g-module M . Let Gw(M) denote the maximal h-
diagonalisable submodule of HomU (Sw, φ−1

w (M)). Then M 7→ Gw(M) defines a
left exact endofunctor of O which is right adjoint to Tw. It is straight-forward

to check that for f ∈ HomO(TwM, N) we can define f̂ ∈ HomO(M, GwN) by

f̂(m)(s) = f(s ⊗ m), where m ∈ M , s ∈ Sw. Then f 7→ f̂ defines the desired
adjunction. (The inverse map is given by g 7→ ǧ, where ǧ(s ⊗ m) = f(m)(s).)
Lemma 2.1 immediately implies that Gws

∼= GsGw for any w ∈ W , s ∈ S such that
ws > w.
A surprising strong link between Tw and Gw is provided by the following

Theorem 4.1. For any w ∈ W , there is an isomorphism of functors

Gw
∼= d Tw−1 d .

Proof. Let us assume for a moment that the theorem is true for all simple reflections.
Let w = s1 · . . . · sr be a reduced expression. By Lemma 2.1, we have Tw

∼=
Ts1

· . . . · Tsr
, hence its right adjoint is isomorphic to

Gsr
Gsr−1

· . . . · Gs1
∼= (d Tsr

d)(d Tsr−1
d) · . . . · (d Ts1

d)
∼= d Tw−1 d .
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Now let s be a simple reflection. By extending φs to U we get an antiautomorphism
τ = φs ◦ σ of U with inverse τ−1 = σ ◦ φ−1

s . We consider the following map

Ψs : HomU

(

U , φ−1
s (M)

)

−→ d
(

φs(U ⊗U d(M)
)

f 7−→ f̂ ; f̂(u ⊗ m∗) = m∗(f(τ(u))),

for u ∈ U and m∗ ∈ M∗. For x ∈ g, u ∈ U and m∗ ∈ M∗ we get f̂(u ⊗ xm∗) =

xm∗(f(τ(u))) = m∗(σ(x)f(τ(u))) = m∗(f(τ(x)τ(u))) = m∗(τ(ux)) = f̂(ux ⊗ m∗).

Hence, f̂ is well-defined. Direct calculations also show that Ψs is a U-morphism.
The inverse of Ψs is given by g 7→ ǧ, where m∗(ǧ(u)) = g(τ−1(u)⊗m∗). Altogether,
Ψs is an isomorphism of vector spaces.
Since τ stabilises the multiplicative set defining U(s) (see (2.2)), Ψs defines a natural
isomorphism

HomU

(

U(s), φ
−1
s (M)

)

−→ d
(

φs(U(s) ⊗U d(M))
)

.

Hence the theorem follows from the isomorphism (2.2). �

For w ∈ W we denote by RGw the right derived functor of Gw. We get a remark
in [Ark] as

Corollary 4.2. Let w ∈ W . The left derived functor LTw of Tw defines an auto-
equivalence of the bounded derived category Db(Oo).

Proof. Let first w = s be a simple reflection. By Theorem 2.2 and (2.3) we have
LTs∆(e) ∼= ∆(s) and RGs(∆(s)) ∼= dLTs∇(s) ∼= ∆(e) by Theorem 4.1 and Theo-
rem 2.3. Hence RGsLTsP ∼= P for any projective module P ∈ Oo ⊂ Db(O0). Any
finite complex of modules in Oo is quasi-isomorphic to a finite complex of projective
modules, hence RGsLTs

∼= id.
The previous theorem, Theorem 2.2 and formula (2.3) give RGs∇(e) ∼= ∇(s) and
LTs(∇(s)) ∼= ∇(e) by the previous theorem and Theorem 2.3. Hence LTsLGsI ∼= I
for any injective module I ∈ Oo ⊂ Db(O0). Any finite complex of modules in Oo

is quasi-isomorphic to a finite complex of injective modules, hence LTsLGs
∼= id.

Therefore, LTs defines an autoequivalence of Db(Oo). By Lemma 2.1 we have
LTws

∼= LTwLTs for any w ∈ W and s ∈ S, such that ws > w. Therefore, the
statement follows for any w ∈ W . �

5. Some natural transformations

For any x ∈ W and s ∈ S we call L(x) s-finite if x < sx, otherwise s-free. A
module M ∈ Oo is called s-finite (s-free respectively) if all its composition factors
are s-finite (s-free respectively). The following lemma characterises s-finite simple
modules using Ts:

Proposition 5.1. Let x ∈ W . Then TsL(x) 6= 0 if and only if x > sx.

Proof. If x < sx, we consider the inclusion i : ∆(sx) ↪→ ∆(x). Let Q be its cokernel,
hence there is an exact sequence

Ts∆(sx)
Tsi
−→ Ts∆(x) −→ TsQ → 0.

The sequence (2.4) shows the existence of a surjection in HomO(Ts∆(sx), Ts∆(x)).
Now the latter is (via Ts) isomorphic to HomO(∆(sx), ∆(x)) = C. That is Tsi 6= 0
and therefore surjective, i.e. TsQ = 0. Hence TsL(x) = 0, as L(x) is a quotient of
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Q.
If x > sx, then

0 6= HomO(∆(x), L(x)) = HomO(Ts∆(sx), L(x)) = HomO(∆(sx), GsL(x)),

hence GsL(x) ∼= d TsL(x) 6= 0. �

Corollary 5.2. The head of TsM is s-free for any M ∈ Oo and s ∈ S.

Proof. The right adjoint functor Gs of Ts annihilates all s-finite simple modules by
the previous proposition and Theorem 4.1. �

As for Verma modules we can describe at least some of the twisted projective
modules:

Proposition 5.3. Let x ∈ W , s ∈ S such that sx > x then TsP (sx) ∼= P (sx).
Dually, GsI(sx) ∼= I(sx).

Proof. By formula (2.3) Ts∆(e) ∼= ∆(s) and therefore TsP (s) ∼= Tsθs∆(e) ∼=
θsTs∆(e) ∼= P (s) since Ts commutes with θs. Let now x = s1 · . . . · sr be a
reduced expression and θ = θs1

· . . . · θsr
. We get

TsθP (s) ∼= θTsP (s) ∼= θP (s)→→P (sx),

where the last map is a surjection. Hence P (sx) is a direct summand of TsθP (s).

Let θP (s) ∼=
⊕

y>sy

P (y)ny for some ny ∈ N. (The condition on y comes from the

fact that θP (s) ∼= TsθP (s) has s-free head by Corollary 5.2). Hence P (sx) is a
direct summand of TsP (y) for some y ∈ W such that sy < y, i.e. P (sx) ∼= TsP (y),
because of the indecomposability of TsP (y) (by Corollary 4.2 we have EndO(TsP ) ∼=
EndO(TsP ) for all projective modules P ∈ O). This implies, with the formulas (2.4)
and (2.3), the existence of a chain of surjections P (sx)→→Ts∆(y)→→Ts∆(sy) ∼= ∆(y).
Hence, sx = y and the proposition follows. �

Proposition 5.4. Let s be a simple reflection. Assume, there is a non-trivial
homomorphism cans : Ts −→ id of endofunctors on Oo. Then, for any M ∈ Oo,
the cokernel of cans(M) is the largest s-finite quotient of M .

Proof. Let us first assume that cans(∆(e)) = 0. For x ∈ W consider an inclu-
sion ix : ∆(x) ↪→ ∆(e). Then ix ◦ cans(∆(x)) = cans(∆(e)) ◦ Tsix = 0, hence
cans(∆(x)) = 0. This implies that cans gives the zero map for all projective mod-
ules which is a contradiction to cans 6= 0.
Now, let us assume cans(∆(e)) 6= 0. By formula (2.3) we get that the image must
be the submodule ∆(s). If x ∈ W such that sx > x then cans(∆(e)) ◦ Tsix has
image isomorphic to ∆(sx), hence the image of cans(∆(x)) must be the submod-
ule isomorphic to ∆(sx) inside ∆(x), i.e. the map is injective. If x > sx, then
for j ∈ HomO(∆(x), ∆(sx)) the map Tsj is surjective (see proof of Lemma 5.1).
Hence im(j ◦ cans(∆(x)) = im(cans(∆(sx)) ◦ Tsj) ∼= Ts∆(sx) ∼= ∆(x). This forces
cans(∆(sx)) to be surjective. That is, p ◦ cans(∆(x)) = cans(L(x)) ◦ Tsp is surjec-
tive, where p denotes a surjection from ∆(x) onto its head. Hence, cans(L(x)) is
surjective.
Let M be s-finite. By induction on the length of M , Lemma 5.1 gives TsM = 0,
hence the statement of the proposition is true for M . Let now M ∈ Oo be arbitrary
with maximal s-finite quotient Q. Let K be defined by the following commutative
diagram with exact rows
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0 // KOO

cans(K)

i // MOO

cans(M)

q // // Q //
OO

cans(Q)

0

TsK
Tsi // TsM

Tsq // // TsQ // 0.

Since TsQ = 0 by assumption, we get im cans(M) ⊆ i(K). For the reverse inclusion
it is enough to show that cans(K) is surjective. By the maximality condition on
Q, the head H of K is s-free. Let p be a surjection from K onto H . Since
cans(H) ◦ Tsp = p ◦ cans(K) and (as we already proved) cans(H) is surjective,
cans(K) has to be surjective. Hence im cans(M) = i(K) and the proposition is
proved. �

Remarks 5.5. Dualising the properties of Ts described in Theorem 3.2 gives prop-
erties of completion functors as explained in [Jos83]. It is not clear whether these
conditions in fact characterise completion functors. Assuming this we would get
that Gs is a completion functor, hence there is by definition a natural transforma-
tion from the identity functor to Gs and therefore also a homomorphism of functors
as described in the previous proposition. The morphisms T M

α and δT M
α from [Jos83,

2.6] would then be exactly the adjunction morphisms of Proposition 5.6. On the
other hand, O. Khomenko and V. Mazorchuk announced [KM] a different proof of
the existence of a natural transformation as assumed in Proposition 5.4.

Adjunction and s-finiteness. The following two results would be an easy corol-
lary of Proposition 5.4. We prove them without assuming the existence of a canon-
ical morphism of functors (as assumed in Proposition 5.4):

Proposition 5.6. Let s be a simple reflection. The morphism adj : TsGs 7→ id
given by adjunction is injective on any object M ∈ Oo. Moreover, the cokernel of
adj(M) is the largest s-finite quotient of M . Dual statements hold for the adjunction
morphism id → GsTs.

Proof. Since TsGs∇(e) ∼= ∇(e) and both functors commute with translations,
TsGs(I) ∼= I via the adjunction morphism for all injective objects I ∈ Oo. For

M ∈ Oo let M
i

↪→ I → J be an injective copresentation. We get an exact sequence

0 → GsM
Gsi
−→ GsI −→ Q → 0,(5.1)

where Q ⊆ Gs(J). Now, L1Ts(Gs∇(e)) = L1Ts∇(s) = 0 by Theorem 2.3, hence
L1Ts(GsJ) = 0 which forces L1TsQ = 0 by Theorem 2.2. Applying Ts to (5.1) gives

therefore an exact sequence 0 = L1TsQ → TsGsM
TsGsi
−→ TsGs(I), hence TsGsi is

injective. By definition of the adjunction morphism i ◦ adj(M) = adj(I) ◦ TsGsi,
hence a composite of injective maps, which implies the injectivity of adj(M).
Let now I = I(sx) be an indecomposable injective object of Oo with s-free socle.
By Proposition 5.3, GsI ∼= I . We calculate:

dim HomO(TsGsM, I) = dim HomO(GsM, GsI) = dim HomO(GsM, I)

= dim HomO(Ts d M, I) = dim HomO(d M, GsI)

= dim HomO(d M, I) = dim HomO(M, I).

Hence the cokernel of the adjunction morphism for M is s-finite. Since the head of
TsGsM is s-free (Corollary 5.2), the cokernel is in fact the largest s-finite quotient
of M . �
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Remarks 5.7. Combining this proposition with Proposition 5.4 we see that, if the
morphism cans : Ts → id exists, then it factors through adj : TsGs → id and for
each M ∈ Oo the resulting homomorphism TsM → TsGsM is surjective.

Corollary 5.8. Let M ∈ Oo and s be a simple reflection. Then TsM = 0 if and
only if M is s-finite.

Proof. If M is s-finite, then TsM = 0 by Lemma 5.1 and induction on the length of
M . Assume 0 = TsM = d Gs d M , hence Gs d M = 0 and therefore TsGs d M = 0.
By the previous proposition d M is s-finite and therefore so is M .

�

Corollary 5.9. Let M ∈ Oo and s be a simple reflection.

(1) L1TsM and R1GsM are s-finite.
(2) L1Ts(GsM) = 0 = R1Gs(TsM).
(3) We have short exact sequences

0 → TsGsM −→ M −→ L1Ts(R
1GsM) → 0,

and

0 → R1Gs(L1TsM) −→ M −→ GsTsM → 0.

Proof. We shall prove the first half of each statement. The second halves follow
then by duality using Theorem 4.1.

(1) Note first that L1Ts∇(e) = Ke,s by Theorem 2.3; and that TsKe,s = 0,
because L1Ts∇(s) = 0 and Ts∇(e) ∼= ∇(e) ∼= Ts∇(s). Hence Ke,s is s-finite
by Corollary 5.8 and therefore so is Ke,s ⊗ E for any finite dimensional g-
module E. On the other hand, M is isomorphic to a submodule of ∇(e)⊗E
for such an E and hence L1TsM is a submodule of L1Ts(∇(e) ⊗ E) ∼=
Ke,s ⊗ E. As a submodule of an s-finite module, L1TsM is s-finite.

(2) Take E as above with an injection M ↪→ ∇(e) ⊗ E. The left exactness of
Gs gives an injection Gs(M) ↪→ Gs(∇(e)⊗E) ∼= (Gs∇(e))⊗E ∼= ∇(s)⊗E
by Theorem 3.2, formula (2.3) and Theorem 4.1. Hence L1Ts(GsM) is
isomorphic to a submodule of L1Ts(∇(s)⊗E) ∼= L1Ts(∇(s))) ⊗E = 0 (by
Theorem 2.3).

(3) Let Q be the maximal s-finite quotient of M . Then Proposition 5.6 gives
us a short exact sequence of the form

0 → TsGsM −→ M −→ Q → 0.

Via previous statements (1) and (2) this shows that R1GsM ∼= R1GsQ.
That means, we are done if we prove the following
Claim: For any s-finite module Q ∈ Oo we have Q ∼= L1Ts(R

1GsQ).
To see this, we choose an embedding Q ↪→ ∇(e) ⊗ F for some finite di-
mensional g-module F . Let Q′ be its cokernel, hence we have a short exact
sequence

0 → Q −→ ∇(e) ⊗ F −→ Q′ → 0.

Applying Gs and using Corollary 5.8 give an exact sequence

0 → Gs(∇(e) ⊗ F ) −→ GsQ
′ −→ R1GsQ → 0.
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By applying Ts and adding the adjunction morphism adj from Proposi-
tion 5.6, we get the following diagram

0 // L1Ts(R
1Gs(Q)) //

g

��

TsGs(∇(e) ⊗ F ) //

adj

��

TsGsQ
′ //

adj

��

0

0 // Q // ∇(e) ⊗ F // Q′ // 0

The first row is exact (by (2), (1) and Corollary 5.8). This induces an
injective homomorphism g as indicated such that the diagram commutes.
The middle map is an isomorphism by Proposition 5.6, hence g is also an
isomorphism. The claim follows and therefore we are done.

�

6. Twisting simple modules

The following theorem describes L1Ts on simple modules. A description of TsL,
when L is s-free is given by Theorem 6.3.

Theorem 6.1.

L1TsL(x) ∼=

{

L(x) if x < sx

0 if x > sx.

Proof. By Theorem 2.2, LiTsL(x) = 0 for i > 1, hence L1TsL(x) is a submodule
of L1Ts∇(x) (using that L(x) is a submodule of ∇(x)). The latter vanishes if
x > xs by Theorem 2.3. Let now x < sx. Corollary 4.2 and Theorem 5.1 imply
that EndO(L1TsL(x)) = EndO(L(x)), hence L1TsL(x) 6= 0. By Corollary 5.9
L1TsL(x) is s-finite. Being a submodule of L1Ts∇(x) = Kx,sx (Theorem 2.3) it
has simple socle L(x). Let L(z) be s-finite and assume HomO(L1TsL(y), L(z)) 6= 0.
Then 0 6= HomO(L1TsL(y),L1TsL(z)) = HomO(L(y), L(z)), by Corollary 4.2 and
Lemma 5.1. Hence we proved, that L1TsL(x) has simple socle and simple head
L(x). On the other hand L(x) occurs at most once as a composition factor of
TsL(x) and TsL(x) 6= 0. This proves the remaining part. �

The following consequence of Theorem 6.1 bares some resemblance with the
Borel-Weil-Bott Theorem for cohomology of line bundles on flag varieties (cf. [Jan87,
Corollary 5.5])

Corollary 6.2. Let w ∈ W , then

RiGwL(e) ∼=

{

L(e) if i = l(w)

0 if i 6= l(w).

Proof. Note that L(e) is s-finite for all s ∈ S. Hence the corollary is an immediately
consequence of Theorem 6.1 and the fact that Gsw

∼= GwGs if sw > w. (Observe
that since Gs∇(e) ∼= ∇(s · 0) we have that Gs transforms injective modules into
Gw acyclic objects; i.e. we have the Grothendieck spectral sequence (see [McC85,
Theorem 10.7]) for the composition GwGs.) �

Theorem 6.3. Let L ∈ Oo be a simple s-free module. Then

(1) TsL has simple head L.
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(2) TsL is an indecomposable extension of some s-finite submodule U with L.
(3) dim HomO(L′, TsL) = dim Ext1O(L′, L) for any simple object L′ ∈ O.
(4) soc(U) ∼= hd(U).

Proof. Let P be an indecomposable projective module with s-free head. By Corol-
lary 5.3, we have TsP ∼= P , hence dim HomO(P, TsL) = dim HomO(TsP, TsL) =
dim HomO(P, L) by Corollary 4.2, Theorem 2.2 and Theorem 6.1. Hence, L is the
only s-free composition factor occurring in TsL and its multiplicity is one. Since
Ts, hence Gs, annihilates all s-finite objects, the head of TsL has to be s-free, so it
is isomorphic to L. Altogether, TsL is an indecomposable extension of some s-finite
U with L.
Let L′ be an s-finite simple module in Oo. Using again Corollary 4.2 and Theo-
rem 6.1 we get

dim HomO(L′, TsL) = dim HomO(L1TsL
′, TsL)

= dim HomDb(Oo)(LTsL
′,LTsL[1])

= dim HomDb(Oo)(L
′, L[1])

= dim Ext1O(L′, L).

(Here, [·] denotes the ‘translation functor’ on Db(O)).
To prove (4) we consider the exact sequence

0 → U −→ TsL −→ L → 0.(6.1)

For any s-finite simple object L′ this gives an exact sequence

0 = HomO(TsL, L′) −→ HomO(U, L′) −→ Ext1O(L, L′) −→ Ext1O(TsL, L′) → · · ·

On the other hand, Exti
O(TsL, L′) ∼= Exti−1

O (L,R1GsL
′) ∼= Exti−1

O (L, L′) for any
i > 0 by Corollary 4.2, Theorem 4.1 and Theorem 6.1. In particular, the last term in
the sequence above vanishes and implies HomO(U, L′) ∼= Ext1O(L, L′). Comparing
this with (3) proves statement (4). �

7. The Kazhdan-Lusztig conjecture

In this section we demonstrate how our results on twisting functors reduce the
Kazhdan-Lusztig conjecture [KL79] on the characters of irreducible modules in
O to a rather innocent looking statement, Claim 7.1 below. The arguments for
this reduction are borrowed from [Vog79], [And86] and [CPS93] with the necessary
modifications and simplifications called for by our approach. Of course, it is well
known that the Kazhdan-Lusztig conjecture holds, [BB93] and [BK81].

An implication of the Kazhdan-Lusztig conjecture. By Theorem 6.3 it is
clear that the existence of a non-trivial extension between simple modules with
adjacent highest weights (a well-known consequence of the Kazhdan-Lusztig con-
jecture) gives the following

Claim 7.1. For all x ∈ W with x < w0 there exists s ∈ S such that L(x) is a
submodule of TsL(sx).

We denote the kernel of a surjective homomorphism TsL(sx)→→L(sx) by Us(sx)
(see Theorem 6.3). It is clear from weight considerations that x · 0 is the unique
highest weight in Us(sx) and that it has multiplicity 1. Since the socle of Us(sx) is
isomorphic to its head by Theorem 6.3, we see that the above statement is equivalent
to the following
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Claim 7.2. For all x ∈ W with x < w0 there exists s ∈ S such that L(x) is a
summand of Us(sx).

The following lemma describes assumptions under which the equivalent Claims 7.1
and 7.2 hold

Lemma 7.3. Claim 7.1 (or Claim 7.2) is true if for any x ∈ W there exists s ∈ S
such that sx > x and one of the following (equivalent) statements hold:

(1) hd rad∆(x) is not s-finite.
(2) HomO(Ts rad∆(x), TsL(sx)) 6= 0.

Proof. Let x ∈ W and s ∈ S such that sx > x. Since HomO(Ts rad∆(x), TsL(sx)) ∼=
HomO(rad∆(x), L(sx)) the second property implies the first. Consider the short
exact sequence ∆(sx) ↪→ ∆(x)→→Q with s-finite quotient Q. In particular, we get
a short exact sequence of the form ∆(sx) ↪→ rad∆(x)→→Q′, with s-finite quotient
Q′. Hence, L(sx) has to occur (as the only s-free candidate) as composition factor
in the head of rad∆(x). Since HomO(∆(x), L(sx)) = 0 = Ext1O(∆(x), L(sx)) by
weight considerations, we get HomO(rad∆(x), L(sx)) ∼= Ext1O(L(x), L(sx)). By
assumption this does not vanish and gives Claim 7.1. �

Consequences under the assumption of Claim 7.1. The rest of this section
is devoted to proving Claim 7.1 (or Claim 7.2) implies the Kazhdan-Lusztig con-
jecture.
The first consequence of the statement in Claim 7.1 is the following even-odd van-
ishing result.

Proposition 7.4. Assume Claim 7.1. If Exti
O(∆(y), L(x)) 6= 0 for some i ∈ N

and x, y ∈ W then i ≡ l(y) − l(x)(mod 2).

Proof. We shall proceed by descending induction on x ∈ W . If x = w0 then
L(x) = ∇(w0) and we have Exti

O(∆(y),∇(w0)) = 0 unless i = 0 and y = w0.
So assume now that x < w0 and pick s as in Claim 7.1. Then sx > x because

otherwise TsL(sx) = 0 by Theorem 6.1. Hence by induction the proposition holds
for sx.

First case: sy < y: The short exact sequence

0 → Us(sx) → TsL(sx) → L(sx) → 0

gives rise to the long exact sequence

· · · → Exti−1
O

(

∆(y), L(sx)
)

→ Exti
O

(

∆(y), Us(sx)
)

→ Exti
O

(

∆(y), TsL(sx)
)

→ · · · .

The assumption sy < y gives ∆(y) ∼= Ts∆(sy) by formula (2.3) and hence we

get Exti
O(∆(y), TsL(sx)) ∼= Exti

O(Ts∆(sy), TsL(sx)) ∼= Exti
O(∆(sy), L(sx)). Our

induction hypothesis therefore shows that Exti
O(∆(y), Us(sx)) = 0 if i 6≡ l(y) −

l(x)(mod 2). By Claim 7.2 this means that also Exti
O(∆(y), L(x)) = 0 for such i.

Second case: sy > y: Note that since sx > x we have GsL(x) = 0 and
R1GsL(x) ∼= L(x) by Theorem 4.1, Lemma 5.1 and Theorem 6.1. Therefore,
Exti

O(∆(y), L(x)) ∼= Exti
O(∆(y),R1GsL(x)) ∼= Exti+1

O (Ts∆(y), L(x)) (the last equal-
ity by Theorem 6.1). Now the assumption sy > y implies Ts∆(y) ∼= ∆(sy)

(formula (2.3)) and hence Exti
O(∆(y), L(x)) ∼= Exti+1

O (∆(sy), L(x)) = 0 for i 6≡
l(y) − l(x)(mod 2) by the first case treated above. �

Corollary 7.5. Assume Claim 7.1. If Ext1O(L(y), L(x)) 6= 0 for some x, y ∈ W
then l(y) − l(x) is odd.
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Proof. We may assume x ≤ y, since the roles of x and y can be interchanged by
dualising. The short exact sequence

0 → rad∆(y) → ∆(y) → L(y) → 0

gives that Ext1O(L(y), L(x)) ⊆ Ext1O(∆(y), L(x)), because HomO(rad ∆(y), L(x)) =
0 when x ≤ y. Now the statement follows from Proposition 7.4. �

Proposition 7.6. Assume Claim 7.1. In the notation of Claim 7.2 we have for all
y ∈ W , y 6= x

HomO(∆(y), Us(sx)) ∼=

{

Ext1O(∆(y), L(sx)) if sy > y, l(y) ≡ l(x)(mod 2),

0, otherwise.

Proof. Since Us(sx) is s-finite by Theorem 6.3, the homomorphism space in question
is trivial, if L(y) is s-free. So, let us assume sy > y. Then we have ∆(sy) ⊂ ∆(y). As
L(sy) is not s-finite we have HomO(∆(sy), Us(sx)) = 0, i.e HomO(∆(y), Us(sx)) ∼=
HomO

(

∆(y)/∆(sy), Us(sx)
)

. On the other hand the four term sequence (2.4) gives
the exact sequence

0 → ∆(y)/∆(sy) → Ts∆(sy) → ∆(sy) → 0.

We therefore have a resulting exact sequence

HomO

(

Ts∆(sy), TsL(sx)
)

→ HomO

(

∆(y)/∆(sy), TsL(sx)
)

→

Ext1O
(

∆(sy), TsL(sx)
)

→ Ext1O
(

Ts∆(sy), TsL(sx)
)

.

Here the first term is zero because we can erase the two Ts (Corollary 4.2 using
Theorem 2.2 and Theorem 6.1) and we assumed y 6= x. Also in the last term we
can erase the Ts’s and since ∆(sy) ∼= Ts∆(y) by formula (2.3), we may similarly
identify the third term with Ext1O(∆(y), L(sx)). The proposition now follows by
combining with Proposition 7.4. �

We shall need the following slight variation of a result due to Cline, Parshall and
Scott.

Proposition 7.7. (cf. [CPS93, Theorem 4.1]) Assume Ext1O(∆(y), L(x)) = 0 for
all x, y ∈ W with l(y) ≡ l(x)(mod 2). Let U ∈ Oo with soc U ∼= hd(U) and with
the property HomO(∆(y), U) = 0 = HomO(U,∇(y)) for all y ∈ W with l(y) odd
(respectively even). Then U is completely reducible.

Proof. Choose y ∈ W such that y · 0 is a maximal weight in U . We shall show
that all occurrences of the composition factor L(y) in U are in the head of U . The
fact that the socle of U is isomorphic to its head then forces L(y) to split off as a
summand of U . By repeating this process we get the desired decomposition of U
into a direct sum of simple modules.

So assume that L(y) occurs in the radical rad(U) of U . Since y · 0 is a maximal
weight of rad(U), we have a non-zero homomorphism ∆(y) → rad(U). We let Y
denote the image of this homomorphism and consider the map Y → L(y) ⊂ ∇(y).
The maximality of y · 0 as a weight of U means that this extends to a homomorphism
U → ∇(y), because Ext1O(U/Y,∇(y)) = 0. The image Q of this homomorphism
then contains L(y) properly. So we may choose z ∈ W such that z · 0 is a maximal
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weight of Q/L(y). Then we have

0 6= HomO(∆(z), Q/L(y)) ⊂ HomO(∆(z),∇(y)/L(y))

∼= Ext1O(∆(z), L(y)).

The last isomorphism comes from the fact that Exti
O(∆(z),∇(y)) = 0 for all i

when z 6= y. By our assumption this implies that l(z) − l(y) is odd. On the other
hand, both HomO(∆(y), U) and HomO(U,∇(z)), are non-zero (the latter because
the composite U → Q → Q/L(y) → ∇(z) is non-zero). Therefore l(y) and l(z) are
both odd (respectively even) and we have a contradiction. �

The following result follows easily from what we have proved already:

Theorem 7.8. Assume Claim 7.1. In the notation of Claim 7.2 we have that
Us(sx) is completely reducible.

Proof. Since Us(sx) is s-finite (Theorem 6.3), HomO(Us(sx),∇(y)) = 0 if y > sy.
The short exact sequence Us(sx) ↪→ TsL(sx)→→L(sx) gives rise to an exact sequence

HomO(L(sx),∇(y)) → HomO(TsL(sx),∇(y)) → HomO(Us(sx),∇(y))

→ Ext1O(L(sx),∇(y)).

Let now HomO(Us(sx),∇(y)) 6= 0, hence y < sy hence HomO(TsL(sx),∇(y)) ∼=
HomO(L(sx),∇(sy)), i.e. x = y or 0 6= Ext1O(L(sx),∇(y)) = Ext1(∆(y), L(sx)).
Proposition 7.4 implies l(x) ≡ l(y) mod2. Together with Proposition 7.6 we get
HomO(∆(y), Us(sx)) = 0 = HomO(Us(sx),∇(y)) if l(x) 6≡ l(y) mod 2. Hence,
Proposition 7.4 and Theorem 6.3 show that we may apply the previous Proposi-
tion 7.7. to U = Us(sx). �

The conclusion in the previous theorem is equivalent to Vogan’s conjecture, see
[Vog79] and [And86]. It implies the Kazhdan-Lusztig conjecture ([KL79, Conjecture
1.5]), namely that the following identity holds in the Grothendieck group of Oo for
all x, y ∈ W :

[L(x)] =
∑

y∈W

(−1)l(x)−l(y) Pywo,xwo
(1) [∆(y)].(7.1)

Here, Px,y ∈ Z[q] denotes the Kazhdan-Lusztig polynomial corresponding to x and
y as defined in [KL79]. To see that (7.1) follows from Theorem 7.8 we observe first
that we have for all M ∈ Oo the following equality

[M ] =
∑

y∈W

(

∑

i∈N

(−1)i dim Exti
O(∆(y), M)

)

[∆(y)].(7.2)

In fact, this is clear for M = ∇(x) with x ∈ W arbitrary, because we have

dim Exti(∆(y),∇(x)) = 1 if i = 0 and x = y, and dim Exti(∆(y),∇(x)) = 0
otherwise. The formula follows then for arbitrary M by additivity. To prove for-
mula (7.1) it is therefore enough to prove the following

Proposition 7.9. Assume Claim 7.1. Then we have for all x, y ∈ W

Pywo,xwo
=

∑

y∈W

(−1)i dim Ext
l(y)−l(x)−2i

O

(

∆(y), L(x)
)

qi.
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Proof. The proof of this proposition is the same as that of Proposition 2.12 in
[And86]. It goes by descending induction on the length of x and relies on the
fact that if sx > x for some s ∈ S then Us(sx) is semisimple (Theorem 7.8).
Propositions 7.4 and 7.6 are used also. �

Altogether, we proved that Claim 7.1 (or Claim 7.2) is analogous to the validity
of the Kazhdan-Lusztig conjecture.
(“Analogous” in the sense that for all wo 6= x ∈ W we have the non-vanishing
of Ext1O(L(x), L(sx)) for some simple reflection s such that sx > x instead of
Ext1O(L(x), L(xt)) 6= 0 for some simple reflection t with xt > x. However, using
the equivalence between Oo and a certain category of Harish-Chandra bimodules
from [BG80] we get Ext1O(L(x), L(sx)) = Ext1O(L(x−1), L(x−1s)); in the bimodule
picture it is just given by interchanging the left- and right U-module structure; cf.
[Jan83, 7.28]).

A proof of Claim 7.1 or Claim 7.2 or a proof of any of the statements in Lemma 7.3
would therefore give a proof of the Kazhdan-Lusztig conjecture.
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