Addendum

Theorem 6.12 of the Thesis holds in the following generality:

Theorem 6.12 Assume type $A_{n\geq 2}$, B_2 , C_n , D_n , E_6 , E_7 , E_8 , F_4 , or G_2 . For a weight μ in the first or second weight cell and any modular tilting module Q we have

$$[Q:T(\mu)] = [Q_q:T_q(\mu)].$$

Theorem 6.12 is known to be false in type A_1 and the Theorem is still open in type $B_{n\geq 3}$. The proof of Theorem 6.12 in types C_n and F_4 is not in the Thesis; write me if you want a copy. That the Theorem holds in type C_n , $n \geq 3$ and F_4 was expected, as the second weight cell is contained within the lowest p^2 -alcove in these types.

Errata

p. 181. 11-12: replace "... Figure 2 ..." with "Figure 1".

p. 21 l. 8: replace $H_k^0(\lambda)$ with $H_k^0(-w_0\lambda)$.

p. 46 l. -6: replace "From (5.4) in Chapter 4..." with "From Equation (5.4) in Chapter 5".

p. 48 Theorem 6.3 (ii): under the assumptions, ε is always 1.

p. 49 l. 13: replace "... Table 1 on page 34 ..." with "Table 2 on page 33".

- p. 57 l. 11: swap δ and β .
- p. 58 l. 2 : swap δ and β .

p. 61 l. -14 and l. -9: replace $T(\lambda)$ with $T(\gamma)$.

- p. 70 l. 7: replace $\lambda \mapsto \hat{\lambda} \langle \lambda, \alpha_{1,n}^{\vee} \rangle \alpha^{\vee} + p \alpha^{\vee}$ with $\lambda \mapsto \lambda \langle \lambda, \alpha_{1,n}^{\vee} \rangle \alpha_{1,n} + p \alpha_{1,n}$.
- p. 71 l. 8: replace $(i \neq n)$ with $(i \neq 1, n)$
- p. 77 l. 7: replace $a_{\lambda}T_n(\lambda)$ with $a_{\lambda}T_n(\lambda)_{\lambda}$.
- p. 83 Equation (9.6): subscript in summation should be $1 \le l \le j$.

Rasmussen, T.E.: 2002, Second Cell Tilting Modules, Ph.D. Thesis, University of Aarhus.