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THE SCATTERING MATRIX FOR �0(N) WITH A PRIMITIVE, REAL

CHARACTER.

S�REN FOURNAIS

Abstract. We study the scattering matrix for the congruence subgroups �0(N ), with a char-
acter � corresponding to a real, primitive character �N . The existence of such a character
obviously puts restrictions on N . We obtain an explicit expression for the scattering matrix,
which turns out to be "skew-diagonal".
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1. Introduction

It is common knowledge among specialists in number theory that the Laplacian on certain
hyperbolic surfaces contains information on deep number theoretic quantities. This insight is,
among others, due to Maass and Selberg (see for instance [Hej83] or [Kub73]).
An important function in this context is the so-called scattering matrix C(s) (for a connection

to scattering theory see [LP76]), which is the object of study in this article. We will look at
the Hecke subgroups �0(N), where

�0(N) = f
�

a b
Nc d

�
2 PSL(2;Z)jN; c 2Zg:

On these groups we will de�ne characters �(

�
a b
Nc d

�
= �N (d), where �N is a real, even,

primitive character mod N . Let A(�0(N); �) be the Laplacian on the hyperbolic plane H
restricted to the subspace of functions f satisfying

f(g:z) = �(g)f(z);
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2 S�REN FOURNAIS

for all g 2 �0(N), then we will calculate the corresponding scattering matrix explicit. This is
the main result of this article which will be stated more precisely below.
Now we will recall som notation and notions from number theory and Selberg theory and

explain the structure of the article.
It is known that one can chose a fundamental domain for �0(N) as a hyperbolic polygon with

a number of cusps. In each of these cusps � we can chose a parabolic element P� of �0(N) that
generates the stabilizer of � i.e.

< P� >= fg 2 �0(N)jg:� = �g:
The character � is singular in � if �(P�) = 1 and non-singular if �(P�) 6= 1. We will also say
that � leaves the cusp � open if � is singular there and say that � closes the cusp � if � is
non-singular in �. In each open cusp � we have a (family of) generalised eigenfunction(s) - the
Eisenstein series - de�ned as

z 7! E(z; s;�) =
X


2<P�>n�0(N)

ys(g�:
:z)�(
);

where y(w) = =(w) = the imaginary part of the complex number w, and where g� 2 PSL(2;R)
satis�es:

g�:� =1; g�P�g
�1
� z = z + 1 for all z 2 H:

Let E(z; s;�) be a vector consisting of the Eisenstein series for a complete set of inequivalent,
open cusps. Then there exists a matrix C(s) - the scattering matrix - such that

E(z; s;�) = C(s)E(z; 1 � s;�):

For all the groups �0(N) that we will consider the open cusps are a subset of f0;1; 1
d
g where

d runs over all divisors of N . Let us order the divisors corresponding to open cusps:

1 < d1 < d2 < � � � < dh�2 < N;

and write

E(z; s;�) = (E0(z; s;�); E 1
d1
(z; s;�); � � � ; E1(z; s;�)):

Then the result of this paper can be stated:

C(s) =

�
N

�

�1�2s
L(2 � 2s; �N )

L(2s; �N)

(�s)!
(s� 1)!

�0
BBBBBBBBB@

0 0 � � � 0 N1�s �(�1)
�(�N)

0
N1�s
d1

ds1

�(�d1)

�(�Nd1)
0

... � ...

0
N1�s
dh�2

ds
h�2

�(�dh�2
)

�(�Ndh�2
) 0

N�s �(�N)
�(�1)

0 � � � 0 0

1
CCCCCCCCCA
:;

where Nd = N=d and � (�) is a Gauss sum.
For a more precise statement corresponding to each of the above 4 cases, see Theorem 6.2.
In this article we will calculate the scattering matrix for the following groups with their

respective characters:
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� �0(N1), where N1 =
Qn

i=1 pi � 1 mod 4 and where the pi are di�erent, odd primes. The
character is in this case �N1(d) =

Q
i �pi(d), where

�pi(d) =

8<
:

0 (d; pi) > 1
1 (d; pi) = 1 and 9x 2Z: x2 � d mod pi
�1 if not

� �0(N2), N2 = 4M2, M2 =
Qn

i=1 pi � 3 mod 4 and the pi are again di�erent, odd primes.
In this case the character is �N2(d) = �4(d)

Q
i �pi(d), where �pi is as above and

�4(d) =

8<
:

0 (d; 4) > 1
1 d � 1 mod 4
�1 d � 3 mod 4

� �0(N3), N3 = 8M3, M3 =
Qn

i=1 pi � 1 mod 4, the pi's are again di�erent, odd primes.
The character is �N3(d) = �8(d)

Q
i �pi(d), where

�8(d) =

8<
:

0 (d; 8) > 1
1 d � �1 mod 8
�1 d � �3 mod 8

� Finally, we will consider �0(N4),N4 = 8M4, M4 =
Qn

i=1 pi � 3 mod 4, the pi's are again
di�erent, odd primes. The character is �N4(d) = �4(d)�8(d)

Q
i �pi(d).

These cases give all real, even1, primitive characters (see [Dav67]).
For clarity of exposition, we will �rst go through the entire calculation for the �rst case above,

i.e. N =
Q

i pi � 1 mod 4, where the pi's are di�erent, odd primes. This is the subject of
Sections 2 - 5 below. Then in Section 6 we will explain the few extra arguments needed in the
remaining cases and state the corresponding results.

2. Cusps

We know from the general theory of Fuchsian groups (see [Shi71]) that the number of cusps
h for �0(N) satis�es:

h =
X
djN

�((N=d; d));

where � is Euler's � function i.e.

�(n) = #(Z=nZ)� = #fk 2 f0; 1; � � � ; n� 1gj(k; n) = 1g:
Since N is a product of di�erent primes N =

Qn
i=1 pi, where the pi's are primes and pi 6= pj

when i 6= j, we thus get:

h =
X
djN

1 = #fd 2 1; �; N
���djNg:

An easy calculation gives that f0;1; 1=d where djN; 1 < d < Ng is a set of pairwise inequivalent
cusps. Since the set contains the right number of elements it must obviously be a complete set.

1We need �N (�d) = �N (d) for � to be well-de�ned.
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3. Eisenstein Series

In this section we want to prove that the Eisenstein series have the following form

Lemma 3.1. The Eisenstein series for the cusp 1
d
with character � is given by the following

expression

E 1
d
(z; s;�) = N�s

d �Nd
(�1)

X

;�:(
;�)=1

�Nd
(
)�d(�)ys

jd
z + �j2s ;

where Nd = N=d.

Proof. Let d: 1 < d < N be a divisor of N . Then the parabolic generator of the subgroup that
�xes 1

d
is

P =

�
1 0
d 1

��
1 w
0 1

��
1 0
�d 1

�

=

�
1 �wd w
�d2w 1 + dw

�
:

Since this has to be an element of �0(N) we get w = Nd and thus �(P ) = �(1) = 1 i.e. the
character is singular in the cusp 1

d
.

Let us furthermore write ~�1 =<

�
1 w
0 1

�
> and calculate the cosets ~�1 n g�1�0(N)g,

where g =

�
1 0
�d 1

�
sends 1

d
to 1:

�
1 0
�d 1

��
� �
N
 �

��
1 0
d 1

�
=

�
�+ �d �

N
 � �d + d� � �d2 � � �d

�

=

�
�0 �0

d
0 �0

�
2 �0(d):

Notice that 
 0��0 = Nd
�� and therefore (
0��0; Nd) = 1. Let, on the other hand

�
� �
d
 �

�
2

�0(d) and (
 � �;Nd) = 1. Then we search n 2Zsuch that�
1 0
d 1

��
�+ nd
 � + n�

d
 �

��
1 0
�d 1

�
2 �0(N):

Now �
1 0
d 1

��
�+ nd
 � + n�

d
 �

��
1 0
�d 1

�

=

�
� + nd
 � �d� nd� � + n�

d
 + d� + nd2
 � �d2 � nd2� � d� �d+ nd� + �

�
;

so this is the case i�

N jd
 + d� + nd2
 � �d2 � nd2� � d�;

i.e. i�


 + �� �d� � � nd(� � 
) mod Nd: (3.1)

That equation surely has integer soultions since (d(�� 
); Nd) = 1. From (3.1) we also see that
two di�erent integer solutions n; n0 satisfy

0 � n� n0 mod Nd;
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which is equivalent to the existence of an m 2Zsuch that�
1 mw
0 1

��
� + nd
 � + n�

d
 �

�
=

�
�+ n0d
 � + n0�

d
 �

�
:

Finally, we need to calculate �(g�1
�

�+ nd
 � + n�
d
 �

�
g), where n is as above. We get, by

using (3.1) to eliminate n:

�(g�1
�

� + nd
 � + n�
d
 �

�
g) = �N(�d+ nd� + �)

= �d(�)�Nd
(�d+ nd� + �)

= �d(�)�Nd
(
 � �)�Nd

((
 � �)(�d+ �) + nd�(
 � �))

= �d(�)�Nd
(
 � �)�Nd

((
 � �)(�d+ �) + �(� + �d� 
 � �))

= �d(�)�Nd
(
 � �)�Nd

(
�d� ��)

= �d(�)�Nd
(
 � �)�Nd

(�1):
Thus, we get

E(g�1z; s;�) = w�s�Nd
(�1)

X

;�:(
;�)=1

�d(�)�Nd
(
 � �)ys

jd
z + �j2s :

This is easily seen to imply the the theorem.

For the cusp at 0 we have g =

�
0 1
�1 0

�
and get:

� w = N ,

� P =

�
1 0
�N 1

�
,

� ~� = �0(N),

and therefore

E0(g
�1z; s;�N) = N�s X


;�:(
;�)=1

�N(�)ys

j
z + �j2s ;

and �nally

E0(z; s;�N) = N�s X

;�:(
;�)=1

�N (
)ys

j
z + �j2s ;

where we used that �N(�1) = 1.
Finally, we can easily see that

E1z; s;�N) =
X


;�:(
;�)=1

�N(�)ys

jN
z + �j2s :

4. Functional Equation for B�

Let us look at

Bch
d (z; s) =

X
(
;�)6=(0;0)

�Nd
(
)�d(�)(dy)s

j
dz + �j2s :
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In the x variable this is a periodic function with period 1, so we calculate the corresponding
Fourier series. For su�ciently large <s the sums converge uniformly and the calculation below
becomes justi�ed.Z 1

0

d�sBch
d (z; s) dx

= 2ys�Nd
(0)

1X
�=1

�d(�)

�2s
+ 2

1X

=1

�Nd
(
)

1X
�=�1

�d(�)

Z 1

0

ys dx

[(
dx+ �)2 + 
2d2y2]s
:

We continue the calculation with the last term only:

2
1X

=1

�Nd
(
)

1X
�=�1

�d(�)

Z 1

0

ys dx

[(
dx+ �)2 + 
2d2y2]s

= 2ys
1X

=1

�Nd
(
)


dX
�=1

�d(�)

1X
m=�1

Z 1

0

ys dx

[(
dx+ � +m
d)2 + 
2d2y2]s

= 2ys
1X

=1

�Nd
(
)


dX
�=1

�d(�)

Z 1

�1

ys dx

[(
dx+ �)2 + 
2d2y2]s

= 2y1�sd�2s
1X

=1

�Nd
(
)


2s�1

Z 1

�1

dt

(t2 + 1)s

8<
:

d if �d � 1
�(d) if �d = 1 on (Z=dZ)�

0 if not

= 2y1�sd�2sL(2s � 1; �Nd
)
p
�
(s� 3=2)!

(s� 1)!

8<
:

d if �d � 1
�(d) if �d = 1 on (Z=dZ)�

0 if not
:

We also calculate the other Fourier coe�cients:Z 1

0

d�sBch
d (z; s)e�2�inx dx

= 2ys
1X

=1

�Nd
(
)

d
X
�=1

�d(�)
1X

m=�1

Z 1

0

e�2�inx dx
[(
d(x+m) + �)2 + 
2d2y2]s

= 2ys
1X

=1

�Nd
(
)


2s

d
X
�=1

�d(�)e
2�in �

d


Z 1

�1

e�2�inyt

[t2 + 1]s
dt

= 2y1�sd�2s2�s
jnyjs�1=2
(s� 1)!

Ks�1=2(2�jnjy)
1X

=1

�Nd
(
)


2s

d
X
�=1

�d(�)e
2�in �

d
 ;

Where we have introduced the standard notation for the Bessel function K as in [Kub73]. Now

e2�in=

d
X
�=1

�d(�)e
2�in �

d
 =

d
X
�=1

�d(�)e
2�in �

d
 ;

so this is zero unless 
jn, and we get:

1X

=1

�Nd
(
)


2s

d
X
�=1

�d(�)e
2�in �

d
 =
X

k=n

�Nd
(
)


2s�1

dX
�=1

�d(�)e
2�ik �

d :
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We want to write
dX

�=1

�d(�)e
2�ik �

d = �d(k)� (�d);

where

� (�d) =
dX

j=1

e2�i
j
d�d(j):

This is easily seen to be true, by a simple change of summation variable, when (k; d) = 1, so
we only need to prove that if (k; d) > 1, then

dX
�=1

�d(�)e
2�ik �

d = 0:

This is not true for all characters - we will use the product structure of �d to prove it for the
characters we are interested in:

Lemma 4.1. Let d =
Q

i pi, where the pi are di�erent, odd primes and let �d(�) =
Q

i �pi(�).
Suppose (k; d) > 1, then

dX
�=1

�d(�)e
2�ik �

d = 0:

Proof. Let d = Pd0, k = Pk0 where (d0; k0) = 1, then

dX
�=1

�d(�)e
2�ik �

d =
dX

�=1

�d(�)e
2�ik0 �

d0

=

d0X
�=1

e2�ik
0 �

d0

P�1X
j=0

�d(� + jd0)

=
d0X
�=1

e2�ik
0 �
d0

P�1X
j=0

�d0(�)�P (� + jd0); (4.1)

and
PP�1

j=0 �P (� + jd0) =
P

l mod P �P (l) = 0; since P is a product of distinct, odd primes.

So �nally we get, for the characters we are interested in:Z 1

0

Bch
d (z; s)e�2�inx dx = 4

p
y
��
d

�s jnjs�1=2
(s� 1)!

Ks�1=2(2�jnjy)� (�d)
X

k=jnj

�Nd
(
)


2s�1
�d(k)

It can now easily be seen, at least formally, that

(s� 1)!

� (�d)

�
d

�

�s

Bch
d (z; s) =

(�s)!
� (�Nd

)

�
Nd

�

�1�s
Bch
Nd
(z; 1� s); (4.2)

since they have the same Fourier series. This formal argument can be made rigorous, since
we will show in the next section that the Bch

d (z; s) can be written as a linear combination of
Eisenstein series. Since the Eisenstein series can be analytically continued (as meromorphic
functions, see [Kub73]) to the whole s-plane, this proves (4.2) for all but a discrete set of s.
Before we go on to calculate the scattering matrix, let us analyze the expression � (�d):

Lemma 4.2.

� (�d)
2 = �d(�1)j� (�d)j2 = �d(�1)d:
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Proof. Since �d is real we have:

� (�d) = � (�d) =
dX

j=1

e2�ij=d�d(j)

=
dX

j=1

e�2�ij=d�d(j)

= �d(�1)� (�d):

This proves the �rst equality. The other will be proved using Lemma 4.3 below. Since e�p
d
form

an orthonormal basis for L2(Z=dZ) we have

�(d) = k�dk22 =
dX

�=1

he�; �di
d

=
�(d)

d
j� (�d)j2:

This �nishes the proof of the lemma.

Lemma 4.3. Let e�(j) = e2�i�j=d, where � 2 f1; 2; � � � ; d� 1g. Then

he�; �di = �d(�)� (�d);

where h; i denotes the natural (unnormed) inner product on Z=dZ.

Proof. This is obvious for � 2 (Z=dZ)�. For (�; d) > 1 it is proved by the same calculus as in
(4.1).

5. Scattering Matrix

We will use an idea by Huxley [Hux84] to calculate explicitly the scattering matrix. Let us
de�ne:

Bch
d (dz; s)

def
=

X
(
;�)6=(0;0)

�Nd
(
)�d(�)(dy)s

jd
z + �j2s

=
1X
n=1

X
(
;�)=1

�Nd
(n
)�d(n�)(dy)s

jdn
z + n�j2s

= L(2s; �N)
X

(
;�)=1

�Nd
(
)�d(�)(dy)s

jd
z + �j2s ;

where L(2s; �N ) =
P

n
�N(n)
n2s

is the Dirichlet L-series. Now, according to Section 3X
(
;�)=1

�Nd
(
)�d(�)(dy)s

jd
z + �j2s = N s�Nd
(�1)E 1

d
(z; s;�);

with appropriate interpretations in the cases d = 1; N . We get from (4.2)�
d

�

�s (s� 1)!

� (�d)
Bch
d (dz; s) =

�
Nd

�

�1�s (�s)!
� (�Nd

)
Bch
Nd
(Ndz; 1� s);

where
� (�d) =

X
d0 mod d

e2�id
0=d�d(d

0):
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Let us write

E(z; s) = (E0(z; s;�); E 1
d1
(z; s;�); � � � ; E 1

dh�2

(z; s;�); E1(z; s;�));

where the di's satisfy: dijN , 1 < d1 < � � � < dh�2 < N . Let us likewise write:

Bch(z; s) = (Bch
1 (z; s); Bch

d1
(d1z; s); � � � ; Bch

N (Nz; s));

then we have the relation

Bch(z; s) = N sL(2s; �N )D1E(z; s);
where D1 is the diagonal matrix

D1 = diag(�N(�1); �Nd1
(�1); � � � ; �Ndh�2

(�1); 1):

Now the functional equation can be written

Bch(z; s) =
(�s)!
(s� 1)!

�
1

�

�1�2s
D2PBch(z; 1� s);

where

D2 = diag(N1�s � (�1)
� (�N)

;
N1�s

d1

ds1

� (�d1)

� (�Nd1)
; � � � );

and

P =

0
BBBB@

0 � � � 1
1

... � ...
1

1 � � � 0

1
CCCCA :

Thus, we get the following expression for the scattering matrix: (since D�1
1 = D1)

C(s) =

�
1

N sL(2s; �N)

� 
(�s)!
(s� 1)!

�
1

�

�1�2s
D2P

!�
N1�sL(2� 2s; �N)D1

�

=

�
N

�

�1�2s
L(2 � 2s; �N)

L(2s; �N )

(�s)!
(s� 1)!

D1D2PD1

=

�
N

�

�1�2s
L(2 � 2s; �N)

L(2s; �N )

(�s)!
(s� 1)!

P 0;

where we used that �N(�1) = 1 and where

P 0 =

0
BBBBBBBBB@

0 0 � � � 0 N1�s �(�1)
�(�N)

0
N1�s
d1

ds1

�(�d1)

�(�Nd1)
0

... � ...

0
N1�s
dh�2

ds
h�2

�(�dh�2
)

�(�Ndh�2
) 0

N�s �(�N)
�(�1)

0 � � � 0 0

1
CCCCCCCCCA
:
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6. Generalisation

In the general case we will need a stronger version of Lemma 4.1. Let us look at a number d
being of the form ofN1; N2; N3 or N4 considered in the introduction. Let �d be the corresponding
character. Then we will prove the following lemma:

Lemma 6.1. Suppose (k; d) > 1 then

dX
�=1

�d(�)e
2�ik�=d = 0:

Proof. We will need to consider two di�erent cases. Let P = (k; d) then one possibility is that
P itself is of the form considered for d. This will be our �rst case below. If this is not the case
we have 3 possibilities:

� d = 4
Q

i2I pi, d=4 � 3 mod 4 and P = 2
Q

i2I 0; where I
0 � I.

� d = 8
Q

i2I pi, d=8 � 1 mod 4 and P = 2a
Q

i2I 0; where I
0 � I and a = 1 or 2.

� d = 8
Q

i2I pi, d=8 � 3 mod 4 and P = 2a
Q

i2I 0; where I
0 � I and a = 1 or 2.

Each of these 4 possibilities will be treated below:
1st case: P itself is of the form considered for d.
Write d = Pd0; k = Pk0 and calculate:

dX
�=1

�d(�)e
2�ik�=d =

X
�d0(�)�P (�)e

2�ik0�=d0

=

d0X
�=1

P�1X
j=0

�d0(� + jd0)�P (� + jd0)e2�ik
0(�+jd0)=d0

=
d0X
�=1

�d0(�)e
2�ik0�=d0

P�1X
j=0

�P (� + jd0)

=
d0X
�=1

�d0(�)e
2�ik0�=d0

X
l mod P

�P (l)

= 0:

2nd case: d = 4
Q

i2I pi, d=4 � 3 mod 4 and P = 2
Q

i2I 0; where I
0 � I:

Here we write k = 2k0 and d = 4d0, where d0 is odd, and get:

dX
�=1

�d(�)e
2�i2k0�=d =

d0X
�=1

e�ik
0�=d0�d0(�)

3X
j=0

�4(� + jd0)e�ik
0(jd0+�)e�ik

0�

=
d0X
�=1

e�ik
0(�=d0+1)�d0(�)

X
l mod 4

�4(l)e
�ik0l

= 0

since the last sum vanishes. Notice, that we used the fact that d0 is odd to get the �rst equality.
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3rd case: d = 8
Q

i2I pi, d=8 � 1 mod 4 and P = 2a
Q

i2I 0; where I
0 � I and a = 1 or 2.

Here we write d = 8d0, k = 2k0 and get:

dX
�=1

�d(�)e
2�i2k0�=d =

d0X
�=1

�d0(�)
7X

j=0

�8(� + jd0)e2�i2k
0(�+jd0)=d

=
d0X
�=1

�d0(�)e
4�ik0�=d

7X
j=0

�8(� + jd0)e�ik
0j=2:

Now, d0 � 1 mod 4 and therefore e�il = (e�il)d
0

for all integers l, so

d0X
�=1

�d0(�)

7X
j=0

�8(� + jd0)e2�i2k
0(�+jd0)=d =

d0X
�=1

�d0(�)e
4�ik0�=de��ik

0�=2
X

l mod 8

�8(l)e
�ik0l=2;

and the sum mod 8 is zero.
4th case:
This case follows by a calculus similar to the 3rd case.

Now let us look at the di�erent groups:

6.1. �0(N2).
Here N2 = 4M2, M2 =

Qn
i=1 pi � 3 mod 4 and the pi's are di�erent, odd primes. It is easy

to check that a complete set of inequivalent cusps is given by f0;1; 1
d
g where d runs over all

divisors djN2, 1 < d < N2. Let us now check which of these cusps are open:

P =

�
1 0
d 1

��
1 w
0 1

��
1 0
�d 1

�
=

�
1 � wd w
�d2w 1 + dw

�
;

so because P 2 �0(N2), we get:

w =

�
4M2=d (d; 2) = 1 or 4jd
2M2=d d � 2 mod 4

:

When (d; 2) = 1 or 4jd it is obvious that �(P ) = 1. For d = 2
Qn1

i=1 we get:

�(P ) = �4M2(1 + 2M2) = �4(1 + 2M2);

but M2 � 3 mod 4 so 1 + 2M2 � 3 mod 4 and thus �(P ) = �1.
Thus the only open cusps are 0;1; 1

d
, where d = 4

Q
i2I pI or d =

Q
i2I pI where I runs over

all subsets of f1; 2; � � � ; ng. For these cusps we can calculate the Eisenstein series exactly as in
the proof of Lemma 3.1.

6.2. �0(N3).
N3 = 8M3, M3 =

Qn
i=1 pi � 1 mod 4.

Here again the cusps are f0;1; 1
d
g where d runs over all divisors djN3, 1 < d < N3. We get:

P 1
d
=

�
1� wd w
�d2w 1 + dw

�
;

so

w =

�
8M3=d (d; 2) = 1 or 8jd
4M3=d d � 2 or 4 mod 8

:

For (d; 2) = 1 or 4jd it is again clear that �(P 1
d
) = 1. For d � 2 mod 4 we get:

�(P 1
d
) = �N3(1 + 4M3) = �8(1 + 4M3) = �1;

since M3 � 1 mod 4.
Once again the proof of Lemma 3.1 goes through for the open cusps.
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6.3. �0(N4).
In this case the cusps and their widths are as for �0(N3). Write N4 = 8M4, M4 � 3 mod 4.
Since

�(P 1
d
) = �N4(1 + 4M4) = �8(1 + 4M4) = �8(5) = �1;

Exactly the same cusps as for �0(N3) are left open. Lemma 3.1 still holds, with the same proof,
if the following change of notation is respected: If d = 8

Q
i pi then �d(�) = �4(�)�8(�)

Q
i �pi(�).

6.4. Final Result.
For the open cusps we get, in each of the above cases, that the calculations in Sections 4 and 5
go through with the only change that we have to appeal to Lemma 6.1 (instead of Lemma 4.1)
in the proof of the functional equation for Bch

d (z; s). Thus we get:

Theorem 6.2. Let N be any of the Ni considered in the introduction and let � be the corre-
sponding character on �0(N). Let f0;1; 1

d1
; � � � ; 1

dh�2
g be a complete set of inequivalent, open

cusps under �, where 1 < d1 < d2 < � � � < dh�2 < N Notice that if the cusp 1
d
is open, then the

same is true for 1
Nd

, where Nd = N=d. Let us write

E(z; s;�) = (E0(z; s;�); E 1
d1

(z; s;�); � � � ; E1(z; s;�)):

Then
E(z; s;�) = C(s)E(z; 1 � s;�);

where

C(s) =

�
N

�

�1�2s
L(2� 2s; �N )

L(2s; �N )

(�s)!
(s� 1)!

�0
BBBBBBBBB@

0 0 � � � 0 N1�s �(�1)
�(�N)

0
N1�s
d1

ds1

�(�d1)

�(�Nd1)
0

... � ...

0
N1�s
dh�2

ds
h�2

�(�dh�2
)

�(�Ndh�2
)

0

N�s �(�N)
�(�1)

0 � � � 0 0

1
CCCCCCCCCA
:

In the case N = N4 the change of notation from Subsection 6.3 has to be respected.

References

[Dav67] H. Davenport, Multiplicative number theory, Markham, Chicago, 1967.
[Hej83] D. A. Hejhal, The Selberg trace formula for PSL(2;R), Lecture Notes in Mathematics no. 1001, vol. II,

Springer, 1983.
[Hux84] M. Huxley, Scattering matrices for congruence subgroups, Modular Forms (R. Rankin, ed.), Ellis Hor-

wood Limited, 1984.
[Kub73] T. Kubota, The elementary theory of Eisenstein series, Halsted Press, 1973.
[LP76] P.D. Lax and R.S. Philips, Scattering Theory for automorphic functions, Annals of Mathematical

Studies no. 87, Princeton University Press, 1976.
[Shi71] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten, Pub-

lishers and Princeton University Press, 1971.

E-mail address: fournais@imf.au.dk

Departments of Mathematical Sciences, Ny Munkegade, 8000 Aarhus C, Denmark


