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Preface

This thesis reflects the main part of the research I have done during my four years as
a PhD student at the Department of Operations Research at the University of Aarhus.
My research has been centered around stochastic (integer) programming problems with
recourse, and hence it may be seen as a particular approach to the general field of
decision-making under uncertainty.

Without engaging in a lengthy and technical account of the contents of the thesis,
some explanation of the title may be appropriate at this point. In general, stochastic
recourse programs are concerned with optimization problems for which the underlying
decisions are organized in consecutive stages interspersed with the occurrences of some
random events. Traditionally, the probability distribution of random parameters is as-
sumed to be known, and the object of optimization is the expected value of some objective
function (representing e.g. cost, revenue, profit, etc.). In this thesis, however, we will also
be concerned with problems, fitting into the class of stochastic recourse programs, but for
which a more appropriate object of optimization than the traditional one is found. Hence
we will distinguish accordingly between classical stochastic recourse programs, i.e. the
traditional expectation-based problems with known probability distributions of random
parameters on the one hand, and what we choose to refer to as non-classical stochastic
recourse programs on the other hand.

I have endeavored to pursue both theoretical and practical issues within the field
of stochastic programming, and this is clearly reflected in the structure of the thesis.
Following a short introduction to the field of stochastic programming in Chapter 1, the
remainder of the thesis is organized in three major parts comprising a total of nine chap-
ters. In the first part, comprised by Chapters 2 and 3, the reader is familiarized with basic
well-known results and solution procedures for classical stochastic recourse programs. In
the second part, comprised by Chapters 4 and 5, we consider two classes of non-classical
stochastic recourse programs, and go through the analysis of theoretical properties and
the elaboration of specialized solution procedures for the problems. Finally, in the third
part, comprised by Chapters 6 through 10, five applications of stochastic programming,
all within the context of communication networks, are presented.

The reader is assumed to be familiar with basic concepts from linear programming,
integer programming, and to some extent probability theory. In Appendix A, though,
we present some basic definitions and results from probability theory, that will be of
importance throughout the thesis. The exposition is essentially self-contained, and it has
been aspired to ensure that all chapters can be read independently of each other, even
though some familiarity with the basic concepts and results presented in Chapters 1 to 3
is presumed throughout the rest of the thesis.
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Chapter 1

Introduction and Summary

The field of stochastic programming is concerned with optimization problems that are
somehow infected by a certain degree of uncertainty with respect to the parameters and
data of the underlying model. Thus, in stochastic programming, a decision problem under
uncertainty is formalized by a mathematical model in which an appropriate objective for
optimization is selected and uncertain parameters are represented as random variables.
In this chapter we give a short introduction to the field of stochastic programming and in
particular to the most common classes of stochastic programming models. The chapter
is concluded with a summary of the remainder of the thesis.

1.1 The Foundation of Stochastic Programming

As suggested by the name, the foundation of stochastic programming is laid by modeling
approaches and algorithmic techniques from mathematical programming. This distin-
guishes stochastic programming from other well-known approaches to the general field
of decision-making under uncertainty, such as e.g. Markov decision processes, statistical
decision theory, stochastic control theory etc.

With the invention of the simplex method in the late 1940s, the use of mathematical
programming techniques, and in particular linear programming models, quickly gained
widespread acceptance and popularity. It is a trivial observation, however, that uncer-
tainty is almost always an inherent feature of the system to be controlled or analyzed.
Moreover, in many applications of mathematical programming, the performance of the
optimal solution provided by the model is seriously compromised if the actual state of
nature turns out to differ from the specification of the model input. In general, these
difficulties are much too profound and severe to be dealt with by means of ordinary
sensitivity analysis or parametric analysis as the following small example suggests.

Example 1.1.1. Consider a small communications network with node set V = {1, 2, 3}
and edge set E =

{

{1, 2}, {1, 3}, {2, 3}
}

. Suppose that the network operator wishes to
install capacity on links of this network so as to minimize total expected cost while meet-
ing customer demand. Demand, however, is not known with certainty but is represented
as a random variable. In particular, we assume that D12 = D13 = ξ and D23 = 1 − ξ,
where Dij denotes demand for bandwidth on the link {i, j} ∈ E, and ξ is a uniformly
distributed random variable, ξ ∼ U(0, 1). Suppose now that the network operator may

1



2 Introduction and Summary

install capacity on each link of the network at a unit cost of 1. If, however, insufficient
capacity turns out to be available as the outcome of demand is observed, additional ca-
pacity must be rented from a competing network operator at a unit cost of 5. A naive
approach to this problem is to solve the so-called expected value problem, replacing the
random variable ξ by its expected value of 1

2
. Obviously, this approach results in the in-

stallment of 1
2

unit of capacity on each link of the network. Recognizing the uncertainty
of future demand, the network operator may choose to complement this solution with
the results of a parametric analysis. In this case, the problem is easily solved for each
possible outcome ξ = t, the optimal solution being xt = (t, t, 1 − t) for 0 ≤ t ≤ 1. The
corresponding expected cost is

C(xt) = t+ t+ (1 − t) + 5

∫ t

0

(t− ξ)dξ + 10

∫ 1

t

(ξ − t)dξ =
15

2
t2 − 9t+ 6.

We see that the best solution with respect to total expected cost generated by the pa-
rametric analysis is x 3

5
=

(

3
5
, 3

5
, 2

5

)

with expected cost of 3.3, whereas the solution of the
expected value problem yields total expected cost of 3.375. These solutions are, however,
inferior to the solution x =

(

4
5
, 4

5
, 4

5

)

that yields total expected cost of only 2.7.

As illustrated by Example 1.1.1, and discussed more thoroughly by e.g. Wallace [161],
sensitivity analysis or parametric analysis does not provide an adequate framework for
decision-making under uncertainty. Instead, what is required, is a model that somehow
explicitly takes into account the uncertainty that infects model input. First steps in this
direction were made with the pioneering work of Beale [11] and Dantzig [37] in the mid
1950s, introducing the class of so-called two-stage stochastic programs with recourse.
Also, another line of research was initiated a few years later as Charnes and Cooper [35]
introduced the class of so-called chance-constrained stochastic programming models. In
the following section we give a brief introduction to these model classes.

1.2 Stochastic Programming Models

In this section we present some basic modeling approaches in stochastic programming and
give a few examples of how different stochastic programming models may arise from some
particular decision problem under uncertainty. To keep the exposition in line with the
remainder of the thesis, we take as starting point a (mixed-integer) linear programming
problem in which some parameters are not known with certainty at the point of decision.
For a more general and comprehensive introduction to stochastic programming models,
including among other things non-linear formulations of the objective function and the
constraints, we refer to the textbooks by Birge and Louveaux [22], Kall and Wallace [67]
and Prékopa [107]. Here we will consider the following random (mixed-integer) linear
programming problem,

min cx,

s.t. Ax ≥ b,
′′T (ω)x ≥ h(ω)′′,

x ∈ X.

(1.2.1)



1.2 Stochastic Programming Models 3

Here c ∈
�

n1 and b ∈
�

m1 are known vectors, A is a known m1×n1-matrix, and X ⊆
�

n1

is some subset that may or may not contain integrality restrictions on some or all of the
variables x ∈

�
n1 . Uncertainty is reflected in the model by the fact that the coefficient

matrix T and the right-hand side h of the second group of constraints are dependent
on the outcome of some random event ω. Denoting by

�
m×n the space of real m × n-

matrices, it is assumed that T : Ω 7→
�

m2×n1 and h : Ω 7→
�

m2 are measurable mappings
defined on some probability space (Ω,F , P ). Note that transposes have been eliminated
for simplicity throughout the thesis.

It is important to note at this point that we are seeking a here-and-now decision x,
that must be based solely on the information available at the point of decision. Hence, in
particular, the decision cannot be based on the actual outcome of the random event ω,
since the only information presently available about this future event is conveyed through
the distribution P . In other words, we say that the decision x should be non-anticipative.
Obviously this means that problem (1.2.1) is not well-defined since the second group of
constraints do not make sense when the decision xmust be made before the outcome of the
random event ω is known (and hence the quotation marks in (1.2.1)). Thus, the challenge
of the model builder is to replace problem (1.2.1) by a well-defined problem, producing
a non-anticipative solution that is in some sense optimal. The notion of optimality,
though, is no longer obvious since the choice of an objective for minimization as well
as the formulation of the constraints depend to some extent on the preferences of the
decision-maker, and in particular on the attitude of the decision-maker toward risk. In the
subsequent sections we present the most common examples of stochastic programming
models that may arise from problem (1.2.1).
Remark 1.2.1. It is customary in stochastic programming to assume that the probability
distribution of random parameters is known. This may seem like a rather strong assump-
tion, and quite surely it will not be truly conformed with in many practical situations.
This is not to say, however, that the assumption is not reasonable and justifiable. Thus,
given the fact that uncertainty is an inherent feature of some particular decision problem,
the decision-maker may choose to incorporate the uncertainty into some stochastic pro-
gramming model, or he may simply choose to ignore it. In the latter case, though, values
of the uncertain parameters must still be specified, and hence this approach really comes
down to specifying a probability distribution where all mass is put into a single point.
Therefore, it seems obvious that a more accurate and appropriate model is obtained if
some effort is at least put into the estimation of the probability distribution of random
parameters. In Chapter 5 we will discuss a particular approach to stochastic programs
where the probability distribution is unknown, in the sense that the only information
available pertains to estimates of certain moments or other distributional characteristics
of the random parameters.
Remark 1.2.2. In this thesis we only consider so-called anticipatory problems, where
decisions must be made without certain knowledge about future outcomes of random
variables as explained above. In the class of distribution problems, on the other hand,
decisions are made after uncertainty has been revealed. Hence the problem (1.2.1) is
viewed as an ordinary linear program for each outcome of the random event ω, and the
effort lies in determining distributional characteristics (i.e. mean values and higher mo-
ments, quantiles etc.) of the corresponding optimal solutions and their objective values.



4 Introduction and Summary

Thus the distribution problem may in this case be seen as a generalization of sensitivity
analysis or parametric analysis in linear programming.

1.2.1 Chance-Constrained Programming

Consider problem (1.2.1) and assume that the decision-maker requires the second group
of constraints to hold with a probability of at least α, where α ∈ [0, 1]. This leads to the
following formulation of the problem,

min cx, (1.2.2a)
s.t. Ax ≥ b, (1.2.2b)

P
(

T (ω)x ≥ h(ω)
)

≥ α, (1.2.2c)
x ∈ X. (1.2.2d)

Problem (1.2.2) is an example of a chance-constrained stochastic program, and (1.2.2c)
is referred to as a joint chance-constraint or a joint probabilistic constraint. Clearly this
approach allows for some generalizations. In particular, we may consider the separate
chance-constraints

P
(

Tk(ω)x ≥ hk(ω)
)

≥ αk, k = 1, . . . , m2,

where Tk is the kth row of T , hk is the kth component of h, and αk is the probability
with which the kth constraint is required to hold. Also, one may consider a combination
of these approaches, clustering the individual constraints into a number of groups that
must each hold jointly with some prescribed probability.

We will not consider chance-constrained problems any further in this thesis. For an
overview of the research in this area we refer to Prékopa [107] and references therein.

1.2.2 Two-Stage Stochastic Programs with Recourse

Throughout this thesis we will primarily be concerned with two-stage stochastic recourse
programs. These are problems in which the decisions can be divided in two groups — a
group of first-stage decisions that must be made without certain knowledge about some
random parameters of the model, and a group of second-stage decisions that can be taken
after uncertainty has been revealed. For example, consider problem (1.2.1) and assume
that a temporary violation of the second group of constraints is allowed. Feasibility must
be restored, however, through some corrective or recourse actions y(ω) that can be taken
after the actual outcome of ω has been observed. Assuming that the decision-maker seeks
to minimize the sum of direct cost and expected recourse cost (i.e. the classical approach
in stochastic programming), the problem may now be given the following formulation,

min cx+ � [q(ω)y(ω)], (1.2.3a)
s.t. Ax ≥ b, (1.2.3b)

T (ω)x+W (ω)y(ω) ≥ h(ω), P − a.s. (1.2.3c)
x ∈ X, y(ω) ∈ Y, P − a.s. (1.2.3d)
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Here we assume that q : Ω 7→
�

n2 andW : Ω 7→
�

m2×n2 are measurable mappings defined
on the probability space (Ω,F , P ) cf. our assumptions on h and T . The dependency of
y on ω, on the other hand, is of a completely different nature, merely indicating that
the recourse actions typically differ under different realizations of the random event.
The constraints (1.2.3c) and (1.2.3d) are assumed to hold P -almost surely, i.e. for all
ω ∈ Ω \ N , where N ⊆ Ω is some set such that P (N) = 0. Finally, Y ⊆

�
n2 is some

subset that may or may not contain integrality restrictions on some or all of the recourse
variables. Throughout this thesis we will refer to c as the first-stage cost, to q as the
second-stage cost, to T as the technology matrix, to W as the recourse matrix, and to h
as the second-stage right-hand side.

Remark 1.2.3. In formulating problem (1.2.3) we chose to see the first-stage variables as
the main decisions to be made, whereas the second-stage variables were interpreted simply
as corrective actions, providing a means of penalizing infeasibilities arising from the first-
stage decision. It is important to note, however, that the two-stage stochastic recourse
model applies to a far wider range of problems. Thus, the classification of decisions
into stages may in fact be an inherent feature of an overall problem, implied simply by
the timing of decisions — some decisions may have to be made immediately, whereas
others can be postponed until uncertainty has been disclosed, or at least until additional
information on uncertain parameters is available. Still, we will use the terms second-stage
variables and recourse variables interchangeably, whether the variables represent simple
corrective actions or actual decisions that are an immanent part of the problem.

As mentioned above, the two-stage stochastic program with recourse represents a
simple dynamic decision process. The first-stage decision must be made without certain
knowledge about random parameters, and must be chosen so as to minimize the sum of
direct cost and the expected value of future cost. The future cost, on the other hand,
is determined when an optimal second-stage decision is made after observation of the
outcome of the random parameters. Thus the decision process may be summarized as

decision on x → observation of q(ω), h(ω), T (ω), and W (ω) → decision on y.

The dynamics of the decision process is clearly illustrated by the following alternative
dynamic programming formulation of the problem,

min
{

cx+ Q(x) | Ax ≥ b, x ∈ X
}

, (1.2.4)

where the so-called expected recourse function Q is given by

Q(x) = � [Φ(x, ω)] =

∫

Ω

Φ(x, ω)P (dω), (1.2.5)

and the second-stage value-function Φ is given by

Φ(x, ω) = min
{

q(ω)y | W (ω)y ≥ h(ω) − T (ω)x, y ∈ Y
}

. (1.2.6)

The formulation (1.2.4) clearly illustrates that the difficulties in solving a two-stage
stochastic program with recourse lies in the recourse function Q — when this function is
known, problem (1.2.4) is nothing but an ordinary non-linear programming problem.
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With an absolutely continuous distribution of random parameters, though, even the
evaluation of the integral in (1.2.5) may be cumbersome, and in fact most practical
solution procedures for two-stage stochastic programs have to rely on theoretical results,
justifying the assumption that the distribution of random parameters is discrete with
finite support. With a finite distribution of random parameters, uncertainty is assumed to
be appropriately described by a finite number of scenarios, each scenario s ∈ {1, . . . , S}
corresponding to an outcome (qs, hs, T s,W s) of random parameters. Employing this
assumption and denoting for s ∈ {1, . . . , S} the probability of scenario s to actually
occur by ps, the stochastic programming problem (1.2.3) reduces to an ordinary, large-
scale (mixed-integer) linear programming problem,

min cx+
S

∑

s=1

psqsys,

s.t. Ax ≥ b,

T sx+W sys ≥ hs, s = 1, . . . , S,

x ∈ X, ys ∈ Y, s = 1, . . . , S.

The size of this problem, however, usually prohibits the use of standard software for its
solution, and hence specialized solution procedures based on decomposition techniques
are required.

1.2.3 Multistage Stochastic Programs with Recourse

Obviously the decision process outlined in the previous section may be generalized to
include multiple stages. In this section we consider a finite horizon decision process with
an alternating sequence of decisions and observations of random data. For each stage
t = 1, . . . , H we denote by xt the vector of decisions to be made in stage t and by ξt the
vector of random data that is observed in stage t. The multistage decision process may
now be summarized as follows:

observation of ξ1

decision on x1

observation of ξ2

decision on x2

observation of ξH

decision on xH

For ease of notation we will assume throughout this section that the constraints of the
problem have a Markovian structure, in the sense that decisions in stage t are directly
coupled only to decisions in stage t− 1 for t = 2, . . . , H .
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In the formulation of the two-stage recourse problem (1.2.3), non-anticipativity of
the first-stage solution was implicitly represented in the model by the fact that the first-
stage decision x is not allowed to depend on the random event ω. For the multistage
model presented next, on the other hand, we choose to use explicit non-anticipativity
constraints, stating that the decision in some stage t may only depend on the information
available at this point in time. To formalize matters we need to enhance the notation
somewhat. As mentioned above, for t = 1, . . . , H , we let ξt : Ω 7→

�
Nt be a random vector

defined on some probability space (Ω,F , P ), such that ξt is constituted by the random
components of the stage t data. Furthermore, for t = 1, . . . , H , we let ξ[1,t] = (ξ1, . . . , ξt)
be the random vector of information available in stage t, and we denote by Ft ⊆ F the
σ-algebra generated by ξ[1,t] (see Appendix A). Assuming that data for the first stage
is deterministic (i.e. ξ1 is observed before the decision on x1) we have F1 = {∅,Ω}, and
obviously we have Ft ⊆ Ft+1 for t = 1, . . . , H − 1. Finally, for t = 1, . . . , H , we denote
by xt(ω) the decision in stage t given the random event ω ∈ Ω. Now, for t = 1, . . . , H ,
the non-anticipativity condition, requiring the decision in stage t to depend only on the
information available in stage t, is equivalent to measurability of xt with respect to Ft.
Thus the problem may be stated as

min �
[

c1(ω)x1(ω) + · · · + cH(ω)xH(ω)
]

,

s.t. W1(ω)x1(ω) ≥ h1(ω), P − a.s.,

Tt(ω)xt−1(ω) +Wt(ω)xt(ω) ≥ ht(ω), P − a.s., t = 2, . . . , H,

xt(ω) ∈ Xt, P − a.s., t = 1, . . . , H,

xt measurable with respect to Ft, t = 1, . . . , H.

Here ct : Ω 7→
�

nt , ht : Ω 7→
�

mt , Tt : Ω 7→
�

mt×nt−1 , and Wt : Ω 7→
�

mt×nt are assumed
to be measurable mappings defined on the probability space (Ω,F , P ), the components
of which constitute the random vector ξt for t = 1, . . . , H . As stated above we assume
that c1, h1, and W1 are deterministic, i.e. that F1 = {∅,Ω}, and hence the requirement
that x1 is measurable with respect to F1 means that x1 must be constant for P -almost
all ω ∈ Ω.

Again, the dynamics of the decision problem is clearly illustrated by an alternative
dynamic programming formulation,

min
{

c1x1 + Q2(x1, ξ1) |W1x1 ≥ h1, x1 ∈ X1

}

,

where the expected recourse functions are given for t = 2, . . . , H − 1 by

Qt(xt−1, ξ[1,t−1]) = �ξ[1,t]|ξ[1,t−1]

[

min
{

ct(ω)xt + Qt+1(xt, ξ[1,t](ω))
∣

∣

Wt(ω)xt ≥ ht(ω) − Tt(ω)xt−1, xt ∈ Xt

}]

,

and for the final stage by

QH(xH−1, ξ[1,H−1]) = �ξ[1,H]|ξ[1,H−1]

[

min
{

cH(ω)xH

∣

∣

WH(ω)xH ≥ hH(ω) − TH(ω)xH−1, xH ∈ XH

}]

.

Here, for t = 2, . . . , H , we denote by �ξ[1,t]|ξ[1,t−1]
the (regular) conditional expectation

with respect to the distribution of ξ[1,t], given ξ[1,t−1].
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Just as for the two-stage problem, practical solution procedures for multistage stochas-
tic programs generally rely on theoretical results justifying the assumption that the distri-
bution of the random vector ξ = ξ[1,H] is discrete with finite support, say Ξ = {ξ̄1, . . . , ξ̄S}.
We now employ this assumption and denote by p1, . . . , pS the corresponding probabilities.
For t = 1, . . . , H , the σ-algebra Ft then corresponds to a partition Πt of Ξ such that each
Ξt ∈ Πt represents a specific history ξ[1,t] of outcomes up to stage t, i.e. for all ξ̄ ∈ Ξt we
have ξ̄[1,t] = ξ[1,t]. The probability of this history is,

pξ[1,t]
=

∑

s:ξ̄s
[1,t]

=ξ[1,t]

ps.

Furthermore, for t = 1, . . . , H − 1 we define the set of descendants of the history ξ[1,t] as
Dξ[1,t]

=
{

ξ̄[1,t+1] | ξ̄ ∈ Ξ, ξ̄[1,t] = ξ[1,t]

}

. Now, for t = 2, . . . , H − 1, the expected recourse
functions may be conveniently reformulated, writing the conditional expectation as a
simple weighted sum,

Qt(xt−1, ξ̄[1,t−1]) =
∑

ξ̄[1,t]∈Dξ[1,t−1]

pξ̄[1,t]

pξ[1,t−1]

min
{

c̄txt + Qt+1(xt, ξ̄[1,t]) |

W̄txt ≥ h̄t − T̄txt−1, xt ∈ Xt},

and correspondingly for the final stage,

QH(xH−1, ξ[1,H−1]) =
∑

ξ̄[1,H]∈Dξ[1,H−1]

pξ̄[1,H]

pξ[1,H−1]

min
{

c̄HxH |

W̄HxH ≥ h̄H − T̄HxH−1, xH ∈ XH}.

In this situation it is customary to think of uncertainty in terms of a scenario tree, the
nodes of which are organized in H columns corresponding to the individual stages. The
leaves of the tree (nodes in column H) correspond to the scenarios ξ̄1, . . . , ξ̄S, and for
t = 1, . . . , H − 1 the nodes in column t corresponds to elements of the partition Πt, i.e.
to some specific history of events up to time t. An example of a small scenario tree is
illustrated in Figure 1.1.

�

�

�

�

�

�

�

�

�

	




�

�
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Figure 1.1: Scenario tree for a problem with 4 stages and 8 scenarios.
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1.3 Summary of the Thesis

The remainder of this thesis is organized in three major parts. Chapters 2 and 3 form
the first part which is concerned with classical stochastic programs with recourse. Hence
we consider the general model that was presented in Section 1.2.2, and in particular the
probability distribution of random parameters is assumed to be known and the expected
value of total cost is minimized. This first part of the thesis is based on well-known results
in stochastic programming, and hence the exposition is concise and proofs are omitted.
In the second part of the thesis, comprised by Chapters 4 and 5, we shift attention toward
two classes of non-classical stochastic programs with recourse. The models considered
here are non-classical in the sense that, in the first case a more appropriate objective
for minimization than the expectation-based one is found, and in the second case the
probability distribution of random parameters is not assumed to be completely known.
Finally, the third part of the thesis consists of Chapters 6 through 10 where five different
applications of stochastic programming models in connection with capacity expansion
of communication networks are presented. The second and third part contain the new
contributions of this thesis to the field of stochastic programming.

Chapter 2 is concerned with the classical two-stage stochastic program with linear
recourse, i.e. problem (1.2.4) with Y =

�n2
+ . We discuss structural properties of the prob-

lem, primarily related to the expected recourse function (1.2.5). These properties include
basic results on finiteness, continuity and convexity, but also more theoretical results, re-
quired to establish certain stability properties of the problem. These stability results
take the form of continuity properties of the optimal-value function and the solution set
mapping as functions of the underlying probability distribution. Such results may be
employed, in particular, to justify the assumption that the probability distribution is dis-
crete with finite support. This assumption is fundamental for the decomposition-based
solution procedures discussed in conclusion of the chapter.

Next, in Chapter 3 we discuss the classical two-stage stochastic program with mixed-
integer recourse, i.e. problem (1.2.4) with Y =

� n̄2
+ ×

� ñ2
+ , where n̄2 + ñ2 = n2. Again

the focus is on theoretical properties concerning finiteness and continuity of the expected
recourse function and stability of optimal solutions, ultimately leading to the presentation
of a number of alternative decomposition-based solution procedures.

In Chapter 4, which is based on Riis and Schultz [116], we discuss a non-classical two-
stage stochastic program with linear recourse, referred to as the minimum risk problem.
The problem is formulated in an attempt to give a more adequate description of risk
aversion than what is provided by the classical stochastic recourse problem. It consists in
minimizing the probability of total cost exceeding a certain prescribed threshold value,
that may be thought of as e.g. a budget limit or the level of bankruptcy. It is easily
seen that the problem is in fact equivalent to a classical two-stage stochastic program
with mixed-integer recourse, but we show that a number of structural properties may
be established with less restrictive assumptions than what is usually employed for the
analysis of the classical problem. In line with the presentation in Chapters 2 and 3 we
present results in the form of continuity properties of the recourse function and stability
properties of optimal solutions. Also, a specialized solution procedure is elaborated and
results of our computational experiments are reported.
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Another non-classical stochastic recourse program, referred to as the minimax ap-
proach to stochastic programming, is considered in Chapter 5 which is based on Riis and
Andersen [113]. Based on the fact that the probability distribution of random parameters
will hardly ever be directly accessible, this approach rests on the establishment of a set
of possible or conceivable probability distributions, that are consistent with the available
information. A recourse function, that may be defined for example according to either of
the models discussed in Chapters 2, 3, or 4, is then minimized with respect to the worst
of these conceivable distributions. In contrast to the minimum risk problem discussed
in Chapter 4, the minimax problem has been the subject of a significant amount of re-
search during a number of years, but only a few practical solution procedures have been
proposed. In Chapter 5, we show how structural properties established for the problems
considered in Chapters 2, 3, and 4 may be employed to arrive at stability results for the
corresponding minimax problem. These stability results justify, in particular, a simpli-
fying assumption, that allows us to restrict attention to discrete probability measures.
Based on this assumption, we show how well-known algorithms for the different problem
classes may be extended to solve the corresponding minimax problem.

With Chapter 6, which is based on Riis and Andersen [112], we start our presentation
of applications of stochastic programming in telecommunications. The problem that we
consider in Chapter 6 is the simplest one in this respect, concerning the multiperiod
capacity expansion of a single telecommunications connection. Our starting point is a
two-stage formulation of the problem presented by Laguna [81], who also proposed a
solution procedure. In Chapter 6, we present a new preprocessing rule that drastically
reduces computation time for this algorithm. Also, we discuss the alternative of using
a multistage formulation of the problem, and we elaborate a corresponding recursive
solution procedure. Computational results are reported to document the effect of the
preprocessing rule and to show the practicability of the multistage procedure.

In Chapter 7, which is based on Riis and Andersen [114], we consider the so-called
capacitated network design problem, which has been studied extensively in a determinis-
tic setting. The problem is to install capacity on links of a telecommunications network
in modularities of two fixed batch sizes. The capacity expansion must be carried out so
as to meet customer demand while minimizing total costs incurred. We propose a two-
stage stochastic programming formulation with integer first stage and continuous second
stage, and discuss how valid inequalities derived for the deterministic problem may be
generalized for the stochastic program. Also, a branch-and-cut algorithm, employing the
valid inequalities as cutting planes, is elaborated, and we report results of a series of
computational experiments performed on two real-life instances.

Chapter 8 is based on Riis and Lodahl [115]. It concerns the capacity expansion of a
telecommunications network in the face of uncertain future demand and potential future
failures of network components. The problem is formulated as a bicriterion stochastic
program with recourse in which the total cost of the capacity expansion and the proba-
bility of future capacity requirements to be violated are simultaneously minimized. Here
the second objective is a special case of the one considered in Chapter 4. We elaborate
a solution procedure that determines all non-dominated solutions to the problem by a
reduced feasible region method. During the course of this procedure a sequence of sub-
problems are solved by an algorithm, that is in many ways similar to the one presented in
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Chapter 4. Computational results are reported for three real-life instances, one of which
is a problem faced by SONOFON, a Danish communications network operator.

In Chapter 9, which is based on Riis, Skriver, and Lodahl [117], we consider a net-
work design problem arising in mobile communications. At the core of the network is
a number of mobile switching centers (MSCs), each serving a number of base station
controllers (BSCs). The network design problem involves the deployment of a number
of new MSCs, the allocation of BSCs to new and existing MSCs, and the capacity ex-
pansion of transmission links interconnecting the MSCs. We formulate the problem as
a two-stage stochastic program with mixed-integer recourse. To solve the problem we
apply a decomposition procedure, solving scenario subproblems by means of branch-and-
cut. The solution procedure has been tested on a real-life problem instance provided by
SONOFON, and we report results of our computational experiments.

Finally, Chapter 10 is based on Riis, Skriver, and Møller [118]. This is a case study
concerning the design and dimensioning of the IP (internet protocol) network of TDC,
the largest Danish communications network operator. Due to historical reasons, the
number of IP POPs (points of presence) in the network has reached a level believed to
be too high. To point out potential IP POPs for dismantling, we consider a network
planning problem concerning dimensioning of the IP POPs, connection of customers to
the network, and capacity expansion of transmission links interconnecting the IP POPs.
The problem is formulated as a two-stage stochastic program with linear recourse, and
a cutting plane procedure is elaborated to solve it. Computational results are reported
for the IP network of TDC.
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Classical Stochastic Programs
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Chapter 2

Two-Stage Stochastic Programs with

Linear Recourse

The two-stage stochastic program with linear recourse is probably the single most preva-
lent problem within the class of stochastic programming models. In this chapter we give
an account of the most important theoretical properties of the problem, and in partic-
ular we discuss the line of research related to stability of optimal solutions when the
underlying probability distribution is subjected to perturbations. Also, we present the
well-known L-shaped algorithm for the problem and discuss a few of its extensions. For
an overview of the research in the field of stochastic linear programming, we refer to the
textbooks by Birge and Louveaux [22], Kall and Wallace [67] and Prékopa [107]. See also
the extensive online bibliography of van der Vlerk [157].

2.1 Problem Formulation

The classical two-stage stochastic program with recourse was introduced in Section 1.2.2.
We recall that the problem consists in the determination of a first-stage decision that
must be made without certain knowledge on the random parameters of the model, and so
as to minimize the sum of direct cost and the expected value of future cost. The future
cost is determined through a second-stage problem, as certain recourse actions can be
taken after uncertainty has been revealed. In this chapter we study the problem under
the assumption that both the first-stage and the second-stage problem may be modeled
appropriately as linear programming problems. Moreover, because very few theoretical
results are available for problems with a random recourse matrix, we will assume that
the recourse matrix is fixed — we say that the problem has fixed recourse. We refer to
Walkup and Wets [160] for a discussion of problems with a random recourse matrix and
the difficulties this may give rise to.

Since we are going to address the issue of stability of the stochastic program when the
underlying probability distribution is subjected to perturbations, we will be interested in
continuity properties of the expected recourse function as a function of the probability
distribution as well as of the first-stage decision. To facilitate such an analysis, it will be
convenient to formulate the model slightly different from what we did in Section 1.2.2.
We let ξ : Ω 7→

�
N be a random vector defined on some probability space (Ω,F , P ). The

14
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components of ξ constitute the random second-stage data, consisting of the second-stage
cost q̃ : Ω 7→

�
n2 , the second-stage right-hand side h̃ : Ω 7→

�
m2 , and the technology

matrix T̃ : Ω 7→
�

m2×n1 . More precisely we have N = n2 + m2(1 + n1), and for ω ∈ Ω
we have ξ(ω) =

(

q̃(ω), h̃(ω), T̃1(ω), . . . , T̃m2(ω)
)

where T̃k denotes the kth row of T̃ for
k = 1, . . . , m2. Introducing the induced Borel probability measure µ = P ◦ ξ−1 on

�
N ,

the two-stage linear recourse problem may now be given the following formulation,

TSLR(µ) min
{

cx+ Q(x, µ) | Ax = b, x ∈
�n1

+

}

, (2.1.1)

where the expected recourse function Q explicitly depends on the distribution µ,

Q(x, µ) = � [Φ(x, ξ)] =

∫

�
N

Φ(x, ξ)µ(dξ), (2.1.2)

and the second-stage value function Φ is given by

Φ(x, ξ) = min
{

q(ξ)y |Wy = h(ξ) − T (ξ)x, y ∈
�n2

+

}

. (2.1.3)

Here c ∈
�

n1 and b ∈
�

m1 are known vectors and A ∈
�

m1×n1 and W ∈
�

m2×n2 are
known matrices. The second-stage cost q :

�
N 7→

�
n2, the second-stage right-hand side

h :
�

N 7→
�

m2 , and the technology matrix T :
�

N 7→
�

m2×n1 , on the other hand, are
represented as mappings picking out the appropriate components of the random vector ξ.
Remark 2.1.1. In the literature one often sees q, h, and T defined as affine mappings, i.e.

q(ξ) = q̄0 +
N

∑

i=1

q̄iξi,

h(ξ) = h̄0 +

N
∑

i=1

h̄iξi,

T (ξ) = T̄ 0 +

N
∑

i=1

T̄ iξi,

where q̄i, h̄i, and T̄ i are known vectors and matrices, respectively, for i = 0, . . . , N . For
our purposes, however, it will be more convenient to think simply of ξ as constituted by
the components of q, h, and T as explained above, so that µ is the joint distribution of
the second-stage cost, the second-stage right-hand side, and the technology matrix.
Remark 2.1.2. An important special case of the stochastic program (2.1.1)-(2.1.3) is
the situation when W = [I,−I] where I is the m2 × m2-identity matrix. This case is
referred to as simple recourse. Stochastic programs with simple recourse have received
particular attention in the literature, since the special structure of the problem provides
significant computational advantages. We refer to research papers by e.g. Wets [164] and
Ziemba [168], and to the PhD-thesis by van der Vlerk [156] for results in this direction.

2.2 Structural Properties

In this section we discuss the definition and structure of certain feasibility sets, we present
structural properties of the expected recourse function, and we consider the stability of
optimal solutions when the underlying probability measure is subjected to perturbations.
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2.2.1 Feasibility Sets

For now, we consider the stochastic program (2.1.1) for some known and fixed Borel
probability measure µ ∈ P(

�
N ), and we denote by Ξ ⊆

�
N the support of µ, i.e. the

smallest closed subset such that µ(Ξ) = 1. We denote the set of first-stage solutions that
satisfy the deterministic constraints of (2.1.1) by K1. That is, we let

K1 =
{

x ∈
�n1

+ | Ax = b
}

.

Now, for all practical purposes, it does not make sense to consider those first-stage
solutions in K1 that lead to an infeasible second-stage problem (2.1.3) with a positive
probability, since in that case the expected recourse function (2.1.2) is infinite. Therefore,
the first-stage solutions should satisfy not only the deterministic constraints, x ∈ K1, but
also a set of induced constraints, x ∈ K2, where we define

K2 =
{

x ∈
�n1

+ | Q(x, µ) < +∞
}

.

This definition, however, is obviously not particularly useful when it comes to charac-
terizing feasible first-stage solutions, and in particular it does not provide a means of
checking whether a given first-stage solution x ∈ K1 satisfies the induced constraints
without having to actually compute Q(x, µ). To this end, it is convenient to introduce
the positive cone generated by W ,

posW =
{

t ∈
�m2 | ∃ y ∈

�n2
+ : Wy = t

}

,

and consider the following alternative feasibility set,

KP
2 =

{

x ∈
�n1

+ | ∀ξ ∈ Ξ : h(ξ) − T (ξ)x ∈ posW
}

.

The set KP
2 possesses some appealing theoretical properties.

Theorem 2.2.1. The set KP
2 is

(a) closed and convex;

(b) polyhedral if the support Ξ of µ is a finite set.

It is easily seen that we always have K2 ⊆ KP
2 . For the opposite inclusion, however,

additional assumptions are required. In particular we need the following definition.

Definition 2.2.1. If µ is such that for all i = 1, . . . , n1, j = 1, . . . , n2 and k = 1, . . . , m2,
the first moments of qj(ξ)hk(ξ) and qj(ξ)Tki(ξ) are finite, then µ is said to satisfy the
weak covariance condition.

The following result may be found in Wets [163].

Theorem 2.2.2. If µ satisfies the weak covariance condition, then we have K2 = KP
2 .

The weak covariance condition is easily seen to hold in a number of specific cases, for
example when µ has finite second moments, when q is fixed and µ has finite first moments,
or when (h, T ) is fixed and µ has finite first moments. Thus, in any of these cases,
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the alternative formulation KP
2 may provide a convenient way of checking whether any

induced constraints are violated by some first-stage solution x ∈ K1.
In practice the problem concerning induced constraints is often simplified because

the second-stage problem is feasible for all possible right-hand sides. Even when this
is not the case, it may be that a feasible second-stage solution exists for all right-hand
sides that may actually occur (or at least with probability one), i.e. that the second-stage
problem is feasible for all first-stage solutions x ∈ K1 and all outcomes of the random
vector ξ ∈ Ξ. These situations are referred to as complete recourse and relatively complete
recourse, respectively.

Definition 2.2.2. A stochastic program with fixed linear recourse is said to have

(i) complete recourse if posW =
�

m2 ;

(ii) relatively complete recourse if h(ξ) − T (ξ)x ∈ posW for all x ∈ K1 and all ξ ∈ Ξ.

Note that with complete recourse we have KP
2 =

�n1
+ , whereas with relatively complete

recourse we have K1 ⊆ KP
2 . Hence we see that whenever µ satisfies the weak covariance

condition, either complete recourse or relatively complete recourse is sufficient to ensure
K1 ⊆ K2 and hence in these cases there are no induced constraints.

2.2.2 The Expected Recourse Function

In the following we will consider the stochastic program (2.1.1) for probability measures
µ ∈ P(Ξ), where Ξ ⊆

�
N is some closed set. We will employ the following assumptions.

(A1) For all t ∈
�

m2 there exists y ∈
�n2

+ such that Wy = t.

(A2) For all ξ ∈ Ξ there exists u ∈
�

m2 such that uW ≤ q(ξ).

Remark 2.2.1. Note that assumption (A2) is the reason for us to restrict attention to
probability measures with support within some closed set Ξ ⊆

�
N . In particular, it is

not unreasonable to assume that all possible outcomes of the random second-stage cost
meets (A2), since the model would probably otherwise be incorrectly specified — practical
problems are usually not unbounded. It would, however, certainly be an unreasonably
strong assumption to require (A2) to be fulfilled for all ξ ∈

�
N .

(A1) is the assumption of complete recourse, discussed in the previous section, whereas
(A2) is the assumption of dual feasibility of the second-stage problem for all possible
outcomes ξ ∈ Ξ. These two assumptions ensure feasibility and boundedness, respectively,
of the second-stage problem, and hence they are sufficient to establish the following
properties of the second-stage value-function defined by (2.1.3).

Lemma 2.2.1. Assume (A1)-(A2). Then Φ is a real-valued function on
�

n1 ×Ξ and

(a) a convex, piecewise linear function of x for all ξ ∈ Ξ;

(b) a convex, piecewise linear function of (h(ξ), T (ξ)) for all x ∈
�

n1.

(c) a concave, piecewise linear function of q(ξ) for all x ∈
�

n1.
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If, in addition to assumptions (A1) and (A2), the probability measure satisfies the
weak covariance condition, then the expected recourse function is finite on

�
n1 , and since

the expectation-operator is linear, the expected recourse function inherits its structural
properties from the second-stage value function. Hence we have the following.

Theorem 2.2.3. Assume (A1)-(A2). If µ ∈ P(Ξ) satisfies the weak covariance condi-
tion, then Q(·, µ) is a real-valued, Lipschitzian, and convex function on

�
n1. Moreover,

(a) if the support of µ is a finite set, then Q(·, µ) is piecewise linear on
�

n1;

(b) if µ is absolutely continuous with respect to the Lebesgue measure on
�

N , then
Q(·, µ) is differentiable on

�
n1.

Remark 2.2.2. Clearly, the assumption of complete recourse in Theorem 2.2.3 may be re-
placed by the weaker assumption of relatively complete recourse or may even be removed,
in which case, however, the results should be stated for x ∈ K2 only.

As previously mentioned, in order to arrive at stability results for the stochastic pro-
gram (2.1.1), we will need results regarding the joint continuity of the expected recourse
function with respect to the first-stage decision and the probability distribution. To this
end, we recall that the set of Borel probability measures is endowed with the notion of
weak convergence (see Appendix A). Now, since Q(·, µ) is convex for µ ∈ P(Ξ), joint
continuity of Q with respect to x and µ is implied by continuity of Q(x, ·) for all x ∈ X.
(See e.g. Rockafellar [123, Theorem 10.7].) The continuity of Q with respect to µ, on the
other hand, requires some uniform integrability condition to be satisfied cf. e.g. Billings-
ley [18, Theorem 5.4] or Hoffman-Jørgensen [61, Section 5.2]). In particular, Robinson
and Wets [122] considered the following extension of uniform integrability, saying that a
family F of real-valued continuous functions on Ξ is uniformly integrable with respect
to some family P ⊆ P(Ξ) of Borel probability measures, if for all ε > 0 there exists a
compact set A ⊆ Ξ such that for all f ∈ F and µ ∈ P we have

∫

Ξ\A

|f(ξ)|µ(dξ) < ε.

Now, assuming uniform integrability of the family of functions F =
{

Φ(x, ·) | x ∈
�

n1
}

with respect to some family P of Borel probability measures, Robinson and Wets proved
joint continuity of Q on

�
n1 × P.

As pointed out by Römisch and Schultz [125], the above uniform integrability of the
family of recourse integrands

{

Φ(x, ·) | x ∈
�

n1
}

with respect to some family P of Borel
probability measures is achieved, for example if P is defined to be the following family
of Borel probability measures,

Pp,K(Ξ) =

{

µ ∈ P(Ξ)
∣

∣

∣

∫

Ξ

||ξ||pµ(dξ) ≤ K

}

,

for some real numbers p > 2 and K > 0.

Theorem 2.2.4. Assume (A1)-(A2) and let µ ∈ Pp,K(Ξ) for some p > 2 and K > 0.
Then Q, as a function from

�
n1 × Pp,K(Ξ) to

�
, is continuous on

�
n1 × {µ}.
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Remark 2.2.3. As mentioned above, Römisch and Schultz [125] pointed out that the
integrability assumption in Theorem 2.2.4 is, in general, more restrictive than what is
required here. We find this assumption convenient, though, because it allows us to sup-
plement the qualitative continuity result of Theorem 2.2.4 with a quantitative continuity
result cf. Theorem 2.2.5 below, and because it readily extends to the case of mixed-integer
recourse cf. Theorem 3.2.4 on page 32. For examples of weaker integrability assumptions
leading to the joint continuity of Q, we refer to e.g. Kall [65] and Robinson and Wets [122].

Theorem 2.2.4 leads directly to the qualitative stability results presented in the follow-
ing section. We will, however, also be interested in quantitative stability results for the
stochastic program (2.1.1). These results rely on the identification of a suitable metric
on P(Ξ), that preferably metrizes (at least locally) weak convergence. One such metric
is the bounded Lipschitz metric β which was considered in Römisch and Schultz [125].
This metric is defined for µ, ν ∈ P(Ξ) by

β(µ, ν) = sup
g:Ξ7→

�

{
∫

Ξ

g(ξ)µ(dξ)−

∫

Ξ

g(ξ)ν(dξ)
∣

∣

∣
sup
ξ∈Ξ

|g(ξ)|+sup
ξ,ξ̃∈Ξ

ξ 6=ξ̃

|g(ξ)− g(ξ̃)|

||ξ − ξ̃||
≤ 1

}

.

For details about the bounded Lipschitz metric we refer to Dudley [42] or Rachev [108].
We now have the following Hölder estimate for the expected recourse function.

Theorem 2.2.5. Assume (A1)-(A2), let D ⊆
�

n1 be non-empty and compact, and let
µ ∈ Pp,K(Ξ) for some p > 2 and K > 0. Then there exists L > 0 such that

∣

∣Q(x, µ) −Q(z, ν)
∣

∣ ≤ L ·
(

||x− z|| + β(µ, ν)
p−1

p

)

for all x, z ∈ D and all ν ∈ Pp,K(Ξ).

Remark 2.2.4. Since the bounded Lipschitz metric is known to metrize weak convergence
on P(Ξ), Theorem 2.2.5 quantifies the result in Theorem 2.2.4.

As already mentioned, alternative quantitative results related to different probabil-
ity metrics are available. For example, Römisch and Schultz [126, 127] considered the
so-called Lp-Wasserstein metric Wp which is known to majorize the bounded Lipschitz
metric. The Lp-Wasserstein metric is defined for µ, ν ∈ Mp(Ξ) by

Wp(µ, ν) =

(

inf
η∈P(Ξ×Ξ)

{
∫

Ξ×Ξ

||ξ − ξ̃||pη(dξ, dξ̃)
∣

∣

∣
η ◦ π−1

1 = µ, η ◦ π−1
2 = ν

})
1
p

where π1 and π2 are the first and second projections, respectively, and

Mp(Ξ) =

{

µ ∈ P(Ξ)
∣

∣

∣

∫

Ξ

||ξ||pµ(dξ) <∞

}

.

For this metric it holds that (Mp(Ξ),Wp) is a metric space and if µ ∈ Mp(Ξ) and
µn ∈ Mp(Ξ) for n ∈

�
, then we have Wp(µ, µn)

n→∞
−−−−→ 0 if and only if µ w

−→ µ and
∫

Ξ
||ξ||pµn(dξ)

n→∞
−−−−→

∫

Ξ
||ξ||pµ(dξ). (See e.g. Givens and Shortt [50] or Rachev [108] for

more details about the metric.) With the L2 -Wasserstein metric, we have the following
Lipschitz estimate for the expected recourse function.
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Theorem 2.2.6. Assume (A1)-(A2), let D ⊆
�

n1 be non-empty and compact, and let
µ ∈ M2(Ξ). Then there exist L > 0 and δ > 0 such that

∣

∣Q(x, µ) −Q(z, ν)
∣

∣ ≤ L ·
(

||x− z|| +W2(µ, ν)
)

for all x, z ∈ D and all ν ∈ M2(Ξ) with W2(µ, ν) < δ.

Remark 2.2.5. If the second-stage cost q is deterministic, the continuity results presented
here may all be strengthened, in the sense that Theorem 2.2.4 and Theorem 2.2.5 can
be stated for p > 1 rather than for p > 2, and likewise, Theorem 2.2.6 can be stated for
the L1-Wasserstein metric with µ, ν ∈ M1(Ξ) rather than for the L2-Wasserstein metric
with µ, ν ∈ M2(Ξ).

2.2.3 Stability

In many practical applications of stochastic programming the probability distribution of
random parameters is not completely known, and hence the true distribution may have
to be replaced in the model by some suitable estimate, such as e.g. empirical measures.
Also, even if the true distribution µ of random parameters is known, the approximation of
µ by simpler probability measures may be required to facilitate practical computations.
In fact, as we will see in Section 2.3, most solution procedures for two-stage stochastic
programs with linear recourse rely on the assumption that the probability distribution of
random parameters is discrete with finite support, which will obviously often not be the
case in practice. For these reasons, the issue of stability of the stochastic program (2.1.1),
when the underlying probability distribution is subjected to perturbations, is an impor-
tant one. For a collection of results on stability of stochastic programs with linear recourse
along lines similar to the presentation here, we refer to e.g. Dupac̆ová [45, 46], Kall [65],
Robinson and Wets [122], Römisch and Schultz [125, 126, 127, 128], Römisch and Wakol-
binger [130], Shapiro [146], and Wang [162]. We also note that our approach to the issue
of stability builds on results obtained by Klatte [72, 73] in the analysis of parametric
optimization problems. Finally, let us mention that Schultz [142] provides an excellent
overview of results on stability in stochastic programming, covering also problems with
mixed-integer recourse.

The stability results presented here take the form of continuity properties of the
optimal-value function, ϕ : P(Ξ) 7→

�
, defined by

ϕ(µ) = inf
{

cx+ Q(x, µ) | Ax = b, x ∈
�n1

+

}

,

and of the solution set mapping, Ψ : P(Ξ) 7→
�

n1, defined by

Ψ(µ) = arg min
{

cx+ Q(x, µ) | Ax = b, x ∈
�n1

+

}

.

The qualitative continuity results stated in Theorem 2.2.4 leads directly to a qualitative
stability result. More precisely, having established the joint continuity of Q with respect
to x and µ it is straightforward to follow the lines of Berge [14] to prove continuity of ϕ
and Berge upper semicontinuity of Ψ, cf. also the results of Bank et al. [9]. (Recall that
the point-to-set mapping, Ψ, is Berge upper semicontinuous at some µ ∈ P(Ξ) if for any
open set G ⊆

�
n1 with Ψ(µ) ⊆ G there exists some neighborhood U of µ in P(Ξ) such

that Ψ(ν) ⊆ G for all ν ∈ U .) Hence we have the following.
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Theorem 2.2.7. Assume (A1)-(A2) and for some p > 2 and K > 0 let µ ∈ Pp,K(Ξ) be
such that Ψ(µ) is non-empty and bounded. Then,

(a) ϕ as a function from Pp,K(Ξ) to
�

is continuous at µ;

(b) Ψ as a mapping from Pp,K(Ξ) to
�

n1 is Berge upper semicontinuous at µ;

(c) there exists some neighborhood U of µ in Pp,K(Ξ) such that Ψ(ν) is non-empty for
all ν ∈ U .

Remark 2.2.6. As pointed out also in Remark 2.2.3, the integrability assumption in
Theorem 2.2.7, restricting the probability measures to the set Pp,K(Ξ) for some p > 2
and K > 0, is more restrictive than what is generally required here. Again, all that is
needed is some uniform integrability condition leading to the joint continuity of Q with
respect to x and µ, cf. the results of e.g. Kall [65] and Robinson and Wets [122].

As previously pointed out, the true distribution of random parameters will not be
completely known in many practical applications of stochastic programming, and hence
the true distribution may have to be replaced by some suitable estimate. Let us consider
for a moment the situation when the true distribution µ is approximated by empirical
measures. In particular, we let {ξn}∞n=1 be a sequence of independent and identically
distributed N -dimensional random vectors defined on some probability space (Ω,F , P ),
and we denote by µ ∈ P(Ξ) their common distribution. This gives rise to a corresponding
sequence of empirical probability measures on Ξ defined by

µn(ω) =
1

n

n
∑

i=1

δξi(ω),

where δξi(ω) denotes the measure with unit mass at ξi(ω) for i = 1, . . . , n. It is well-known
that we have µn(ω)

w
−→ µ for P -almost all ω ∈ Ω cf. e.g. Dudley [42, Theorem 11.4.1].

Using this fact, it is now straightforward to apply Theorem 2.2.7 to obtain the following
result.

Theorem 2.2.8. Assume (A1)-(A2) and for some p > 2 and K > 0 let µ ∈ Pp,K(Ξ) be
such that Ψ(µ) is non-empty and bounded. Then,

(a) ϕ(µn(ω))
n→∞
−−−−→ ϕ(µ) for P -almost all ω ∈ Ω;

(b) for any open set G ⊆
�

n1 with Ψ(µ) ⊆ G and for P -almost all ω ∈ Ω there exists
some n0(ω) ∈

�
such that Ψ(µn(ω)) ⊆ G for all n ≥ n0(ω);

(c) for P -almost all ω ∈ Ω there exists some n1(ω) ∈
�

such that Ψ(µn(ω)) is non-
empty for all n ≥ n1(ω).

Finally, the quantitative continuity results stated in Theorem 2.2.5 and Theorem 2.2.6,
respectively, may be applied to obtain the following quantitative stability results.

Theorem 2.2.9. Assume (A1)-(A2) and for some p > 2 and K > 0 let µ ∈ Pp,K(Ξ) be
such that Ψ(µ) is non-empty and bounded. Then there exist L > 0 and δ > 0 such that

∣

∣ϕ(µ) − ϕ(ν)
∣

∣ ≤ L · β(µ, ν)
p−1

p

for all ν ∈ Pp,K(Ξ) with β(µ, ν) < δ.
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Theorem 2.2.10. Assume (A1)-(A2) and let µ ∈ M2(Ξ) be such that Ψ(µ) is non-empty
and bounded. Then there exist L > 0 and δ > 0 such that

∣

∣ϕ(µ) − ϕ(ν)
∣

∣ ≤ L ·W2(µ, ν)

for all ν ∈ M2(Ξ) with W2(µ, ν) < δ.

Remark 2.2.7. In accordance with Remark 2.2.5 we note that if the second-stage cost q
is deterministic, the stability results presented here may be strengthened, in the sense
that Theorem 2.2.7, Theorem 2.2.8, and Theorem 2.2.9 can be stated for p > 1, and
Theorem 2.2.10 can be stated for the L1-Wasserstein metric with µ, ν ∈ M1(Ξ).

Remark 2.2.8. Shapiro [146] quantified the result in Theorem 2.2.7 (b) for problems with
fixed second-stage cost q and fixed technology matrix T . In this paper a second-order
growth condition on the objective is employed to prove Lipschitz upper semicontinuity
of Ψ. This result was extended by Römisch and Schultz [128] who provided a Lipschitz
estimate for the Hausdorff distance of solution sets, assuming strong convexity of the
objective. Furthermore, the authors discuss application of the results when the true
distribution is estimated by empirical measures, cf. the discussion above.

2.3 Solution Procedures

A large majority of the specialized solution procedures that have been proposed in the
literature for two-stage stochastic linear programs, rely on decomposition techniques,
exploiting the special structure of the problem to break it up into smaller and more
manageable pieces. For a recent comprehensive overview of decomposition methods in
stochastic linear programming, we refer to Ruszczyński [133]. In general, a distinction is
made between primal decomposition in which the problem is decomposed with respect to
the individual stages, and dual decomposition in which the problem is decomposed with
respect to the individual outcomes of random parameters. In this thesis we will primar-
ily be concerned with primal decomposition procedures when it comes to the solution
of two-stage stochastic programs with linear recourse. These solution procedures build
on the so-called L-shaped algorithm, introduced in 1969 by Van Slyke and Wets [159]
and discussed in detail in Section 2.3.1 below. This algorithm is based on Benders de-
composition method (see Benders [12]) and forms an outer linerization of the problem,
exploiting the fact that with a finite distribution of random parameters the recourse
function is convex and piecewise linear on a polyhedral domain. We note that this ap-
proach is in fact equivalent to performing a Dantzig-Wolfe decomposition (see Dantzig
and Wolfe [39]) of the dual of the problem, and hence the inner linerization method
suggested by Dantzig and Madansky [38] in 1961 may be seen as a dual method to the L-
shaped algorithm. Some of the most efficient solution procedures for two-stage stochastic
programs as of today, may be seen as extensions of the L-shaped algorithm. Here we men-
tion in particular the multicut version of the L-shaped algorithm proposed by Birge and
Louveaux [21], the regularized decomposition procedure introduced by Ruszczyński [132]
(see also Ruszczyński and Swietanowski [134]) and the stochastic decomposition proce-
dure elaborated by Higle and Sen [57] (see also Higle and Sen [56, 58, 59, 60]). As for dual
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decomposition procedures for stochastic linear programs, the most prominent example
is probably the progressive hedging algorithm introduced by Rockafellar and Wets [124],
which is known as an operator splitting method. Other examples include methods based
on an augmented Lagrangian decomposition as in e.g. Mulvey and Ruszczyński [95] and
Rosa and Ruszczyński [131]. A particular advantage of these dual decomposition methods
is that they have all been successfully applied to multistage stochastic linear programs.
For completeness we should note that also a primal decomposition approach for multi-
stage problems, generalizing the L-shaped method, has been proposed by Birge [19] and
Pereira and Pinto [106].

2.3.1 L-shaped Decomposition

In this section we consider the L-shaped algorithm in some detail, since this method
forms the basis of several of the solution procedures that will be elaborated in subsequent
chapters. Our starting point is the following assumption.

(A3) The distribution µ of ξ is discrete and has finite support, say Ξ = {ξ1, . . . , ξS}
with corresponding probabilities p1, . . . , pS.

For each s ∈ {1, . . . , S}, the outcome of random parameters
(

q(ξs), h(ξs), T (ξs)
)

, corre-
sponding to the elementary event ξs ∈ Ξ, is referred to as a scenario, and we denote it
simply by (qs, hs, T s).

Remark 2.3.1. Note that (A3) may be justified by the stability results presented in the
previous section. In particular, suppose that we are considering a stochastic program
with an absolutely continuous distribution of random parameters, rendering numerical
computations intractable. Under the assumptions of Theorem 2.2.7, the optimal value
and the solution set of this problem may be approximated to any given accuracy by the
optimal value and the solution set of problems in which only discrete distributions are
employed.

As already pointed out, the fundamental idea underlying the L-shaped algorithm is
to perform an outer linerization of the problem. To formalize matters, we write the
stochastic program (2.1.1) in the following equivalent form,

min cx+ θ, (2.3.1a)
s.t. Ax = b, (2.3.1b)

θ ≥ Q(x, µ), (2.3.1c)
x ∈ K2, (2.3.1d)
x ∈

�n1
+ , θ ∈

�
. (2.3.1e)

The algorithm starts from a relaxation of this problem, referred to as the master problem,
in which the constraints (2.3.1c) and (2.3.1d) have been removed. Now, the algorithm
progresses by alternatingly solving the master problem and adding so-called feasibility
cuts, representing the polyhedral domain K2 (cf. Theorem 2.2.1 and Theorem 2.2.2), and
optimality cuts, representing the convex piecewise linear expected recourse function Q
(cf. Theorem 2.2.3). This approach is formalized in the following.
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Recall that x ∈
�n1

+ is said to satisfy all induced constraints if Q(x, µ) < ∞, and
under assumption (A3) this is the case if x ∈ K2 where

K2 =
{

x ∈
�n1

+ | hs − T sx ∈ posW, s = 1, . . . , S
}

.

The feasibility cuts, representing the constraint x ∈ K2, are derived from a number of
linear programming problems, defined for s ∈ {1, . . . , S} and for some x ∈

�n1
+ by

min ev+ + ev−,

s.t. Wy + Iv+ − Iv− = hs − T sx,

y ∈
�n2

+ , v
+, v− ∈

�m2
+ ,

(2.3.2)

where e = (1, . . . , 1) ∈
�

m2 , and I is the m2 × m2-identity matrix. Problem (2.3.2) is
obviously feasible and bounded below by zero for all x ∈

�n1
+ , and hence an optimal

solution always exists. Moreover, the optimal value of the problem is strictly greater
than zero if and only if hs − T sx 6∈ posW . Now, suppose that in some iteration ν of the
algorithm, the solution xν of the master problem does not satisfy all induced constraints.
Then we see that a dual solution σν ∈

{

σ ∈
�

m2 | σW ≤ 0, −e ≤ σ ≤ e
}

exists, such
that σν(hs − T sxν) > 0 for some scenario s ∈ {1, . . . , S}. Furthermore, since for any
x ∈ K2 the optimal value of problem (2.3.2) is equal to zero, we have for all x ∈ K2 that

σν(hs − T sx) ≤ 0 (2.3.3)

since σν is feasible for the dual problem. The linear inequality (2.3.3) is referred to as a
feasibility cut. The inequality may be added to the master problem to cut off the current
solution xν 6∈ K2.

Now, suppose that in some iteration ν of the algorithm we have xν ∈ K2. Then we
may proceed to evaluate the expected recourse function Q(xν , µ). To this end we solve
the second-stage problems, defined for s ∈ {1, . . . , S} and for some x ∈

�n1
+ by

min qsy,

s.t. Wy = hs − T sx,

y ∈
�n2

+ .

(2.3.4)

For s ∈ {1, . . . , S}, we let πs,ν be an optimal dual solution of problem (2.3.4) with x = xν .
By linear programming duality, we have for all x ∈

�
n1 and s ∈ {1, . . . , S} that

Φ(x, ξs) ≥ πs,ν(hs − T sx) (2.3.5)

with equality holding for x = xν , and hence we have for all x ∈
�

n1 that

Q(x, µ) ≥
S

∑

s=1

psπs,ν(hs − T sx)

with equality holding for x = xν . Therefore, if the solution of the master problem (xν , θν)
is such that θν < Q(xν , µ), we may cut off the current solution by adding the following
optimality cut to the master problem,

θ ≥
S

∑

s=1

psπs,ν(hs − T sx). (2.3.6)
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The original L-shaped algorithm, introduced by Van Slyke and Wets [159], may now
be stated in detail as follows.

Algorithm 2.1 (L-shaped Decomposition)

Step 1 (Initialization) Let K > 0, set ν = 0 and z̄ = ∞, and let the current master
problem be min

{

cx+ θ | Ax = b, x ∈
�n1

+ , θ ∈
�}

.

Step 2 (Solve master problem) Set ν = ν + 1. Solve the current master problem
and let (xν , θν) be an optimal solution vector if one exists; if the problem is
unbounded, then let (xν , θν) be a feasible solution with cxν + θν < z̄ −K

Step 3 (Termination) If cxν + θν = z̄, stop; the current solution is optimal.

Step 4 (Add feasibility cuts) For each s ∈ {1, . . . , S}, solve the phase-one prob-
lem (2.3.2) with x = xν and let σs,ν be a corresponding optimal dual solution.
If σs,ν(hs − T sxν) > 0 for some s ∈ {1, . . . , S}, add a feasibility cut (2.3.3) to
the master problem and return to Step 2.

Step 5 (Add optimality cuts) For each s ∈ {1, . . . , S}, solve the second-stage prob-
lem (2.3.4) with x = xν and let πs,ν be a corresponding optimal dual solution.
If θν <

∑S

s=1 p
sπs,ν(hs − T sxν), add an optimality cut (2.3.6) to the master

problem and return to Step 2.

Step 6 (Update bound) Let z̄ = min{z̄, cxν + θν}. Go to Step 2.

Finite convergence of the L-shaped algorithm is a consequence of the fact that only a
finite number of feasibility cuts and optimality cuts can be generated since only a finite
number of different optimal dual solutions of problems (2.3.2) and (2.3.4) exist. Thus,
we have the following.

Proposition 2.3.1. Assume (A3). If the problem (2.1.1) is feasible and bounded, then
Algorithm 2.1 terminates with an optimal solution in a finite number of iterations.

2.3.2 Extensions

Consider now the following alternative reformulation of problem (2.1.1),

min cx+
S

∑

s=1

θs

s.t. Ax = b,

θs ≥ psΦ(x, ξs), s = 1, . . . , S,

x ∈ K2

x ∈
�n1

+ , θ
1, . . . , θS ∈

�
.

This reformulation leads directly to a multicut version of Algorithm 2.1, presented by
Birge and Louveaux [21]. Here the aggregate optimality cut (2.3.6) is replaced by sep-
arate cuts on the second-stage value functions Φ(·, ξs) for s ∈ {1, . . . , S}. Thus, let
(xν , θ1,ν, . . . , θS,ν) be a solution in some iteration ν such that xν ∈ K2, and for some
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scenario s ∈ {1, . . . , S} let πs,ν be an optimal dual solution of the second-stage prob-
lem (2.3.4) with x = xν such that θs,ν < psπs,ν(hs − T sxν). Then we may cut off the
current solution by adding to the master problem the disaggregate optimality cut,

θs ≥ psπs,ν(hs − T sx), (2.3.7)

which is valid for all x ∈
�

n1 cf. (2.3.5). Hence the multicut version of the L-shaped
algorithm proceeds as follows.

Algorithm 2.2 (Multicut L-shaped Decomposition)

Step 1 (Initialization) Let K > 0, set ν = 0 and z̄ = ∞, and let the current master
problem be min

{

cx+
∑S

s=1 θ
s | Ax = b, x ∈

�n1
+ , θ

1, . . . , θS ∈
�}

.

Step 2 (Solve master problem) Set ν = ν + 1. Solve the current master problem
and let (xν , θ1,ν , . . . , θS,ν) be an optimal solution vector if one exists; if the
problem is unbounded, then let (xν , θ1,ν , . . . , θS,ν) be a feasible solution with
cxν +

∑S

s=1 θ
s,ν < z̄ −K.

Step 3 (Termination) If cxν +
∑S

s=1 θ
s,ν = z̄, stop; the current solution is optimal.

Step 4 (Add feasibility cuts) For each s ∈ {1, . . . , S}, solve the phase-one prob-
lem (2.3.2) with x = xν and let σs,ν be a corresponding optimal dual solution.
If σs,ν(hs − T sxν) > 0 for some s ∈ {1, . . . , S}, add a feasibility cut (2.3.3) to
the master problem and return to Step 2.

Step 5 (Add optimality cuts) For each s ∈ {1, . . . , S}, solve the second-stage prob-
lem (2.3.4) with x = xν and let πs,ν be a corresponding optimal dual solution.
If θs,ν < psπs,ν(hs−T sxν) for some s ∈ {1, . . . , S}, add an optimality cut (2.3.7)
to the master problem and return to Step 2.

Step 6 (Update bound) Let z̄ = min
{

z̄, cxν +
∑S

s=1 θ
s,ν

}

. Go to Step 2.

Obviously, we have the following equivalent to Proposition 2.3.1.

Proposition 2.3.2. Assume (A3). If the problem (2.1.1) is feasible and bounded, then
Algorithm 2.2 terminates with an optimal solution in a finite number of iterations.

The multicut approach of Algorithm 2.2 offers some potential computational advan-
tages compared to Algorithm 2.1, since more detailed information is passed to the master
problem in each iteration. Therefore, the number of overall iterations required by Algo-
rithm 2.2 is in general expected to be less than required by Algorithm 2.1. The improved
detailing, however, comes at the cost of an increased complexity of the master prob-
lem since the size of the problem increases more rapidly. This is particularly a problem
because no reliable criterion for removing inactive cuts from the master problem exists
for any of these procedures. Apart from the growing size of the master problem, a ma-
jor drawback of the L-shaped algorithm and its multicut extension is the tendency for
early iterations to oscillate heavily, causing slow convergence toward an optimal solution.
These drawbacks were circumvented in the regularized decomposition method introduced
by Ruszczyński [132]. The algorithm is based on ideas known from bundle methods for
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non-smooth optimization. (See e.g. Kiwiel [71].) Here, an incumbent solution aν is in-
troduced, and a quadratic regularizing term of the form 1

2
‖x − aν‖2 is included in the

objective of the master problem. Hence the master problem in iteration ν is stated as,

min cx+

S
∑

s=1

θs +
1

2
‖x− aν‖2

s.t. Ax = b,

σs,l(hs − T sx) ≤ 0, l ∈ Is,ν , s = 1, . . . , S,

θs ≥ psπs,l(hs − T sx), l ∈ J s,ν , s = 1, . . . , S,

x ∈
�n1

+ , θ
1, . . . , θS ∈

�
.

(2.3.8)

where Is,ν and J s,ν are index sets for the feasibility cuts and optimality cuts, respectively,
that are present in the master problem in iteration ν for scenario s ∈ {1, . . . , S}. Now,
the regularized decomposition algorithm may be stated as follows.

Algorithm 2.3 (Regularized Decomposition)

Step 1 (Initialization) Set ν = 0, z̄ = ∞, and Is,ν = J s,ν = ∅ for s = 1, . . . , S.
Choose a starting point a1 and let the master problem be defined by (2.3.8).

Step 2 (Solve master problem) Set ν = ν + 1. Solve the current master problem
and let (xν , θ1,ν , . . . , θS,ν) be an optimal solution vector. (If J s,ν = ∅ for some
s ∈ {1, . . . , S}, the corresponding variable θs is ignored in the computation.)

Step 3 (Termination) If cxν +
∑S

s=1 θ
s,ν = z̄, stop; the incumbent aν is optimal.

Step 4 (Add feasibility cuts) For each s ∈ {1, . . . , S}, solve the phase-one prob-
lem (2.3.2) with x = xν and let σs,ν be a corresponding optimal dual solution.
If σs,ν(hs − T sxν) > 0 for some s ∈ {1, . . . , S}, then let Is,ν+1 = Is,ν ∪ {ν},
set aν+1 = aν , and go to Step 9 (null infeasible step).

Step 5 (Add optimality cuts) For each s ∈ {1, . . . , S}, solve the second-stage prob-
lem (2.3.4) with x = xν and let πs,ν be a corresponding optimal dual solution.
If θs,ν < psπs,ν(hs−T sxν) for some s ∈ {1, . . . , S}, then let J s,ν+1 = J s,ν∪{ν}
and go to Step 7.

Step 6 (Exact serious step) Set z̄ = cxν +
∑S

s=1 θ
s,ν and aν+1 = xν . Go to step 9.

Step 7 (Approximate serious step) If cxν +
∑S

s=1 p
sπs,ν(hs − T sxν) < z̄, then set

z̄ = cxν +
∑S

s=1 p
sπs,ν(hs − T sxν) and aν+1 = xν , and go to step 9.

Step 8 (Null feasible step) Set aν+1 = aν .

Step 9 (Cut deletion) For s ∈ {1, . . . , S}, remove from Is,ν and J s,ν some indices,
corresponding to cuts that were inactive at the solution (xν , θ1,ν , . . . , θS,ν), to
obtain Is,ν+1 and J s,ν+1, respectively. Go to step 2.

Once again we have the following.

Proposition 2.3.3. Assume (A3). If the problem (2.1.1) is feasible and bounded, then
Algorithm 2.3 terminates with an optimal solution in a finite number of iterations.



Chapter 3

Two-Stage Stochastic Programs with

Mixed-Integer Recourse

Many real-life decision problems involve decisions that are by nature discrete. In fact,
all of the applications of stochastic programming considered in Chapters 6 through 10 of
this thesis, lead to models with either binary or general integer variables. When integer
variables occur only in the first stage of a two-stage stochastic program with recourse,
the difficulties are not too severe, since the structural properties of the expected recourse
function established in Chapter 2 remain unchanged. Examples of such models will be
considered in Chapters 7 and 10. When integer variables occur in the second stage, on
the other hand, matters are seriously complicated since the expected recourse function
is no longer necessarily convex nor even continuous. Examples of recourse models with
(mixed-) integer second stage will be considered in Chapters 6 and 9. In this chapter we
consider a general two-stage stochastic program with mixed-integer recourse. We survey
results on structural properties related to continuity of the expected recourse function
and to stability of optimal solutions when the underlying probability measure is subjected
to perturbations. Also, we discuss a number of alternative decomposition-based solution
procedures for the problem. For a recent survey of research in the field of stochastic
integer programming, we refer to Klein Haneveld and van der Vlerk [79]. See also the
annotated bibliography by Stougie and van der Vlerk [151], and the extensive online
bibliography of van der Vlerk [157].

3.1 Problem Formulation

We recall from Section 1.2.2 that the classical two-stage stochastic program with recourse
concerns minimization of the sum of direct cost and expected recourse cost arising from
some first-stage decision. This first-stage decision must be made without certain knowl-
edge on some random parameters of the model, whereas the recourse cost is determined
as a second-stage decision is made after uncertainty has been disclosed. As mentioned
above, we assume throughout this chapter that some of the second-stage variables are
restricted to integer values. Structural properties of the problem in this case have been
established only under the assumption that the recourse matrix and the second-stage
cost are fixed, and hence we employ this assumption throughout the structural analysis.

28
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As in Chapter 2 the stability analysis of optimal solutions will require continuity
properties of the expected recourse function as a function of the underlying probability
distribution as well as of the first-stage decision, and hence once again we find the fol-
lowing formulation of the problem convenient. We let ξ : Ω 7→

�
N be a random vector

defined on some probability space (Ω,F , P ), the components of which constitute the
random second-stage data, consisting of the second-stage right-hand side h̃ : Ω 7→

�
m2

and the technology matrix T̃ : Ω 7→
�

m2×n1 . In other words we have N = m2(1 + n1),
and for ω ∈ Ω we have ξ(ω) =

(

h̃(ω), T̃1(ω), . . . , T̃m2(ω)
)

where T̃k denotes the kth row
of T̃ for k = 1, . . . , m2. Introducing the induced Borel probability measure µ = P ◦ ξ−1

on
�

N , the two-stage mixed-integer recourse problem is now formulated as,

TSMIR(µ) min
{

cx+ Q(x, µ) | Ax = b, x ∈ X
}

, (3.1.1)

where the expected recourse function Q is given by,

Q(x, µ) = �
[

Φ
(

h(ξ) − T (ξ)x
)]

=

∫

�
N

Φ
(

h(ξ) − T (ξ)x
)

µ(dξ), (3.1.2)

and the second-stage value function Φ is given by

Φ(τ) = min
{

qy + q′y′ |Wy +W ′y′ = τ, y ∈
�n2

+ , y
′ ∈

�n′
2

+

}

. (3.1.3)

Here c ∈
�

n1 , q ∈
�

n2 , q′ ∈
�

n′
2 , and b ∈

�
m1 are known vectors, and A ∈

�
m1×n1 ,

W ∈
�

m2×n2, and W ′ ∈
�

m2×n′
2 are known matrices. Moreover, it is assumed that W

and W ′ have rational entries. The second-stage right-hand side h :
�

N 7→
�

m2 and the
technology matrix T :

�
N 7→

�
m2×n1 , on the other hand, are represented as mappings

picking out the appropriate components of the random vector ξ. The set X ⊆
�n1

+

is assumed to be non-empty and closed, and in particular it may or may not contain
integrality restrictions on some or all of the first-stage variables.

In the following we let µ ∈ P(
�

N ) represent the joint distribution of the second-stage
right-hand side h̃ and the technology matrix T̃ as described above. At some points we
will also be interested in the marginal distributions of h̃ and T̃ , and we denote these by
µ1 and µ2, respectively. Moreover, for T ∈

�
m2×n1 we denote by µ2

1(·, T ) the (regular)
conditional distribution of h̃ given T̃ = T . (See Appendix A.)
Remark 3.1.1. In Remark 2.1.2 on page 15 we briefly mentioned the important special
case of two-stage stochastic programs with linear recourse referred to as simple recourse
problems. Clearly, this notion may be generalized for problems with integer recourse. In
particular, consider the special case of the stochastic program (3.1.1)-(3.1.2) where the
second-stage value function is given by,

Φ(τ) = min
{

q+y+ + q−y− | y+ ≥ τ, y− ≥ −τ, y+, y− ∈
�m2

+

}

,

where q+, q− ∈
�

m2 are known vectors. This is referred to as the simple integer recourse
case. As in the linear case, stochastic programs with simple integer recourse have re-
ceived particular attention in the literature, since the special structure of the problem
provides significant computational advantages. Hence, structural properties preparing
the way for efficient solution procedures for the simple integer recourse problem, have
been established in papers by Klein Haneveld, Stougie, and van der Vlerk [74, 75, 76, 77],
Klein Haneveld and van der Vlerk [78], and Louveaux and van der Vlerk [86]. See also
the PhD-thesis by van der Vlerk [156].
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3.2 Structural Properties

As already pointed out, the complications associated with two-stage stochastic programs
with mixed-integer recourse arise mainly due to the fact that properties of the second-
stage value function such as continuity and convexity are lost when integer requirements
are imposed on second-stage variables. Therefore, to establish results related to conti-
nuity properties of the expected recourse function and to stability properties of optimal
solutions, the assumptions employed during the structural analysis of linear recourse
problems must be complemented with further restrictions on the probability measure
to ensure a sufficient “smoothing effect” of the integral in (3.1.2). An early result in
this respect, concerning continuity of the expected recourse function, was established
by Stougie [150] (see also Rinnooy Kan and Stougie [119]). Furthermore, Artstein and
Wets [4] considered maximization of an integral functional with discontinuous integrands
in a general setting, containing the two-stage stochastic program with mixed-integer re-
course as a special case. In this setting the authors study lower and upper semicontinuity
of the integral functional, and establish qualitative stability results of the problem, sim-
ilar in vein to those presented for the mixed-integer recourse problem in this section.
Apart from these references, most results on structural properties of two-stage stochastic
programs with mixed-integer recourse are due to Schultz [138, 139, 140, 141].

3.2.1 The Expected Recourse Function

During the survey of structural properties for two-stage stochastic programs with linear
recourse, presented in Section 2.2, we employed the assumptions of complete recourse
and dual feasibility of the second-stage problems cf. (A1) and (A2) on page 17. These as-
sumptions were complemented with different moment conditions to establish the desired
structural properties of the expected recourse function. In this section we will employ
the following counterparts of (A1) and (A2).

(B1) For all t ∈
�

m2 there exist y ∈
�n2

+ and y′ ∈
�n′

2
+ such that Wy +W ′y′ = t.

(B2) There exists u ∈
�

m2 such that uW ≤ q and uW ′ ≤ q′.

Here (B1) is the natural extension of the complete recourse property for stochastic pro-
grams with linear recourse (cf. Definition 2.2.2), and hence it is referred to as the complete
mixed-integer recourse property. Assumption (B2), on the other hand, implies dual feasi-
bility of the linear relaxation of the second-stage problem. These two assumptions ensure
feasibility and boundedness, respectively, of the second-stage problem, and hence they
are sufficient to establish the following properties of the second-stage value-function de-
fined by (3.1.3). For these and related results on the value function of a mixed-integer
program, we refer to e.g. the monograph by Bank and Mandel [10] and the research paper
by Blair and Jeroslow [24].

Lemma 3.2.1. Assume (B1)-(B2). Then Φ is a real-valued lower semicontinuous func-
tion on

�
m2 and

(a) there exist constants α > 0 and β > 0 such that for all τ, τ ′ ∈
�

m2 we have
∣

∣Φ(τ) − Φ(τ ′)
∣

∣ ≤ α||τ − τ ′|| + β;
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(b) there exist constants γ > 0 and δ > 0 and vectors d1, . . . , dl, d̃1, . . . , d̃l′ ∈
�

m2 such
that for all τ ∈

�
m2 we have Φ(τ) = min

{

qy+maxk∈{1,...,l} dk(τ−Wy) | y ∈ Y (τ)
}

where Y (τ) =
{

y ∈
�n2

+

∣

∣

∑

i |yi| ≤ γ
∑

j |τj | + δ, d̃k(τ −Wy) ≥ 0, k = 1, . . . , l′
}

.

To arrive at the desired properties of the expected recourse function, (B1) and (B2)
must be complemented with the additional assumption that the probability distribution
has finite first moment, i.e. we employ the moment condition µ ∈ M1(

�
N), where we

recall that

M1(
�N) =

{

µ ∈ P(
�N )

∣

∣

∣

∫

�
N

||ξ||µ(dξ) <∞

}

.

With the result of Lemma 3.2.1 (a) this restriction on the probability measure is sufficient
to establish the existence of an integrable minorant of the second-stage value function,
and hence Schultz [140] applied Fatou’s Lemma to arrive at the following result.

Theorem 3.2.1. Assume (B1)-(B2) and let µ ∈ M1(
�

N). Then Q(·, µ) is a real-valued
lower semicontinuous function on

�
n1.

Note that with fixed second-stage cost, the condition µ ∈ M1(
�

N ) is sufficient to
ensure that the weak covariance condition is satisfied (cf. Definition 2.2.1), and hence the
assumptions of Theorem 3.2.1 closely correspond to those of Theorem 2.2.3 on page 18,
where (Lipschitz) continuity of the expected recourse function was stated for problems
with linear recourse. To arrive at sufficient conditions for continuity of the expected re-
course function for problems with mixed-integer recourse, however, further assumptions
must be made about the probability measure µ. To this end we define for some x ∈

�
n1

the set E(x) of all those ξ ∈
�

N such that h(ξ) − T (ξ)x is a discontinuity point of Φ.
Using again the result of Lemma 3.2.1 (a) to establish the existence of an integrable majo-
rant of the second-stage value function, and applying Lebesgue’s dominated convergence
theorem, Schultz [140] now showed the following.

Theorem 3.2.2. Assume (B1)-(B2) and let µ ∈ M1(
�

N ) and x ∈
�

n1 be such that
µ(E(x)) = 0. Then Q(·, µ) is continuous at x.

Furthermore, applying the result of Lemma 3.2.1 (b), it may be seen that the set of all
discontinuity points of Φ is contained in a countable union of hyperplanes in

�
m2 . This

leads directly to the following corollary.

Corollary 3.2.1. Assume (B1)-(B2) and let µ ∈ M1(
�

N) be such that µ2
1(·, T ) is

absolutely continuous with respect to the Lebesgue measure on
�

m2 for µ2-almost all
T ∈

�
m2×n1. Then Q(·, µ) is a continuous function on

�
n1.

Finally, Schultz [140] also established a sufficient condition for Lipschitz continuity of the
expected recourse function.

Theorem 3.2.3. Adopt the setting of Corollary 3.2.1, and assume further that for any
non-singular transformation B :

�
m2 7→

�
m2 and for µ2-almost all T ∈

�
m2×n1, the

one-dimensional marginal distributions of µ2
1(·, T ) ◦ B have densities that are uniformly

bounded with respect to T and monotonic outside some bounded interval not depending
on T . Then Q(·, µ) is Lipschitz continuous on any bounded subset of

�
n1.
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Remark 3.2.1. The assumptions of Theorem 3.2.3 may seem rather technical. However,
they may be seen to hold for example for the (non-degenerate) multivariate normal
distribution and for t-distributions. Furthermore, Schultz [139] provided two examples of
integer recourse problems with one-dimensional random right-hand side, showing that the
Lipschitz continuity of the expected recourse function may fail if either of the assumptions
on boundedness or monotonicity in Theorem 3.2.3 are abandoned.

Next we consider results related to joint continuity of Q as a function of the first-stage
decision and the underlying probability measure. As in the linear recourse case, we recall
that the set of Borel probability measures is endowed with the notion of weak convergence
(see Appendix A), and note that the continuity of Q with respect to µ requires some
uniform integrability condition to be satisfied cf. e.g. Billingsley [18, Theorem 5.4] or
Hoffman-Jørgensen [61, Section 5.2]. For mixed-integer recourse problems, Schultz [140]
considered the family of Borel probability measures given by

Pp,K(
�N) =

{

µ ∈ P(
�N )

∣

∣

∣

∫

�
N

||ξ||pµ(dξ) ≤ K

}

,

for some real numbers p > 1 and K > 0, and showed that Theorem 5.4 and Theorem 5.5
in Billingsley [18] can be applied to obtain the following.

Theorem 3.2.4. Assume (B1)-(B2) and for some p > 1 and K > 0 let µ ∈ Pp,K(
�

N)
and x ∈

�
n1 be such that µ(E(x)) = 0. Then Q, as a function from

�
n1×Pp,K(

�
N) to

�
,

is continuous at (x, µ).

Again we have the following immediate corollary.

Corollary 3.2.2. Assume (B1)-(B2) and for some p > 1 and K > 0 let µ ∈ Pp,K(
�

N)
be such that µ2

1(·, T ) is absolutely continuous with respect to the Lebesgue measure on
�

m2 for µ2-almost all T ∈
�

m2×n1. Then Q, as a function from
�

n1 × Pp,K(
�

N ) to
�

,
is continuous on

�
n1 × {µ}.

Remark 3.2.2. Once again note that with fixed second-stage cost, the assumptions of
Theorem 3.2.4 and Corollary 3.2.2 correspond to those of Theorem 2.2.4 on page 18,
complemented with an additional restriction on the probability measure, required to
ensure a sufficient “smoothing effect” of the integral for the mixed-integer recourse case.

As for quantitative continuity results of the expected recourse function with respect
to the underlying probability measure, Schultz [140] gave an example, showing that no
Hölder estimate for Q(x, ·) with respect to the L1-Wasserstein metric nor the bounded
Lipschitz metric can be established when integer requirements are imposed on the second-
stage variables. Hence the challenge has been to come up with a suitable distance of
probability measures that fits the discontinuities of the second-stage value function and
at the same time covers weak convergence of probability measures. First results in this
direction were obtained by Schultz [141] for problems with a fixed technology matrix.
Hence we assume in the following that only the second-stage right-hand side is random
and thus consider probability measures in P(

�
m2). Schultz [141] considered the following

variational distance (or discrepancy), defined for µ, ν ∈ P(
�

m2) by

αBK
(µ, ν) = sup

{

|µ(B) − ν(B)|
∣

∣ B ∈ BK

}

, (3.2.1)
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where BK ⊆ B(
�

m2) denotes the class of all (closed) bounded polyhedra in
�

m2 whose
facets parallels a facet of K = posW ′ or a facet of the m2-dimensional unit hyper-cube
(i.e. ×m2

i=1[0, 1]). Using this discrepancy, Schultz was able to obtain the following Hölder
estimate for the expected recourse function with respect to the distribution of the second-
stage right-hand side.

Theorem 3.2.5. Let the technology matrix be fixed and assume (B1)-(B2). Furthermore,
let D ⊆

�
n1 be non-empty and compact, and let µ ∈ Pp,K(

�
m2) for some p > 1 and

K > 0. Then there exist L > 0 and δ > 0 such that

∣

∣Q(x, µ) −Q(x, ν)
∣

∣ ≤ L · αBK
(µ, ν)

p−1
p(m2+1)

for all x ∈ D and all ν ∈ Pp,K(
�

m2) with αBK
(µ, ν) < δ.

Remark 3.2.3. Adapting probability (pseudo-) distances to the underlying structures is a
proven tool in quantitative stability analysis of stochastic programs. We refer to Rachev
and Römisch [109] for a general framework and applications to classical recourse models
as well as chance-constrained problems.

Remark 3.2.4. Schultz [141] showed that the discrepancy αBK
defined above is in fact a

metric on P(
�

m2). Moreover, he used the concept of a µ-uniformity class to establish
a coherence between the discrepancy αBK

and weak convergence of probability measures
as follows. For µ ∈ P(

�
m2), a family of Borel sets B0 ⊆ B(

�
m2) is called a µ-uniformity

class if for every sequence of probability measures {µn}∞n=1 in P(
�

m2) converging weakly
to µ we have sup

{

|µn(B) − µ(B)|
∣

∣ B ∈ B0

} n→∞
−−−−→ 0. Now, according to Bhattacharya

and Ranga Rao [15, Theorem 2.11], the class Bc of all convex Borel sets in
�

m2 is a
µ-uniformity class for all those µ ∈ P(

�
m2) that are absolutely continuous with respect

to the Lebesgue measure on
�

m2 . Therefore, since we obviously have BK ⊆ Bc, we see
that αBK

(µn, µ)
n→∞
−−−−→ 0 for any sequence of probability measures {µn}∞n=1 in P(

�
m2)

converging weakly to such µ.

3.2.2 Stability

Once again let us note that in many practical applications of stochastic programming, the
probability distribution of random parameters will not be completely known, and hence
the true distribution may have to be replaced in the model by some suitable estimate,
such as e.g. empirical measures. Furthermore, even if the true distribution µ of random
parameters is known, the approximation of µ by simpler probability measures may be
required to facilitate practical computations. In fact, as we will see in Section 3.3, most
solution procedures for two-stage stochastic programs with (mixed-) integer recourse rely
on the assumption that the probability distribution of random parameters is discrete
with finite support. Obviously, though, this will quite often not be the case in practice.
Therefore, just as in the linear recourse case, stability of the two-stage stochastic program
with mixed-integer recourse TSMIR(µ), when the underlying probability distribution is
subjected to perturbations, is an important issue to which we now turn.

Since the two-stage stochastic program with mixed-integer recourse TSMIR(µ), de-
fined by (3.1.1)-(3.1.3), is in general a non-convex problem, local minimizers are now in-
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cluded in the analysis. Therefore, the stability results presented here take the form of con-
tinuity properties of a localized version of the optimal-value function, ϕV : P(

�
N ) 7→

�
,

defined for some non-empty open set V ⊆
�

n1 by

ϕV (µ) = inf
{

cx+ Q(x, µ) | Ax = b, x ∈ X ∩ clV
}

,

and of a localized version of the solution set mapping, ΨV : P(
�

N ) 7→
�

n1 , that is defined
accordingly by

ΨV (µ) = arg min
{

cx+ Q(x, µ) | Ax = b, x ∈ X ∩ clV
}

.

where clV denotes the closure of V .
Having established the joint continuity of Q with respect to x and µ, it is straightfor-

ward to prove continuity of ϕV and Berge upper semicontinuity of ΨV for any bounded
open set V ⊆

�
n1 . (Once again recall that the point-to-set mapping, ΨV , is Berge upper

semicontinuous at some µ ∈ P(
�

N ) if for any open set G ⊆
�

n1 with ΨV (µ) ⊆ G there
exists some neighborhood U of µ in P(

�
N ) such that ΨV (ν) ⊆ G for all ν ∈ U .) For

the analysis of local minimizers, however, we will not find these properties alone quite
sufficient, the shortcoming being that they do not preclude certain pathologies that may
occur when dealing with stability of local minimizers. The difficulties that may occur are
illustrated by the following example.

Example 3.2.1. Consider the two-stage stochastic program with mixed-integer recourse,
min

{

2x + Q(x, µ) | x ≥ 0
}

, where Q(x, µ) = � ξ

[

min
{

y | y ≥ ξ − x, y ∈
�}]

, and ξ is
a uniformly distributed random variable, ξ ∼ U(−1

4
, 1

4
). Here the distribution µ of ξ is

absolutely continuous with density

fµ(ξ) =

{

2 for − 1
4
≤ ξ ≤ 1

4
;

0 otherwise,

and it is easily seen that we have

Q(x, µ) =

{

−n for n+ 1
4
≤ x ≤ n + 3

4
, n ∈

�
;

−2x+ n + 1
2

for n− 1
4
≤ x ≤ n+ 1

4
, n ∈

�
.

Now, for ε > 0 consider the perturbed distribution µε having density

fµε
(ξ) =

{

2 + εξ for − 1
4
≤ ξ ≤ 1

4
;

0 otherwise.

For the perturbed distribution we have

Q(x, µε) =

{

−n for n + 1
4
≤ x ≤ n+ 3

4
, n ∈

�
;

−2x+ n+ 1
2

+ ε
(

1
32

− 1
2
(x− n)2

)

for n− 1
4
≤ x ≤ n+ 1

4
, n ∈

�
.

The objective function of the original problem and of the perturbed problem are both
illustrated in Figure 3.1. Now, for each n ∈

�
+, the closed interval [n − 0.1, n + 0.1],

for example, is a bounded set of local minimizers of the original problem, and hence we
should like these sets to behave stably under perturbations of the problem. For any ε > 0,
however, none of the intervals [n− 0.1, n+ 0.1], n ∈

�
+, contain any local minimizers of

the perturbed problem.



3.2 Structural Properties 35

0.5

1.0

1.5

2.0

x

2x + Q(x, µ)

0.5 1.0 1.5

0.5

1.0

1.5

2.0

x

2x + Q(x, µ
ε
)

0.5 1.0 1.5

Figure 3.1: Objective function of the original problem and of the perturbed problem in
Example 3.2.1.

To preclude pathologies as the one illustrated in Example 3.2.1, Robinson [121] and
Klatte [73] proposed a local stability analysis for non-convex problems, emphasizing the
need for considerations to include all local minimizers that are, in some sense, nearby
the minimizers one is interested in. The crucial concept is that of a complete local
minimizing set, or simply a CLM set, which may be formulated as follows. Let µ be a
Borel probability measure on

�
N , and let M be a non-empty subset of

�
n1. If there

exists an open set V ⊆
�

n1 such that M ⊆ V and M = ΨV (µ), then M is called a CLM
set for TSMIR(µ) with respect to V . Obvious examples of CLM sets are the set of global
minimizers as well as any set of strict local minimizers. Hence, the subsequent results
stated in general for CLM sets are valid in particular for the set of global minimizers and
for any set of strict local minimizers.

Theorem 3.2.6. Assume (B1)-(B2), for some p > 1 and K > 0 let µ ∈ Pp,K(
�

N) be
such that µ2

1(·, T ) is absolutely continuous with respect to the Lebesgue measure on
�

m2

for µ2-almost all T ∈
�

m2×n1, and let V ⊆
�

n1 be a bounded open set such that ΨV (µ)
is a CLM set for TSMIR(µ) with respect to V . Then,

(a) ϕV as a function from Pp,K(
�

N ) to
�

is continuous at µ;

(b) ΨV as a mapping from Pp,K(
�

N ) to
�

n1 is Berge upper semicontinuous at µ;

(c) there exists some neighborhood U of µ in Pp,K(
�

N ) such that ΨV (ν) is a CLM set
for TSMIR(ν) with respect to V for all ν ∈ U .

Assuming that the technology matrix is fixed, the result of Theorem 3.2.5 allows the
following quantitative stability result.

Theorem 3.2.7. Let the technology matrix be fixed and assume (B1)-(B2). Furthermore,
for some p > 1 and K > 0 let µ ∈ Pp,K(

�
m2) be absolutely continuous with respect to the

Lebesgue measure on
�

m2, and let V ⊆
�

n1 be a bounded open set such that ΨV (µ) is a
CLM set for TSMIR(µ) with respect to V . Then there exist L > 0 and δ > 0 such that

∣

∣ϕV (µ) − ϕV (ν)
∣

∣ ≤ L · αBK
(µ, ν)

p−1
p(m2+1)

for all ν ∈ Pp,K(
�

m2) with αBK
(µ, ν) < δ.
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Remark 3.2.5. Here the assumption that µ is absolutely continuous with respect to the
Lebesgue measure on

�
m2 , is required only to ensure that BK is a µ-uniformity class

cf. Remark 3.2.4, and hence that αBK
(µn, µ)

n→∞
−−−−→ 0 for any sequence of probability

measures {µn}∞n=1 in P(
�

m2) converging weakly to µ.

Just as in the linear recourse case we note that the true distribution of random
parameters will not be completely known in many practical applications of stochastic
programming, and hence the true distribution may have to be replaced by some suitable
estimate. Hence we consider again the situation when the true distribution µ is approxi-
mated by empirical measures. In particular, we let {ξn}∞n=1 be a sequence of independent
and identically distributed N -dimensional random vectors defined on some probability
space (Ω,F , P ), and we denote by µ their common distribution. This gives rise to a
corresponding sequence of empirical probability measures on

�
N defined by

µn(ω) =
1

n

n
∑

i=1

δξi(ω),

where δξi(ω) denotes the measure with unit mass at ξi(ω) for i = 1, . . . , n. It is well-known
that we have µn(ω)

w
−→ µ for P -almost all ω ∈ Ω cf. e.g. Dudley [42, Theorem 11.4.1].

As in the linear recourse case one may use this fact and apply Theorem 3.2.6 to obtain
asymptotic convergence of local optimal values and local optimal solutions when µ sat-
isfies the hypotheses of that theorem, cf. Theorem 2.2.8 on page 21. For problems with
a fixed technology matrix, however, Schultz [141], went another way, showing that the
smoothness assumption on µ in Theorem 3.2.6 can be abandoned. In particular, Schultz
used the concept of a so-called Vapnik-Červonenkis class to prove that for any probabil-
ity measure µ ∈ P(

�
N) we have αBK

(µn(ω), µ)
n→∞
−−−−→ 0 for P -almost all ω ∈ Ω, thus

obtaining the following as a consequence of Theorem 3.2.5.

Theorem 3.2.8. Let the technology matrix be fixed and assume (B1)-(B2). Furthermore,
for some p > 1 and K > 0 let µ ∈ Pp,K(

�
m2), and let V ⊆

�
n1 be a bounded open set

such that ΨV (µ) is a CLM set for TSMIR(µ) with respect to V . Then,

(a) ϕV (µn(ω))
n→∞
−−−−→ ϕV (µ) for P -almost all ω ∈ Ω;

(b) for any open set G ⊆
�

n1 with ΨV (µ) ⊆ G and for P -almost all ω ∈ Ω there exists
some n0(ω) ∈

�
such that ΨV (µn(ω)) ⊆ G for all n ≥ n0(ω);

(c) for P -almost all ω ∈ Ω there exists some n1(ω) ∈
�

such that ΨV (µn(ω)) is a CLM
set for TSMIR(µn(ω)) with respect to V for all n ≥ n1(ω).

3.3 Solution Procedures

Two-stage stochastic integer programming problems have proved particularly difficult to
solve, since they suffer from the combined hardships of stochastic programming and inte-
ger programming. In this section we give a brief account of some of the general purpose
algorithms that have been proposed for this class of problems, but one should be aware
that specialized solution procedures will be required to solve many practical problems
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cf. also Chapters 6 through 10 of this thesis. Let us also note that very few attempts
have been made to elaborate general purpose algorithms for multistage stochastic integer
programs, and in fact only few results on structural properties are available for this class
of problems (see e.g. Römisch and Schultz [129]). As in the linear recourse case, most
solution procedures for two-stage stochastic programs with (mixed-) integer recourse are
based on the following assumption.

(B3) The distribution µ of ξ is discrete and has finite support, say Ξ = {ξ1, . . . , ξS}
with corresponding probabilities p1, . . . , pS.

Again, for each s ∈ {1, . . . , S} the outcome of random parameters
(

h(ξs), T (ξs)
)

, corre-
sponding to some elementary event ξs ∈ Ξ, is referred to as a scenario, and we denote it
simply by (hs, T s).

Remark 3.3.1. Cf. Remark 2.3.1 on page 23, we note that (B3) may be justified by the sta-
bility results presented in the previous section. In particular, according to Theorem 3.2.6
the optimal value and the solution set of a stochastic program with an absolutely contin-
uous distribution of random parameters, may be approximated to any given accuracy by
the optimal value and the solution set of problems employing only discrete distributions.

As in the linear recourse case, most solution procedures for stochastic programs with
(mixed-) integer recourse are based on decomposition of the problem, and in general
they can be classified as either primal decomposition procedures in which the problem is
decomposed with respect to the individual stages, or dual decomposition procedures in
which the problem is decomposed with respect to the individual outcomes of random
parameters (see e.g. Carøe [27]). A notable exception is the approach of Hemmecke and
Schultz [55], where a two-stage stochastic program with integer recourse and random
second-stage right-hand side is solved as a large-scale integer program by an augmentation
algorithm using its Graver test set (see Graver [51]), and decomposition is applied not
to the problem itself but to the Graver test set.

In Sections 3.3.1 and 3.3.2 below we discuss in some detail a few primal and dual
decomposition procedures, respectively. Before proceeding to this, let us mention that
van der Vlerk [158] proposed a convex approximation of the expected recourse function
for problems with complete integer recourse and random second-stage right-hand side,
and showed that the approximation provides a convex lower bound that is strictly better
than the one provided by the LP-relaxation (and in fact optimal for problems with a to-
tally unimodular recourse matrix). We also mention that Carøe and Tind [30] discussed
the use of cutting plane techniques for two-stage mixed 0-1 recourse models in relation
to primal as well as dual decomposition procedures. Finally, we note that the stochas-
tic branch-and-bound procedure discussed in general settings by Norkin, Ermoliev, and
Ruszczyński [98] and Norkin, Pflug, and Ruszczyński [99], may be applied, in particular,
to the two-stage (mixed-) integer recourse model considered here.

3.3.1 Primal Decomposition

When integer variables occur only in the first stage the difficulties are not too severe,
since the structural properties of the expected recourse function discussed in Chapter 2
are maintained. Hence in this case it is relatively easy to adapt the L-shaped algorithm
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presented in Section 2.3.1 to account for integer first-stage variables. Such an approach
was first formalized by Wollmer [166] for problems with binary first-stage variables and
continuous second-stage variables (see also Chapters 7 and 10 of this thesis). Generaliza-
tions of this approach for problems with (mixed-) integer recourse have been suggested
by various authors. In general these procedures are based on the following equivalent
formulation of the stochastic program (3.1.1),

min cx+ θ, (3.3.1a)
s.t. Ax = b, (3.3.1b)

θ ≥ Q(x, µ), (3.3.1c)
x ∈ K2, (3.3.1d)
x ∈ X, θ ∈

�
, (3.3.1e)

where K2 =
{

x ∈
�n1

+ | Q(x, µ) < ∞
}

. We recall that the restriction x ∈ K2 is referred
to as the induced constraints, and note that under assumption (B3) it implies that the
first-stage decision must be such that the second-stage problem is feasible for all scenarios.
Now, as in L-shaped decomposition for two-stage linear recourse problems, the fundamen-
tal idea is to relax the constraints (3.3.1c) and (3.3.1d), and iteratively re-enforce them
by imposing so-called optimality cuts and feasibility cuts, respectively. Furthermore, this
approach must now be combined with a branching strategy to account for integer require-
ments on first-stage variables. Hence, Laporte and Louveaux [82] suggested a conceptual
integer L-shaped algorithm, formulated as a branch-and-cut algorithm as follows.

Algorithm 3.1 (Integer L-shaped Decomposition)

Step 1 (Initialization) Let K > 0, set z̄ = ∞, and let the list of open problems L
consist of the problem min

{

cx+ θ | Ax = b, x ∈
�n1

+ , θ ∈
�}

.

Step 2 (Termination/Node selection) If L = ∅, stop; the solution that yielded the
upper bound z̄ is optimal. Otherwise, select and remove a problem P from L.

Step 3 (Solve master problem) Solve the current problem and let (xP , θP ) be an
optimal solution vector if one exists; if the problem is unbounded, let (xP , θP )
be a feasible solution with cxP + θP < z̄ −K. If cxP + θP ≥ z̄, go to Step 2.

Step 4 (Add feasibility cuts) Check for any induced constraint violations. If one
exists, add a feasibility cut to the current problem and return to Step 3.

Step 5 (Branching) Check for integrality restrictions. If a restriction is violated by
the current solution xP, create two new problems by branching on the relevant
component of x, add the two problems to L, and return to Step 2.

Step 6 (Update bound) Compute Q(xP, µ) and let z̄ = min
{

z̄, cxP + Q(xP, µ)
}

.

Step 7 (Add optimality cuts) If θP < Q(xP, µ), add an optimality cut to the current
problem and return to Step 3. Otherwise, go to Step 2.

Clearly the convergence of this algorithm to an optimal solution of problem (3.1.1) re-
quires the existence of sets of optimality cuts and feasibility cuts that are sufficient to
re-enforce the constraints (3.3.1c) and (3.3.1d), respectively. Laporte and Louveaux [82]
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considered a two-stage stochastic program with complete (mixed-) integer recourse, bi-
nary first-stage variables, and general but easily computable recourse problems. The au-
thors proposed optimality cuts that approximate the expected recourse function at binary
first-stage solutions (but not necessarily at other points), obtaining finite convergence by
virtue of finiteness of the set of feasible first-stage solutions. This algorithm has been suc-
cessfully applied to several problems cf. e.g. Laporte, Louveaux, and Mercure [83, 84] and
Laporte, Louveaux, and van Hamme [85]. In a more general setting, Carøe and Tind [31]
proposed an L-shaped method for two-stage integer recourse problems, based on duality
theory for integer programming (see e.g. Nemhauser and Wolsey [97]). Deriving feasi-
bility cuts and optimality cuts defined by non-linear dual price functions, the authors
establish finite convergence of the algorithm, but admit that no practicable method for
the solution of the resulting master problem exists.

Another primal decomposition approach was suggested by Schultz, Stougie, and van
der Vlerk [143] for problems with continuous first stage and a second-stage value function
given by Φ(τ) = min

{

qy |Wy ≥ τ, y ∈
�n2

+

}

. The following assumptions are employed.

(B4) The technology matrix is fixed, i.e. T s = T for s = 1, . . . , S.

(B5) The recourse matrix W is integral.

Now, the insight of Schultz et al. was to observe that, for all x̄ ∈
�

n1 , the expected
recourse function Q is constant on the set

C(x̄) =

S
⋂

s=1

{

x ∈
�n1 | dTx− hse = dT x̄− hse

}

,

where d·e denotes componentwise integer round up. Using the fact that the expected
value function is lower semicontinuous (cf. Theorem 3.2.1), the authors now show that
V = {x ∈

�
n1 | x is a vertex of X ∩ C(x)} is a countable set containing an optimal

solution of the problem. Furthermore, the authors show how level sets of the linear
relaxation of the problem can be used to reduce V to a finite set, still containing an
optimal solution. Finally, an enumeration scheme, taking advantage of the structure of
the set V , is suggested. The method requires a potentially large number of function
evaluations of the expected recourse function, each of which requires S second-stage
problems to be solved. To this end, the authors propose to exploit the similarity of
the second-stage problems, solving them by means of Gröbner basis methods. Clearly,
though, the algorithm is independent of the particular way that function evaluations are
performed.

The method of Schultz et al. was extended by Ahmed, Tawarmalani, and Sahinidis [1]
as follows. First of all note, however, that the problem under consideration is stated
slightly different than problem (3.1.1), as we are now concerned with the following,

min

{

cx+
S

∑

s=1

psqsys
∣

∣

∣
− Tx+W sys ≥ hs, x ∈ X, ys ∈

�n2
+ , s = 1, . . . , S

}

.

Introducing the variable transformation χ = Tx, Ahmed et al. propose the following
reformulation of this problem,

min
χ∈X

{

F (χ) = f(χ) + Ψ(χ)
}

(3.3.2)
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where

f(χ) = min
{

cx | Tx = χ, x ∈ X
}

,

Ψ(χ) =
S

∑

s=1

ps min
{

qsy |W sy ≥ hs + χ, y ∈
�n2

+

}

,

and

X =
{

χ ∈
�m2 | ∃x ∈ X : Tx = χ

}

.

The transformed problem (3.3.2) is easily seen to be equivalent to the original problem
in the sense that if χ∗ ∈ X is an optimal solution of the transformed problem, then any
x∗ ∈ arg min

{

cx | Tx = χ∗, x ∈ X
}

is an optimal solution of the original problem,
and the optimal objective values are identical cf. [1, Theorem 3.2]. Now, Ahmed et al.
extended the above-mentioned observation of Schultz et al. to note that for any k ∈

�
m2S

the recourse function Ψ is constant on

C(k) =

S
⋂

s=1

m2
∏

j=1

(ks
j − hs

j − 1, ks
j − hs

j ].

Assuming that the feasible set X is non-empty and compact, the authors then propose a
branch-and-bound procedure, where branching occurs along the possible discontinuities
of Ψ. In particular, the algorithm proceeds by partitioning X into regions of the form
X ∩ Πm2

j=1(lj, uj], where each lj , j = 1, . . . , m2, is such that lj + hs
j is integral for some

s ∈ {1, . . . , S}. This is combined with a specialized bounding procedure as follows.

Algorithm 3.2 (Ahmed et al. [1])

Step 1 (Initialization) Set z̄ = ∞. Let lP , uP ∈
�

m2 be such that X ⊆ Πm2
j=1 (lPj , u

P
j ]

and for all j = 1, . . . , m2, lPj +hs
j is integral for some s ∈ {1, . . . , S}. Let the list

of open problems L consist of problem P defined by (3.3.2) with the additional
constraints lP < χ ≤ uP . Also, let ε ∈

�m2
+ be such that Ψ(·) is constant over

Πm2
j=1 (lj, lj + εj ] whenever l ∈

�
m2 is such that for all j = 1, . . . , m2, lj + hs

j is
integral for some s ∈ {1, . . . , S}.

Step 2 (Termination/Node selection) If L = ∅, stop; the solution that yielded the
upper bound z̄ is optimal. Otherwise, select and remove from L a problem P ,
defined as inf

{

F (χ) | lP < χ ≤ uP , χ ∈ X
}

.

Step 3 (Bounding) Obtain a lower bound on P by solving the lower bounding
problem zP = Ψ(lP + ε) + min

{

cx | Tx = χ, lP ≤ χ ≤ uP , x ∈ X
}

and let χP be an optimal solution. If zP ≥ z̄ go to Step 2. Otherwise, let
z̄ = min

{

z̄, F (χP )
}

and remove from L all problems P ′ with zP ′

≥ z̄.

Step 4 (Branching) Select an index j ∈ {1, . . . , m2} and a value vj such that vj +h
s
j

is integral for some s ∈ {1, . . . , S} and lPj < vj < uP
j . Construct two new

problems P ′ and P ′′, obtained from P by adding the constraints χj > vj and
χj ≤ vj, respectively. Let zP ′

= zP ′′

= zP and add the two problems to L. Go
to Step 2.
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Let us note that Ahmed et al. presented a procedure for the a priori determination of
the constant ε, simply determining the smallest possible width of the non-empty regions
C(k), k ∈

�
m2S. The authors proved finite convergence of the algorithm, exploiting the

fact that only a finite number of non-empty regions C(k) ∩ X , k ∈
�

m2S, exist when X
is compact. Finally, enhancements of the lower bounding procedure and extension of the
algorithm to the case of random technology matrix are discussed.

3.3.2 Dual Decomposition

In this section we consider in particular the dual decomposition procedure proposed by
Carøe and Schultz [29] for the two-stage stochastic program with mixed-integer recourse
defined by (3.1.1). (In fact the authors allow also for a random recourse matrix.) The
fundamental idea is to use the variable splitting approach, first proposed for combinato-
rial optimization problems by Jörnsten, Näsberg, and Smeds [64], introducing copies of
the first-stage variables x1, . . . , xS for each scenario, and writing the non-anticipativity
constraint x1 = · · · = xS explicitly as

∑S

s=1H
sxs = 0, where H = (H1, . . . , HS) is a suit-

ably defined matrix of size l×n1S. (See Carøe [27] for a discussion of possible alternative
formulations of the non-anticipativity constraints.) Hence the problem is formulated as

min
S

∑

s=1

ps(cxs + qsys)

s.t. Axs = b, s = 1, . . . , S,

T sxs +W sys = hs, s = 1, . . . , S, (3.3.3)
S

∑

s=1

Hsxs = 0,

xs ∈ X, ys ∈ Y, s = 1, . . . , S.

Using a Lagrangian relaxation of the non-anticipativity constraints, the authors obtain a
problem that is separable into independent scenario subproblems, defined for Lagrange
multipliers λ ∈

�
l by

D(λ) =

S
∑

s=1

min
{

Ls(xs, ys, λ) | Axs = b, T sxs +W sys = hs, xs ∈ X, ys ∈ Y
}

.

where Ls(xs, ys, λ) = ps(cxs + qsys) + λ(Hsxs) for s = 1, . . . , S. Now, by a well-known
weak duality result (see e.g. Nemhauser and Wolsey [97]), a lower bound on the optimal
value of (3.3.3) is obtained by solving the Lagrangian dual,

zLD = max
{

D(λ) | λ ∈
� l

}

.

Moreover, if for some choice of Lagrange multipliers λ, the corresponding solutions
(xs, ys), s = 1, . . . , S, of the Lagrangian relaxation D(λ), satisfy the non-anticipativity
constraints, then (xs, ys), s = 1, . . . , S, is an optimal solution of (3.3.3), and λ is an opti-
mal solution of the Lagrangian dual. In general, though, a duality gap persists, and the
approach must be combined with a branching scheme to enforce the non-anticipativity
constraints. This is formalized in the following algorithm.
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Algorithm 3.3 (Dual Decomposition)

Step 1 (Initialization) Set z̄ = ∞ and let the list of open problems L consist of
problem P defined by (3.3.3).

Step 2 (Termination/Node selection) If L = ∅, stop; the solution that yielded the
upper bound z̄ is optimal. Otherwise, select and remove a problem P from L.

Step 3 (Bounding) Solve the Lagrangian dual of P to obtain the lower bound zP
LD.

If zP
LD ≥ z̄, return to Step 2. Otherwise,

(i) if xs = x̄ for all s ∈ {1, . . . , S}, let z̄ = min{z̄, cx̄ + Q(x̄, µ)}, remove
from L all problems P ′ with zP ′

LD ≥ z̄, and return to Step 2;
(ii) if x1, . . . , xS differ, compute the weighted average x̄ =

∑S

s=1 p
sxs and

round it by some suitable heuristic to obtain a first-stage solution x̄R.
If x̄R is feasible, let z̄=min{z̄, cx̄R + Q(x̄R, µ)}, and remove from L all
problems P ′ with zP ′

LD ≥ z̄.
Step 4 (Branching) Select an index i∈{1, . . . , n1} such that x1

i , . . . , x
S
i differ, and

construct two new problems P ′ and P ′′, obtained from P by adding the con-
straints xi ≤ bx̄ic and xi ≥ dx̄ie, respectively. Let zP ′

LD = zP ′′

LD = zP
LD and add

the two problems to L. Go to Step 2.

The rounding heuristic in Step 3 (ii) is employed to more quickly generate feasible so-
lutions improving the initial upper bound, thereby possibly speeding up the procedure.
The algorithm has been successfully implemented and was tested on a realistic two-stage
unit commitment problem in Carøe, Ruszczyński, and Schultz [28] (see also Carøe [27]).
As in the linear recourse case, the dual decomposition approach is applicable, in theory,
also to multistage problems. From an implementational viewpoint, however, some work
remains to be done, since the dimension of the Lagrange multiplier grows drastically in
this case.

Finally, let us note that Løkketangen and Woodruff [87] and Takriti, Birge, and
Long [153] applied the progressive hedging algorithm to multistage stochastic mixed-
integer programming problems. Even though this method is only formally justified for
linear recourse problems, the authors observe convergence of the algorithm, obtaining
good quality solutions.
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Chapter 4

The Minimum Risk Problem

In Chapter 1 we introduced the classical two-stage stochastic program with recourse,
and in Chapters 2 and 3 we discussed this class of problems in more detail, considering
the linear recourse case and the mixed-integer recourse case, respectively. We recall that
the problem is to determine in a first stage a here-and-now decision that must be made
without complete knowledge on some uncertain parameters of the model. This first-stage
decision must be made so as to minimize the sum of direct cost and the expected value
of future recourse cost. The recourse cost, on the other hand, is determined in a second
stage as some recourse decisions can be made after uncertainty has been revealed. Several
objections may be put forward against the formulation of this classical stochastic pro-
gram, a primary objection being that minimization of the expected cost does not always
constitute an appropriate objective. The appropriateness of this criterion is dependent
on the assumption that the decision process is to be repeated a great number of times,
implying by the law of large numbers that, in the long run, average cost will be equal to
the expected cost. This assumption, however, will frequently not be justified and conse-
quently the expected cost may not be of much interest to the decision-maker. Another
major objection against the expected cost as the object of minimization, is the fact that
the optimal solution of the classical stochastic program may only assure the achievement
of the corresponding minimum expected cost with a relatively small probability. These
considerations suggest that the risk averse decision-maker may not consider the solution
of the classical stochastic program to be “optimal”. As an alternative, we consider here
the problem of minimizing the probability of total cost exceeding some prescribed thres-
hold value φ, that may be thought of as the level of bankruptcy or even just a budget
limit. This approach may in fact be seen as an application of the minimum risk criterion
(see e.g. Bereanu [13]) in the two-stage recourse setting described above, and hence we
refer to the resulting formulation as the minimum risk problem.

4.1 Problem Formulation

In this chapter we consider the minimum risk problem, assuming that the second-stage
problem may be appropriately modeled as a linear programming problem. For general-
ization of the results to the case of mixed-integer recourse, we refer to Schultz [137] and
Schultz and Tiedemann [144]. (See also the masters thesis by Tiedemann [154].) Dur-

44
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ing the structural analysis of classical two-stage stochastic programs with mixed-integer
recourse, presented in Chapter 3, we assumed that the recourse matrix and the second-
stage cost are fixed, and this assumption is maintained here. Hence we let ξ : Ω 7→

�
N be

a random vector defined on some probability space (Ω,F , P ), the components of which
constitute the random second-stage data, consisting of the second-stage right-hand side
h̃ : Ω 7→

�
m2 and the technology matrix T̃ : Ω 7→

�
m2×n1. In other words we have

N = m2(1 + n1), and for ω ∈ Ω we have ξ(ω) =
(

h̃(ω), T̃1(ω), . . . , T̃m2(ω)
)

where T̃k

denotes the kth row of T̃ for k = 1, . . . , m2. Introducing the induced probability measure
µ = P ◦ ξ−1 on

�
N , the minimum risk problem is now formally stated as,

MRP (µ) min
{

QP (x, µ) | Ax = b, x ∈ X
}

, (4.1.1)

where the recourse function QP (x, µ) denotes the probability of total cost exceeding the
threshold value φ, given the first-stage decision x,

QP (x, µ) = µ
({

ξ ∈
�N | cx+ Φ

(

h(ξ) − T (ξ)x
)

> φ
})

, (4.1.2)

and the second-stage value function Φ is defined by

Φ(τ) = min
{

qy | Wy = τ, y ∈
�n2

+

}

. (4.1.3)

Here we assume that c ∈
�

n1 , q ∈
�

n2, and b ∈
�

m1 are known vectors, and that
A ∈

�
m1×n1 and W ∈

�
m2×n2 are known matrices. The second-stage right-hand side

h :
�

N 7→
�

m2 and the technology matrix T :
�

N 7→
�

m2×n1, on the other hand, are
represented as mappings picking out the appropriate components of the random vector ξ.
The set X ⊆

�n1
+ is assumed to be non-empty and closed, and in particular it may or

may not contain integrality restrictions on some or all of the first-stage variables.
In the following we let µ ∈ P(

�
N ) represent the joint distribution of the second-stage

right-hand side h̃ and the technology matrix T̃ as described above. At some points we
will also be interested in the marginal distributions of h̃ and T̃ , and we denote these by
µ1 and µ2, respectively. Moreover, for T ∈

�
m2×n1 we denote by µ2

1(·, T ) the (regular)
conditional distribution of h̃ given T̃ = T . (See Appendix A.)

4.1.1 Mean-Risk Models

Note that the formulation of the minimum risk problem (4.1.1), considered throughout
this chapter, will typically not be the one applied in practice, since the decision-maker
will most likely find it more appropriate to incorporate the probability-based recourse
function (4.1.2) into a bicriterion mean-risk model,

min cx+ QE(x, µ),

min QP (x, µ),

s.t. Ax = b,

x ∈ X,

(4.1.4)

where QE(x, µ) = �
[

Φ
(

h(ξ)−T (ξ)x
)]

is the classical expected recourse function consid-
ered in Chapter 2. The mean-risk model (4.1.4) allows a simple tradeoff analysis, either
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analytical or geometrical, between the expected cost and the associated risk, the latter
expressed here as the probability of total cost exceeding the threshold value. In particu-
lar, a common approach to this bicriterion problem is to solve single-objective mean-risk
problems of the form

min
{

cx+ QE(x, µ) + αQP (x, µ) | Ax = b, x ∈ X
}

, (4.1.5)

where α > 0 is a weight factor.

Remark 4.1.1. To ease the exposition we find it more convenient throughout this chap-
ter to consider the minimum risk problem in its self-contained form (4.1.1) rather than
the perhaps more appropriate mean-risk model (4.1.4). It is straightforward, though,
to extend the structural results presented in the subsequent sections for the minimum
risk problem, to apply also to mean-risk problems of the form (4.1.5), simply by comple-
menting the assumptions made here with those employed during the survey of structural
results for the classical stochastic program in Chapter 2. Also, the solution procedure
presented in Section 4.3 for the minimum risk problem closely resembles the L-shaped
algorithm discussed in Chapter 2, and hence a hybrid version of the two algorithms for
problem (4.1.5) is only natural cf. also our discussion in Section 4.3.1 below. In Chapter 8
we consider an application of the bicriterion mean-risk model (4.1.4) in more detail.

The mean-risk problem (4.1.4) may in general be understood as the application of two
particular scalar criteria for the selection of a “best” random variable from the collection
{Cx}x∈K1, where Cx = cx+ Φ

(

h(ξ)− T (ξ)x
)

represents total (random) cost arising from
the first-stage decision x ∈ K1 = {x ∈ X | Ax = b}. A more general approach to this
problem of choosing among uncertain outcomes is provided by the relation of stochas-
tic dominance that introduces a partial order in the space of real random variables (see
e.g. Whitmore and Findlay [165]). Stochastic dominance is theoretically attractive, but
provides severe computational difficulties as a multiobjective model with a continuum
of objectives. Therefore, it is of some importance to establish relationships between a
particular mean-risk model and the relation of stochastic dominance, guaranteeing that
the solution of the mean-risk model is not stochastically dominated by other feasible solu-
tions. In particular, in our cost minimization framework, smaller outcomes are preferred
to larger, and hence we define first degree stochastic dominance in the following way.

Definition 4.1.1. Let {Cx}x∈K be a family of random variables defined on some proba-
bility space (Ω,F , P ). For x′, x′′ ∈ K we say that x′ stochastically dominates x′′ to first
degree if P (Cx′ ≤ η) ≥ P (Cx′′ ≤ η) for all η ∈

�
, and in that case we write x′ � x′′.

Considering the family of stochastic variables {Cx}x∈K1 representing total random cost
as defined above, i.e. Cx = cx + Φ

(

h(ξ) − T (ξ)x
)

such that � [Cx] = cx + QE(x, µ) and
P (Cx > φ) = QP (x, µ) for all x ∈ K1, the following result is obvious.

Lemma 4.1.1. The mean-risk problem (4.1.4) is consistent with first degree stochastic
dominance, meaning that for x′, x′′ ∈ K1 we have

x′ � x′′ ⇒ cx′ + QE(x′, µ) ≤ cx′′ + QE(x′′, µ) and QP (x′, µ) ≤ QP (x′′, µ)

Furthermore, as an immediate consequence we have the following result.
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Lemma 4.1.2. For any α > 0 the mean-risk problem (4.1.4) is α-consistent with first
degree stochastic dominance, meaning that for x′, x′′ ∈ K1 we have

x′ � x′′ ⇒ cx′ + QE(x′, µ) + αQP (x′, µ) ≤ cx′′ + QE(x′′, µ) + αQP (x′′, µ)

Remark 4.1.2. The result in Lemma 4.1.2 was also pointed out by Schultz and Tiede-
mann [144], who considered the minimum risk problem in the mixed-integer recourse
case. It provides a direct connection between stochastic dominance and mean-risk prob-
lems of the form (4.1.5), in the sense that an optimal solution of problem (4.1.5) cannot
be stochastically dominated to first degree by any non-optimal feasible solution

Remark 4.1.3. In this chapter we only consider the risk measure QP defined by (4.1.2).
Clearly, though, alternative measures of risk are possible. The selection of an appropri-
ate measure of risk is dependent not only on the theoretical issue of consistencies with
stochastic dominance as discussed above, but also on issues such as smoothness and con-
vexity properties, as well as applicability of practicable solution procedures for resulting
mean-risk problems such as (4.1.5). In this respect, we have seen that the risk measure
QP leads to a mean-risk model that is consistent with first degree stochastic dominance,
and in the subsequent sections we will establish structural properties, leading to the elab-
oration of a practicable solution procedure for problem (4.1.5). For a discussion of other
risk measures, satisfying stronger consistencies with stochastic dominance, we refer to
Ogryczak and Ruszczyński [100, 101, 102, 103]. See also Artzner et al. [5] where a class
of so-called coherent measures of risk was defined by means of a number of axioms.

4.2 Structural Properties

In this section we will show that under reasonably mild assumptions the minimum risk
problem (4.1.1) is equivalent to a classical stochastic program in which a binary variable
and an additional constraint are included in the second stage. Thus, the minimum risk
problem belongs to the class of classical two-stage stochastic programs with mixed-integer
recourse. Obviously, though, the structure of the minimum risk problem is much simpler
than that of a general stochastic program with mixed-integer recourse, and hence we will
show that some of the results discussed in Chapter 3, remain valid for the minimum risk
problem under less restrictive assumptions. Early results in this direction were obtained
by Raik [110, 111] who established lower semicontinuity of the recourse function QP (·, µ),
as well as a sufficient condition for continuity. (See also Kibzun and Kan [70].) Lower
semicontinuity of QP (·, µ) can also be derived from Proposition 3.1 in Römisch and
Schultz [126], a statement concerning chance-constrained stochastic programs.

Throughout the structural analysis we will make just the following two assumptions,
ensuring that the second-stage value function Φ is real-valued.

(C1) For all t ∈
�

m2 there exists y ∈
�n2

+ such that Wy = t.

(C2) There exists u ∈
�

m2 such that uW ≤ q.

Here (C1) is the assumption of complete recourse, ensuring feasibility of the second-stage
problem for all possible right-hand sides, while (C2) is employed to ensure dual feasibility
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and hence boundedness of the second-stage problem. From Lemma 2.2.1 on page 17 we
recall that under assumptions (C1) and (C2), Φ is a real-valued, piecewise linear, and
convex function on

�
m2 .

Remark 4.2.1. As pointed out also in Chapter 2, we note that for practical purposes it is
often sufficient to replace (C1) by the weaker assumption of relatively complete recourse,
ensuring feasibility of the second-stage problem only for those right-hand sides that cor-
respond to a feasible first-stage solution and a possible outcome of random parameters.
Hence, denoting by Ξ ⊆

�
N the support of ξ, i.e. the smallest closed subset such that

µ(Ξ) = 1, we may assume that for all x ∈ X satisfying Ax = b and for all ξ ∈ Ξ there
exists y ∈

�n2
+ such that Wy = h(ξ) − T (ξ)x (cf. Definition 2.2.2 on page 17). Further-

more, we note that if relatively complete recourse is not inherent in the problem, it may
be established by the inclusion of feasibility cuts cf. for example the discussion of the
L-shaped algorithm in Section 2.3.1.

4.2.1 The Equivalent Classical Stochastic Program

Evidently, the objective of the minimum risk problem (4.1.1) may be equivalently formu-
lated as the expected value of an appropriately defined indicator function. Specifically,
for x ∈

�
n1 we may define the set of all outcomes of random parameters yielding total

cost exceeding the threshold value,

M(x) =
{

ξ ∈
�N | cx+ Φ

(

h(ξ) − T (ξ)x
)

> φ
}

(4.2.1)

and introduce the corresponding indicator function, ψ :
�

n1 ×
�

N 7→ {0, 1},

ψ(x, ξ) =

{

1 if ξ ∈M(x);

0 otherwise.
(4.2.2)

We now have

QP (x, µ) = µ
(

M(x)
)

=

∫

�
N

ψ(x, ξ)µ(dξ). (4.2.3)

In some situations, it is possible to define the indicator function (4.2.2) as the value
function of a mixed-integer program, i.e.

ψ(x, ξ) = min
{

θ |Wy = h(ξ)−T (ξ)x,

qy −M0θ ≤ φ− cx, y ∈
�n2

+ , θ ∈ {0, 1}
}

,
(4.2.4)

where M0 > 0 is some “sufficiently large” number. In particular, denoting again by
Ξ ⊆

�
N the support of ξ and observing (C1), we may note that a sufficient condition

for (4.2.4) to be feasible for all x ∈
{

x ∈ X | Ax = b
}

and ξ ∈ Ξ, is to have

M0 = sup
{

cx+ Φ
(

h(ξ) − T (ξ)x
)

− φ
∣

∣ Ax = b, x ∈ X, ξ ∈ Ξ
}

. (4.2.5)

Clearly, if
{

x ∈ X | Ax = b
}

and Ξ are both bounded, the supremum exists and is finite.
In fact, Schultz and Tiedemann [144] considered the minimum risk problem in the mixed-
integer recourse case, and gave a formal proof, showing that if

{

x ∈ X | Ax = b
}

and
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Ξ are both bounded, then the minimum risk problem (4.1.1) with the recourse function
QP defined by either (4.1.2)-(4.1.3) or (4.2.3)-(4.2.5), respectively, are equivalent. Apart
from showing that (4.2.4) does in fact provide an appropriate definition of the indicator
function (4.2.2) when M0 is defined by (4.2.5), this proof takes care of the measurability
of ψ, and hence shows that (4.2.3) is well-defined.

Hence we see that under mild assumptions, the minimum risk problem (4.1.1)-(4.1.3)
is in fact equivalent to a classical two-stage stochastic program with mixed-integer re-
course. As pointed out by Schultz and Tiedemann [144], though, the equivalent classical
stochastic program has relatively complete mixed-integer recourse, but fails to satisfy
the complete mixed-integer recourse property. Thus, the continuity properties of the
expected recourse function discussed in Chapter 3, cannot be directly applied to the
probability-based recourse function QP . Still, as mentioned above, the special structure
of the minimum risk problem in fact causes some of the results established in Chapter 3
to remain valid for the minimum risk problem even under less restrictive assumptions. In
particular, the assumption of boundedness of

{

x ∈ X | Ax = b
}

and Ξ, required for the
existence of an equivalent classical stochastic program, turns out to be of no importance
for the structural analysis of the minimum risk problem, and moreover, the results are
maintained even without the moment conditions employed in Chapter 3.

4.2.2 The Probability-Based Recourse Function

In Section 4.2.1 above we defined for all x ∈
�

n1 the set M(x) of all those outcomes of
random parameters that yield total cost exceeding the threshold value cf. (4.2.1). When
studying the structural properties of QP as a function of x, we will also find it convenient
to define for x ∈

�
n1 the set E(x) of all those ξ ∈

�
N such that the indicator function

ψ(·, ξ), defined by (4.2.2), is discontinuous at x. By continuity of Φ this set is easily seen
to be equal to the set of all those outcomes of random parameters that yield total cost
equal to the threshold value,

E(x) =
{

ξ ∈
�N | cx+ Φ

(

h(ξ) − T (ξ)x
)

= φ
}

.

For the subsequent analysis we will also need the following definition of the limes inferior
and the limes superior of sequences of sets.

Definition 4.2.1. The limes inferior and the limes superior of a sequence of sets {An}∞n=1

in B(
�

N ) are

lim inf
n→∞

An =
⋃

j≥1

⋂

n≥j

An and lim sup
n→∞

An =
⋂

j≥1

⋃

n≥j

An,

respectively.

Hence, given a sequence of sets {An}∞n=1 in B(
�

N), the limes inferior is the set of all
those ξ ∈

�
N for which there exists n0 ∈

�
such that ξ ∈ An for all n ≥ n0, whereas the

limes superior is the set of all those ξ ∈
�

N such that ξ ∈ An for infinitely many n. The
following continuity property of probability measures is a special case of the so-called
Fatou Lemma and may be found for example in Chapter 1.4 in Hoffman-Jørgensen [61].
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Lemma 4.2.1. Let µ ∈ P(
�

N) and let {An}∞n=1 be a sequence of sets in B(
�

N ). Then,

(a) lim inf
n→∞

µ(An) ≥ µ
(

lim inf
n→∞

An

)

;

(b) lim sup
n→∞

µ(An) ≤ µ
(

lim sup
n→∞

An

)

.

We will also need the following lemma.

Lemma 4.2.2. Assume (C1)-(C2), let x ∈
�

n1, and let {xn}∞n=1 be some sequence in
�

n1 converging to x. Then,

(a) lim inf
n→∞

M(xn) ⊇M(x);

(b) lim sup
n→∞

M(xn) ⊆M(x) ∪E(x).

Proof. (a) If ξ ∈ M(x) we have by definition of M(x) that cx + Φ
(

h(ξ) − T (ξ)x
)

> φ.
By continuity of Φ this means that there exists some n0 ∈

�
such that for all n > n0 we

have cxn + Φ
(

h(ξ)− T (ξ)xn

)

> φ, and hence we see that ξ ∈M(xn) for all n > n0. The
result follows immediately, cf. Definition 4.2.1.
(b) Let ξ ∈ lim supn→∞M(xn) \M(x). This means that cx+Φ

(

h(ξ)−T (ξ)x
)

≤ φ while
cxn +Φ

(

h(ξ)−T (ξ)xn

)

> φ for infinitely many n, cf. Definition 4.2.1. Now, by continuity
of Φ, we see that cx+ Φ

(

h(ξ) − T (ξ)x
)

= φ and hence ξ ∈ E(x).

Lemma 4.2.1 and Lemma 4.2.2 are sufficient to establish the qualitative continuity
properties of QP as a function of x, expressed in the following propositions.

Proposition 4.2.1. Assume (C1)-(C2) and let µ ∈ P(
�

N ). Then QP (·, µ) is a real-
valued lower semicontinuous function on

�
n1.

Proof. By continuity of Φ it is easily seen that M(x) is an open set and hence measurable
for any x ∈

�
n1 . Thus QP (·, µ) is well-defined and obviously real-valued. Now, let

x ∈
�

n1 and let {xn}∞n=1 be a sequence in
�

n1 converging to x. By Lemma 4.2.1 (a) and
Lemma 4.2.2 (a) we now have

QP (x, µ) = µ
(

M(x)
)

≤ µ
(

lim inf
n→∞

M(xn)
)

≤ lim inf
n→∞

µ
(

M(xn)
)

= lim inf
n→∞

QP (xn, µ).

Hence, QP (·, µ) is lower semicontinuous at x.

Proposition 4.2.2. Assume (C1)-(C2) and let µ ∈ P(
�

N ) and x ∈
�

n1 be such that
µ
(

E(x)
)

= 0. Then QP (·, µ) is continuous at x.

Proof. Let {xn}∞n=1 be a sequence in
�

n1 converging to x. By the assumption that
µ
(

E(x)
)

= 0 we have µ
(

M(x)
)

= µ
(

M(x) ∪ E(x)
)

, and hence by Lemma 4.2.1 (b) and
Lemma 4.2.2 (b) we get

QP (x, µ) = µ
(

M(x)
)

≥ µ
(

lim sup
n→∞

M(xn)
)

≥ lim sup
n→∞

µ
(

M(xn)
)

= lim sup
n→∞

QP (xn, µ).

Hence, observing Proposition 4.2.1, we see that QP (·, µ) is continuous at x.
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Recalling the properties of the marginal and conditional distributions of the second-
stage right-hand side and the technology matrix listed in Appendix A, we obtain the
following corollary as an immediate consequence of Proposition 4.2.2.

Corollary 4.2.1. Assume (C1) - (C2) and let µ ∈ P(
�

N ) be such that µ2
1(·, T ) is

absolutely continuous with respect to the Lebesgue measure on
�

m2 for µ2-almost all
T ∈

�
m2×n1. Then QP (·, µ) is a continuous function on

�
n1.

Proof. Let x ∈
�

n1 . (C1) and (C2) imply that by linear programming duality we have

Φ(τ) = max
j∈{1,...,K}

{

djτ
}

,

where d1, . . . , dK are the extreme points of the set
{

u ∈
�

m2 | uW ≤ q
}

. Hence the set
of all those τ ∈

�
m2 such that cx+Φ(τ) = φ, is contained in a finite union of hyperplanes

H = ∪K
j=1Hj where Hj =

{

τ ∈
�

m2 | djτ = φ− cx
}

for j = 1, . . . , K. Thus we see that
for any x ∈

�
n1 we have E(x) ⊆

{

ξ ∈
�

N | h(ξ) − T (ξ)x ∈ H
}

and hence

µ
(

E(x)
)

=

∫

�
N

1E(x)(ξ)µ(dξ) =

∫

�
m2×n1

∫

�
m2

1E(x)(h, T1, . . . , Tm2)µ
2
1(dh, T )µ2(dT )

≤

∫

�m2×n1

∫

Tx+H

µ2
1(dh, T )µ2(dT ) = 0,

where the last equality follows since the inner integral is equal to zero µ2-almost surely
under the assumption that µ2

1(·, T ) is absolutely continuous with respect to the Lebesgue
measure on

�
m2 for µ2-almost all T ∈

�
m2×n1. Thus we may apply Proposition 4.2.2 to

obtain the desired result.

Remark 4.2.2. In Chapter 3 we saw that for a classical two-stage stochastic program
with mixed-integer recourse, the assumptions of complete (mixed-integer) recourse and
dual feasibility of the second-stage problems must be complemented with the additional
assumption that the probability distribution µ has finite first moment, in order to arrive
at the continuity properties of the expected recourse function expressed in Theorem 3.2.1,
Theorem 3.2.2, and Corollary 3.2.1 on page 31. This is in fact a crucial assumption when
studying the classical two-stage stochastic program with mixed-integer recourse, required
to establish the existence of integrable minorants and majorants of the second-stage value
function. From Proposition 4.2.1, Proposition 4.2.2, and Corollary 4.2.1 we see, on the
other hand, that in order to obtain the corresponding continuity properties of the recourse
function QP , it is no longer necessary to assume that µ has finite first moment.

We now turn to the joint continuity of QP as a function of the first-stage decision
and the underlying probability measure. To this end, as in the preceding chapters, we
will adopt the notion of weak convergence on the set of all Borel probability measures
on
�

N (see Appendix A). Extending Remark 4.2.2 we note that in order to establish joint
continuity of the expected recourse function of a classical two-stage stochastic program
with mixed-integer recourse, using this notion of convergence, one must impose further
restrictions on the probability measures, requiring for example uniform boundedness of
the integrals

∫

�
N ||ξ||pµ(dξ) for some p > 1 cf. Theorem 3.2.4 on page 32. According to the

following proposition, such a restriction is not necessary for the minimum risk problem.
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Proposition 4.2.3. Assume (C1)-(C2) and let µ ∈ P(
�

N ) and x ∈
�

n1 be such that
µ
(

E(x)
)

= 0. Then QP , as a function from
�

n1 ×P(
�

N ) to
�

, is continuous at (x, µ).

Proof. Let {xn}∞n=1 be a sequence in
�

n1 converging to x and let {µn}∞n=1 be a sequence in
P(
�

N ) converging weakly to µ. Recalling the definition of the indicator function (4.2.2),
we now introduce functions fn :

�
N 7→

�
and f :

�
N 7→

�
defined by

fn(ξ) = ψ(xn, ξ) and f(ξ) = ψ(x, ξ).

Note that all these functions are measurable due to measurability of the open sets M(x)
and M(xn) for n ≥ 1 cf. Appendix A. Also, we define the set E0(x) consisting of all
those ξ ∈

�
N for which there exists a sequence {ξn}∞n=1 in

�
N such that ξn → ξ but

fn(ξn) 6→ f(ξ) as n→ ∞.
We now show that E0(x) ⊆ E(x). So let ξ ∈ E0(x) and let {ξn}

∞
n=1 be a sequence in

�
N converging to ξ such that fn(ξn) 6→ f(ξ) as n → ∞. Assuming that ξ ∈ M(x), i.e.

cx+ Φ
(

h(ξ)− T (ξ)x
)

> φ, we get by continuity of Φ that there exists a number n0 ∈
�

such that ξn ∈M(xn) for all n > n0 and hence limn→∞ fn(ξn) = 1 = f(ξ), a contradiction.
Likewise, the assumption cx+ Φ

(

h(ξ) − T (ξ)x
)

< φ leads to a contradiction, and hence
we must have ξ ∈ E(x).

Thus, by the assumption µ
(

E(x)
)

= 0 we get µ
(

E0(x)
)

= 0 and we may apply
Rubin’s Theorem (see e.g. Billingsley [18, Theorem 5.5]) to obtain

µn ◦ f−1
n

w
−→ µ ◦ f−1.

Now, because µ ◦ f−1 and µn ◦ f−1
n are probability measures on {0, 1} for all n ≥ 1, the

weak convergence of µn ◦ f−1
n to µ ◦ f−1 implies in particular that

µn ◦ f−1
n ({1})

n→∞
−−−−→ µ ◦ f−1({1}),

from which we get

QP (xn, µn) = µn

(

M(xn)
) n→∞
−−−−→ µ

(

M(x)
)

= QP (x, µ).

and the proof is complete.

Once again, as an immediate consequence of Proposition 4.2.3 and the fact that for
all x ∈

�
n1 the set E(x) is contained in a finite union of hyperplanes, we obtain the

following corollary.

Corollary 4.2.2. Assume (C1) - (C2) and let µ ∈ P(
�

N ) be such that µ2
1(·, T ) is

absolutely continuous with respect to the Lebesgue measure on
�

m2 for µ2-almost all
T ∈

�
m2×n1. Then QP , as a function from

�
n1×P(

�
N ) to

�
, is continuous on

�
n1×{µ}.

Proof. The proof is similar to that of Corollary 4.2.1.

Quantitative continuity of QP as a function of the underlying probability measure
µ relies on identifying a (pseudo-) distance on P(

�
N ) that is properly adjusted to the

definition of QP via probabilities of level sets of value functions. To this end, denoting
for k ∈

�
by Bk ⊆ B(

�
N ) the family of all polyhedra in

�
N with at most k faces, the

following discrepancy defined for µ, ν ∈ P(
�

N ) will turn out useful for our purposes,

αBk
(µ, ν) = sup

{

|µ(B) − ν(B)|
∣

∣ B ∈ Bk

}

. (4.2.6)
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Remark 4.2.3. As mentioned in Chapter 3 we note that adapting probability (pseudo-)
distances to the underlying structures is a proven tool in quantitative stability analysis of
stochastic programs. Again we refer to Rachev and Römisch [109] for a general framework
and applications to classical recourse models as well as chance-constrained problems.

Proposition 4.2.4. Assume (C1)-(C2). Then there exists a k ∈
�

such that for all
x ∈

�
n1 and all µ, ν ∈ P(

�
N ) we have

∣

∣QP (x, µ) −QP (x, ν)
∣

∣ ≤ αBk
(µ, ν).

Proof. Denoting by M c(x) the complement of M(x) we have for any x ∈
�

n1

M c(x) =
{

ξ ∈
�N | cx+ Φ

(

h(ξ) − T (ξ)x
)

≤ φ
}

=
{

ξ ∈
�N | djh(ξ) − djT (ξ)x ≤ φ− cx, j = 1, . . . , K

}

,

where, once again, d1, . . . , dK are the extreme points of the set
{

u ∈
�

m2 | uW ≤ q
}

.
Recalling that for ξ ∈

�
N we have ξ =

(

h(ξ), T1(ξ), . . . , Tm2(ξ)
)

, where Ti denotes the
ith row of T for i = 1, . . . , m2, it follows that {M c(x)}x∈

�
n1 is a family of polyhedra in

�
N whose numbers of facets are bounded above by a uniform constant, i.e. a constant

not depending on x. Hence, there exists a k ∈
�

such that
∣

∣QP (x, µ) −QP (x, ν)
∣

∣ =
∣

∣µ(M(x)) − ν(M(x))
∣

∣

=
∣

∣µ(M c(x)) − ν(M c(x))
∣

∣

≤ sup
{

|µ(B) − ν(B)|
∣

∣ B ∈ Bk

}

,

and the proof is complete.

Remark 4.2.4. The discrepancy αBk
is easily seen to be a pseudometric on P(

�
N ), ma-

jorizing the discrepancy αBK
defined by (3.2.1) on page 32 in connection with the classical

stochastic program with mixed-integer recourse. Using the alternative discrepancy αBk

here, we see that the result of Theorem 3.2.5 on page 33 is extended for the minimum risk
problem by Proposition 4.2.4, holding also for random technology matrix. Still, as with
the discrepancy αBK

, a coherence between the discrepancy αBk
and weak convergence

of probability measures may be established using the concept of a µ-uniformity class.
Hence we recall that for some probability measure µ ∈ P(

�
N ), a family of Borel sets

B0 ⊆ B(
�

N ) is called a µ-uniformity class if sup
{

|µn(B) − µ(B)|
∣

∣ B ∈ B0

} n→∞
−−−−→ 0

for every sequence of probability measures {µn}
∞
n=1 in P(

�
N ) converging weakly to µ.

Denoting by Bc the class of all convex Borel sets in
�

N , we obviously have Bk ⊆ Bc,
and since it was shown by Bhattacharya and Ranga Rao [15, Theorem 2.11], that Bc

is in fact a µ-uniformity class for all those µ ∈ P(
�

N ) that are absolutely continuous
with respect to the Lebesgue measure on

�
N , we see that αBk

(µn, µ)
n→∞
−−−−→ 0 for any

sequence of probability measures {µn}∞n=1 in P(
�

N ) converging weakly to such µ. Thus,
if µ is absolutely continuous with respect to the Lebesgue measure on

�
N and µ2

1(·, T )
is absolutely continuous with respect to the Lebesgue measure on

�
m2 for µ2-almost all

T ∈
�

m2×n1, then Proposition 4.2.4 may be seen as a quantification of the result in
Corollary 4.2.2. Furthermore, as we will discuss in Section 4.2.3, the class Bk is in fact
a Vapnik-Červonenkis class. This fact will allow us for example to derive conclusions on
the asymptotic convergence of optimal solutions for the minimum risk problem when the
probability measure µ is estimated by empirical measures.
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4.2.3 Stability

As in the preceding chapters let us note that in many practical applications of stochastic
programming, the probability distribution of random parameters will not be completely
known, and hence the true distribution may have to be replaced in the model by some
suitable estimate, such as e.g. empirical measures. Furthermore, even if the true distri-
bution µ of random parameters is known, the approximation of µ by simpler probability
measures may be required to facilitate practical computations. In fact, the solution pro-
cedure for the minimum risk problem that we will elaborate in Section 4.3, relies on the
assumption that the probability distribution of random parameters is discrete with finite
support, which will obviously often not be the case in practice. Therefore, just as for
the classical stochastic recourse problems considered in Chapters 2 and 3, stability of the
minimum risk problem (4.1.1), when the underlying probability distribution is subjected
to perturbations, is an important issue to which we now turn.

Since the minimum risk problem MRP (µ), defined by (4.1.1)-(4.1.3), is in general
a non-convex problem, local minimizers are included in the analysis. To this end, we
introduce for any non-empty open set V ⊆

�
n1 a localized version, ϕV : P(

�
N ) 7→

�
, of

the optimal-value function, defined by

ϕV (µ) = inf
{

QP (x, µ) | Ax = b, x ∈ X ∩ clV
}

,

and a localized version, ΨV : P(
�

N) 7→
�

n1 , of the solution set mapping, defined by

ΨV (µ) = arg min
{

QP (x, µ) | Ax = b, x ∈ X ∩ clV
}

,

where clV denotes the closure of V .

Remark 4.2.5. Note that if
{

x ∈ X ∩ cl V | Ax = b
}

is non-empty and bounded, the
infimum in the definition of ϕV is always attained since we are minimizing a lower semi-
continuous function over a compact set, and hence in this case ΨV (µ) is non-empty for
any µ ∈ P(

�
N ).

Having established the joint continuity of QP with respect to x and µ, it is again
straightforward to follow the lines of Berge [14] to prove continuity of ϕ and Berge upper
semicontinuity of Ψ, cf. also the results of Bank et al. [9]. (Recall that the point-to-set
mapping, ΨV , is Berge upper semicontinuous at some µ ∈ P(

�
N) if for any open set

G ⊆
�

n1 with ΨV (µ) ⊆ G there exists some neighborhood U of µ in P(
�

N ) such that
ΨV (ν) ⊆ G for all ν ∈ U .) As illustrated by Example 3.2.1 on page 34 for a classical
stochastic program with mixed-integer recourse, however, it may happen that ΨV (µ) is
a set of local minimizers of MRP (µ) for some µ ∈ P(

�
N ) and V ⊆

�
n1 , while for any

neighborhood U of µ in P(
�

N ) there exists ν ∈ U such that ΨV (ν) does not contain
any local minimizers of MRP (ν). Therefore we will not find the continuity of ϕ and the
Berge upper semicontinuity of Ψ quite sufficient in their own for the stability analysis of
local minimizers.

As discussed in Section 3.2.2, Robinson [121] and Klatte [73] proposed a local stabil-
ity analysis for non-convex problems, precluding pathologies as those mentioned above.
Emphasizing the need for considerations to include all local minimizers that are, in some
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sense, nearby the minimizers one is interested in, the authors introduced the crucial con-
cept of a complete local minimizing (CLM) set, defined as follows. Let µ be a Borel
probability measure and let M be a non-empty subset of

�
n1. If there exists an open set

V ⊆
�

n1 such that M ⊆ V and M = ΨV (µ), then M is called a CLM set for MRP (µ)
with respect to V . Obvious examples of CLM sets are the set of global minimizers as
well as any set of strict local minimizers. Hence, the subsequent propositions stated in
general for CLM sets are valid in particular for the set of global minimizers and for any
set of strict local minimizers.

Proposition 4.2.5. Assume (C1)-(C2), let µ ∈ P(
�

N ) be such that µ2
1(·, T ) is absolutely

continuous with respect to the Lebesgue measure on
�

m2 for µ2-almost all T ∈
�

m2×n1,
and let V ⊆

�
n1 be a bounded open set such that ΨV (µ) is a CLM set for MRP (µ) with

respect to V . Then,

(a) ϕV : P(
�

N ) 7→
�

is continuous at µ;

(b) ΨV : P(
�

N ) 7→
�

n1 is Berge upper semicontinuous at µ;

(c) there exists some neighborhood U of µ in P(
�

N ) such that ΨV (ν) is a CLM set for
MRP (ν) with respect to V for all ν ∈ U .

Proof. (a) Continuity of ϕV is an immediate consequence of Corollary 4.2.2 and com-
pactness of X ∩ clV , cf. e.g. the proof of Theorem 4.2.2 in Bank et al. [9].
(b) Let {µn}∞n=1 be a sequence in P(

�
N ) converging weakly to µ and let xn ∈ ΨV (µn) for

all n ≥ 1 such that the sequence {xn}∞n=1 converges to some x ∈
�

n1 . By Corollary 4.2.2
and continuity of ϕV we now have

QP (x, µ) = lim
n→∞

QP (xn, µn) = lim
n→∞

ϕV (µn) = ϕV (µ).

Thus x ∈ ΨV (µ) implying that ΨV is a closed mapping and hence Berge upper semicon-
tinuous by compactness of X ∩ clV , cf. Lemma 2.2.3 in Bank et al. [9].
(c) By Berge upper semicontinuity of ΨV there exists some neighborhood U of µ in P(

�
N )

such that ΨV (ν) ⊆ V for all ν ∈ U . Non-emptiness of ΨV (ν) for ν ∈ U follows from
non-emptiness of ΨV (µ), boundedness of V , and lower semicontinuity of QP (·, ν).

Once again we may quantify the result in Proposition 4.2.5 (a) using the pseudometric
αBk

that was defined by (4.2.6) on page 52.

Proposition 4.2.6. Assume (C1)-(C2), let µ ∈ P(
�

N ) be absolutely continuous with
respect to the Lebesgue measure on

�
N , and let V ⊆

�
n1 be a bounded open set such that

ΨV (µ) is a CLM set for MRP (µ) with respect to V . Then there exists a k ∈
�

such that

∣

∣ϕV (µ) − ϕV (ν)
∣

∣ ≤ αBk
(µ, ν).

for all ν ∈ P(
�

N ).

Proof. Let ν ∈ P(
�

N ) and note once again that ΨV (ν) is non-empty by non-emptiness
of ΨV (µ), boundedness of V , and lower semicontinuity of QP (·, ν). Now, let xµ ∈ ΨV (µ)
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and xν ∈ ΨV (ν), and apply Proposition 4.2.4 to obtain the existence of some k ∈
�

such
that

ϕV (µ) − ϕV (ν) ≤
∣

∣QP (xν , µ) −QP (xν , ν)
∣

∣ ≤ αBk
(µ, ν)

and

ϕV (ν) − ϕV (µ) ≤
∣

∣QP (xµ, ν) −QP (xµ, µ)
∣

∣ ≤ αBk
(µ, ν).

Hence,
∣

∣ϕV (µ) − ϕV (ν)
∣

∣ ≤ αBk
(µ, ν),

and the proof is complete.

Remark 4.2.6. Here the assumption that µ is absolutely continuous with respect to the
Lebesgue measure on

�
N , is required only to ensure that Bk is a µ-uniformity class cf.

Remark 4.2.4, hence implying that αBk
(µn, µ)

n→∞
−−−−→ 0 for any sequence of probability

measures {µn}∞n=1 in P(
�

N ) converging weakly to µ.

As previously pointed out, the true distribution of random parameters will not be
completely known in many practical applications of stochastic programming, and hence
the true distribution may have to be replaced by some suitable estimate. Let us consider
for a moment the situation when the true distribution µ is approximated by empirical
measures. In particular, we let {ξn}∞n=1 be a sequence of independent and identically dis-
tributed N -dimensional random vectors defined on some probability space (Ω,F , P ), and
we denote by µ their common distribution. This gives rise to a corresponding sequence
of empirical probability measures on

�
N defined by

µn(ω) =
1

n

n
∑

i=1

δξi(ω),

where δξi(ω) denotes the measure with unit mass at ξi(ω) for i = 1, . . . , n. It is well-known
that we have µn(ω)

w
−→ µ for P -almost all ω ∈ Ω cf. e.g. Dudley [42, Theorem 11.4.1].

As in the linear recourse case one may now apply Proposition 4.2.5 to obtain asymptotic
convergence of local optimal values and local optimal solutions when µ satisfies the hy-
potheses of that theorem. Following the lines of Schultz [141, page 1148], though, it is
easily seen that the class Bk is a Vapnik-Červonenkis class, i.e. there exists some number
r ∈

�
such that for any finite set E ⊆

�
N with r elements, not all subsets of E are of

the form E ∩ B, B ∈ Bk. Furthermore, it is straightforward to extend the arguments of
Schultz to show measurability of αBk

(µn(ω), µ) as a function of ω, and hence well-known
results may be applied to show the following.

Lemma 4.2.3. Let k ∈
�

. Then αBk
(µn(ω), µ)

n→∞
−−−−→ 0 for P -almost all ω ∈ Ω.

Proof. For details we refer to Schultz [141].

As in Schultz [141] we may now apply Proposition 4.2.4 to obtain the following result,
where, in particular, the smoothness assumptions on µ required in Proposition 4.2.5 and
Proposition 4.2.6 are abandoned.
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Proposition 4.2.7. Assume (C1)-(C2), let µ ∈ P(
�

N ), and let V ⊆
�

n1 be a bounded
open set such that ΨV (µ) is a CLM set for MRP (µ) with respect to V . Then,

(a) ϕV (µn(ω))
n→∞
−−−−→ ϕV (µ) for P -almost all ω ∈ Ω;

(b) for any open set G ⊆
�

n1 with ΨV (µ) ⊆ G and for P -almost all ω ∈ Ω there exists
some n0(ω) ∈

�
such that ΨV (µn(ω)) ⊆ G for all n ≥ n0(ω);

(c) for P -almost all ω ∈ Ω there exists some n1(ω) ∈
�

such that ΨV (µn(ω)) is a CLM
set for MRP (µn(ω)) with respect to V for all n ≥ n1(ω).

Proof. The proof closely follows that of Schultz [141, Proposition 5.3].

Remark 4.2.7. Comparing the stability results of Propositions 4.2.5, 4.2.6, and 4.2.7 with
those presented for the general classical stochastic program with mixed-integer recourse
in Theorems 3.2.6, 3.2.7, and 3.2.8 on pages 35-36, we see once again that the special
structure of the minimum risk problem allows us to abandon the integrability assumptions
imposed in the analysis of the classical recourse problem. Also, the quantitative stability
results are extended for the minimum risk problem in the sense that they now hold for
problems with random technology matrix too, cf. also Remark 4.2.4.

4.3 Solution Procedure

In this section we elaborate a specialized solution procedure for the minimum risk prob-
lem. For practical purposes we need to make the following assumptions.

(C3) The first-stage solution set
{

x ∈ X | Ax = b
}

is non-empty and compact.

(C4) The distribution µ of ξ is discrete and has finite support, say Ξ =
{

ξ1, . . . , ξS
}

with corresponding probabilities p1, . . . , pS.

For each s ∈ {1, . . . , S}, a possible outcome
(

h(ξs), T (ξs)
)

of random parameters, corre-
sponding to some elementary event ξs ∈ Ξ, is referred to as a scenario, and we denote it
simply by (hs, T s).

Remark 4.3.1. Note that (C4) may be justified by the stability results established in the
previous section. Thus, according to Proposition 4.2.5 for example, the optimal value
and the solution set of a problem with a continuous distribution of random parameters
may be approximated to any given accuracy by the optimal value and the solution set of
problems employing only discrete distributions.

As pointed out in Section 4.2.1, the minimum risk problem is under assumptions
(C3) and (C4) equivalent to a classical stochastic program with mixed-integer recourse,
where the expected value of an appropriately defined indicator function is minimized. A
possible way to go is therefore to define such an indicator function by (4.2.4), including
a binary variable and an additional constraint in the second stage, and subsequently
to solve the problem by one of the solution procedures developed for the general class
of two-stage stochastic programs with mixed-integer recourse, cf. e.g. the discussion in
Section 3.3. As we have seen in the preceding chapters, however, the problem complexity
drastically increases when a binary variable is included in the second stage. In particular,
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the original second-stage value function (4.1.3) is piecewise linear and convex, whereas
the transformed one (4.2.4) would lose these appealing properties. In this section we show
how one may avoid the inclusion of a binary second-stage variable by solving the minimum
risk problem using a modified version of the L-shaped procedure (see Section 2.3.1). The
idea is for each scenario s ∈ {1, . . . , S} to represent the general indicator function ψ(·, ξs),
defined by (4.2.2), by a binary variable and a number of optimality cuts, similar in vein
to those used for ordinary two-stage stochastic linear programs. By not applying the
definition of the indicator function given by (4.2.4), we obtain a formulation in which
binary variables occur only in a master problem and not in the second-stage subproblems.

Given a first-stage solution x ∈ X and a scenario s ∈ {1, . . . , S}, the optimality cuts
needed to represent ψ(·, ξs) at x are derived from the linear programming problem,

min et+ + et−+ t0

s.t. Wy + It+ − It− = hs − T sx,

qy − t0 ≤ φ− cx,

y ∈
�n2

+ , t
+, t− ∈

�m2
+ , t0 ∈

�
+,

(4.3.1)

and its dual problem

max (hs − T sx)u+ (cx− φ)u0

s.t. uW − u0q ≤ 0,

− e ≤ Iu ≤ e, u0 ≤ 1,

u ∈
�m2 , u0 ∈

�
+,

(4.3.2)

where e = (1, . . . , 1) ∈
�

m2 and I is them2×m2-identity matrix. Note that for all x ∈
�

n1

and all s ∈ {1, . . . , S}, both the primal problem (4.3.1) and the dual problem (4.3.2) are
feasible, and hence they are both solvable. Moreover, their optimal values are identical
and non-negative, and equal to zero if and only if ψ(x, ξs) = 0. In the following we will
denote by D the feasible region of the dual problem (4.3.2), and by (d1, d1

0), . . . , (d
K, dK

0 )
the extreme points of D. Also, we let M1 > 0 be some large number bounding from
above the optimal value of the dual problem,

M1 = sup
{

(hs − T sx)u+ (cx− φ)u0 |Ax = b, x ∈ X, (u, u0) ∈ D, s ∈ {1, . . . , S}
}

.

Note once again that, under assumptions (C3) and (C4), the supremum exists and is
finite, since D is obviously bounded.

The following lemmas, elucidating the structure of the optimality cuts, are immediate
consequences of the definition of M1 and the previously discussed relationship between
the indicator function (4.2.2) and the linear programming problems (4.3.1) and (4.3.2).

Lemma 4.3.1. For all x ∈ X such that Ax = b, and for any scenario s ∈ {1, . . . .S},
the indicator function ψ(x, ξs) satisfies the following set of inequalities,

M1ψ(x, ξs) ≥ (hs − T sx)dj + (cx− φ)dj
0, j = 1, . . . , K.

Lemma 4.3.2. Let x ∈ X be such that ψ(x, ξs) = 1 for some scenario s ∈ {1, . . . .S}.
Then there exists j ∈ {1, . . . , K} such that (hs − T sx)dj + (cx− φ)dj

0 > 0.
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Observing Lemma 4.3.1 and Lemma 4.3.2 it is easily seen that the minimum risk
problem is equivalent to the following mixed-integer program,

min

S
∑

s=1

psθs

s.t. Ax = b,

(hs − T sx)dj + (cx− φ)dj
0 ≤M1θ

s, j = 1, . . . , K, s = 1, . . . , S,

x ∈ X, θ1, . . . , θS ∈ {0, 1}.

(4.3.3)

The algorithm progresses by sequentially solving a master problem and adding violated
optimality cuts generated through the solution of subproblems (4.3.1)-(4.3.2).

Algorithm 4.1

Step 1 (Initialization) Set ν = 0, and let the current master problem be defined
by min

{
∑S

s=1 p
sθs | Ax = b, x ∈ X, θ1, . . . , θS ∈ {0, 1}

}

.

Step 2 (Solve master problem) Set ν = ν + 1. Solve the current master problem
and let (xν , θ1,ν , . . . , θS,ν) be an optimal solution vector.

Step 3 (Solve subproblems) Solve the second-stage problem (4.3.1)-(4.3.2) for all
s ∈ {1, . . . , S} such that θs,ν = 0. Consider the following situations,

(i) if all of these problems have optimal value equal to zero, stop — the
current solution xν is optimal;

(ii) if some of these problems have optimal value greater than zero, then an
equal number of dual extreme points (dj, dj

0), j ∈ K ⊆ {1, . . . , K}, each
of which satisfies (hs −T sxν)dj +(cxν −φ)dj

0 > 0, are identified and the
corresponding optimality cuts are added to the master; go to Step 2.

It is easily seen that Algorithm 4.1 terminates finitely.

Proposition 4.3.1. Assume (C1)-(C4). Then Algorithm 4.1 terminates with an optimal
solution in a finite number of iterations.

Proof. By assumption (C3) and Proposition 4.2.1 an optimal solution of the minimum
risk problem exists. Let x∗ be one such solution, and denote by z∗ the optimal value.
First of all note that the optimal value zν of the master problem in iteration ν is a lower
bound on z∗, since the master problem is a relaxation of (4.3.3), i.e. for all ν ≥ 1 we have

S
∑

s=1

psθs,ν = zν ≤ z∗ =
S

∑

s=1

psψ(x∗, ξs).

Now, if θs,ν < ψ(xν , ξs) for some s ∈ {1, . . . , S} and ν ≥ 1, a violated optimality cut,
cutting off the current solution (xν , θ1,ν , . . . , θS,ν), is identified in Step 3 cf. Lemma 4.3.2,
and the algorithm proceeds. This can only happen a finite number of times because the
number of dual extreme points is finite, and hence we will eventually have

θs,ν ≥ ψ(xν , ξs), s = 1, . . . , S,

at which point the current solution xν is optimal, and the algorithm terminates.
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Remark 4.3.2. Note that Algorithm 4.1 works equally well for problems which do not
satisfy the (relatively) complete recourse property. The optimal first-stage solution de-
termined by the algorithm, however, may not guarantee feasibility for all second-stage
problems in this case. Still, the algorithm may easily be modified to accommodate the
possible requirement of feasibility of all second-stage problems by using feasibility cuts
as in the original L-shaped algorithm.

4.3.1 Solving Mean-Risk Problems

Let us consider again the mean-risk model discussed in Section 4.1.1, where the expected
cost and the probability of total cost exceeding the threshold value are simultaneously
minimized. We recall that this model allows a simple tradeoff analysis between the two
objectives, involving for example the solution of mean-risk problems of the form

min
{

cx+ QE(x, µ) + αQP (x, µ) | Ax = b, x ∈ X
}

, (4.3.4)

where QE(x, µ) = �
[

Φ
(

h(ξ) − T (ξ)x
)]

is the classical expected recourse function con-
sidered in Chapter 2, and α > 0 is a weight factor.

Observing the similarity between Algorithm 4.1 and the L-shaped decomposition pro-
cedure for classical stochastic programs with linear recourse (Algorithm 2.1 on page 25),
it seems obvious that a hybrid version of the two algorithms for the solution of the
mean-risk problem (4.3.4) is appropriate when the probability distribution µ is discrete
with finite support. In such a hybrid solution scheme, the probability-based recourse
function QP is approximated by means of optimality cuts derived from the primal-dual
pair of problems (4.3.1)-(4.3.2) as described above, and likewise the expected recourse
function QE is approximated by means of optimality cuts derived from the second-stage
problem (4.1.3) and its dual as discussed in Section 2.3.1.

Obviously, when formalizing such a hybrid solution procedure, some effort should be
made to take advantage of the similarity between the second-stage problem (4.1.3) and
the subproblems (4.3.1). To this end, it turns out that the solution of (4.3.1)-(4.3.2) is in
fact superfluous, because optimality cuts for the indicator function ψ defined by (4.2.2),
can be derived from the solution of the second-stage problem and the fact that for x ∈

�
n1

and s ∈ {1, . . . , S} we have ψ(x, ξs) = 1 if and only if Φ(hs−T sx) > φ−cx. In particular,
given a first-stage solution x ∈ X, one must solve for all scenarios s ∈ {1, . . . , S}, the
second-stage problem

Φ(hs − T sx) = min
{

qsy | Wy = hs − T sx, y ∈
�n2

+

}

, (4.3.5)

and the corresponding dual problem

Φ(hs − T sx) = max
{

(hs − T sx)u | uW ≤ q, u ∈
�m2

}

, (4.3.6)

to generate optimality cuts representing QE(·, µ) at x. Now, if Φ(hs − T sx) ≤ φ − cx
for some scenario s ∈ {1, . . . , S}, we see that ψ(x, ξs) = 0, and hence no optimality
cuts are required to represent ψ(·, ξs) at x. Therefore, in this case we may immediately
conclude that the subproblems (4.3.1)-(4.3.2) does not have to be solved. If, on the other
hand, Φ(hs − T sx) > φ− cx for some scenario s ∈ {1, . . . , S}, we see that Ψ(x, ξs) = 1,
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in which case a feasible solution (u, u0) of (4.3.2) with (hs − T sx)u + (cx − φ)u0 > 0 is
required to form an optimality cut for ψ(·, ξs) at x. As suggested by the following lemma,
however, such a dual solution may be generated from a solution of (4.3.6), and hence the
subproblems (4.3.1)-(4.3.2) does not have to be solved in this case either.

Lemma 4.3.3. Let s ∈ {1, . . . , S}, let u∗ ∈
�

m2 be a feasible solution of (4.3.6) with
(hs − T sx)u∗ > φ− cx, and define U = max

{

1, |u∗1|, . . . , |u
∗
m2

|
}

. Then

(u, u0) =
1

U
(u∗, 1)

is a feasible solution of (4.3.2) with (hs − T sx)u+ (cx− φ)u0 > 0.

Proof. By construction we have 1/U ≤ 1 and −1 ≤ u∗k/U ≤ 1 for k = 1, . . . , m2, and
since u∗ is feasible for (4.3.6) we have u∗W ≤ q and hence uW − u0q = 1

U
(u∗W − q) ≤ 0,

showing that (u, u0) is feasible for (4.3.2). Moreover, since (hs − T sx)u∗ > φ − cx and
U > 0 we have (hs − T sx)u+ (cx− φ)u0 =

(

(hs − T sx)u∗ + cx− φ
)

/U > 0.

4.4 Computational Experiments

Algorithm 4.1 was implemented in C++ using procedures from the callable library of
CPLEX 7.0. Because of its similarity with the L-shaped decomposition procedure, the
algorithm is bound to suffer from some of the same drawbacks. Of particular importance
in this respect, is the fact that early iterations will usually be quite inefficient since
solutions tend to oscillate heavily. This deplorable behavior may be surmounted if a
regularizing term, penalizing divergence from the current solution, is added to the master
objective, cf. the regularized decomposition procedure introduced by Ruszczyński [132]
and discussed in Section 2.3.2. Furthermore, adding a regularizing term to the master
objective potentially allows the algorithm to take advantage of a starting solution x0.
Regularized decomposition, as well as most bundle methods for nonsmooth optimization,
gain considerable advantage by using a quadratic regularizing term. To avoid a non-
linear mixed-integer formulation of the master problem, however, we simply added to the
objective, a term of the form γey, where γ > 0 is a scaling factor, e = (1, . . . , 1) ∈

�
n1 ,

and the variable y ∈
�n1

+ represents the deviation from an incumbent solution aν ∈
�

n1 ,
i.e. we added the constraints

y ≥ x− aν and y ≥ aν − x.

to the master problem in iteration ν. Because of the mixed-integer nature of the minimum
risk problem, the inclusion of the regularizing term is not theoretically justified as in
regularized decomposition, in the sense that convergence of optimal solutions of the
regularized master problem to an optimal solution of the minimum risk problem, cannot
be established in general. In practice, we chose to start off the algorithm with the
regularizing term included in the objective and remove the regularization once solutions
had stabilized. In most cases the algorithm terminated with an optimal solution after
just one additional iteration but on a few occasions several iterations had to be performed
after removing the regularization.
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To investigate the practicability of Algorithm 4.1, we used three sets of problem in-
stances subsequently referred to as EPS1, EPS2, and EPS3, respectively. The problems
were obtained as linear programming relaxations of certain mixed-integer programs aris-
ing as scheduling problems in chemical production. (See Engell et al. [47] for details.)
We ran the algorithm with varying number of scenarios S as well as varying values of
the threshold value φ. Each run was performed with two different versions of the algo-
rithm. In the following, MRP refers to the algorithm as presented in Section 4.3 while
MRPREG refers to the algorithm using the regularization of the master problem de-
scribed above. At termination of each run we recorded the optimal value, the number
of iterations performed, the number of generated cuts and the CPU time spent by the
procedure (in seconds). Finally, we fixed the first-stage variables at their values from
the optimal solution of the corresponding classical stochastic program to calculate the
objective value of that solution, referred to as VCSP in the following. All computational
experiments were carried out on a SUN Enterprise 450, 300 MHz Ultra-SPARC.

Let us first consider the EPS1 instance. This problem contains 2 constraints and 3
variables in the first stage and 50 constraints and 51 variables in the second stage. For
this instance we ran the algorithm with 20, 50, 100, 200, and 500 scenarios, and each
time we chose the threshold value close to the optimal value of the corresponding classical
stochastic program. Results are reported in Table 4.1.

Table 4.1: Computational results for the EPS1 instance

MRP MRPREG
S φ Opt. VCSP Ite. Cuts CPU Ite. Cuts CPU
20 18.9 0.250 0.250 5 73 0.31 6 58 0.29
50 50.9 0.120 0.140 5 110 0.51 7 110 0.63

100 32.7 0.860 0.860 4 300 0.88 6 300 0.93
200 28.4 0.115 1.000 8 940 8.15 8 761 6.55
500 757.5 0.048 0.048 5 1518 6.56 6 1518 6.62

Next we turn to the EPS2 instance. This problem contains 5 constraints and 12
variables in the first stage and 157 constraints and 164 variables in the second stage.
For this instance we always used 100 scenarios and solved the problem for a number of
different threshold values surrounding the optimal value of the corresponding classical
stochastic program, which was 65.4. Results are reported in Table 4.2.

Table 4.2: Computational results for the EPS2 instance

MRP MRPREG
S φ Opt. VCSP Ite. Cuts CPU Ite. Cuts CPU

100 60 0.91 0.92 19 851 36.98 14 728 22.93
100 63 0.81 0.81 19 1098 61.11 15 920 28.51
100 65 0.71 0.71 18 1146 196.96 14 868 53.77
100 67 0.17 0.17 24 1811 34.46 12 880 8.54
100 70 0.08 0.08 18 1322 12.12 13 782 10.50
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Finally, we consider the EPS3 instance. This problem contains 9 constraints and 30
variables in the first stage and 280 constraints and 326 variables in the second stage. Once
again, we always used 100 scenarios and solved the problem for a number of different
threshold values surrounding the optimal value of the corresponding classical stochastic
program, which in this case was 191.3. Results are reported in Table 4.3.

Table 4.3: Computational results for the EPS3 instance

MRP MRPREG
S φ Opt. VCSP Ite. Cuts CPU Ite. Cuts CPU

100 170 0.94 0.97 41 1407 8164.01 46 1093 1858.37
100 180 0.85 0.88 45 1418 5564.62 30 1326 4632.01
100 190 0.59 0.60 37 1996 4716.74 25 1328 2019.36
100 200 0.13 0.14 44 2317 178.90 24 1280 88.26
100 210 0.02 0.02 62 2656 142.89 23 1455 36.30

We note that the optimal value of the corresponding classical stochastic program
of the EPS1 instance with 200 scenarios was 28.7 with all scenarios having cost above
28.4, and hence the seemingly strange result for this instance reported in Table 4.1
was obtained. Apart from this instance, however, the value of the classical stochastic
programming solution is always relatively close to the optimal value of the minimum
risk problem, and hence the gain of solving the minimum risk problem rather than the
corresponding classical stochastic program is negligible for the instances considered here.
We did, however, also test the algorithm on the linear programming relaxation of a small
stochastic program, previously used as test instance in papers by Carøe and Schultz [29]
and Schultz, Stougie, and van der Vlerk [143], and for this problem the gain of solving
the minimum risk problem was more significant as is evident from Table 4.4. We should
mention that this instance has 2 variables and no constraints in the first stage and 4
variables and 2 constraints in the second stage.

Table 4.4: Computational results for a small test instance

MRP MRPREG
S φ Opt. VCSP Ite. Cuts CPU Ite. Cuts CPU
4 50 0.500 0.750 3 3 0.07 4 3 0.10
9 50 0.111 0.556 4 9 0.09 5 9 0.08

36 50 0.167 0.306 3 17 0.11 4 17 0.12
121 50 0.132 0.182 5 58 0.34 6 58 0.38
441 50 0.120 0.152 6 216 1.65 8 216 2.06
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Chapter 5

The Minimax Problem

In this chapter our starting point is a general optimization problem in which some param-
eters are not known with certainty. As we have seen in previous chapters of this thesis, a
typical approach in stochastic programming is to represent the uncertain parameters in
such a problem by random variables with a known probability distribution, and subse-
quently to minimize some appropriate objective function representing e.g. total expected
cost with respect to this distribution. As we have repeatedly pointed out, however, the
probability distribution of uncertain parameters will most frequently not be completely
known. Therefore, a large amount of research has gone into establishing stability results
for stochastic programming problems, justifying the approximation of the true probabil-
ity distribution by some suitable estimate. In fact, such an approach has been followed
in Chapters 2, 3, and 4 of this thesis. In the present chapter, on the other hand, we
consider the alternative minimax approach to stochastic programming. This approach
generally concerns the problem of minimizing the worst expected value of the objective
function with respect to the set of all probability distributions that are consistent with
the available information on the random data.

5.1 Problem Formulation

Assuming that an outcome of random parameters constitutes a vector in
�

N , we will
once again be concerned with P(

�
N ), the set of all Borel probability measures on

�
N .

As pointed out above, a classical approach in stochastic programming is to assume that
the distribution µ ∈ P(

�
N ) of random parameters is known, and then to consider a

problem of the general form

min
x∈X

Q(x, µ), (5.1.1)

where X is some closed, convex set, and the function Q(x, µ) typically denotes total
expected cost given the decision x and the distribution µ.

A major concern in the formulation of the stochastic programming model (5.1.1) is
the fact that the distribution µ of random parameters will hardly ever be directly accessi-
ble. In practice, the only information on the probability distribution that is available will
most often at best be an estimate based on statistical information on the random data.
In this situation an alternative approach is the following. First, a class A ⊆ P(

�
N ) of

64



5.1 Problem Formulation 65

possible or conceivable distributions, consistent with the available information, is estab-
lished. A typical example is the case when A is the set of all distributions satisfying a
number of mathematical constraints, taking the form of upper and lower bounds on mean,
variance and other moments, but in general this class may be defined by any information
characterizing probability distributions. Given the set of conceivable distributions A the
following problem is considered,

MMP (A) min
x∈X

{

f(x) = sup
µ∈A

Q(x, µ)
}

. (5.1.2)

Problem (5.1.2) is referred to as the minimax approach to stochastic programming. Start-
ing with Žáčková [167], variations of this approach have previously been considered by
authors such as e.g. Birge and Dulá [20], Birge and Wets [23], Breton and Hachem [25, 26],
Dupačová [44, 45], Ermoliev, Gaivoronski, and Nedeva [48], Kall [66], and Shapiro and
Kleywegt [147].

Only few practicable solution procedures for the minimax problem (5.1.2) have been
elaborated, and the ones proposed rely on results such as the following. If A is the class
of all probability measures with support in some compact set Ξ, satisfying a number of
generalized moment conditions,

∫

Ξ

gi(ξ)µ(dξ) ≤ αi, i = 1, . . . , L,

where gi(·), i = 1 . . . , L, are bounded continuous functions on Ξ, then A is a compact,
convex set, and its extreme points are discrete measures with finite supports of at most
L+ 1 points (cf. Karr [68, Theorem 2.1], see also Kempermann [69]). Thus, in this case,
attention can be restricted to discrete measures in A having finite support of at most
L + 1 points. In Breton and Hachem [25, 26] this approach was employed to develop
two alternative solution procedures, an extension of the progressive hedging algorithm
(see Rockafellar and Wets [124]) and a bundle method, respectively. In fact, though,
Breton and Hachem not only assume that all measures in A have finite support of at
most L + 1 points, but also that the support is known and identical for all µ ∈ A.
The same approach is followed by Takriti and Ahmed [152] who consider a two-stage
stochastic minimax problem arising in electricity trading, and propose a cut-and-branch
procedure to solve the problem. In Ermoliev, Gaivoronski, and Nedeva [48], on the other
hand, generalized linear programming techniques are employed to determine the mass
points and corresponding probabilities of a “worst” distribution in A with L + 1 mass
points. These techniques are combined with a projected quasi subgradient approach to
determine an optimal solution of the minimax problem. Situations may occur, however, in
which the set A does not fit into the above-mentioned framework, so that the restriction
of attention to measures with finite support is not immediately valid. Also, even if
attention can be restricted to measures in A with finite support, the inner maximization
in (5.1.2), taking the form e.g. of a generalized moment problem, may still be intractable.
In such situations, stability analysis of the minimax problem, when the set of conceivable
measures is subjected to perturbations, becomes relevant. Thus, the results presented
in Section 5.2 below justify in particular the assumption that was implicitly made by
Breton and Hachem [25, 26] and by Takriti and Ahmed [152], restricting attention to
discrete measures with support in some known finite set.
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5.1.1 Two-Stage Recourse Models

Throughout the structural analysis of the minimax problem presented in the following
section, we will consider a general objective function Q as in (5.1.2). We will, however,
be particularly concerned with application of the results to different classes of two-stage
stochastic recourse models. From previous chapters of this thesis we recall that such
models are based on the assumption that an alternating process of decisions and ob-
servations of random data is appropriate. More specifically, it is assumed that some
decisions must be taken in a first stage in which only distributional information on the
uncertainties is available. The outcome of random parameters is subsequently observed
and some recourse actions may be taken in a second stage. A classical approach to this
class of problems, followed in Chapters 2 and 3, is to minimize the sum of first-stage cost
and expected second-stage, i.e. to let

Q(x, µ) = cx+

∫

�
N

Φ(x, ξ)µ(dξ), (5.1.3)

where the random vector ξ ∈
�

N is constituted by the components of a tuple (q, h, T ),
and the second-stage value function Φ is given accordingly by

Φ(x, ξ) = min
{

q(ξ)y |Wy ≥ h(ξ) + T (ξ)x, y ∈ Y
}

. (5.1.4)

Here c ∈
�

n1 is a known vector, and W is a known rational matrix of size m2×n2,
referred to as the recourse matrix. The second-stage cost q :

�
N 7→

�
n2, the second-

stage right-hand side h :
�

N 7→
�

m2 , and the technology matrix T :
�

N 7→
�

m2×n1 ,
on the other hand, are represented as mappings picking out the appropriate components
of the random vector ξ. Finally, the set Y ⊆

�
n2 may or may not contain integrality

restrictions on some or all of the second-stage variables.

Remark 5.1.1. Even though we will primarily be concerned with the classical expected
recourse function (5.1.3), we note that the results presented in this chapter may also be
applied in connection with the non-classical approach followed in Chapter 4, where the
probability of total cost exceeding some prescribed threshold value φ was minimized, i.e.
we considered the probability-based recourse function

Q(x, µ) = µ
({

ξ ∈
�N | cx+ Φ(x, ξ) > φ

})

, (5.1.5)

where the second-stage value function is still defined by (5.1.4).

Remark 5.1.2. Under fairly general assumptions, the function Q(·, µ), defined by ei-
ther (5.1.3) or (5.1.5), is a real-valued, lower semicontinuous functions on

�
n1 for any

µ ∈ P(
�

N ), cf. e.g. Theorem 3.2.1 on page 31 and Proposition 4.2.1 on page 50. More-
over, it is easily seen that the supremum of a family of lower semicontinuous functions
is again a lower semicontinuous function (cf. the proof of Proposition 5.3.4 on page 78).
Thus, when Q is defined by either (5.1.3) or (5.1.5), mild assumptions ensure that the
minimax problem (5.1.2) is well-defined in the sense that one minimizes a lower semi-
continuous function over a closed convex set, and hence the optimal value is actually
attained, provided that the problem is feasible and bounded.
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The reason for focusing on two-stage stochastic recourse problems here, is partly the
fact that much research has gone into stability properties of optimal solutions of these
problems, when the underlying probability distribution µ varies in some subset of P(

�
N ),

cf. the discussion in Sections 2.2, 3.2, and 4.2. In particular, qualitative and quantitative
continuity properties of the particular recourse function Q lead to continuity results for
the corresponding optimal value function and solution set mapping as functions of µ.
Now, it turns out that the continuity properties of the recourse functions discussed in
previous chapters are in fact also sufficient to provide similar stability results for the
corresponding minimax problem (5.1.2), when the set A is subjected to perturbations.
Furthermore, as already pointed out, these stability results for the minimax problem
justify in particular the approach of restricting attention to probability measures with
support in some known finite set. For applications of the minimax approach in the
two-stage recourse setting, this allows us to develop straightforward extensions of the
well-known solution procedures discussed in previous chapters to solve the corresponding
minimax problems. Still, we note that the stability results presented here are applicable
for any other class of problems for which similar continuity properties can be established.

5.2 Stability

In this section we establish qualitative and quantitative stability results for the minimax
problem (5.1.2) when the set of conceivable distributions A is subjected to perturbations.
To facilitate the analysis, we once again endow the set of all Borel probability measures
on

�
N with the notion of weak convergence (see Appendix A). The qualitative stability

results will be based on the assumed joint continuity of Q with respect to x and µ,
whereas the quantitative results rely on quantitative continuity properties of Q(x, ·) for
x ∈ X. Sufficient conditions for these properties to hold when Q is defined by either
(5.1.3) or (5.1.5) were presented in Sections 2.2.2, 3.2.1, and 4.2.2, respectively.

The stability results presented next take the form of continuity properties of the
optimal value function and the solution set mapping as functions of A. Since the problem
is non-convex in several important cases, such as e.g. mixed-integer recourse models, we
will include local optimizers in the analysis. To this end, we define for any non-empty
open set V ⊆

�
n1 , a localized version of the optimal value function,

ϕV (A) = min
x∈X∩cl V

sup
µ∈A

Q(x, µ),

and a localized version of the solution set mapping,

ΨV (A) =
{

x ∈ X ∩ clV | sup
µ∈A

Q(x, µ) = ϕV (A)
}

,

where clV denotes the closure of V . Moreover, we will adopt the notion of a complete
local minimizing (CLM) set, originally introduced by Robinson [121] and Klatte [73].
Given some set A ⊆ P(

�
N ) of conceivable distributions, a set M ⊆

�
n1 is called a

CLM set for MMP (A) if there exists some open set V ⊆
�

n1 such that M = ΨV (A)
and M ⊆ V . Clearly, the set of global minimizers of problem (5.1.2), as well as any set
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of strict local minimizers, is a CLM set. Moreover, the notion of CLM sets precludes
pathologies arising when A ⊆ P(

�
N ) and V ⊆

�
n1 are such that ΨV (A) is a set of

local minimizers for problem (5.1.2), while even the slightest perturbation of A leads
to local solution sets with respect to V , which do not contain any local minimizers of
problem (5.1.2). (See e.g. Example 3.2.1 on page 34.)

Proposition 5.2.1. Let A ⊆ P(
�

N ) and let {An}n≥1 be a sequence of sets of Borel
probability measures on

�
N converging to A in the sense that

(i) ∪n≥1An ⊆ A and for all n ≥ 1 we have An ⊆ An+1;

(ii) for all µ ∈ A there exists a sequence {µn}n≥1 such that µn ∈ An for all n ≥ 1 and

µn
w

−→ µ.

Also, let V ⊆
�

n1 be some bounded open set such that ΨV (A) is a CLM set for MMP (A)
with respect to V . If the function Q satisfies that

(iii) Q :
�

n1 ×P(
�

N ) 7→
�

is continuous at (x, µ) for all x ∈ X and µ ∈ A \ ∪n≥1An;

(iv) Q(·, µ) is a lower semicontinuous function on
�

n1 for all µ ∈ A;

then it holds that

(a) ϕV (An) → ϕV (A) as n→ ∞;

(b) sup
x∈ΨV (An)

dist(x,ΨV (A)) → 0 as n→ ∞;

(c) there exists N ≥ 1 such that ΨV (An) is a CLM set for MMP (An) with respect to
V for all n ≥ N .

Proof. Define for all x ∈ X ∩ clV and n ≥ 1,

f(x) = sup
µ∈A

Q(x, µ) and fn(x) = sup
µ∈An

Q(x, µ).

Now let x∗ ∈ ΨV (A) so that we have ϕV (A) = f(x∗), and for n ≥ 1 let x∗n ∈ ΨV (An) so
that we have ϕV (An) = fn(x∗n).

The assumption that ∪n≥1An ⊆ A implies that for all x ∈ X ∩ clV and n ≥ 1 we
have fn(x) ≤ f(x) so that lim supn→∞ ϕV (An) ≤ ϕV (A). To prove (a) by contradiction
we assume that lim infn→∞ ϕV (An) < ϕV (A)−ε for some ε > 0. As a consequence of this
assumption, there exists some infinite subset � 1 ⊆

�
such that ϕV (An) < ϕV (A) − ε

for all n ∈ � 1, and hence Q(x∗n, µn) < ϕV (A) − ε for all µn ∈ An and all n ∈ � 1. Now,
compactness of X ∩ clV implies the existence of some infinite subset � 2 ⊆ �1 such that
the subsequence {x∗n}n∈�2 converges to some x̄ ∈ X ∩ clV . Also, for any µ ∈ A we can
select a sequence {µn}n∈�2 converging weakly to µ such that µn ∈ An for all n ∈ �2.
Hence, for any µ ∈ A \ ∪n≥1An we see by joint continuity of Q at (x̄, µ) that

Q(x̄, µ) = lim
n→∞
n∈�2

Q(x∗n, µn) < ϕV (A) − ε.

Finally, for any µ ∈ ∪n≥1An the condition An ⊆ An+1 implies that there exists N ≥ 1
such that µ ∈ An for all n ≥ N . Hence, for any µ ∈ ∪n≥1An we see by lower semiconti-
nuity of Q(·, µ) that we have

Q(x̄, µ) ≤ lim inf
n→∞
n∈�2

Q(x∗n, µ) < ϕV (A) − ε.
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Thus, for all µ ∈ A we have Q(x̄, µ) < ϕV (A)− ε and hence f(x̄) < ϕV (A), a contradic-
tion. This proves part (a).

To prove part (b), we let x̄ be an accumulation point of the sequence {x∗n}n≥1, i.e. for
some infinite subset � 3 ⊆

�
the sequence {x∗n}n∈�3 converges to x̄. Let ε > 0 be given

and let µ̄ ∈ A be such that Q(x̄, µ̄) > f(x̄) − ε. As above, whether µ̄ ∈ A \ ∪n≥1An or
µ̄ ∈ ∪n≥1An, we can establish a sequence {µ̄n}n∈�3 of probability measures such that

lim inf
n→∞
n∈�3

Q(x∗n, µ̄n) ≥ Q(x̄, µ̄) > f(x̄) − ε

and µ̄n ∈ An for all n ∈ � 3. On the other hand, for any n ∈ � 3 the definition of fn(·)
implies fn(x∗n) ≥ Q(x∗n, µ̄n) and from part (a) we have

lim
n→∞

fn(x∗n) = lim
n→∞

ϕV (An) = ϕV (A).

Thus f(x̄) < ϕV (A) + ε and since ε was arbitrary we must have f(x̄) ≤ ϕV (A) so that
x̄ ∈ Ψ(A). This proves part (b).

To prove part (c) we note that ΨV (A) ⊆ V where ΨV (A) is closed and V is open
and bounded. Therefore, for some δ > 0 it must hold that dist(x,ΨV (A)) < δ implies
x ∈ V . Since non-emptiness of ΨV (An) for n ≥ 1 follows from non-emptiness of ΨV (A),
boundedness of V , and lower semicontinuity of fn, this completes the proof.

Remark 5.2.1. Note that the assumption of joint continuity of Q at (x, µ) for all x ∈ X
and µ ∈ A\∪n≥1An may in fact by relaxed to lower semicontinuity. However, non of the
joint continuity results for the recourse function of two-stage stochastic recourse problems,
presented in previous chapters, are restricted to lower semicontinuity, and hence we chose
the formulation of Proposition 5.2.1. Also note that we only require joint continuity of Q
for µ ∈ A \ ∪n≥1An which is fortunate because the set ∪n≥1An will typically contain all
of the discrete measures in A, and for these measures we cannot in general expect joint
continuity, cf. e.g. the results concerning the expected recourse function of a two-stage
stochastic program with mixed-integer recourse presented in Section 3.2.1.
Remark 5.2.2. The conclusion (b) of Proposition 5.2.1 implies that the set-valued map-
ping ΨV (·) is Hausdorff upper semicontinuous at A with respect to the notion of conver-
gence of sets defined in the proposition cf. e.g. Deutsch, Pollul, and Singer [41, Lemma 1].
Furthermore, since the set ΨV (A) is obviously compact the conclusion (b) actually implies
Berge upper semicontinuity of ΨV (·) at A cf. the same lemma.
Remark 5.2.3. Proposition 5.2.1 applies for example in the situation when A is an infi-
nite set of probability measures, rendering numerical solution of the inner maximization
problem in (5.1.2) intractable. In this case Proposition 5.2.1 justifies the approach of
approximating A by smaller subsets which are easier handled computationally. In par-
ticular, if A is the set of all Borel probability measures with support in some set Ξ,
satisfying a number of generalized moment conditions, a possible approach is to restrict
attention to those measures in A having support in some known finite set Ξ′ ⊆ Ξ. In this
way the inner maximization problem is simplified from a generalized moment problem to
an ordinary linear program. Moreover, as a consequence of Proposition 5.2.1 we see that
the optimal solution of such a simplified problem converges to the true optimal solution
as the approximation of Ξ provided by Ξ′ is progressively improved.
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Clearly, different kinds of approximations of A than the one expressed in Proposi-
tion 5.2.1 may be more desirable in some situations. Consider for example the situation
when A is constituted by a family of specific distributions, rendering the inner maximiza-
tion problem in (5.1.2) intractable, e.g. A being a set of distributions that are absolutely
continuous with respect to the Lebesgue measure on

�
N . In this case, we do not want the

approximations of A to be subsets thereof, but rather to be sets of probability measures
approximating each of the individual measures in A. We now establish a stability result
that may be applied to justify such an approach. Before we proceed, though, we need to
recall the following definition which may be found in e.g. Billingsley [18, Chapter 6]).

Definition 5.2.1. A set of probability measures A ⊆ P(
�

N ) is said to be relatively
compact if every sequence of measures from A contains a weakly convergent subsequence.

Remark 5.2.4. According to Definition 5.2.1, a set of probability measures A ⊆ P(
�

N )
is said to be relatively compact if for every sequence {µn}n≥1 of measures from A there
exist some measure µ ∈ P(

�
N ) (not necessarily belonging to A) and an infinite subset

� ⊆
�

such that the sequence {µn}n∈� converges weakly to µ — in that case we will
refer to µ as an accumulation point of the sequence {µn}n≥1.

Proposition 5.2.2. Let A ⊆ P(
�

N ) and let {An}n≥1 be a sequence of sets of Borel
probability measures converging to A in the sense that

(i) if µ is an accumulation point of some sequence {µn}n≥1 where µn ∈ An for all
n ≥ 1 then µ ∈ A;

(ii) for all µ ∈ A there exists a sequence {µn}n≥1 such that µn ∈ An for all n ≥ 1 and

µn
w

−→ µ;

and assume furthermore that ∪n≥1An is relatively compact. Also, let V ⊆
�

n1 be some
bounded open set such that ΨV (A) is a CLM set for MMP (A) with respect to V . If the
function Q satisfies that

(iii) Q :
�

n1 ×P(
�

N ) 7→
�

is continuous at (x, µ) for all x ∈ X and µ ∈ A;

then it holds that

(a) ϕV (An) → ϕV (A) as n→ ∞;

(b) sup
x∈ΨV (An)

dist(x,ΨV (A)) → 0 as n→ ∞;

(c) there exists N ≥ 1 such that ΨV (An) is a CLM set for MMP (An) with respect to
V for all n ≥ N .

Proof. Define for all x ∈ X ∩ clV and n ≥ 1

f(x) = sup
µ∈A

Q(x, µ) and fn(x) = sup
µ∈An

Q(x, µ).

Now let x∗ ∈ ΨV (A) so that we have ϕV (A) = f(x∗), and for n ≥ 1 let x∗n ∈ ΨV (An) so
that we have ϕV (An) = fn(x∗n).

As in the proof of Proposition 5.2.1 we may show that lim infn→∞ ϕV (An) ≥ ϕV (A).
Hence to prove part (a) by contradiction we assume that lim supn→∞ ϕV (An) > ϕV (A)+ε
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for some ε > 0. Since we have fn(x∗n) ≤ fn(x∗) for all n ≥ 1, the assumption implies
lim supn→∞ fn(x∗) > ϕV (A) + ε, and hence there exist some infinite subset � 1 ∈

�
and

measures µn ∈ An for n ∈ � 1 such that Q(x∗, µn) > ϕV (A) + ε for all n ∈ � 1. Also,
by the assumption that ∪n≥1An is relatively compact, there exists some infinite subset
� 2 ⊆ �1 such that the sequence {µn}n∈�2 converges weakly to some µ. Now, according
to assumption (i) we have µ ∈ A, and by joint continuity of Q at (x∗, µ) we see that

Q(x∗, µ) = lim
n→∞
n∈�2

Q(x∗, µn) > ϕV (A), (5.2.1)

a contradiction. This proves part (a). The proofs of part (b) and (c) are similar to those
in Proposition 5.2.1.

Remark 5.2.5. The convergence of the sequence {An}n≥1 to A defined in Proposition 5.2.2
is in fact the Kuratowski-Painlevé convergence of sets. (See e.g. Kuratowski [80].)
Remark 5.2.6. According to Prohorov’s Theorem, the set ∪n≥1An is relatively compact
if it is tight; that is, if for any ε > 0 there exists a compact set Ξ such that µ(Ξ) > 1− ε
for all µ ∈ ∪n≥1An. In particular, if there exists some compact set Ξ ⊆

�
N such that

all measures in ∪n≥1An have support in Ξ, then ∪n≥1An is relatively compact. (See e.g.
Billingsley [18, Chapter 6].)
Remark 5.2.7. In line with Remark 5.2.2 we note that conclusion (b) of Proposition 5.2.2
implies Hausdorff upper semicontinuity as well as Berge upper semicontinuity of ΨV (·)
at A with respect to the Kuratowski-Painlevé convergence of sets defined in the propo-
sition. Note, however, that Remark 5.2.1 does not hold true for Proposition 5.2.2. More
specifically, the continuity assumption for Q cannot be relaxed to lower semicontinuity
since upper semicontinuity is necessary for the proof of part (a) cf. (5.2.1).
Remark 5.2.8. Let A = {µ1, . . . , µk} ⊆ P(

�
N ) and let {An}n≥1 be a sequence of sets

of Borel probability measures converging to A in the sense that for n ≥ 1 we have
An = {µ1

n, . . . , µ
k
n} where µj

n

w
−→ µj for j = 1, . . . , k. It is easily seen that this is in

fact a special case of Proposition 5.2.2. Thus, any accumulation point of a sequence of
measures from ∪n≥1An must necessarily be one of the measures in A, and clearly any
sequence of measures from ∪n≥1An has at least one weakly convergent subsequence.

Next, we turn to quantitative stability results for the minimax problem (5.1.2). To this
end we assume that D is some distance defined on the set P(

�
N ). Also, for µ ∈ P(

�
N )

and A ⊆ P(
�

N) we let D(µ,A) = infν∈AD(µ, ν) and introduce a Hausdorff-like distance
between sets of probability measures, defined for A,B ⊆ P(

�
N ) by

DH(A,B) = max
{

sup
µ∈A

D(µ,B) , sup
µ∈B

D(µ,A)
}

Proposition 5.2.3. Let A ⊆ P(
�

N ) and let V ⊆
�

n1 be some bounded open set such that
ΨV (A) is a CLM set for MMP (A) with respect to V . If there exist constants L, p, δ > 0
such that |Q(x, µ) − Q(x, ν)| ≤ L · D(µ, ν)p whenever x ∈ X and µ, ν ∈ P(

�
N ) with

D(µ, ν) < δ, then
∣

∣ϕV (A) − ϕV (B)
∣

∣ ≤ L ·DH(A,B)p

whenever B ⊆ P(
�

N ) with DH(A,B) < δ.
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Proof. Let B ⊆ P(
�

N ) with DH(A,B) < δ and define for all x ∈ X ∩ clV ,

f(x) = sup
µ∈A

Q(x, µ) and g(x) = sup
µ∈B

Q(x, µ).

Now let x∗A ∈ ΨV (A) and x∗B ∈ ΨV (B) so that ϕV (A) = f(x∗A) and ϕV (B) = g(x∗B).
Obviously, we have

ϕV (A) − ϕV (B) ≤ f(x∗B) − g(x∗B).

Let 0 < ε < δ −DH(A,B) be given, and let µ̄ ∈ A be such that Q(x∗B , µ̄) > f(x∗B) − ε.
Also, let ν̄ ∈ B be such that D(µ̄, ν̄) ≤ DH(A,B) + ε < δ and Q(x∗B, ν̄) ≤ g(x∗B). Then,

f(x∗B) − g(x∗B) < Q(x∗B , µ̄) −Q(x∗B, ν̄) + Q(x∗B, ν̄) − g(x∗B) + ε

≤
∣

∣Q(x∗B , µ̄) −Q(x∗B, ν̄)
∣

∣ + ε

≤ L ·
(

DH(A,B) + ε
)p

+ ε.

Since ε was arbitrary we get

ϕV (A) − ϕV (B) ≤ L ·DH(A,B)p,

and in the exact same way we may show that

ϕV (B) − ϕV (A) ≤ L ·DH(A,B)p.

Thus we have
∣

∣ϕV (A) − ϕV (B)
∣

∣ ≤ L ·DH(A,B)p,

and the proof is complete.

Remark 5.2.9. Assuming that the set A is compact, it may be seen that if the distance
D is such that it metrizes the topology of weak convergence, then the result in Propo-
sition 5.2.3 quantifies those in Proposition 5.2.1 (a) and Proposition 5.2.2 (a). First, let
{An}n≥1 be a sequence of sets of probability measures converging to A ⊆ P(

�
N ) in the

sense of Proposition 5.2.1. Then ∪n≥1An ⊆ A implies supµn∈An
D(µn,A) = 0 for n ≥ 1.

Also, for any µ ∈ A there exists a sequence {µn}n≥1 such that µn ∈ An for all n ≥ 1

and µn
w

−→ µ, and hence D(µ,An) → 0 as n → ∞. To see that supµ∈AD(µ,An) → 0
as n → ∞ assume on the contrary that there exist an ε > 0 and an infinite subset
� 1 ⊆

�
such that for all n ∈ �1 there exist µn ∈ A with D(µn,An) > ε. Now, assuming

that A is compact, there exist some µ ∈ A and an infinite subset � 2 ⊆ � 1 such that
the sequence {µn}n∈�2 converges weakly to µ. Since we obviously have for all n ∈ � 2

that ε < D(µn,An) ≤ D(µn, µ) + D(µ,An), we see that D(µ,An) 6→ 0 as n → ∞, a
contradiction. Therefore, we must have the desired result, DH(An,A) → 0 as n → ∞.
Next, assume that {Bn}n≥1 is a sequence of sets of probability measures converging to
B ⊆ P(

�
N ) in the sense of Proposition 5.2.2 and such that ∪n≥1Bn is relatively compact.

Then we see in the same way as before that supµ∈BD(µ,Bn) → 0 as n → ∞. Now,
assume that supµn∈Bn

D(µn,B) 6→ 0 as n→ ∞. Then there exist ε > 0, an infinite subset
� 3 ⊆

�
and a sequence of measures {µn}n∈�3 with µn ∈ Bn and D(µn,B) > ε for all

n ∈ � 3. Since ∪n≥1Bn is relatively compact there exists some infinite subset �4 ⊆ � 3

such that the sequence {µn}n∈�4 converges weakly to some µ which by assumption must
belong to B, a contradiction. Hence we see that DH(Bn,B) → 0 as n→ ∞.
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Remark 5.2.10. Consider the formulation of a classical two-stage stochastic program with
recourse, where the expected recourse function Q is given by (5.1.3)-(5.1.4). When the
problem has linear recourse, i.e. Y =

�n2
+ , basic assumptions guarantee that Q(·, µ) is a

well-defined, real-valued, Lipschitzian, and convex function on
�

n1 for any µ ∈ P(
�

N )
cf. Theorem 2.2.3 on page 18. Joint continuity of Q with respect to x and µ, on the
other hand, typically requires some uniform integrability condition to be satisfied cf.
Theorem 2.2.4 on page 18. Hence, conditions under which the qualitative stability results
of Proposition 5.2.1 and Proposition 5.2.2 may be applied are well-known. Furthermore,
to arrive at quantitative continuity results of Q(x, ·) for x ∈ X of the form required in
Proposition 5.2.3, the set P(

�
N ) can be equipped for example with the bounded Lipschitz

metric or an Lp-Wasserstein metric cf. Theorem 2.2.5 on page 19 and Theorem 2.2.6 on
page 20, respectively.

Remark 5.2.11. Consider again the formulation of the expected recourse function Q
given by (5.1.3)-(5.1.4), and assume now that the problem has (mixed-) integer recourse,
i.e. that the set Y contains integrality restrictions on some or all of the second-stage
variables. Structural properties of such problems have mainly been investigated for the
case of fixed second-stage cost q in which case the expected recourse function Q(·, µ) is
lower semicontinuous for any µ ∈ P(

�
N ) cf. Theorem 3.2.1 on page 31. To arrive at

joint continuity of Q at some point (x, µ) in this setting, the above-mentioned uniform
integrability condition must be combined with some assumption guaranteeing that the
set of those ξ ∈

�
N , for which the second-stage value function (5.1.4) is discontinuous at

(x, ξ), has µ-measure zero cf. Theorem 3.2.4 on page 32. Finally, for problems with fixed
technology matrix T the results may be quantified using a certain variational distance cf.
Theorem 3.2.5 on page 33. Hence, also in this case, conditions under which the stability
results presented above may be applied are well-known.

Remark 5.2.12. In Chapter 4 we considered the so-called minimum risk problem where
the recourse function is defined by (5.1.5). It was shown that this formulation is in fact
equivalent to a classical two-stage stochastic program with mixed-integer recourse and
hence is a special case of (5.1.3). Moreover, it was shown that the above-mentioned con-
tinuity properties remain valid, even under simplified assumptions, cf. Proposition 4.2.1,
Proposition 4.2.3, and Proposition 4.2.4 on page 50-53.

5.3 Solution Procedures

In this section we elaborate solution procedures for the minimax problem in the setting
of two-stage stochastic recourse models, considering the linear recourse case as well as
the integer recourse case. Hence, the recourse function is given by

Q(x, µ) = cx+

∫

�
N

Φ(x, ξ)µ(dξ), (5.3.1)

where the random vector ξ ∈
�

N corresponds to an outcome of the second-stage cost q(ξ),
the second-stage right-hand side h(ξ), and the technology matrix T (ξ), and the second-
stage value function Φ is defined accordingly as the value function of a linear program or
an integer program. We will make the following assumption.
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(D1) The set of conceivable distributions A is defined as the set of all probability
measures µ with support in some finite set Ξ =

{

ξ1, . . . , ξS
}

, satisfying a number
of generalized moment conditions,

∫

Ξ

gi(ξ)µ(dξ) ≤ αi, i = 1, . . . , L.

According to (D1) attention is restricted to a finite number of scenarios, each scenario
s ∈ {1, . . . , S} corresponding to an outcome of random parameters (q(ξs), h(ξs), T (ξs)).
For ease of notation we will refer to such an outcome simply by (qs, hs, T s).

Remark 5.3.1. Note that assumption (D1) is justified by the stability results established
in the previous section, since the optimal solution of a minimax problem, employing a
more general definition of the set of conceivable distributions, may be approximated to
any given accuracy by solutions of minimax problems, employing only sets of probabil-
ity measures with support in known finite sets (cf. Remark 5.2.3, Remark 5.2.10, and
Remark 5.2.11).
Remark 5.3.2. Since the solution procedures presented below are all modifications of well-
known algorithms, their efficacy is immediate from the computational testing of these
original procedures and hence we do not report results of any computational experiments.

5.3.1 Two-Stage Linear Recourse Models

In this section, we consider the minimax problem (5.1.2) in the setting of a two-stage
stochastic program with linear recourse, i.e. the second-stage value function is defined by

Φ(x, ξs) = min
{

qsy
∣

∣ Wy ≥ hs + T sx, y ∈
�n2

+

}

, s = 1, . . . , S. (5.3.2)

We elaborate a solution procedure for the problem under the following assumptions.

(D2) For all t ∈
�

m2 there exists y ∈
�n2

+ such that Wy ≥ t.

(D3) For all s ∈ {1, . . . , S} there exists u ∈
�m2

+ such that uW ≤ qs.

Here (D2) is the assumption of complete recourse, ensuring feasibility of the second-
stage problem for any right-hand side t ∈

�
m2 , whereas (D3) is the assumption of dual

feasibility, employed to ensure boundedness of the second-stage problems.
Remark 5.3.3. As pointed out also in previous chapters, we note that for practical pur-
poses it is often sufficient to replace (D2) by the weaker assumption of relatively complete
recourse, ensuring feasibility of the second-stage problem only for those right-hand sides
that may actually occur, i.e. for all x ∈ X and all s ∈ {1, . . . , S} there exists y ∈

�n2
+

such that Wy ≥ hs + T sx. Furthermore, we note that if relatively complete recourse is
not inherent in the problem, it may be established by the inclusion of feasibility cuts cf.
for example the discussion of the L-shaped algorithm in Section 2.3.1.

Employing assumption (D1) we may reformulate the minimax problem (5.1.2) in
terms of the scenario probabilities p1, . . . , pS as follows

min
x∈X

{

f(x) = cx+ max
p∈P

S
∑

s=1

psΦ(x, ξs)

}

(5.3.3)
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where

P =

{

p ∈
�S

+

∣

∣

∣

S
∑

s=1

ps = 1,
S

∑

s=1

psgi(ξ
s) ≤ αi, i = 1 . . . , L

}

. (5.3.4)

Remark 5.3.4. Note that the inner maximization problem is now a linear programming
problem over a bounded polyhedron and hence the maximum value is always attained.

The following proposition states the relevant structural properties of the function f .

Proposition 5.3.1. Assume (D1)-(D3) and let f be defined by (5.3.2) and (5.3.3). Then
f is a real-valued, piecewise linear, and convex function on X.

Proof. It is well-known that for each p ∈ P the function gp(x) = cx+
∑S

s=1 psΦ(x, ξs) is a
real-valued, piecewise linear, and convex function on X, cf. e.g. Birge and Louveaux [22].
Noting that P is a bounded polyhedron, we see that f is the maximum of a finite number
of real-valued, piecewise linear, and convex functions, corresponding to the extreme points
of P.

The solution procedure that we will now propose is a modification of the L-shaped
algorithm discussed in Section 2.3.1. It is based on the following reformulation of prob-
lem (5.3.3),

min cx+ θ (5.3.5a)

s.t. θ ≥
S

∑

s=1

psΦ(x, ξs), p ∈ P, (5.3.5b)

x ∈ X, θ ∈
�
. (5.3.5c)

As in L-shaped decomposition, the constraints of this problem may be replaced by linear
inequalities referred to as optimality cuts. The algorithm progresses by sequentially
solving a master problem and adding optimality cuts which are violated at the current
solution. The master problem is initially obtained by removing the constraints (5.3.5b)
from problem (5.3.5). Then, given a solution (xν , θν) of the master problem in iteration ν,
the second-stage problems are solved to obtain ws,ν = Φ(xν , ξs) = πs,ν(hs + T sxν) where
πs,ν are optimal dual solutions for s = 1, . . . , S. Next, denoting by pν the optimal solution
of the linear programming problem wν = maxp∈P

∑S
s=1w

s,νps, we obtain the following
inequality that is valid for all x ∈ X and binding at x = xν ,

max
p∈P

S
∑

s=1

psΦ(x, ξs) ≥
S

∑

s=1

pν
sπ

s,ν(hs + T sx).

In this way we see that if θν < wν, the current solution (xν , θν) may be cut off by including
the following constraint in the master problem,

θ ≥
S

∑

s=1

pν
sπ

s,ν(hs + T sx).
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Algorithm 5.1

Step 1 (Initialization) Let K > 0, set ν = 0 and z̄ = ∞, and let the current master
problem be min

{

cx+ θ | x ∈ X, θ ∈
�}

.

Step 2 (Solve master problem) Set ν = ν + 1. Solve the current master problem
and let (xν , θν) be an optimal solution vector if one exists; if the problem is
unbounded, then let (xν , θν) be a feasible solution with cxν + θν < z̄ −K.

Step 3 (Termination) If cxν + θν = z̄, stop; the current solution is optimal.

Step 4 (Solve subproblems) For each s ∈ {1, . . . , S}, solve the second-stage problem
to find ws,ν = Φ(xν , ξs) and let πs,ν be a corresponding optimal dual solution.

Step 5 (Solve max-problem) Solve the problem wν = maxp∈P

∑S
s=1w

s,νps and let
pν be an optimal solution. If θν < wν , add the cut θ ≥

∑S
s=1 p

ν
sπ

s,ν(hs + T sx)
to the master problem.

Step 6 (Update bound) Let z̄ = min{z̄, cxν + wν}. Go to Step 2.

It is easily seen that Algorithm 5.1 terminates in a finite number of iterations whenever
a solution of the minimax problem exists.

Proposition 5.3.2. Assume (D1)-(D3). If problem (5.3.5) is feasible and bounded, then
Algorithm 5.1 terminates with an optimal solution in a finite number of iterations.

Proof. Assume that the minimax problem has an optimal solution x∗. In any iteration ν
of the algorithm we must have cxν+θν ≤ cx∗+maxp∈P

∑S

s=1 psΦ(x∗, ξs), since the master
problem is a relaxation of problem (5.3.5). As mentioned above, the current solution
(xν , θν) is cut off by an optimality cut whenever θν < maxp∈P

∑S
s=1 psΦ(xν , ξs). This can

only happen a finite number of times since the number of optimality cuts is finite, cf.
Proposition 5.3.1. Thus we will eventually have θν = maxp∈P

∑S
s=1 psΦ(xν , ξs), at which

point the current solution is feasible for problem (5.3.5) and hence optimal.

Remark 5.3.5. Takriti and Ahmed [152] consider a two-stage stochastic minimax problem
arising in electricity trading. The problem has linear recourse but is complicated by the
fact that first-stage variables are restricted to binaries. The authors propose a cutting-
plane procedure to solve the problem, basically embedding the above procedure in a
branch-and-cut scheme. The successful computational experiments reported in the paper,
confirm our conjecture that the straightforward modification of the L-shaped algorithm
is an efficient way to handle two-stage stochastic minimax problems with linear recourse.

Consider now the following alternative reformulation of problem (5.3.3),

min cx+ θ

s.t. θ ≥
S

∑

s=1

psσs, p ∈ P,

σs ≥ Φ(x, ξs), s = 1, . . . , S,

x ∈ X, θ ∈
�
, σ ∈

�S.

This reformulation leads directly to the following multicut version of Algorithm 5.1.
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Algorithm 5.2

Step 1 (Initialization) Let K > 0, set ν = 0 and z̄ = ∞, and let the current master
problem be min

{

cx+ θ | x ∈ X, θ ∈
�
, σ ∈

�
S
}

.

Step 2 (Solve master problem) Set ν = ν + 1. Solve the current master problem
and let (xν , θν , σν) be an optimal solution vector if one exists; if the problem is
unbounded, then let (xν , θν , σν) be a feasible solution with cxν + θν < z̄ −K.

Step 3 (Termination) If cxν + θν = z̄, stop; the current solution is optimal.

Step 4 (Solve subproblems) For each s ∈ {1, . . . , S}, solve the second-stage problem
to find ws,ν = Φ(xν , ξs) and let πs,ν be a corresponding optimal dual solution.
If σν

s < ws,ν, add the cut σs ≥ πs,ν(hs + T sx) to the master problem.

Step 5 (Solve max-problem) Solve the problem wν = maxp∈P

∑S

s=1w
s,νps and let

pν be an optimal solution. If θν <
∑S

s=1 p
ν
sσ

ν
s , add the cut θ ≥

∑S
s=1 p

ν
sσs to

the master problem.

Step 6 (Update bound) Let z̄ = min{z̄, cxν + wν}. Go to Step 2.

Proposition 5.3.3. Assume (D1)-(D3). If problem (5.3.5) is feasible and bounded then
Algorithm 5.2 terminates with an optimal solution in a finite number of iterations.

Proof. The proof is similar to that of Proposition 5.3.2.

Remark 5.3.6. The multicut approach of Algorithm 5.2 offers some computational ad-
vantages compared to the single-cut approach of Algorithm 5.1, since more detailed
information is passed to the master problem in each iteration. The improved detailing,
however, comes at the cost of an increased complexity of the master problem since the
size of the problem grows quite rapidly. Also, because of their resemblance to the original
L-shaped method and its multicut version, respectively, the algorithms presented above
are bound to suffer from some of the same drawbacks. Apart from the growing size of
the master problem, such drawbacks include the tendency for early iterations to oscillate
heavily, causing slow convergence toward an optimal solution. In the case of L-shaped
decomposition some of these drawbacks were circumvented by the regularized decomposi-
tion method discussed in Section 2.3.2. The idea is to introduce an incumbent solution aν

and include a quadratic regularizing term of the form α
2
‖x− aν‖2 in the objective of the

master problem. Clearly, a similar approach could be used for the algorithm presented
here, but we will not go into the details of such an implementation.

Remark 5.3.7. In Chapter 4 we elaborated a solution procedure for the minimum risk
problem, seeking the minimum value of the probability-based recourse function

Q(x, µ) = µ
({

ξ ∈
�N | cx+ Φ(x, ξ) > φ

})

, (5.3.6)

where φ is some given threshold value. This procedure is in many ways similar to the
multicut version of the L-shaped algorithm. Hence we may modify Algorithm 5.2 in
a similar way to obtain a solution procedure for the minimax problem (5.1.2) with Q
defined by (5.3.6).
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5.3.2 Two-Stage Integer Recourse Models

If second-stage variables are restricted to integer values, the solution procedures pre-
sented in the previous section break down, since the second-stage value function is no
longer convex and piecewise linear, but in fact only lower semicontinuous. To solve the
minimax problem (5.1.2) in this setting, we elaborate an extension of the branch-and-
bound algorithm for two-stage stochastic programs with integer recourse, proposed by
Ahmed, Tawarmalani, and Sahinidis [1] and discussed in Section 3.3.1. As in (5.3.1) the
recourse function is defined as the sum of first-stage cost and expected second-stage cost,
whereas the second-stage value function is now given by

Φ(x, ξs) = min
{

qsy
∣

∣

∣
Wy ≥ hs + T sx, y ∈

�n2
+

}

, s = 1, . . . , S. (5.3.7)

The solution procedure is elaborated under the following assumptions.

(D2’) For all t ∈
�

m2 there exists y ∈
�n2

+ such that Wy ≥ t.

(D3) For all s ∈ {1, . . . , S} there exists u ∈
�m2

+ such that uW ≤ qs.

Note that (D2’) is a natural extension of the complete recourse assumption for the integer
recourse case, whereas the assumption on dual feasibility (D3) is unchanged.

Employing assumption (D1), we may once again reformulate the minimax prob-
lem (5.1.2) as

min
x∈X

{

f(x) = cx+ max
p∈P

S
∑

s=1

psΦ(x, ξs)

}

, (5.3.8)

where the set P is still defined by (5.3.4). According to the following proposition, prob-
lem (5.3.8) is well-defined in the sense that one minimizes a real-valued, lower semicon-
tinuous function.

Proposition 5.3.4. Assume (D1)-(D3), and let f be defined by (5.3.7) and (5.3.8).
Then f is a real-valued, lower semicontinuous function on X.

Proof. For each p ∈ P the function gp(x) = cx +
∑S

s=1 psΦ(x, ξs) is a real-valued, lower
semicontinuous function on X, cf. e.g. Nemhauser and Wolsey [97]. As in the proof of
Proposition 5.3.1 we see that f is real-valued. Now, let x ∈ X and let {xn}n≥1 be some
sequence in X converging to x. Assuming that p̄ ∈ arg maxp∈P{gp(x)}, we have

lim inf
n→∞

f(xn) ≥ lim inf
n→∞

gp̄(xn) ≥ gp̄(x) = f(x),

which completes the proof.

The algorithm presented by Ahmed et al. [1] is based on the following additional
assumptions.

(D4) The technology matrix is fixed, i.e. T s = T for s = 1, . . . , S.

(D5) The first-stage constraint set X is non-empty and compact.

(D6) The recourse matrix W is integral.
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Employing assumption (D4), we may reformulate problem (5.3.8) by introducing the
variable transformation χ = Tx for x ∈ X to obtain the following formulation,

min
χ∈X

{

F (χ) = h(χ) +H(χ)
}

(5.3.9)

where

h(χ) = min
{

cx | Tx = χ, x ∈ X
}

,

H(χ) = max
p∈P

{

Ψp(χ) =

S
∑

s=1

psΨ
s(χ)

}

,

Ψs(χ) = min
{

qsy |Wy ≥ hs + χ, y ∈
�n2

+

}

,

and

X =
{

χ ∈
�m2 | ∃x ∈ X : Tx = χ

}

.

Remark 5.3.8. As in the proof of Proposition 5.3.4 it is easily seen that the functionH(·) is
real-valued and lower semicontinuous, and since h(·) is clearly real-valued and continuous,
we see that problem (5.3.9) is well-defined. Also, observing (D5) we note that the optimal
value exists and is actually attained for some χ∗ ∈ X . Furthermore, given an optimal
solution χ∗ ∈ X of the transformed problem (5.3.9), it is easily seen that x∗ ∈ X is an
optimal solution of the minimax problem (5.3.8) if x∗ ∈ arg min

{

cx | Tx = χ∗, x ∈ X
}

,
cf. also Ahmed et al. [1, Theorem 3.2].

The insight of Ahmed et al. was to note that for any p ∈ P the discontinuity points of
the function Ψp(·) are contained in a finite union of hyperplanes that are all orthogonal
to the variable axes. In fact, they observe that the function is piecewise constant over
rectangular regions of X , the boundaries of which are orthogonal to the variable axes.
This result leads directly to the following.

Lemma 5.3.1. Assume (D1)-(D6), let k = (k1
1, . . . , k

s
j , . . . , k

S
m2

) ∈
�

m2S be a vector of
integers, and let

C(k) =

S
⋂

s=1

m2
∏

j=1

(ks
j − hs

j − 1, ks
j − hs

j ]

and

K =
{

k ∈
�m2S | C(k) ∩ X 6= ∅

}

.

Then |K| <∞ and for all k ∈ K the function H(·) is constant over C(k).

Proof. According to [1, Theorem 4.4 and 4.5] the result is true for the function Ψp(·) for
any p ∈ P. The lemma follows immediately.

The branch-and-bound algorithm, formally stated below, proceeds by partitioning
the feasible set X into regions of the form X ∩ Πm2

j=1(lj, uj], where each lj , j = 1, . . . , m2,
is a possible point of discontinuity of H(·), i.e. lj + hs

j is integral for some s ∈ {1, . . . , S}.
This is combined with a specialized bounding procedure which is a simple generalization
of the one presented by Ahmed et al.
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Algorithm 5.3

Step 1 (Initialization) Set z̄ = ∞. Let lP , uP ∈
�

m2 be such that X ⊆ Πm2
j=1 (lPj , u

P
j ]

and for all j = 1, . . . , m2, lPj +hs
j is integral for some s ∈ {1, . . . , S}. Let the list

of open problems L consist of problem P defined by (5.3.9) with the additional
constraints lP < χ ≤ uP . Also, let ε ∈

�m2
+ be such that H(·) is constant over

Πm2
j=1 (lj, lj + εj ] whenever l ∈

�
m2 is such that for all j = 1, . . . , m2, lj + hs

j is
integral for some s ∈ {1, . . . , S}.

Step 2 (Termination/Node selection) If L = ∅, stop; the solution that yielded the
upper bound z̄ is optimal. Otherwise, select and remove from L a problem P ,
defined as inf

{

F (χ) | lP < χ ≤ uP , χ ∈ X
}

.

Step 3 (Bounding) Obtain a lower bound on P by solving the lower bounding
problem zP = H(lP + ε) + min

{

cx | Tx = χ, lP ≤ χ ≤ uP , x ∈ X
}

and let χP be an optimal solution. If zP ≥ z̄ go to Step 2. Otherwise, let
z̄ = min

{

z̄, F (χP )
}

and remove from L all problems P ′ with zP ′

≥ z̄.

Step 4 (Branching) Select an index j ∈ {1, . . . , m2} and a value vj such that vj +h
s
j

is integral for some s ∈ {1, . . . , S} and lPj < vj < uP
j . Construct two new

problems P ′ and P ′′, obtained from P by adding the constraints χj > vj and
χj ≤ vj, respectively. Let zP ′

= zP ′′

= zP and add the two problems to L. Go
to Step 2.

Before we prove finite termination of Algorithm 5.3, let us note that Ahmed et al. pre-
sented a procedure for the a priori determination of the constant ε. The procedure is
based on the result in Lemma 5.3.1 and simply determines the smallest possible width
of the non-empty regions C(k), k ∈

�
m2S. Observing the definition of ε, it is easily seen

that the optimal value zP of the lower bounding problem in Step 3 of the algorithm is a
lower bound on the optimal value of the current problem P . In particular, since H(·) is
clearly non-decreasing in χ, the definition of ε implies that H(lP + ε) is a lower bound
on H(χ) for lP < χ ≤ uP . Moreover, min

{

cx | Tx = χ, lP ≤ χ ≤ uP x ∈ X
}

is clearly a
lower bound on h(χ) for lP < χ ≤ uP .

Proposition 5.3.5. Assume (D1)-(D6). Then Algorithm 5.3 terminates with an optimal
solution in a finite number of iterations.

Proof. Suppose in some iteration of the algorithm that the current problem P is such
that H(·) is constant over the set {χ ∈ X | lP < χ ≤ uP}. Then H(χP ) ≤ H(lP + ε)
so that F (χP ) = h(χP ) +H(χP ) ≤ h(χP ) +H(lP + ε) = zP and the current problem is
fathomed with no further refinements of the partition. Thus branching only occurs when
the set {χ ∈ X | lP < χ ≤ uP} contains a discontinuity point of H(·). By Lemma 5.3.1
and the definition of Step 4, this can only happen a finite number of times and hence the
algorithm terminates in a finite number of iterations. Optimality follows from validity of
the lower and upper bounding procedures, cf. the proof of [1, Theorem 6.4].

For further implementational details, such as e.g. specification of the branching rule and
improvements of the lower bounding procedure as well as extension of the algorithm to the
case of random technology matrix, we refer to Ahmed, Tawarmalani, and Sahinidis [1].
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Chapter 6

Multiperiod Capacity Expansion of

One Connection

In this chapter we consider the problem of installing additional capacity on a single
telecommunications connection so as to minimize total costs incurred while meeting cus-
tomer demand. Capacity expansion problems usually give rise to very large and complex
models that do not lend themselves to numerical procedures without simplifying as-
sumptions. Capacity expansion of a single telecommunications connection, however, is a
relatively simple problem which allows us to include a multiperiod horizon and to aban-
don the frequently employed assumption of (piecewise) linearity of the cost function, all
in all resulting in a relatively exact model. Furthermore, we use a stochastic program-
ming approach when formulating the problem, thus taking due account of the inherent
uncertainty involved in the assessment of future demand.

6.1 Two-Stage Formulation

We consider a finite time horizon of T periods, and assume that I different technologies
are available for installation in order to supply capacity to meet demand in each period.
For i = 1, . . . , I, the capacity supplied by one component of technology i is denoted by
ci and the price of the component is denoted by pi. The problem is to decide the number
of components of each technology to install in each period in order to meet demand.
Assuming that demand is known, this problem can be efficiently solved by a procedure
proposed by Saniee [136]. In real life, though, the assumption that future demand is
known at the point of decision will only in rare cases be justified, and hence demand in
each period should rather be thought of as a random variable. It is most natural to think
of the probability distribution of this random variable as absolutely continuous, but in
practice this would lead to severe computational difficulties. Furthermore, in Chapters 2
and 3 we have seen how stability results in stochastic programming justify the approx-
imation of the true distribution of random parameters by simpler discrete distributions
having finite support. Hence we follow this approach, allowing us to think of uncertainty
in terms of a number of scenarios, each scenario s ∈ {1, . . . , S} representing a sequence
of outcomes of random demand, (Ds

1, . . . , D
s
T ). Also, we assume that for s ∈ {1, . . . , S}

the probability of scenario s to actually occur is known, and we denote it by πs.
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Not knowing demand at the point of decision means that we may have to accept that
we cannot meet all demand in some periods, and hence for t = 1, . . . , T and s = 1, . . . , S
we denote by zs

t the amount of demand exceeding capacity in period t under scenario s.
Laguna [81] uses this approach to formulate the problem as a robust optimization prob-
lem (see Mulvey, Vanderbei, and Zenios [96]), using a general penalty cost function ρ
depending on the capacity shortages and the corresponding probabilities of occurrence
π1, . . . , πS. If the function ρ is linear, this is essentially a two-stage stochastic program-
ming problem with integer first stage and simple linear recourse. Here the first stage
consists of the decisions concerning capacity expansion that must be made without cer-
tain knowledge about random demand, whereas the second stage consists of realizations
of the capacity shortages that occur once uncertainty is revealed. Denoting by q the cost
of one unit of capacity shortage, the two-stage capacity expansion problem is

min
T

∑

t=1

γt−1

( I
∑

i=1

pixit + q
S

∑

s=1

πszs
t

)

s.t.
t

∑

r=1

I
∑

i=1

cixir + zs
t ≥ Ds

t , t = 1, . . . , T, s = 1, . . . , S,

xit ∈
�

+, z
s
t ∈

�
+, i = 1, . . . , I, t = 1, . . . , T, s = 1, . . . , S.

(6.1.1)

Here γ is a discount factor and for i = 1, . . . , I and t = 1, . . . , T we let xit denote the
number of components of technology i to be installed in period t. In the following we will
assume that both the price and the capacity of every technology are strictly positive.

Remark 6.1.1. The question of actually specifying (or estimating) the cost of lost demand
is a complicated matter, since it will only seldom be readily available. If the network
operator has the possibility to rent capacity from a competing network operator, q may be
taken as the price of such rented capacity. Otherwise q may simply be thought of as lost
revenue, possibly with the addition of a penalty cost reflecting customer dissatisfaction.
Alternatively, varying values of q may be considered in a parametric analysis illuminating
the tradeoff between the cost of the capacity expansion and future capacity shortages.

Remark 6.1.2. Note that if no capacity shortages are allowed, the stochastic programming
problem (6.1.1) reduces to a deterministic problem, where for each period t = 1, . . . , T a
demand of max1≤s≤S{Ds

t} is to be satisfied, and hence in this case the problem may be
solved by the procedure proposed by Saniee [136].

6.1.1 Solution Procedure

As pointed out in Chapter 2, stochastic programs with simple linear recourse have been
the subject of extensive research, and for one thing, efficient solution procedures for such
problems have been proposed by various authors. (See e.g. Wets [164].) Clearly, though,
the computational difficulties in solving problem (6.1.1) lies not only in its stochastic
programming formulation, but to a still larger extent in the integer programming na-
ture of the first-stage problem. To this end, the special structure of the problem was
exploited by Laguna [81], who developed a specialized solution procedure, extending the
above-mentioned approach of Saniee [136]. Laguna solves problem (6.1.1) in two phases
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consisting of a sequence of knapsack problems and a shortest path procedure, respectively.
In the following we briefly outline this approach.

Let Dmax denote the maximum demand in any period under any scenario,

Dmax = max
1≤s≤S

max
1≤t≤T

{

Ds
t

}

.

In the first phase the cost of installing at least y units of capacity in some period is found
for y = 0, . . . , Dmax by solving a series of knapsack problems, defined for a given level y
by

M(y) = min

{ I
∑

i=1

pixi |
I

∑

i=1

cixi ≥ y, xi ∈
�

+, i = 1, . . . , I

}

. (6.1.2)

Remark 6.1.3. Solving the knapsack problem with right-hand side Dmax using dynamic
programming, produces the desired solutions of M(y) for y = 1, . . . , Dmax. (See e.g.
Gilmore and Gomory [49].) In fact Andonov, Poirriez, and Rajopadhye [3] presented a
dynamic programming algorithm for the unbounded knapsack problem for which compu-
tation time is relatively insensitive to the value of the right-hand side. Hence the series of
knapsack problems is solved very efficiently even if some scenario with very large demand
exists.

In the second phase Laguna solves a shortest path problem in a directed graph con-
structed in the following way. The nodes of the graph are ordered in T + 2 columns
numbered from 0 to T + 1. The columns 1, . . . , T represent the time periods and each
has Dmax + 1 nodes such that the node vt,k represents the situation that at least k units
of capacity have been installed by period t. For t = 2, . . . , T and k = 0, . . . , Dmax, all
nodes vt−1,k−y, y = 0, . . . , k, are connected to node vt,k by edges with cost

c(vt−1,k−y , vt,k) = γt−1M(y) + γt−1q
S

∑

s=1

πs(Ds
t − k)+, (6.1.3)

where a+ = max{0, a} denotes the positive part of a number a ∈
�

. The first and the
last column each has one node, v0 and vT+1, respectively. v0 is connected to all nodes
v1,k, k = 0, . . . , Dmax, by edges with cost

c(v0 , v1,k) = M(k) + q

S
∑

s=1

πs(Ds
1 − k)+. (6.1.4)

Finally, all nodes vT,k, k = 0, . . . , Dmax, are connected to vT+1 by edges with zero cost.
Problem (6.1.1) can now be solved finding the cost of the shortest (v0, vT+1)-path in the
graph by some shortest path procedure such as e.g. Dijkstra’s algorithm.
Remark 6.1.4. Clearly, the above procedure is easily adapted to account for a more general
time-dependency of the penalty cost. In particular, if the penalty cost γt−1q in period t
is replaced by qt for t = 1, . . . , T , the edge costs (6.1.3) are simply updated accordingly.
If, on the other hand, the unit cost γt−1pi of technology i in period t is replaced by pit for
i = 1, . . . , I and t = 1, . . . , T , then a series of knapsack problems (6.1.2) must be solved
for each period, and hence for t = 1, . . . , T the term γt−1M(y) in (6.1.3) is replaced
accordingly by a more general one, Mt(y).
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6.1.2 A New Preprocessing Rule

The computational results reported by Laguna, as well as those presented in Section 6.3
below, seem to indicate that the shortest path procedure is the most time consuming part
of the algorithm described above. Because each edge of the graph is considered exactly
once during the course of this procedure, an efficient way to reduce computation time is
to reduce the number of edges in the graph. With this in mind we make the following
observations. First of all note that for ȳ ∈ {0, . . . , Dmax − 1} the cost M(ȳ) is associated
with the installment of more than ȳ units of capacity if and only if M(ȳ) = M(ȳ + 1),
and hence in such cases the final term of the edge cost (6.1.3) overestimates the expected
penalty cost for lost demand. More specifically we have the following.
Observation 6.1.1. Let ȳ ∈ {0, . . . , Dmax − 1} be such that M(ȳ) = M(ȳ + 1). Then we
have for t = 2, . . . , T and k = ȳ, . . . , Dmax − 1 that

c(vt−1,k−ȳ , vt,k) = γt−1M(ȳ) + γt−1q

S
∑

s=1

πs(Ds
t − k)+

≥ γt−1M(ȳ + 1) + γt−1q

S
∑

s=1

πs(Ds
t − k − 1)+

= c(vt−1,k−ȳ , vt,k+1).

To see how this observation allows us to eliminate from the graph most edges correspond-
ing to the installment of ȳ units of capacity, we make the following simple additional
observation.
Observation 6.1.2. Because M(y − 1) ≤ M(y) for any y ∈ {1, . . . , Dmax}, we have for
t = 1, . . . , T − 1 and k, k′ ∈ {0, . . . , Dmax} with k < k′ that

c(vt,k , vt+1,k′) = γtM(k′ − k) + γtq

S
∑

s=1

πs(Ds
t+1 − k′)+

≥ γtM(k′ − k − 1) + γtq
S

∑

s=1

πs(Ds
t+1 − k′)+

= c(vt,k+1 , vt+1,k′).

Let us now consider again the graph that was constructed to solve the capacity expan-
sion problem (6.1.1) as described in the previous section. Employing Observations 6.1.1
and 6.1.2, we see that if M(ȳ) = M(ȳ + 1) for some ȳ ∈ {0, . . . , Dmax − 1}, then the
subpath (vt−1,k−ȳ , vt,k+1 , vt+1,k′) is not longer than the subpath (vt−1,k−ȳ , vt,k , vt+1,k′) for
t = 2, . . . , T −1, k = ȳ, . . . , Dmax −1, and k′ = k+1, . . . , Dmax. (The argument does not
hold for k = Dmax because there are no nodes corresponding to the installment ofDmax+1
units of capacity.) Likewise, it is easily seen that for k′ = ȳ + 1, . . . , Dmax the subpath
(v0 , v1,ȳ+1 , v2,k′) is not longer than the subpath (v0 , v1,ȳ , v2,k′), and for k = ȳ, . . . , Dmax−1
the subpath (vT−1,k−ȳ , vT,k+1 , vT+1) is not longer than the subpath (vT−1,k−ȳ , vT,k , vT+1).
Therefore, prior to solving the shortest path problem, we can remove most of the edges
corresponding to the installment of ȳ units of capacity from the graph, i.e. we remove
the edges (v0 , v1,ȳ) and (vt−1,k−ȳ , vt,k) for t = 2, . . . , T and k = ȳ, . . . , Dmax − 1.
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Remark 6.1.5. Note that after application of this preprocessing rule it is easily seen that
for t = 1, . . . , T and k = 0, . . . , Dmax−1 the node vt,k now in fact represents the situation
that exactly k units of capacity have been installed by period t. (For t = 1, . . . , T the
interpretation of the node vt,Dmax

, on the other hand, remains unchanged.)

Remark 6.1.6. Clearly, the effect of applying the preprocessing rule is highly dependent
on the problem data, and in particular on the prices and capacities of the technologies.
Our computational experiments, discussed in Section 6.3, indicates that the reduction in
CPU-time closely corresponds to the reduction in the number of edges in the graph.

6.2 Multistage Formulation

It is important at this point to note the distinction between periods and stages. Thus,
even though problem (6.1.1) is a multiperiod problem, it only has two stages. As pre-
viously pointed out, the first stage includes the decisions on capacity expansion which
have to be made without knowing the actual outcome of random demand, whereas the
second stage includes realizations of the capacity shortages that occur after uncertainty
has been revealed. Because of this mismatch between the number of periods and stages,
one might argue that the formulation of the problem given in the previous section does
not provide a very good description of the actual process of planning capacity expansion
under uncertainty even though the uncertainty of demand is explicitly included. In fact,
the formulation in the previous section forces the decision-maker to plan the capacity
expansion for the entire time horizon before knowing any outcomes of random demand.
It does not seem reasonable, though, that the amount of capacity installed in some pe-
riod should not depend on actual demand realized up to that period. For this reason
one might feel that a multistage formulation of the problem would more appropriately
fit the actual multiperiod decision process. For a thorough introduction to the concept
of a multistage stochastic recourse program and the related notation, we refer to the
textbooks by Birge and Louveaux [22], Kall and Wallace [67], and Prékopa [107], cf. also
our discussion in Section 1.2.3.

To facilitate the multistage formulation of the problem, we introduce some additional
notation. For t = 1, . . . , T we denote by D[1,t] a history of demand up to time t,

D[1,t] = (D1, . . . , Dt), t = 1, . . . , T.

We will refer to Ds
[1,t] = (Ds

1, . . . , D
s
t ) as a subscenario for t = 1, . . . , T and s = 1, . . . , S.

Also, for each period we define the set of all distinguishable subscenarios,

St =
{

D[1,t] ∈
� t | ∃s ∈ {1, . . . , S} : D[1,t] = Ds

[1,t]

}

, t = 1, . . . , T,

and the corresponding probabilities,

π(D[1,t]) =
∑

s:Ds
[1,t]

=D[1,t]

πs, D[1,t] ∈ St, t = 1, . . . , T.

Finally, we define the set of descendants of a subscenario,

D(D̄[1,t]) =
{

D[1,t+1] ∈ St+1 | D[1,t] = D̄[1,t]

}

, D̄[1,t] ∈ St, t = 1, . . . , T − 1.
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Remark 6.2.1. For t = 1, . . . , T the subscenarios D[1,t] ∈ St each corresponds to a bundle
of scenarios that are indistinguishable at time t, i.e.

{

s ∈ {1, . . . , S} | Ds
[1,t] = D[1,t]

}

.
Hence, the scenarios may be represented by a tree-like structure, with each node repre-
senting a subscenario, and with edges connecting subscenarios to their descendants. Such
a scenario tree was illustrated in Figure 1.1 on page 8.

In the following, we will assume that the decision on capacity expansion for a given
period may be based on the development of demand in previous periods. Furthermore,
we assume that there is a time delay in the installment of capacity, so that the capacity
that we decide to install at some point in time will not be available for use before the
beginning of the following period. For i = 1, . . . , I, t = 1, . . . , T and D[1,t-1] ∈ St−1, we let
xit(D[1,t-1]) denote the number of components of technology i to be installed in period t
knowing the demand in periods 1, . . . , t−1 as realized in subscenario D[1,t-1]. (For ease of
notation we define the set S0 as some arbitrary singleton {D[1,0]} and let π(D[1,0]) = 1 and
D(D[1,0]) = S1.) Since we have to plan the capacity expansion one period ahead, we may
still have to accept that we cannot meet all demand in some periods. For t = 1, . . . , T
and D[1,t] ∈ St, we let zt(D[1,t]) denote the amount of demand exceeding capacity in
period t under subscenario D[1,t]. The multistage capacity expansion problem may now
be formulated as

min
T

∑

t=1

γt−1

(

∑

D[1,t-1]∈St-1

π(D[1,t-1])
I

∑

i=1

pixit(D[1,t-1]) + q
∑

D[1,t]∈St

π(D[1,t])zt(D[1,t])

)

s.t.
t

∑

r=1

I
∑

i=1

cixir(D[1,r-1]) + zt(D[1,t]) ≥ Dt D[1,t] ∈ St, t = 1, . . . , T

xit(D[1,t-1]) ∈
�

+, D[1,t-1] ∈ St-1, t = 1, . . . , T, i = 1, . . . , I.

zt(D[1,t]) ∈
�

+, D[1,t] ∈ St, t = 1, . . . , T.

(6.2.1)

Remark 6.2.2. Note that contrary to the two-stage problem (6.1.1), the multistage prob-
lem (6.2.1) does not reduce to a deterministic problem when no capacity shortages are
allowed. In this case the problem is still a multistage stochastic program, and it can be
solved by a recursive solution procedure that is similar in spirit to the one presented for
problem (6.2.1) below. We also note that this case corresponds to the situation when
there is no time delay in the installment of capacity, so that the capacity installment for
some period can be based on the actual demand in that period.
Remark 6.2.3. In the general formulation of a multistage stochastic program presented in
Section 1.2.3, we used explicit non-anticipativity constraints, requiring decisions in some
period to depend only on the information available at that point. In problem (6.2.1), on
the other hand, non-anticipativity is imposed implicitly by allowing decisions to depend
only on demand in previous periods. Alternatively, we could define a group of decisions
for each scenario and impose explicit non-anticipativity constraints ensuring that

xs
it = xs′

it , i = 1, . . . , I, t = 1, . . . , T, s, s′ ∈ {1, . . . , S}, Ds
[1,t−1] = Ds′

[1,t−1],

zs
t = zs′

t , t = 1, . . . , T, s, s′ ∈ {1, . . . , S}, Ds
[1,t] = Ds′

[1,t].

The implicit formulation of non-anticipativity in (6.2.1) is convenient, however, for the
recursive solution procedure presented in the following section.
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6.2.1 Solution Procedure

Once again we will solve the problem by initially solving the series of knapsack prob-
lems (6.1.2) in order to find the cost of installing y units of capacity for y = 0, . . . , Dmax.
Now we define the set Y of efficient installment levels cf. Section 6.1.2,

Y =
{

y ∈ {0, . . . , Dmax − 1} |M(y) < M(y + 1)
}

, (6.2.2)

and the related sets

Yk =
{

y ∈ Y | 0 ≤ y ≤ Dmax − k
}

∪
{

Dmax − k
}

, k = 0, . . . , Dmax.

Remark 6.2.4. By the same argument that we used in Section 6.1, we will only consider
the installment of y units of capacity if M(y) < M(y + 1), the only exception being the
situation when we choose to install enough capacity to reach a total of Dmax.

Problem (6.2.1) is now solved by a backward recursion as follows. For t = T, . . . , 1,
D̄[1,t] ∈ St, and k = 0, . . . , Dmax, we let Qt(k, D̄[1,t]) denote the minimum expected future
cost at time t when a total of k units of capacity have already been installed and the
history of demand D̄[1,t] has been observed. For the final period we have

QT (k, D̄[1,T ]) = q(D̄T − k)+, k = 0, . . . , Dmax, D̄[1,T ] ∈ ST ,

and recursively we get

Qt(k, D̄[1,t]) = q
(

D̄t − k
)+

+ γ min
y∈Yk

{

M(y) +
∑

D[1,t+1]∈D(D̄[1,t])

π(D[1,t+1])

π(D̄[1,t])
Qt+1(k + y,D[1,t+1])

}

,

k = 0, . . . , Dmax, D̄[1,t] ∈ St, t = T − 1, . . . , 1.

The multistage capacity expansion problem can now be stated as

min
y∈Y0

{

M(y) +
∑

D[1,1]∈S1

π(D[1,1])Q1(y,D[1,1])

}

.

Remark 6.2.5. As noted for the two-stage problem in Section 6.1.1, the recursive solution
procedure stated above is easily adapted to account for a more general time-dependency
of the penalty cost, whereas a more general time-dependency of the unit cost of each
technology requires the solution of a series of knapsack problems (6.1.2) for each period,
thus increasing the complexity of the algorithm.

6.3 Computational Experiments

We implemented the algorithm described in Section 6.1 in C++ with and without the
new preprocessing rule, primarily to test whether the rule in fact speeds up the algorithm,
and secondly to investigate whether the sensitivity of the procedure with respect to I, T ,
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and S is changed when the rule is applied. The experiments were performed on instances
of the problem generated randomly according to precepts used by Laguna [81],

Ds
t =

t
∑

r=1

ds
r t = 1, . . . , T, s = 1, . . . , S, (6.3.1a)

ds
t ∼ N(µ, σ2) t = 1, . . . , T, s = 1, . . . , S, (6.3.1b)

ci ∼ U(1, µ) i = 1, . . . , I, (6.3.1c)

pi = µ+ ci + p̃i i = 1, . . . , I, (6.3.1d)
p̃i ∼ U(−σ, σ) i = 1, . . . , I, (6.3.1e)

πs =
1

S
s = 1, . . . , S. (6.3.1f)

In compliance with Laguna we generated all instances using µ = 100 and σ = 10, the
discount factor γ was set to 0.86, and the cost of lost demand was fixed at q = 5.

The results of the first series of experiments are summarized in Table 6.1. TSCE1
refers to the CPU-time (in seconds) used by the procedure without the preprocessing
rule and TSCE2 refers to the CPU-time when the rule is applied. We also report the
maximum demand Dmax and the number of different solutions from the series of knapsack
problems denoted by |Y |. (The set Y was defined by (6.2.2).) These numbers are reported
because the reason for us to believe that the preprocessing rule is effective, is that it brings
the number of installment levels considered in the minimization down from Dmax to |Y |.
Finally, we report the reduction in CPU-time and in the number of installment levels
considered in the minimization when the new preprocessing rule is applied. All numbers
reported are averages over 10 independently generated instances.

Table 6.1: Effect of the Preprocessing Rule
I 10 10 10 10 10 10 4 20 100

T 10 10 10 4 8 12 10 10 10

S 10 100 1000 100 100 100 100 100 100

TSCE1 16.23 94.20 892.20 5.74 50.01 161.94 94.22 96.08 95.03

TSCE2 2.84 17.08 142.11 0.89 6.53 26.01 9.73 22.57 46.98

Reduction 82.5% 81.9% 84.1% 84.4% 87.0% 83.9% 89.7% 76.5% 50.6%

Dmax 1034.8 1081.4 1106.0 446.6 867.8 1287.3 1082.8 1084.7 1078.3

|Y | 174.6 215.5 187.6 72.2 124.2 218.2 113.0 270.2 552.0

Reduction 83.1% 80.1% 83.0% 83.8% 85.7% 83.0% 89.6% 75.1% 48.8%

From Table 6.1 we see that the algorithm provides consistently shorter CPU-times when
the new preprocessing rule is applied, the reduction in CPU-time closely corresponding
to the reduction in the number of installment levels considered in the minimization.
Also, as reported by Laguna, our experiments show that the procedure is quite sensitive
with respect to the number of periods T as well as the number of scenarios S, whereas
the algorithm seems to be rather insensitive with respect to the number of technologies I
when the preprocessing rule is not applied, all in all indicating that the CPU-time needed
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to solve the series of knapsack problems is negligible compared to the CPU-time needed
for the shortest path procedure. When the preprocessing rule is applied, however, we note
an increase in CPU-time for increasing numbers of technologies. This can be ascribed
to the fact that an increasing number of technologies implies an increasing number of
different solutions from the series of knapsack problems as indicated by |Y |.

The recursive solution procedure for the multistage problem described in Section 6.2
was also implemented in C++ and a series of experiments were carried out. The purpose
of these experiments was twofold. First, we wanted to test if the multistage method is
practicable. Second, the experiments provide some insight into the difference between
the two-stage and the multistage models. To generate scenario trees for the multistage
problem we considered a fixed number of S̄ descendants for all subscenarios, resulting
in a total of S = S̄T scenarios. Again the random instances were generated using the
precepts (6.3.1). When generating demand by (6.3.1a) and (6.3.1b), though, we now had
to collect the scenarios in scenario bundles in each period. This was done by generating
S̄ demand values for period 1, for each of these values S̄ independent demand increments
(6.3.1b) were generated and so forth.

Results of the second series of computational experiments are reported in Table 6.2.
Again we report average results from 10 independently generated instances. The CPU-
time used by the solution procedure for the multistage problem is referred to as MSCE.
For each instance we also ran a modified solution procedure for the two-stage problem,
taking advantage of the bundling of scenarios in the scenario tree, i.e. simply replacing the
term

∑S
s=1 π

s(Ds
t − k)+ in the edge cost (6.1.3) or (6.1.4) by

∑

D[1,t]∈St
π(D[1,t])(Dt − k)+

for t = 1, . . . , T . We refer to the CPU-time used by this procedure as TSCE3.

Table 6.2: Practicability of the Multistage Algorithm
I 10 10 10 10 10 10 4 20 100

T 6 6 6 4 8 12 10 10 10

S̄ 2 3 4 2 2 2 2 2 2

MSCE 1.82 16.81 76.06 0.20 14.35 687.08 36.71 150.50 309.32

TSCE3 0.84 6.28 29.84 0.14 5.20 215.47 11.80 48.54 100.68

From Table 6.2 we see that the multistage model is certainly practicable even though the
solution time is up to about three times larger than that of the two-stage model. The
increased solution times are a consequence of the improved accuracy provided by the
multistage model. We note, however, that the cost savings achieved by using a multistage
model were rather small for the instances considered here (less than 3%), and in fact the
two-stage model and the multistage model provided identical first-period decisions for
several instances. Hence if time is a critical factor, it may be that one can settle for
the results of the two-stage model with no grave consequences. Clearly, though, this
conjecture cannot be confirmed without an extensive amount of computational testing
concerning the particular instance at hand.
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Chapter 7

Capacitated Network Design

In this chapter we consider the design of a capacitated telecommunications network. The
problem is to install additional capacity on the transmission links and subsequently route
traffic in the resulting network so as to meet customer demand while minimizing total
costs incurred. We will assume that two facilities with fixed capacities are available for
installation but most of the results may be generalized in case several facilities are avail-
able. The polyhedral structure of the two-facility capacitated network design problem
with known point-to-point traffic demands has been studied by e.g. Bienstock and Gün-
lük [17] and Günlük [53]. Here the authors derive facet-defining inequalities and use these
to solve the problem by cutting plane procedures. It is a trivial observation, though, that
uncertainty is almost always an inherent feature of systems involving the assessment of
future demand, and this is particularly so in the present context, since telecommuni-
cations is a branch of trade that is currently undergoing a thriving development with
rapidly increasing demand. In this chapter, following a brief survey of well-known results
for the deterministic capacitated network design problem, we consider the alternative of
formulating the problem as a two-stage stochastic program with integer first stage and
continuous second stage, hence taking due account of the inherent uncertainty involved
in the assessment of future demand.

7.1 The Deterministic Problem

The network is modeled as a connected undirected graph G = (V,E) with the node set V
representing switches in the network and the edge set E representing transmission links.
In this network a number of directed point-to-point traffic demands are to be routed. To
this end, demand will be described by a set K of commodities, and for k ∈ K and i ∈ V
we let Dik denote the net demand for commodity k at node i.

Remark 7.1.1. Several possibilities exist for defining the demand commodities. A common
approach is to define a commodity for every non-zero point-to-point demand, resulting
in a total of O(|V |2) commodities. To reduce the number of variables and constraints,
however, we will prefer to work here with an aggregated formulation in which each com-
modity corresponds to the set of all point-to-point demands originating at some particular
node, hence resulting in a total of only O(|V |) commodities. In other words, we assume
throughout the following that K ⊆ V .
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The existing capacity on an edge {i, j} ∈ E is denoted by Cij . Since we are modeling
a communications network with optical transmission systems we will assume that a given
edge in the network can carry flow in either direction and, more importantly, that these
flows do not interfere. Hence, each undirected edge {i, j} ∈ E conceptually corresponds
to two directed edges (i, j) and (j, i), both with capacity Cij. Additional capacity may
be installed on edges of the network in multiples of two batch sizes corresponding to
low-capacity and high-capacity facilities, respectively. We will assume that the smaller
batch size is equal to 1, which may be achieved by rescaling demand. The larger batch
size will be denoted by λ and we will assume that λ is an integer. We are now ready to
define the convex hull of feasible solutions for the capacitated network design problem,

P = conv

{

(x, y, f) ∈
� |E|

+ ×
� |E|

+ ×
�2|K||E|

+

∣

∣

∣

∑

j:{i,j}∈E

fjik −
∑

j:{i,j}∈E

fijk = Dik, i ∈ V, k ∈ K, i 6= k, (7.1.1a)

∑

k∈K

fijk ≤ Cij + xij + λyij, {i, j} ∈ E, (7.1.1b)

∑

k∈K

fjik ≤ Cij + xij + λyij, {i, j} ∈ E

}

. (7.1.1c)

Here, for {i, j} ∈ E we denote by xij (yij) the number of low-capacity (high-capacity)
facilities to be installed on edge {i, j}, and for k ∈ K we denote by fijk and fjik the
flow of commodity k on the two conceptual edges (i, j) and (j, i) corresponding to edge
{i, j}. Equation (7.1.1a) is a flow conservation constraint while (7.1.1b) and (7.1.1c) are
capacity constraints. In the following, whenever e = {i, j} ∈ E we will refer to the same
variable by xij , xji, and xe interchangeably. A similar notation will be used for existing
capacity and for high-capacity facilities.

For {i, j} ∈ E the cost of installing a low-capacity facility on the edge {i, j} is denoted
by aij and the corresponding cost of a high-capacity facility is denoted by bij . Finally,
for {i, j} ∈ E and k ∈ K we will use a flow cost cijk = cjik for one unit of commodity k
on the edge {i, j}, knowing that this cost may well be zero in many real-life applications.
The deterministic capacitated network design problem may now be stated as

min
{

ax+ by + cf | (x, y, f) ∈ P
}

, (7.1.2)

where a, b, and c are the cost vectors, and transposes have once again been omitted for
simplicity.
Remark 7.1.2. The closely related network loading problem has been considered by Mag-
nanti, Mirchandani, and Vachani [88, 89], and Mirchandani [93], who obtained results
similar to those presented for the capacitated network design problem in the following
sections. The network loading problem is a slight variation of the capacitated network
design problem in which it is assumed that there is no existing capacity on the edges
of the network and no cost of flow. We note that the capacitated network design prob-
lem will generally be relevant for the network provider, whereas the network loading
problem typically arises when customers wish to design a private-line network by leasing
transmission facilities from the network provider.
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7.1.1 Metric Inequalities

The class of so-called metric inequalities, originally introduced by Iri [63] and Onaga and
Kakusho [104], can be used to project the feasible region P onto the space of discrete
capacity variables. These valid inequalities have been applied in the context of capaci-
tated network design by various authors. Günlük [53] briefly describes the inequalities,
but argues that it is only practical to use special subclasses of them in cutting plane
procedures for problem (7.1.2). Bienstock et al. [16], on the other hand, employs metric
inequalities in a cutting plane procedure for a reformulation of the one-facility capaci-
tated network design problem using flow variables related to a number of prespecified
paths rather than the edge-related flow variables used in the formulation (7.1.1). For the
stochastic programming problem that we are going to consider, the metric inequalities
will be used as feasibility cuts in an L-shaped algorithm and hence we consider them in
some detail.

For fixed values of x and y, problem (7.1.2) is a standard multicommodity flow prob-
lem. Associating dual variables ρ, σ, and τ with constraints (7.1.1a), (7.1.1b), and
(7.1.1c), respectively, the dual of this problem is

max
∑

i∈V

∑

k∈K

Dikρik −
∑

{i,j}∈E

(σij + τij)(Cij + xij + λyij)

s.t. ρjk − ρik − σij ≤ cijk, {i, j} ∈ E, k ∈ K,

ρik − ρjk − τij ≤ cijk, {i, j} ∈ E, k ∈ K,

ρkk = 0, k ∈ K,

ρ ∈
� |V ||K|, σ, τ ∈

� |E|
+ .

(7.1.3)

The multicommodity flow problem is feasible if and only if the dual problem (7.1.3) is
bounded. That is, if and only if the following inequalities hold,

∑

{i,j}∈E

(vij + wij)(Cij + xij + λyij) ≥
∑

i∈V

∑

k∈K

Dikuik, (u, v, w) ∈ D+, (7.1.4)

where D+ denotes the recession cone of the feasible region of the dual problem,

D+ =
{

(u,v, w) ∈
� |V ||K| ×

� |E|
+ ×

� |E|
+

∣

∣

ujk − uik ≤ vij, uik − ujk ≤ wij, ukk = 0, {i, j} ∈ E, k ∈ K
}

.
(7.1.5)

The inequalities defined by (7.1.4) are referred to as metric inequalities.

Remark 7.1.3. To understand why the inequalities defined by (7.1.4) are called metric
inequalities, consider a directed graph Ḡ = (V,A) where the edge set A contains the
two directed edges (i, j) and (j, i) for each undirected edge {i, j} ∈ E. Now, associating
weights vij with edge (i, j) and wij with edge (j, i) for each {i, j} ∈ E, it is easily seen
that the right-hand side of (7.1.4) is maximized if and only if uik is the length of a shortest
(k, i)-path in Ḡ for all k ∈ K ⊆ V and i ∈ V . From now on we will only be interested
in the extreme rays (u, v, w) ∈ D+ of the feasible region in (7.1.3), that satisfies this
property.
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Since the feasible region of the dual problem (7.1.3) is a rational polyhedron, we may
assume that the extreme rays (u, v, w) ∈ D+ are integral — this can be achieved by
scaling. Hence the metric inequalities (7.1.4) may be strengthened by rounding,

∑

{i,j}∈E

(vij +wij)(xij + λyij) ≥

⌈

∑

i∈V

∑

k∈K

Dikuik −
∑

{i,j}∈E

Cij(vij +wij)

⌉

, (u, v, w) ∈ D+.

The strengthened inequalities are referred to as integral metric inequalities. They do not
necessarily define facets of P but, as already mentioned, they will be useful as feasibility
cuts in an L-shaped algorithm for a stochastic programming formulation of the problem.

7.1.2 Partition Inequalities

In this section we consider a special subclass of integral metric inequalities referred to as
partition inequalities. The reason for us to consider these inequalities separately is that
some partition inequalities are facet-defining under mild conditions. Here we will only
consider partition inequalities obtained as integral metric inequalities by assigning unit
weight to some edges and zero weight to the remaining edges cf. Remark 7.1.3.

Let π = (V1, . . . , Vl) be a partition of the node set into l subsets and let Eπ denote the
corresponding multicut, Eπ =

{

{i, j} ∈ E
∣

∣ ∃ r ∈ {1, . . . , l} such that |{i, j} ∩ Vr| = 1
}

.
Next, for any permutation α = (α1, . . . , αl) of the sequence (1, . . . , l), we let T (π, α)
denote the net traffic that must be routed across the multicut Eπ from lower-numbered
subsets to higher-numbered subsets when subsets are numbered with respect to α,

T (π, α) =
l−1
∑

r=1

∑

k∈Vαr

∑

i∈V αr

Dik −
∑

e∈Eπ

Ce,

where V αr =
⋃l

t=r+1 Vαt
. T (π, α) provides a lower bound on the capacity that must be

installed across the multicut Eπ. Taking the maximum over the l! possible permutations
of (1, . . . , l), we obtain a stronger lower bound T (π) and a valid inequality for P,

x(Eπ) + λy(Eπ) ≥ dT (π)e, (7.1.6)

where we define x(Eπ) =
∑

e∈Eπ
xe and y(Eπ) =

∑

e∈Eπ
ye for notational convenience.

Remark 7.1.4. Note that the valid inequality with left-hand side as in (7.1.6) and right-
hand side equal to dT (π, α)e is an integral metric inequality obtained in the following
way. For each undirected edge {i, j} ∈ Eπ let Aπ ⊆ A contain the directed edge (i, j) or
(j, i) going from a lower-numbered subset to a higher-numbered subset when subsets are
numbered with respect to α. The desired inequality is now obtained by assigning unit
weights to edges in Aπ and zero weight to all other edges in A cf. Remark 7.1.3.

Remark 7.1.5. The inequality defined by (7.1.6) is referred to as an l-partition inequality.
2-partition inequalities are usually referred to as cutset inequalities. A cutset inequality
defines a facet of P provided that V1 as well as V2 = V \ V1 are not empty and induce
connected subgraphs, and that T (V1, V2) is not integer. A proof of this result may be
found in e.g. Bienstock and Günlük [17], who also give several sufficient conditions for



7.1 The Deterministic Problem 95

3-partition inequalities to be facet-defining. Finally, Bienstock et al. [16] consider a one-
facility capacitated network design problem and give sufficient conditions for a general
l-partition inequality to be facet-defining for the projection of the feasible region on the
space of discrete capacity variables.

7.1.3 Mixed-Integer Rounding Inequalities

Applying the mixed-integer rounding procedure (see e.g. Nemhauser and Wolsey [97]) to
the partition inequalities, we obtain a new class of valid inequalities referred to as mixed-
integer rounding inequalities. For notational convenience we let T̄π denote the right-hand
side of the partition inequality (7.1.6) for a given partition π, that is T̄π = dT (π)e, and we
let rπ = (T̄π modλ). Note that T̄π = λbT̄π/λc+rπ with 0 ≤ rπ < λ, and rπ = 0 if and only
if T̄π is a scalar multiple of λ. In terms of the aggregate variables x(Eπ) and y(Eπ) the
partition inequality (7.1.6) is tight at integer points

(

T̄π, 0
)

,
(

T̄π−λ, 1
)

, . . . ,
(

rπ, bT̄π/λc
)

.
Still, when T̄π is not a scalar multiple of λ, new fractional extreme points with x(Eπ) = 0
and y(Eπ) = T̄π/λ are induced. Such points may be cut off by the following mixed-integer
rounding inequality,

x(Eπ) + rπy(Eπ) ≥ rπdT̄π/λe. (7.1.7)

In terms of the aggregate variables x(Eπ) and y(Eπ) this inequality is tight at integer
points

(

0, dT̄π/λe
)

and
(

rπ, bT̄π/λc
)

. Thus, whenever rπ 6= 0, the mixed-integer rounding
inequality (7.1.7) is stronger than the corresponding partition inequality for points with
bT̄π/λc ≤ y(Eπ) ≤ dT̄π/λe. If rπ = 0, on the other hand, the inequality is redundant.

Remark 7.1.6. It is possible to prove that if a partition inequality (7.1.6) is facet-defining
for P, then the corresponding mixed-integer rounding inequality (7.1.7) is also facet-
defining for P under mild conditions cf. e.g. Bienstock and Günlük [17].

7.1.4 Mixed Partition Inequalities

Finally, we consider the class of mixed partition inequalities, introduced by Günlük [53].
Let π and π′ be two distinct partitions of the node set V and consider the related partition
inequalities (7.1.6). Again we let T̄π and T̄π′ denote the right-hand sides, and rπ and rπ′

the corresponding remainders by division with λ. Assuming that rπ > rπ′, and applying a
general mixing procedure for mixed-integer sets, introduced by Günlük and Pochet [54],
to the two partition inequalities, we obtain a valid inequality for P,

x(Eπ ∪Eπ′) + (rπ − rπ′)y(Eπ) + rπ′y(Eπ′) ≥ (rπ − rπ′)dT̄π/λe + rπ′dT̄π′/λe.

Remark 7.1.7. Günlük [53] presented several conditions for mixed partition inequalities to
be facet-defining for P, but his computational experiments indicated that the inequalities
only in rare cases had an effect when partition inequalities and mixed-integer rounding
inequalities were already included in the formulation. It turns out, however, that mixed
partition inequalities are the only class of inequalities presented so far that may combine
information from different scenarios in the stochastic programming formulation, and
hence they turned out to be quite useful.
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7.2 The Stochastic Programming Problem

Until now we have only considered the deterministic capacitated network design problem.
It is worth noting at this point, though, that the number of low- and high-capacity facil-
ities to install on each edge of the network must be decided upon well in advance of the
point in time at which they are actually installed and operating. Thus, the assumption
that demand is known at the point of decision will generally not be justified since uncer-
tainty is almost always an inherent feature of systems involving the assessment of future
demand. Furthermore, it is quite likely that the capacity expansion is required to be
sufficient for some period of time causing even more uncertainty about the actual volume
of demand that needs to be satisfied. Therefore we now propose an alternative stochastic
programming formulation of the capacitated network design problem. In particular, we
formulate the problem as a two-stage stochastic program with integer first stage and
continuous second stage. Here the first stage involves the installment of capacity that
must be planned here-and-now, based solely on the information about demand conveyed
through its distribution, whereas the second stage involves the routing of traffic which is
naturally postponed until the actual outcome of random demand is realized.

Remark 7.2.1. Before we proceed, it may be appropriate to point out in more detail how
uncertainty may arise in our model. Usually the arrival of demands (transmissions) is
described by a Poisson process, the length of a transmission is described by an exponen-
tially distributed random variable, and even the required bandwidth of a transmission
may be a random variable. Also, it is not (economically) feasible to construct a buffer-
less network in which no blocking will occur even in extreme peak situations. Dempster,
Medova, and Thompson [40], and Medova [90] introduced a possible approach in the con-
text of ATM-based broadband integrated services digital networks (B-ISDN). Here the
capacity expansion is carried out subject to certain grade-of-service (GoS) constraints,
corresponding to a certain set of blocking probabilities that must not be exceeded. Given
the blocking probabilities and the distributions that describe demand, it is possible to
determine the so-called effective bandwidth requirements, which can be thought of as
the capacity needed to ensure that the blocking probabilities are not exceeded. (For
more details on the actual computation of effective bandwidth requirements we refer to
Medova [90].) The effective bandwidth requirements serve as demand input for our prob-
lem and a feasible solution is required to observe these requirements so that the blocking
probabilities are not exceeded and the GoS is maintained. Uncertainty in our formulation
of the problem arises due to the fact that the distributions describing future demand are
generally unknown and may at best be replaced by approximations based for example
on historical data and some sort of forecast model.

As previously pointed out also in Chapter 6, it is most natural to think of the proba-
bility distribution of future demand as absolutely continuous, but in practice this would
lead to severe computational difficulties. Hence we follow a scenario approach, represent-
ing the uncertain outcome of future demand by a finite number of scenarios. Associated
with each scenario s ∈ {1, . . . , S} is a realization of random demand Ds, a corresponding
routing of traffic f s, and a cost of flow cs. Finally, we assume that for s ∈ {1, . . . , S} the
probability of scenario s to actually occur is known, and we denote it by ps.



7.2 The Stochastic Programming Problem 97

Remark 7.2.2. In fact, as described in Section 7.4.2, scenarios were generated, not in an
attempt to approximate some true probability distribution of random parameters, but
merely to represent the spectrum of possibly future outcomes of random demand. Hence,
some may say that our stochastic programming model should rather be referred to as a
robust optimization problem (see Mulvey, Vanderbei, and Zenios [96]), even though we
require the second-stage problem to be feasible for all scenarios and hence do not consider
the use of a penalty cost function for second-stage infeasibilities.

The feasible region of the stochastic capacitated network design problem, when only
flow under some scenario s ∈ {1, . . . , S} is restricted, is

Rs =

{

(x, y, f 1, . . . , fS) ∈
� |E|

+ ×
� |E|

+ ×
�2|K||E|

+ × · · · ×
�2|K||E|

+

∣

∣

∣

∑

j:{i,j}∈E

f s
jik −

∑

j:{i,j}∈E

f s
ijk = Ds

ik, i ∈ V, k ∈ K, i 6= k, (7.2.1a)

∑

k∈K

f s
ijk ≤ Cij + xij + λyij, {i, j} ∈ E, (7.2.1b)

∑

k∈K

f s
jik ≤ Cij + xij + λyij, {i, j} ∈ E

}

, (7.2.1c)

and the feasible region of the stochastic programming problem is

R =
S
⋂

s=1

Rs.

Now we may state the capacitated network design problem as a two-stage stochastic
programming problem in which the sum of total installment cost and expected flow cost
is minimized subject to the usual flow conservation and capacity constraints,

min

{

ax+ by +
S

∑

s=1

pscsf s
∣

∣

∣
(x, y, f 1, . . . , fS) ∈ convR

}

. (7.2.2)

For the following analysis, it will be convenient to reformulate (7.2.2) in terms of the
capacity variables x and y only. To this end we define the projections of the sets R and
Rs, s = 1, . . . , S, on the space of discrete capacity variables x and y,

Rs
x,y =

{

(x, y) ∈
� |E|

+ ×
� |E|

+

∣

∣

∣
∃f 1, . . . , fS ∈

�2|K||E|
+ : (x, y, f 1, . . . , fS) ∈ Rs

}

,

Rx,y =
S
⋂

s=1

Rs
x,y.

Problem (7.2.2) may now be equivalently stated as

min

{

ax+ by +
S

∑

s=1

psQs(x, y)
∣

∣

∣
(x, y) ∈ convRx,y

}

, (7.2.3)

where the second-stage value function Qs(x, y) is defined for each s ∈ {1, . . . , S} by

Qs(x, y) = min
{

csf s | (x, y, f 1, . . . , fS) ∈ Rs
}

. (7.2.4)
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7.2.1 Valid Inequalities

Comparing the structure of the regions P and convRs for some s ∈ {1, . . . , S}, it is
obvious that we may obtain integral metric inequalities, partition inequalities, and mixed-
integer rounding inequalities for convRs in the exact same way as discussed for the
deterministic problem in previous sections.

For s ∈ {1, . . . , S}, consider the multicommodity flow problem obtained by fixing the
values of the capacity variables x and y and minimizing the flow costs subject to (7.2.1a),
(7.2.1b), and (7.2.1c). Note that the recession cone D+ defined by (7.1.5) is the same for
all of these problems. Hence for any dual extreme ray (u, v, w) ∈ D+ we obtain for each
s ∈ {1, . . . , S} an integral metric inequality for convRs,

∑

{i,j}∈E

(vij + wij)(xij + λyij) ≥

⌈

∑

i∈V

∑

k∈K

Ds
ikuik −

∑

{i,j}∈E

Cij(vij + wij)

⌉

. (7.2.5)

Next, for any partition π = (V1, . . . , Vl) of the node set we may calculate the maximum net
traffic that needs to be routed across the multicut Eπ under each scenario s ∈ {1, . . . , S},

T s(π) = max
α=(α1,...,αl)

{ l−1
∑

r=1

∑

k∈Vαr

∑

i∈V αr

Ds
ik

}

−
∑

e∈Eπ

Ce,

cf. the discussion in Section 7.1.2. Hence for s ∈ {1, . . . , S} we let T̄ s
π = dT s(π)e to obtain

an l-partition inequality for convRs,

x(Eπ) + λy(Eπ) ≥ T̄ s
π , (7.2.6)

and we let rs
π = (T̄ s

π modλ) to obtain a mixed-integer rounding inequality for convRs,

x(Eπ) + rs
πy(Eπ) ≥ rs

πdT̄
s
π/λe. (7.2.7)

As pointed out, these three classes of inequalities are valid for convRs, s ∈ {1, . . . , S},
and hence for convR. Thus in principle we may generate cuts of each type from all of the
S scenarios. It is easily seen, though, that the similarities of cuts generated from different
scenarios should be exploited. In particular, it is only natural to consider the partition
inequality (7.2.6) with maximum right-hand side, and the corresponding mixed-integer
rounding inequality (7.2.7). Hence we define

T̄π = T̄ s∗

π where s∗ ∈ arg max
1≤s≤S

{

T̄ s
π

}

,

rπ = T̄π modλ.

Proposition 7.2.1. For any scenario s ∈ {1, . . . , S} the partition inequality (7.2.6) is
dominated by the partition inequality

x(Eπ) + λy(Eπ) ≥ T̄π. (7.2.8)

Proof. The result is obvious.
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Obviously, a similar result may be stated for the integral metric inequalities (7.2.5).
When we turn to mixed-integer rounding inequalities, on the other hand, a bit more care
must be taken, since these cuts are not parallel for different scenarios.

Proposition 7.2.2. For any scenario s ∈ {1, . . . , S} the mixed-integer rounding in-
equality (7.2.7) is dominated by either non-negativity constraints, the partition inequal-
ity (7.2.8), or the mixed-integer rounding inequality

x(Eπ) + rπy(Eπ) ≥ rπdT̄π/λe. (7.2.9)

Proof. Let s ∈ {1, . . . , S} and write the corresponding mixed-integer rounding inequality
(7.2.7) as

x(Eπ) ≥ rs
π

(

dT̄ s
π/λe − y(Eπ)

)

. (7.2.10)

Similarly, write (7.2.8) and (7.2.9) as

x(Eπ) ≥ T̄π − λy(Eπ), (7.2.11)

and

x(Eπ) ≥ rπ

(

dT̄π/λe − y(Eπ)
)

, (7.2.12)

respectively. First of all we note that unless 0 ≤ y(Eπ) ≤ dT̄ s
π/λe, the inequality (7.2.10)

is dominated by non-negativity constraints. Next, we note that if rs
π ≤ rπ, the inequality

(7.2.10) is dominated by (7.2.12) whenever 0 ≤ y(Eπ) ≤ dT̄ s
π/λe. So assume that rs

π > rπ.
Now, since dT̄ s

π/λe = dT̄π/λe implies rs
π ≤ rπ, we must have dT̄ s

π/λe ≤ bT̄π/λc, and hence
(7.2.10) is dominated by

x(Eπ) ≥ rs
π

(

bT̄π/λc − y(Eπ)
)

. (7.2.13)

To see that this inequality is dominated by the partition inequality (7.2.11), we use the
fact that T̄π = rπ + λ(bT̄π/λc) to write (7.2.11) as

x(Eπ) ≥ rπ + λ
(

bT̄π/λc − y(Eπ)
)

.

Since rs
π < λ and rπ ≥ 0, we see that for 0 ≤ y(Eπ) ≤ dT̄ s

π/λe the inequality (7.2.11)
dominates (7.2.13) and with that also (7.2.10).

Finally we turn to the class of mixed partition inequalities. Unlike the previously
considered inequalities, we may derive inequalities of this type combining information
from different scenarios. Thus, let us consider two maximal partition inequalities (7.2.8)
corresponding to two distinct partitions π and π′. We denote by T̄π, T̄π′ , rπ, and rπ′ the
right-hand sides and corresponding remainders by division with λ, and we assume once
again that rπ > rπ′ . Applying the mixing procedure of Günlük and Pochet [54] to these
inequalities we obtain a mixed partition inequality,

x(Eπ ∪Eπ′) + (rπ − rπ′)y(Eπ) + rπ′y(Eπ′) ≥ (rπ − rπ′)dT̄π/λe+ rπ′dT̄π′/λe, (7.2.14)

that is valid for convR cf. Günlük and Pochet [54, Theorem 2.1].
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Remark 7.2.3. The important thing to note at this point is that the maximum right-hand
sides T̄π and T̄π′ for the two partitions may very well be attained for different scenarios.
Hence the mixed partition inequality (7.2.14) may combine demand information from
distinct scenarios and for this reason this class of inequalities may have greater significance
when solving the stochastic program than what was experienced by Günlük [53] for the
deterministic problem. To test this conjecture we performed a series of preliminary
computational experiments. We used branch-and-cut to solve the problem AT13t (see
Section 7.4) with 10 scenarios. Ten independent runs were performed with and without
the mixed partition inequalities. These test runs revealed a significant reduction in the
CPU time (approximately 59%) as well as a significant reduction in the number of nodes
in the branching tree (approximately 57%) when the mixed partition inequalities were
employed.

7.2.2 Facet-Defining Inequalities

As previously mentioned, sufficient conditions for partition inequalities and mixed-integer
rounding inequalities to define facets of convRs (or convRs

x,y) for some s ∈ {1, . . . , S}
have been given by various authors. One should note, though, that even if such a facet
also defines a facet of

⋂S

s=1 convRs (or
⋂S

s=1 convRs
x,y), it does not necessarily define a

facet of convR (or convRx,y) since, in general, we have

convR ⊆
S
⋂

s=1

convRs

and consequently

convRx,y ⊆
S
⋂

s=1

convRs
x,y

and these inclusions may be strict.
In this section we provide sufficient conditions for (7.2.8) and (7.2.9), respectively, to

define facets of convRx,y. First, we note the following result.

Proposition 7.2.3. convRx,y and convRs
x,y, s = 1, . . . , S, are full-dimensional polyhe-

drons.

Proof. We only show that convRx,y is full-dimensional since the proof is exactly similar
for the remaining sets. First note that convRx,y is non-empty. Let (x̄, ȳ) ∈ convRx,y.
Next, add to (x̄, ȳ) each of the 2|E| unit vectors. The 2|E| + 1 points obtained this way
all belong to convRx,y and they are affinely independent.

Recall that given a partition π of the node set, we let s∗ denote a scenario for which the
right-hand side of the partition inequality (7.2.6) is maximized, i.e.

s∗ ∈ arg max
1≤s≤S

{

T̄ s
π

}

,

and we let T̄π = T̄ s∗

π . We can now prove the following.
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Proposition 7.2.4. Consider a partition π = {V1, . . . , Vl} of the node set V . If the
partition inequality (7.2.8) defines a facet of convRs∗

x,y then it also defines a facet of
convRx,y.

Proof. Consider the two induced faces, F =
{

(x, y) ∈ Rx,y

∣

∣ x(Eπ) + λy(Eπ) = T̄π

}

and F s∗ =
{

(x, y) ∈ Rs∗

x,y

∣

∣ x(Eπ) + λy(Eπ) = T̄π

}

. If F s∗ is a facet of convRs∗

x,y, we can
find 2|E| affinely independent points (x1, y1), . . . , (x2|E|, y2|E|) ∈ F s∗ cf. Proposition 7.2.3.
Now consider the points given by

(x̂i
e, ŷ

i
e) =

{

(xi
e, y

i
e) if e ∈ Eπ;

(xi
e +M, yi

e) otherwise,
i = 1, . . . , 2|E|,

where M > 0 is some large number. By the definition of T̄π and s∗ we see that for any
scenario all of the solutions (x̂i, ŷi), i = 1, . . . , 2|E|, allow a feasible routing of all demand
across the cut Eπ as well as all internal demand in each node set V1, . . . , Vl. Therefore
we must have (x̂1, ŷ1), . . . , (x̂2|E|, ŷ2|E|) ∈ F . Furthermore, these points are obtained by
adding the same vector to each of the points (x1, y1), . . . , (x2|E|, y2|E|) and hence they are
affinely independent.

In the exact same way we may prove the following result.

Proposition 7.2.5. Consider a partition π = {V1, . . . , Vl} of the node set V . If the
mixed-integer rounding inequality (7.2.9) defines a facet of convRs∗

x,y then it also defines
a facet of convRx,y.

Propositions 7.2.4 and 7.2.5 are useful to us, since they allow us to use conditions de-
rived for the deterministic capacitated network design problem to identify facet-defining
inequalities for the stochastic program.

7.3 Solution Procedure

Problem (7.2.2) is a large-scale mixed-integer programming problem and may be solved
as such by standard software packages. However, as always when working with stochastic
programming problems one should exploit the special structure of the problem and hence
we will use the formulation (7.2.3)-(7.2.4). In this section we present a modified version of
the L-shaped algorithm for stochastic linear programming problems, combining ordinary
Benders decomposition with a branch-and-cut scheme. The L-shaped algorithm was dis-
cussed in some detail in Section 2.3.1. The seminal idea is to project the feasible region
of the problem onto the space of discrete first-stage variables and hence the approach is
closely related to that followed by Bienstock et al. [16] and Mirchandani [93]. The projec-
tion is built in a master problem by imposing different kinds of cuts. In addition to the
well-known optimality cuts and feasibility cuts that are generated through the solution
of subproblems, the procedure uses heuristically generated facet-defining inequalities as
cutting planes in the master problem. As mentioned above, this approach is combined
with a branch-and-cut scheme to solve the stochastic integer program.
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Since convRx,y is a convex polyhedron, the condition (x, y) ∈ convRx,y may be re-
placed by a finite number of feasibility cuts corresponding to the facets of convRx,y. In
general, however, we cannot identify all of these cuts due to the integer requirements on
the first-stage variables. Still, we have shown that the integral metric inequalities (7.2.5),
and in particular the partition inequalities (7.2.8), provide necessary conditions for feasi-
bility of the second-stage problems and hence we will use these inequalities as feasibility
cuts. The mixed-integer rounding inequalities (7.2.9) and the mixed partition inequali-
ties (7.2.14) are not strictly necessary for second-stage feasibility, but we will use them as
a sort of feasibility cuts since they do define facets of convRx,y under certain conditions
as previously pointed out.

Moreover, just as in the ordinary L-shaped algorithm, the convex and piecewise linear
second-stage value functions (7.2.4) may be represented by a number of linear models,
referred to as optimality cuts. To be specific, by linear programming duality we have for
each scenario s ∈ {1, . . . , S} that

Qs(x, y) = max
l∈{1,...,Ls}

{

∑

i∈V

∑

k∈K

Ds
ikρ

l
ik −

∑

{i,j}∈E

(σl
ij + τ l

ij)(Cij + xij + λyij)

}

,

where (ρl, σl, τ l), l = 1, . . . , Ls are the dual extreme points of the s’th second-stage
problem. Hence for s ∈ {1, . . . , S} we may replace the second-stage value function Qs by
a single variable θs and the constraints

θs ≥
∑

i∈V

∑

k∈K

Ds
ikρ

l
ik −

∑

{i,j}∈E

(σl
ij + τ l

ij)(Cij + xij + λyij) l = 1, . . . , Ls.

Remark 7.3.1. Note that we have chosen to employ a multicut approach, imposing cuts on
the individual second-stage value functions Qs, s = 1, . . . , S, rather than on the expected
recourse function Q =

∑S
s=1 p

sQs. This allows us to pass more detailed information to
the master problem in each iteration cf. the discussion in Section 2.3.2.

The algorithm progresses by sequentially solving a master problem and adding feasi-
bility cuts or optimality cuts that are violated at the current solution. Violated optimality
cuts as well as violated metric inequalities are identified by solving the second-stage prob-
lems, thereby generating the needed dual extreme points and dual extreme rays. The
separation problem for the integral metric inequalities, the partition inequalities, the
mixed-integer rounding inequalities, and the mixed partition inequalities, on the other
hand, is in general NP-hard and we may have to resort to heuristics to identify violated
cuts of these types — an issue to which we will return. By appropriately defining matrices
D = (D1, D2, d) and E = (E1, E2, E3, e) representing the feasibility cuts and optimality
cuts that have been included, we may state the master problem as

min ax+ by +

S
∑

s=1

psθs

s.t. D1x+D2y ≥ d,

E1x+ E2y + E3θ ≥ e,

x, y ∈
� |E|

+ , θ1, . . . , θS ∈
�
.

(7.3.1)
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Algorithm 7.1

Step 1 (Initialization) Set z̄ = ∞, choose an initial set of constraints represented
by D and E, and let the list of open problems L consist of problem (7.3.1).

Step 2 (Termination/Node selection) If L = ∅, stop; the solution that yielded the
upper bound z̄ is optimal. Otherwise, select and remove a problem P from L.

Step 3 (Solve master problem) Solve the current master problem P and let
(xP, yP, θP,1, . . . , θP,S) be an optimal solution vector with objective value zP .
If zP ≥ z̄, return to Step 2. Otherwise,

(i) if (xP, yP ) contains a fractional element, decide whether to proceed by
cutting (go to Step 4) or branching (go to Step 5);

(ii) if (xP, yP ) is integral, solve the second-stage problem (7.2.4) for all sce-
narios, let z̄ = min

{

z̄, axP +byP +
∑S

s=1 p
sQs(xP, yP )

}

, and remove from
L all problems P ′ with zP ′

≥ z̄. If θP,s = Qs(xP, yP ) for s = 1, . . . , S,
return to Step 2. Otherwise, go to Step 4.

Step 4 (Cut generation) Identify a number of cuts that are violated at the current
solution (xP, yP, θP,1, . . . , θP,S), and augment D and E by appending the new
rows to the appropriate matrix. Go to Step 3.

Step 5 (Branching) Select an edge {i, j} ∈ E such that xP
ij or yP

ij is fractional, and
construct two new problems P ′ and P ′′, obtained from P by adding respec-
tively either the constraints xij ≤ bxP

ijc and xij ≥ dxP
ije, or the constraints

yij ≤ byP
ijc and yij ≥ dyP

ije. Let zP ′

= zP ′′

= zP and add the two problems
to L. Go to Step 2.

Remark 7.3.2. Since only a finite number of different cuts can possibly be generated, it
is straightforward to prove finite convergence of Algorithm 7.1 to an optimal solution of
problem (7.2.2), if only branching occurs whenever no violated cuts can be identified.
Remark 7.3.3. Note that the general outline of Algorithm 7.1, and in particular the
formulation of Step 3 (i), allows for several alternative practical implementations. As
described in the following section, we chose to implement the algorithm so as to work
simultaneously toward obtaining integral solutions of the master problem and building
proper representations of the second-stage value functions by means of optimality cuts, i.e
we chose to branch and cut simultaneously. Alternatively, one could choose to give higher
priority to either of these objectives, i.e. to branch only when no more violated optimality
cuts can be generated (cut-first-branch-second) or to generate optimality cuts only when
the solution of the master problem is integral (branch-first-cut-second). We did not inves-
tigate the practicability of any of these alternatives, but we note that Albareda-Sambola,
van der Vlerk, and Ferńandez [2], compared different versions of a similar algorithm for
a class of stochastic generalized assignment problems, and concluded that a branch-and-
cut scheme, such as that outlined in the following section, performed superior to either a
branch-first-cut-second or a cut-first-branch-second scheme as discussed above. We also
note, however, that the internet protocol network design problem, discussed in Chap-
ter 10, is in fact solved by an algorithm that is similar in many ways to Algorithm 7.1,
but for which the branch-first-cut-second scheme proved superior.
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7.4 Computational Experiments

We implemented Algorithm 7.1 in C++ using procedures from the callable library of
CPLEX 6.6 to solve the master- and subproblems. In this section we give a few imple-
mentational details before presenting results of our computational experiments.

7.4.1 Implementational Details

The branch-and-cut segment of the algorithm was implemented in compliance with the
guidelines provided by Günlük [53], to which we refer for a detailed description of this
part of the algorithm. At initialization we generate a large number of valid inequalities
(partition inequalities, mixed-integer rounding inequalities, and mixed partition inequal-
ities), and store these in a cutpool. At each node of the branching tree the formulation
of the current master problem is strengthened using valid inequalities from the cutpool
that are violated by the current solution. At most ten valid inequalities are added at a
time whereupon the master problem is solved. This process is repeated until no more
violated inequalities can be identified. Next, we try to generate new valid inequalities
that are violated by the current solution, and in particular all second-stage problems are
solved to potentially generate (integral) metric inequalities or optimality cuts. Finally,
inequalities with large slacks (e.g. more than 10%) are removed from the master problem
and stored in the cutpool to control the size of the current problem. The generation
of new optimality cuts is not allowed to affect the decision whether to keep cutting or
proceed by branching. Hence in Step 3 (i) we choose to proceed by branching whenever
the current solution contains a fractional element, all second-stage problems are feasible,
and no more valid inequalities that are violated by the current solution can be identified.

As previously discussed, feasibility cuts (metric inequalities) and optimality cuts are
generated through the solution of second-stage problems. Integral metric inequalities,
partition inequalities, mixed-integer rounding inequalities, and mixed partition inequali-
ties, on the other hand, are generated heuristically using procedures described by Gün-
lük [53] and Bienstock et al. [16]. The heuristic used to generate integral metric inequali-
ties is executed every time a metric inequality is generated. This heuristic simply divides
all coefficients of the metric inequality by the smallest positive coefficient. If the resulting
coefficients are integral an integral metric inequality is obtained by rounding up the right-
hand side. To generate partition inequalities we use two alternative heuristics, building
partitions of the node set in different ways. One is used to generate cutset inequalities
only, and works simply by randomly selecting a given number of nodes to form the set V1.
The other heuristic is used for general partition inequalities (l ≥ 2). This heuristic first
randomly selects one node for each node set V1, . . . , Vl in the partition. The remaining
nodes are assigned one at a time to the node sets so as to minimize the difference between
the left- and right-hand side of the related partition inequality. Once a partition is built
in this way, the left- and right-hand side of the corresponding inequality is calculated to
check if the cut is violated. Whenever violated partition inequalities are generated it is
very easy to generate the corresponding mixed-integer rounding inequalities and mixed
partition inequalities. (Mixed partition inequalities were only generated at initialization
by mixing all partition inequalities that were tight at the root node.)
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7.4.2 Problem Instances

The computational experiments were performed on two real-life instances previously stud-
ied in Bienstock and Günlük [17] and Günlük [53]. The first instance is a network rep-
resenting the Atlanta area, containing 15 nodes and 22 edges. Since we are primarily
interested in long-term planning where uncertainty is more significant, we chose as start-
ing point the instance exhibiting the largest increase in demand, referred to as AT13t
in the previous studies. The second instance is a denser network with 16 nodes and 49
edges, representing the New York area. Again we chose the instance with largest demand
increase as starting point (NY17t). In the second instance there is no cost of flow and
no existing capacity in the network. Both instances have fully dense traffic matrices.

For each network we performed a series of experiments with varying number of scenar-
ios. Scenarios were generated randomly assuming some uncertainty in the overall demand
level captured in a parameter µ as well as some regional (node dependent) fluctuations
captured in parameters ρi, i ∈ V . Hence for i, k ∈ V and s ∈ {1, . . . , S} the demand
between nodes i and k under scenario s was calculated as

Ds
ik = µsρs

iρ
s
kDik,

where Dik is demand between nodes i and k in the deterministic problem and the random
parameters are sampled from uniform distributions,

µs ∼ U(0.8, 1.2), s = 1, . . . , S,

ρs
i ∼ U(0.9, 1.1), s = 1, . . . , S, i ∈ V.

7.4.3 Computational Results

For the Atlanta problem we first generated instances with 1, 5, 10, 50, 100, and 500
scenarios. For each number of scenarios we randomly generated ten independent instances
and ran the algorithm. At termination we recorded the number of generated cuts, the
number of cuts remaining in the master problem, the number of nodes in the branching
tree, the lower and upper bound, and the CPU time spent by the procedure. CPU times
are reported as minutes:seconds. The numbers reported in Table 7.1 are all averages over
the ten independent runs.

Table 7.1: Atlanta Problems

Opt.

cuts

Feas.

cuts

Heur.

cuts

Total

cuts

Cuts in

master

Lower

bound

Upper

bound

CPU

time
S Nodes Gap

1 76 19 1895 1990 80 189 509068.0 509068.0 0% 0:10

5 111 21 1889 2021 94 302 547736.9 547736.9 0% 0:41

10 217 26 1870 2113 109 439 589801.1 589801.1 0% 1:39

50 321 45 1873 2239 170 372 625171.1 625171.1 0% 5:58

100 430 47 1907 2384 266 259 633071.8 633071.8 0% 8:03

500 1430 108 1926 3464 863 379 642090.4 642090.4 0% 60:22
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First of all we note that the algorithm terminated with an optimal solution in every run
performed on the Atlanta problems in this series of experiments. The large increase in
the number of optimality cuts and the size of the master problem is only natural, since
we chose to place disaggregate optimality cuts on the S second-stage value functions
separately, and hence at least one active cut exists for each scenario. We also note that
the number of cuts generated by the heuristics is fairly constant. This is due to the
fact that the partition inequalities generated at initialization were identical (with regard
to the left-hand side) irrespective of the number of scenarios. Hence the number of
cuts generated at initialization is almost identical for all runs and these cuts constitute
the major part of the heuristically generated cuts. (An average of about 1860 cuts
were generated at initialization for these instances.) Finally, we observed occasional
“extreme” runs requiring a very large number of nodes, whereas the major part of the
runs terminated after a few hundred nodes or fewer had been investigated. This tendency
became even clearer when we ran the algorithm with 1000 scenarios in which case one run
did not terminate after more than ten hours of CPU time. Even in this situation, however,
the algorithm is able to produce very good lower and upper bounds in a relatively short
amount of time. Figure 7.1 shows the development of the lower and upper bound for this
extreme run with 1000 scenarios.
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Figure 7.1: Atlanta Problem, 1000 Scenarios

We note that an initial lower bound of 650,529.7 and an initial upper bound of 658,651.6,
each maintained during the first seven minutes of computation, are not shown in Fig-
ure 7.1 to facilitate proper scaling. From the figure we see that the gap between the
lower and upper bound is quickly narrowed. Hence, the initial gap of 1.23% is narrowed
to 0.29% after seven minutes of CPU time. After approximately one hour of CPU time
the best (optimal?) solution is found and the gap is narrowed to 0.10%. Finally, the
remaining gap after ten hours of CPU time is as small as 0.02%. We conclude that even
with 1000 scenarios the algorithm usually terminated within a few hours of CPU time
and when this was not the case, very good upper and lower bounds were provided in a
reasonable amount of time.
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Next, we turn to the New York problems. These problems are much harder than the
Atlanta problems and the algorithm required almost two hours of CPU time to solve the
deterministic problem NY17t. Hence, our main interest lay in the quality of the bounds
provided in a reasonable amount of time, and we chose to stop all runs after three hours
of CPU time. Since there is no cost of flow in these problems, we did not place any
optimality cuts. Because all runs, performed on instances including multiple scenarios,
terminated with a non-optimal solution, we report not only the average gap between
the lower and upper bound but also the maximum gap from the ten independent runs.
Apart from this the statistics appearing in Table 7.2 are the same as those recorded for
the Atlanta problems.

Table 7.2: New York Problems

Feas.

cuts

Heur.

cuts

Total

cuts

Cuts in

master

Lower

bound

Upper

bound

Max

gap

CPU

time
S Nodes Gap

1 11118 18341 29459 135 6931 3780.8 3780.8 0.00% 0.00% 108:09

5 5200 17837 23037 189 3156 4214.2 4268.8 1.27% 2.14% 180:00

10 3250 17664 20914 197 1545 4295.4 4366.6 1.63% 2.14% 180:00

50 874 17585 18459 250 399 4482.2 4584.3 2.23% 3.54% 180:00

100 410 17597 18007 246 254 4514.9 4626.6 2.41% 3.76% 180:00

500 207 17688 17895 216 47 4566.9 4752.0 3.89% 4.88% 180:00

First of all we note the quality of the bounds provided by the algorithm. Thus, we see that
the average gap as well as the maximum gap is modest for all six series of experiments,
even though a significant increase in the gap is observed when the number of scenarios
increase. Naturally, the increased gap is caused by the drastic decrease in the number
of feasibility cuts and the number of nodes investigated which result from the increased
computation time required per iteration when the number of scenarios increase. On the
other hand we see that the number of heuristically generated cuts is once again fairly
constant due to the large number of cuts generated at initialization. (An average of
about 17,500 cuts were generated at initialization for these instances.) The number of
cuts remaining in the master problem at termination does not exhibit the same sensitivity
with respect to the number of scenarios as for the Atlanta problems, since no optimality
cuts were placed.
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Chapter 8

A Bicriterion Model for Capacity

Expansion

In this chapter we consider once again the capacity expansion of a telecommunications
network in the face of uncertainty. Here, the uncertainties facing the network operator
are assumed to be twofold. Some arises due to the inherent uncertainty involved in the
assessment of future demand, and some is due to the potential future failure of nodes or
edges in the network. Previous studies have mainly dealt with these issues separately.
Apart from the work presented in this thesis, capacity expansion of telecommunication
networks with uncertain future demand has been considered by authors such as Demp-
ster, Medova, and Thompson [40], Medova [90], and Sen, Doverspike, and Cosares [145].
Capacity expansion problems with potential future failure of network components, on the
other hand, have been considered in the framework of survivable network design by e.g.
Dahl and Stoer [36, 149], Grötschel, Monma, and Stoer [52], Minoux [92], and Rios, Mar-
ianov, and Gutierrez [120]. All of these capacity expansion models actually fit into the
general framework of two-stage stochastic programs with recourse, the first stage usually
corresponding to the planning of capacity installments, and the second stage usually cor-
responding to the routing of traffic in the network once actual demand has been observed
and a failure has possibly occurred. We note, however, that this terminology is usually
not used in connection with survivable network design. In this chapter, the capacity ex-
pansion problem is formulated as a bicriterion stochastic program with recourse in which
the probability of future capacity requirements to be violated in case of network failures
and the total cost of the capacity expansion are simultaneously minimized.

8.1 Problem Formulation

The network is modeled as a connected undirected graphG = (V,E), where V denotes the
set of nodes (switches) and E denotes the set of edges (circuit groups). As in Chapter 7,
demand is described by a set K of commodities. In the present context, however, we
will find a disaggregated formulation of the commodities most convenient, and hence we
choose to let each commodity k ∈ K correspond to a point-to-point pair of nodes between
which demand is to be routed. Furthermore, as in the preceding chapters, uncertainty is
incorporated in the formulation by introducing a finite number of scenarios representing

108
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the possible future states of the world. Associated with a scenario s ∈ {1, . . . , S} is a
specific failure state (possibly no failure) reducing the set of functional nodes and edges
to V s and Es, respectively, and a set of point-to-point demands Ds

k to be routed between
functional node-pairs k ∈ Ks. We will assume that the routing of traffic is restricted to a
set of prespecified routes P. Given a scenario s ∈ {1, . . . , S}, the set of functional routes
between a node-pair k ∈ Ks is denoted by Ps

k and the set of functional routes which use
the edge {i, j} ∈ Es is denoted by Qs

ij . Also, for s ∈ {1, . . . , S} we let Ps =
⋃

k∈Ks Ps
k

denote the set of all functional routes under scenario s. For s ∈ {1, . . . , S} we assume
that the probability of scenario s to actually occur is known and we denote it by πs. The
existing capacity on an edge {i, j} ∈ E is denoted by Cij . Additional capacity may be
installed in multiples of a fixed batch size. In particular, we assume that a single facility,
providing a capacity of λ, is available for installation on all edges {i, j} ∈ E at a unit
cost of cij . By rescaling demand and existing capacity, we may assume that λ = 1.

Along the lines of Remark 7.2.1 on page 96, we note that the demand input for the
long-term network planning model under consideration here is a set of capacity require-
ments between node-pairs, required to maintain some prescribed grade-of-service (GoS).
(See also Dempster, Medova, and Thompson [40] and Medova [90] for related discussions.)
In the case of node or edge failures it is required that a certain fraction of these capacity
requirements is available to uphold the GoS for all node-pairs. Since the prescribed GoS,
as well as the fraction of capacity requirements to be available in case of failures, are
selected somewhat arbitrarily, however, refusing to waive these requirements under any
circumstances may not make sense in a cost minimization framework. In other words, we
may obtain a considerable decrease in the optimal cost by relaxing the requirements for
a few critical failure states. Moreover, such a cost reduction would be of major interest if
the probability of the critical failures to actually supervene is very small. To illuminate
the trade-off between total cost of the capacity expansion and the probability of GoS
requirements to be violated, we formulate a bicriterion model for capacity expansion in
which these two objectives are simultaneously minimized. To this end, we denote by xij

the number of facilities to be installed on edge {i, j} ∈ E, and introduce for s ∈ {1, . . . , S}

an indicator function, ψs :
� |E|

+ 7→ {0, 1}, such that ψs(x) = 1 if and only if the capacity
installment x ∈

� |E|
+ is not sufficient to meet the capacity requirements under scenario s.

The bicriterion stochastic programming model may now be formulated as

min z1 =
∑

{i,j}∈E

cijxij

min z2 =
S

∑

s=1

πsψs(x)

s.t. x ∈
� |E|

+ ,

(8.1.1)

Here the first objective z1 is the total cost of the capacity expansion whereas the second
objective z2 is the probability of capacity requirements to be violated. For practical
purposes we find it convenient for s ∈ {1, . . . , S} to define the indicator function ψs by

ψs(x) =

{

1 if φs(x) > 0;

0 otherwise,
(8.1.2)
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where the function φs :
� |E|

+ 7→
�

is given by

φs(x) = min
∑

k∈Ks

tsk

s.t.
∑

p∈Ps
k

f s
p + tsk ≥ ρs

kD
s
k, k ∈ Ks,

∑

p∈Qs
ij

f s
p ≤ Cij + xij , {i, j} ∈ Es,

f s
p , t

s
k ≥ 0, p ∈ Ps, k ∈ Ks.

(8.1.3)

Here, for s ∈ {1, . . . , S} and p ∈ Ps the variable f s
p denotes the amount of capacity

to be allocated to route p under scenario s. Moreover, for s ∈ {1, . . . , S} and k ∈ Ks

the parameter ρs
k denotes the minimum fraction of the capacity requirement between

node-pair k that should be available under scenario s, whereas the variable tsk denotes
the corresponding shortage of capacity between node-pair k under scenario s, which is
to be minimized. Hence we see that (8.1.2)-(8.1.3) provides an appropriate definition of
the indicator function.

Remark 8.1.1. Modeling the actual process of real-time call-by-call routing within a
long-term planning model as the one considered here, is obviously not viable. As briefly
pointed out above, the demand input for this problem is a set of capacity requirements
between point-to-point pairs of nodes, needed to maintain a prescribed grade-of-service.
For example, as discussed in Remark 7.2.1 on page 96, Dempster, Medova, and Thomp-
son [40] and Medova [90] determine these capacity requirements as the effective band-
width requirements needed to ensure that a set of blocking probabilities are not exceeded.
In Sen, Doverspike, and Cosares [145] the approximation of real-time routing by a static
model similar to problem (8.1.3) was validated using simulation with encouraging results.

Remark 8.1.2. The assumption that routing of traffic is restricted to a set of prespecified
routes is a common one, employed also by e.g. Dempster, Medova, and Thompson [40],
Medova [90], and Sen, Doverspike, and Cosares [145]. The assumption may be justified
by the fact that most static real-time routing algorithms implemented in switch software
choose routes from a limited set, allowing us to simply enumerate the routes of interest.

Remark 8.1.3. As pointed out above, the capacity expansion problem (8.1.1) fits in the
general framework of two-stage stochastic recourse programs. The first stage includes the
decisions on capacity expansion which must be made before the future state of the world
is known. Once uncertainty is revealed, the second-stage decision, consisting of allocation
of capacity to routes, is settled. One might argue, though, that a three-stage formulation
of the problem would more accurately capture the actual alternating process of decisions
and observations of random outcomes. Here, as before, the decision on capacity expansion
is made in the first stage. In the second stage, an actual outcome of random demand is
observed and the capacity is allocated accordingly to routes. Finally, in the third stage,
a failure possibly occurs and capacity may be reallocated among routes. Assuming that
the second-stage allocation of capacity to routes is of no importance for the reallocation
of capacity in the third stage, however, the second and third stages may in fact be joined
to obtain the two-stage formulation (8.1.1).
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Remark 8.1.4. We note the close resemblance between problem (8.1.1) and the mean-risk
models that were discussed in Section 4.1.1 in connection with the minimum risk prob-
lem. In particular, we recall that the probability-based objective function was studied in
detail throughout Chapter 4, where structural properties were investigated and, in par-
ticular, we established certain stability results that justify the approach of representing
uncertainty by means of a finite number of scenarios. In Chapter 4 we also elaborated
an algorithm for the minimum risk problem, and the seminal idea of this approach is
a corner stone in the solution procedure for problem (8.1.1) presented in the following
section.

8.2 Solution Procedure

Before we proceed let us consider for a moment a general bicriterion problem of the form

min z1 = f1(x)

min z2 = f2(x)

s.t. x ∈ X.

(8.2.1)

Since, in general, we cannot expect to obtain a solution x̄ ∈ X that minimizes both ob-
jectives over X, it is not immediately clear what an “optimal” solution of problem (8.2.1)
should be. The relevant concept in this respect is that of efficient solutions, defined next.
Let the feasible region in criterion space be

Z =
{

(z1, z2) ∈
�2

∣

∣ ∃x ∈ X : z1 = f1(x), z2 = f2(x)
}

.

Definition 8.2.1. A criterion vector (z1, z2) ∈ Z is dominated if there exists x ∈ X
such that f1(x) ≤ z1 and f2(x) ≤ z2 with at least one inequality being strict. Otherwise
(z1, z2) is a non-dominated criterion vector.

Definition 8.2.2. A solution vector x ∈ X is efficient if the corresponding criterion
vector

(

f1(x), f2(x)
)

is non-dominated. Otherwise x is inefficient.

For a basic introduction to multiple criteria optimization we refer to Steuer [148].

8.2.1 Finding all Non-Dominated Solutions

To determine all non-dominated solutions of problem (8.1.1), we observe that the second
objective z2 can only take on a finite number of values, say p1, . . . , pn, in any solution to
the problem. Hence to obtain all non-dominated solutions to the bicriterion problem, we
may simply solve the following problem for all such possible values p,

min z1 =
∑

{i,j}∈E

cijxij

s.t. z2 =
S

∑

s=1

πsψs(x) ≤ p,

x ∈
� |E|

+ .

(8.2.2)

We will refer to problem (8.2.2) as the p-restricted problem.
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Algorithm 8.1

Step 1 (Initialization) Let 0 = p1 < · · · < pn be the possible values of
∑

s∈S π
s,

S ⊆ {1, . . . , S}, to be considered. Set z0
1 = ∞, L = ∅, and i = 1.

Step 2 (Solve problem) Solve the p-restricted problem (8.2.2) with p = pi and let
(xi, zi

1, z
i
2) be an optimal solution vector.

Step 3 (Update list) If zi
1 < zi−1

1 then set L = L ∪
{

(xi, zi
1, z

i
2)

}

.

Step 4 (Termination) If i = n then stop. Otherwise set i = i+ 1 and go to Step 2.

Remark 8.2.1. Note that problem (8.2.2) is feasible for all possible values p ∈ [0, 1], since
z2 can be made arbitrarily small (equal to zero) by installing sufficient capacity. Hence
an optimal solution can always be found in Step 2 of Algorithm 8.1.

Remark 8.2.2. In general the number of p-restricted problems to be solved during the
course of Algorithm 8.1 may be very large (n ≤ 2S). For all practical purposes, however,
it will often be sufficient to consider only a modest number of possible values for p. This
happens for two primary reasons. First of all the network operator is most likely to
accept only very small values of p and hence all values pi, i ∈ {1, . . . , n}, that exceed
some maximum acceptable level may be discarded beforehand. Secondly, the number of
possible values is reduced if any of the scenario probabilities are equal. In particular, if we
employ a uniform probability distribution, i.e. π1 = · · · = πS, then we have n ≤ S + 1.
Uniform scenario probabilities are often used in practical studies, for example when
scenarios are generated by sampling.

Proposition 8.2.1. At termination of Algorithm 8.1, the set of non-dominated criterion
vectors is

{

(z1, z2) ∈
�2 | ∃x ∈

� |E|
+ : (x, z1, z2) ∈ L

}

.

Proof. First note that z1
1 ≥ · · · ≥ zn

1 since p1 < · · · < pn. Now, assume that in some
iteration i of the algorithm we have zi

1 < zi−1
1 but (zi

1, z
i
2) is a dominated criterion vector,

i.e. there exists a solution (x, z1, z2) to problem (8.1.1) such that z1 ≤ zi
1 and z2 ≤ zi

2 with
at least one inequality being strict. Now, we must have z2 < zi

2, since z1 < zi
1 contradicts

optimality of (xi, zi
1, z

i
2) in problem (8.2.2) with p = pi. Note that this may only happen

for i ≥ 2 because p1 = 0, and hence it follows that z2 = pj for some j ∈ {1, . . . , i − 1}.
But this contradicts optimality of (xj, zj

1, z
j
2) in problem (8.2.2) with p = pj since we

have zj
1 ≥ zi−1

1 > zi
1 = z1 by assumption. Hence we see that only solutions for which the

criterion vector is non-dominated are put into the list L.
To see that

{

(z1, z2) ∈
�2 | ∃x ∈

� |E|
+ : (x, z1, z2) ∈ L

}

contains all non-dominated
criterion vectors, assume that in some iteration i of the algorithm, the solution (xi, zi

1, z
i
2)

is not put into the list L, i.e. we have zi
1 = zi−1

1 . (Note that this can only happen for i ≥ 2).
If zi

2 > zi−1
2 the criterion vector (zi

1, z
i
2) is dominated by (zi−1

1 , zi−1
2 ). So assume on the

contrary that zi
2 ≤ zi−1

2 so that zi
2 = pj for some j ∈ {1, . . . , i − 1}. Now, we obviously

have that zj
2 ≤ zi

2, and since (xi, zi
1, z

i
2) is a feasible solution for problem (8.2.2) with

p = pj we must also have zj
1 ≤ zi

1. Thus the criterion vector (zi
1, z

i
2) is either equal to or

dominated by (zj
1, z

j
2) and hence the solution (xi, zi

1, z
i
2) can be excluded from the list L

with no loss of non-dominated solutions. The result follows, since all possible values of
z2 are considered during the course of the algorithm.
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Remark 8.2.3. Clearly, it may happen that several efficient solutions correspond to the
same non-dominated criterion vector. Hence if

{

x ∈
� |E|

+ | ∃ z1, z2 ∈
�

: (x, z1, z2) ∈ L
}

is
required to contain all efficient solution vectors, it is necessary in Step 2 of Algorithm 8.1
to determine all optimal solutions of problem (8.2.2) in each iteration i where zi

1 < zi−1
1 .

8.2.2 Solving the p-Restricted Problems

The question remains how to efficiently solve problem (8.2.2) in Step 2 of Algorithm 8.1.
The approach we suggest here is based on the seminal idea presented in Chapter 4 in
connection with the solution procedure for the minimum risk problem. We recall that the
idea is for each scenario s ∈ {1, . . . , S} to replace the indicator function ψs by a binary
variable and a number of cutting planes derived through linear programming duality. In
particular, for any feasible solution x ∈

� |E|
+ and for any scenario s ∈ {1, . . . , S}, the

binary variable θs representing ψs(·) at x should be equal to one if and only if φs(x) > 0,
where the function φs was defined by (8.1.3). Consider now the dual of problem (8.1.3)
for some s ∈ {1, . . . , S}. We let M > 0 be some upper bound on the optimal value of
this problem and we denote by Ds the set of extreme points of the feasible region. From
the discussion above, we immediately have the following results.

Lemma 8.2.1. For all x ∈
� |E|

+ and for any scenario s ∈ {1, . . . .S}, the indicator
function ψs(x) satisfies the following set of inequalities,

Mψs(x) ≥
∑

k∈Ks

ρs
kD

s
kuk −

∑

{i,j}∈Es

(Cij + xij)vij , (u, v) ∈ Ds.

Lemma 8.2.2. Let x ∈
� |E|

+ be such that ψs(x) = 1 for some scenario s ∈ {1, . . . .S}.
Then there exists (u, v) ∈ Ds such that

∑

k∈Ks

ρs
kD

s
kuk −

∑

{i,j}∈Es

(Cij + xij)vij > 0.

Lemmas 8.2.1 and 8.2.2 elucidate the structure of the cutting planes, and in particular
we see that the p-restricted problem (8.2.2) is equivalent to the following problem,

min
∑

{i,j}∈E

cijxij

s.t.
S

∑

s=1

πsθs ≤ p,

∑

k∈Ks

ρs
kD

s
kuk −

∑

{i,j}∈Es

(Cij + xij)vij ≤Mθs, (u, v) ∈ Ds, s = 1, . . . , S,

x ∈
� |E|

+ , θ1, . . . , θS ∈ {0, 1}.

Remark 8.2.4. The cutting planes described above may be considered as generalizations
of the metric inequalities originally introduced by Iri [63] and Onaga and Kakusho [104].
These inequalities were discussed in detail in Section 7.1.1 in connection with the ca-
pacitated network design problem, where they were employed as valid inequalities in the
cutting plane procedure elaborated for the problem.
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Remark 8.2.5. We note that problem (8.1.3) is always feasible and bounded and hence
the same things go for its dual. Thus, optimal solutions to the problems always exist, and
their optimal values are equal. Moreover, an upper bound M on the optimal value of the
problems, obtained by letting f s

p = 0 for all p ∈ Ps and s ∈ {1, . . . , S}, is conveniently
calculated as

M = max
s∈{1,...,S}

{

∑

k∈Ks

ρs
kD

s
k

}

.

The algorithm progresses by sequentially solving a master problem and adding vio-
lated cutting planes generated through the solution of subproblems (8.1.3). Hence for
some subsets Es ⊆ Ds, s = 1, . . . , S, of the dual extreme points, we define the master
problem as the following relaxation in which only some of the cutting planes are included,

min
∑

{i,j}∈E

cijxij

s.t.
S

∑

s=1

πsθs ≤ p,

∑

k∈Ks

ρs
kD

s
kuk −

∑

{i,j}∈Es

(Cij + xij)vij ≤Mθs, (u, v) ∈ Es, s = 1, . . . , S,

x ∈
� |E|

+ , θ1, . . . , θS ∈ {0, 1}.

(8.2.3)

Algorithm 8.2

Step 1 (Initialization) Set ν = 0, for s = 1, . . . , S let Es ⊆ Ds, and let the initial
master problem be defined by (8.2.3).

Step 2 (Solve master problem) Set ν = ν + 1. Solve the current master problem
and let (xν , θ1,ν , . . . , θS,ν) be an optimal solution vector.

Step 3 (Solve subproblems) Solve the second-stage problem (8.1.3) for all scenarios
s ∈ {1, . . . , S} such that θs,ν = 0. Consider the following situations,

(i) if φs(xν) = 0 for all of these scenarios, stop — the current solution xν

is optimal for the p-restricted problem (8.2.2);
(ii) if φs(xν) > 0 for some of these scenarios, say for s ∈ S ⊆ {1, . . . , S},

then a dual extreme point (us, vs) ∈ Ds with positive objective value
is identified for each s ∈ S, and the corresponding cutting planes are
added to the master problem. Set Es = Es ∪

{

(us, vs)
}

for each s ∈ S
and return to Step 2.

Remark 8.2.6. Recall that Algorithm 8.1 involved the solution of problem (8.2.2) for a
sequence of increasing values of p. The cutting planes generated while solving the first
of these problems remain valid when p is changed. Hence in Step 1 of Algorithm 8.2, we
may let the sets Es, s = 1, . . . , S, consist of the dual extreme points generated in previous
runs of Algorithm 8.2 (or some subset thereof). This strategy of retaining cutting planes
from previous runs resulted in remarkable time savings in the overall solution time for
problem (8.1.1).
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Proposition 8.2.2. Algorithm 8.2 terminates with an optimal solution of the p-restricted
problem (8.2.2) in a finite number of iterations.

Proof. First of all note that an optimal solution of the p-restricted problem (8.2.2) always
exists cf. Remark 8.2.1. Second, note that the optimal value of the master problem in
any iteration is a lower bound on the optimal value of problem (8.2.2), since the master
problem is a relaxation. Now, suppose that in some iteration ν and for some scenario
s ∈ {1, . . . , S} we have θs,ν < ψs(xν). In that case a violated cutting plane, cutting
off the current solution (xν , θ1,ν , . . . , θS,ν), is identified in Step 3 cf. Lemma 8.2.2, and
the algorithm proceeds. Since the number of dual extreme points is finite, this can
only happen a finite number of times, and we will eventually have θs,ν ≥ ψs(xν) for all
s ∈ {1, . . . , S}, and hence

S
∑

s=1

πsψs(xν) ≤
S

∑

s=1

πsθs,ν ≤ p.

At this point the current solution xν is feasible in problem (8.2.2) and hence optimal.
The corresponding criterion vector is (z1, z2) =

(
∑

{i,j}∈E cijx
ν
ij ,

∑S
s=1 π

sθs,ν
)

.

Remark 8.2.7. MirHassani et al. [94] considered a capacity expansion problem arising
in supply chain network planning and solved the problem by a Benders decomposition
approach, similar in many ways to Algorithm 8.2. The authors observed that solutions to
the master problem in early iterations performed very poorly, since the master problem
tends to minimize the amount of capacity installed, whereas “good” solutions in the second
stage require substantial amounts of capacity to be installed. To circumvent this problem,
several enhancements of the master problem were considered. One such enhancement was
to include some scenario in the master problem, thus making it more representative of the
second-stage subproblems. Using this expanded formulation MirHassani et al. observed a
considerable improvement in the overall solution time. In our setting, on the other hand,
such an expanded formulation performed very poorly. This is not too surprising, though,
since the expanded master problem in this case is a capacitated network design problem
with additional constraints, and several studies have shown that projecting out the flow
variables is an efficient solution approach for such problems cf. Chapter 7 and references
therein. Also, when the above-mentioned strategy of retaining cuts from previous runs
is employed, the lack of consistency between the master problem and the second-stage
subproblems is only significant in early iterations of the first run (p = 0) and hence does
not outweigh the increased effort required to solve an expanded master problem.

8.2.3 Valid Inequalities for the p-Restricted Problems

The algorithm for the p-restricted problem (8.2.2), proposed in the previous section,
solves a sequence of master problems which are all integer programming problems. In
early iterations, though, one should not put too much effort into finding optimal integer
solutions for these problems, since solutions are cut off anyway, as more cutting planes
are added. Hence, rather than solving the integer master problem (8.2.3) to optimality
in each iteration, we chose to work with a relaxation of the problem and strengthen the
formulation using valid inequalities.



116 A Bicriterion Model for Capacity Expansion

From now on we will refer by the linear relaxation of the master problem (8.2.3) to
the corresponding problem in which integer requirements on the capacity variables have
been relaxed. (Hence we speak of a linear relaxation, even though we still have binary
variables θ1, . . . , θS.) Starting from this relaxation, we add cutting planes defining the
indicator functions as described in the previous section. These cutting planes, however,
should not only be used to define the indicator functions, but also as valid inequalities
for the convex hull of feasible integer solutions. In particular, since the feasible region of
the dual of problem (8.1.3) is a rational polyhedron, we may assume that the extreme
points (u, v) ∈ Ds, s = 1, . . . , S, are integral — this can be achieved by scaling. Hence
the cutting planes derived in the previous section may be strengthened by rounding.
Applying this approach, we arrive at what we will refer to as the strengthened linear
relaxation of the master problem,

min
∑

{i,j}∈E

cijxij

s.t.
S

∑

s=1

πsθs ≤ p,

∑

{i,j}∈Es

xijvij +Mθs ≥
⌈

∑

k∈Ks

ρs
kD

s
kuk −

∑

{i,j}∈Es

Cijvij

⌉

,

(u, v) ∈ Es, s = 1, . . . , S,

x ∈
� |E|

+ , θ1, . . . , θS ∈ {0, 1}.

(8.2.4)

Obviously, solving in each iteration problem (8.2.4) rather than problem (8.2.3) may
not produce an integer solution at termination of Algorithm 8.2. Therefore, to obtain
an optimal integer solution of the p-restricted problem (8.2.2), this approach should be
combined with some appropriate branching scheme. To this end, clearly, a possible ap-
proach is simply to explicitly reintroduce the integer requirements on capacity variables
in the master problem and proceed with Algorithm 8.2. Alternatively, the solution pro-
cedure could be incorporated in a more extensive branch-and-cut scheme similar to the
one elaborated in Chapter 7 for the capacitated network design problem. As described in
the following section, though, we only implemented the former alternative. Furthermore,
as the computational experiments presented in Section 8.3 indicate, the integrality gap is
very small when the strengthened linear relaxation of the master problem is put to use.
Therefore we also consider it a viable approach to restrict attention to the strengthened
linear relaxation of the master problem and subsequently establish near-optimal integer
solutions by some suitable heuristic.

Remark 8.2.8. Along the lines of Remark 8.2.4, we note that the cutting planes used
in the strengthened linear relaxation of the master problem (8.2.4) may be seen as a
generalization of the class of integral metric inequalities which are valid inequalities for
the capacitated network design problem, discussed in Chapter 7. In a similar manner one
may derive generalizations of other classes of valid inequalities discussed in connection
with the capacitated network design problem such as e.g. partition inequalities and mixed-
integer rounding inequalities.
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8.3 Computational Experiments

The solution procedure for the bicriterion capacity expansion problem (8.1.1), described
in the previous section, was implemented in C++ using procedures from the callable
library of CPLEX 6.6 to solve the linear subproblems (8.1.3) and the (mixed-) integer
master problems (8.2.3) or (8.2.4). A series of computational experiments were carried out
to test the quality of the approximations provided by the strengthened linear relaxation
and an upper bounding heuristic, and to investigate the practicability of the algorithm.

8.3.1 Implementational Details

As briefly discussed in Section 8.2.3 we chose to relax the integer requirements on x in the
master problem at initialization of each run. Starting from this relaxation we proceeded
with Algorithm 8.2 until no more cuts could be identified. If the current solution at this
point was not integral we explicitly reintroduced the integer requirements on x in the
master problem and proceeded with Algorithm 8.2 until no more cuts could be identified.
Using this approach it turned out that, in general, only very few additional iterations
upon reintroduction of the integer requirements on x were necessary before an optimal
integer solution of the current p-restricted problem was achieved. Hence we did not find it
worthwhile to generate cuts during branching in a more extensive branch-and-cut scheme
such as that elaborated for the capacitated network design problem in Chapter 7.

Cutting planes for the master problem were generated through the solution of sub-
problems (8.1.3). To obtain the generalized integral metric inequalities described in
Section 8.2.3 we used a heuristic discussed also in Section 7.4.1. This heuristic simply
divides all coefficients of the cut by the smallest positive coefficient. If the resulting
coefficients are integral, a generalized integral metric inequality is obtained by rounding
up the right-hand side.

As pointed out in Section 8.2.2, we achieved a considerable reduction in overall solu-
tion time by keeping cuts from previous runs in the master problem when the value of
p was updated. To control the size of the master problem, however, it was necessary to
temporarily remove “old” cuts. For s ∈ {1, . . . , S}, a cut ax+Mθs ≥ b was considered to
be inactive if the corresponding binary variable θs was equal to 0 in the current solution
and the relative slack (ax− b)/b was larger than 10%. A cut which had been inactive for
more than 10 iterations was temporarily removed from the master problem and stored
in a cutpool. The cutpool, on the other hand, was searched at regular intervals, and
any violated cuts were returned to the master problem. The definition of inactive cuts
and the number of iterations to keep an inactive cut in the master problem were chosen
somewhat arbitrarily, so as to keep the size of the master problem manageable, while
limiting the number of movements in and out of the cutpool.

Even though the additional number of iterations required upon reintroduction of the
integer requirements on x in the master problem was small, the CPU time required for
these additional iterations turned out to be substantial, at least for the larger instances.
Hence for some problems it may not be practicable to search for an optimal integer
solution in this fashion, and the need arises for good heuristics providing upper bounds
on the optimal solution. We propose a simple heuristic based on sequential rounding.
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The heuristic starts from the optimal solution x̄ of the strengthened linear relaxation.
Now, an index,

{i, j} ∈ arg min
{k,l}∈E

{

ckl(dx̄kle − x̄kl)
∣

∣ dx̄kle > x̄kl

}

,

is identified and the constraint xij ≥ dx̄ije is added to the problem. The heuristic proceeds
by sequentially solving the problem, checking for violated cutting planes, and rounding
up variables until a feasible integer solution is obtained.

8.3.2 Problem Instances

The first problem instance is a real-life communications network provided by SONOFON,
a Danish network operator. The network is a complete network on 7 nodes and hence has
21 edges. The two remaining problem instances are modified versions of real-life instances
previously studied by e.g. Bienstock and Günlük [17] and Günlük [53], and used also in
Chapter 7. One of these instances is a network representing the Atlanta area, containing
15 nodes and 22 edges. The other instance is a denser network representing the New
York area. In this network we have 16 nodes and 49 edges, and there is no existing
capacity on the edges. In the original versions of the two latter instances, two different
types of facilities (i.e. low-capacity and high-capacity) are available for installation. The
cost exhibited a high degree of economies to scale, though, and hence we chose to use
only the high-capacity facilities for our experiments in order to fit the instances into the
present context. All three problem instances have fully dense traffic matrices.

For each network we performed a series of experiments with varying number of sce-
narios. We considered only one type of failure, namely failure of a single edge. Moreover,
we randomly generated a number of outcomes of future point-to-point demands assuming
some uncertainty in the overall demand level, captured in a parameter µ, as well as some
regional (node dependent) fluctuations, captured in parameters λi, i ∈ V . Hence for
s ∈ {1, . . . , S} and k ∈ Ks demand for commodity k under scenario s was calculated as

Ds
k = µsλs

o(k)λ
s
d(k)Dk,

where Dk is the expected demand for commodity k, o(k) and d(k) are the origin and
destination of commodity k, respectively, and the random parameters µs and λs

i , i ∈ V ,
were sampled from uniform distributions,

µs ∼ U(0.8, 1.2),

λs
i ∼ U(0.9, 1.1), i ∈ V.

For all situations with no failure, the network was required to fulfill the capacity
requirements for each point-to-point pair of nodes, no matter the level of demand. Hence
for a scenario s ∈ {1, . . . , S} representing a situation with no failure, the binary variable
was excluded from the cutting planes (i.e. set to zero) and we let ρs

k = 1 for all k ∈ Ks.
Likewise, a scenario s ∈ {1, . . . , S} corresponding to some failure situation was considered
as violating whenever the capacity requirement was not fulfilled for some point-to-point
pair of nodes, i.e. we let ρs

k = 1 for all k ∈ Ks.
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Assuming that the probability of failure is equal for all edges in the network, we used
uniform scenario probabilities for the failure situations, i.e. for a problem instance with
|E| edges in the network and d possible values of future point-to-point demands we let
πs = 1/(|E|·d) for all scenarios s ∈ {1, . . . , S} corresponding to some specific failure state.
Situations with no failure were not treated as other scenarios since the corresponding
binary variables were excluded from the formulation cf. the discussion above, and hence
zero probability were assigned to these scenarios. Thus, we note that using these scenario
probabilities, the parameter p in the p-restricted problem (8.2.2) actually denotes the
conditional probability of capacity requirements to be violated given that a failure occurs
— i.e. the fraction of failure situations for which the capacity requirements are violated.

Remark 8.3.1. The assumption that the probability of failure is equal for all edges in the
network is justified in situations where typical failures mainly occur at the end-points of
connections. Such failures include breakdowns of electronic equipment as well as human
errors during configuration of switches. Since the backbone network is normally well-
protected (e.g. carried along highways, railroads or high-voltage transmission lines), such
failures are often more likely than damage to the actual connection. In particular, the
assumption was found reasonable by SONOFON.

8.3.3 Computational Results

The first series of experiments were conducted in order to examine the quality of the
approximations provided by the strengthened linear relaxation and the upper bounding
heuristic. The first run was performed on the Atlanta problem assuming that demand
is deterministic (d = 1). All values of p ranging from 0 to 1 were considered. Figure 8.1
shows the optimal objective values resulting from the IP-formulation, the linear relax-
ation, the strengthened linear relaxation and the upper bounding heuristic, respectively.
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Figure 8.1: Atlanta problem (d = 1)

For this instance the integrality gaps were substantial, ranging from 10% to 20% for
different values of p. Evidently, though, we see that the strengthened linear relaxation
as well as the upper bounding heuristic performed extremely well. The integrality gap
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was closed by the strengthened linear relaxation for 8 of 26 problems, and the remaining
gap was very small (< 2%) in all cases. The upper bound was 5.7% off in the worst case,
and the optimal integer solution was found by the heuristic for 14 different values of p.

The second run was performed on the SONOFON problem. Once again we considered
all values of p ranging from 0 to 1, and assumed that demand is deterministic. For this
instance the integrality gaps were quite small, and hence, in Figure 8.2, we plot for
each value of p the optimal objective value resulting from the linear relaxation (LR), the
strengthened linear relaxation (SLR), and the upper bounding heuristic (UBH), relative
to the objective value of the optimal integer solution.
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Figure 8.2: SONOFON problem (d = 1)

Once again we see that the strengthened linear relaxation as well as the upper bounding
heuristic performed very well. In fact the integrality gap was closed by the strengthened
linear relaxation for 12 of 22 problems and more than halved in most other cases, and
the upper bounding heuristic found the optimal integer solution in all but four cases.

Finally, we performed one more run on the SONOFON problem, this time generating
5 possible outcomes of future demand, and considering values of p ranging from 0 to 0.25.
Results are shown in Figure 8.3.
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Figure 8.3: SONOFON problem (d = 5)
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Again we see that the integrality gaps are quite small for the SONOFON problem. The
integrality gap remaining from the strengthened linear relaxation was less than 1% for all
different values of p and the optimal integer solution was found by the upper bounding
heuristic for 19 of 27 problems.

The second series of experiments were conducted in order to test the practicability
of the solution procedure. For each of the three instances we solved a series of problems
with varying number of scenarios, and in all cases the maximum acceptable level of p was
set to 10%. The results are presented in Tables 8.1 through 8.3. Here we report the CPU
time required to solve the bicriterion stochastic programming problem (8.1.1) using two
alternative versions of the solution procedure — one that only employs the strengthened
linear relaxation of the master problem (8.2.4) in Algorithm 8.2, and one that solves the
IP-formulation of each p-restricted problem (8.2.2), initially employing the strengthened
linear relaxation of the master problem (8.2.4) and subsequently reintroducing the integer
requirements on x. Also, the number of p-restricted problems to be solved during com-
putation is reported. For illustration we also report these figures when only values of p
less than or equal to 5% are considered. All CPU times are reported as minutes:seconds.
Computations were stopped after three hours of CPU time and in this case the last value
of p for which the p-restricted problem was being solved is given in brackets. Finally,
the number of failure states is reported as |E| · d for a problem instance with d possible
values of future point-to-point demands. We note that this number equals the number
of binary variables in the master problem, whereas the number of second-stage problems
to be solved is (|E| + 1) · d, since scenarios with no failure should also be considered.

Table 8.1: SONOFON problems

Number of
failure states

Maximum
value of p

Number of
problems

CPU time
IP formulation Relaxation

21 · 1
0.05 2 0:01 0:01

0.10 3 0:01 0:01

21 · 5
0.05 6 0:11 0:04

0.10 11 1:03 0:19

21 · 10
0.05 11 2:35 0:58

0.10 22 92:36 25:03

Table 8.2: Atlanta problems

Number of
failure states

Maximum
value of p

Number of
problems

CPU time
IP formulation Relaxation

22 · 1
0.05 2 0:07 0:06

0.10 3 0:10 0:09

22 · 5
0.05 6 0:53 0:41

0.10 12 5:25 1:52

22 · 10
0.05 12 25:33 5:44

0.10 23 180:00 (0.077) 107:55
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Table 8.3: New York problems

Number of
failure states

Maximum
value of p

Number of
problems

CPU time
IP formulation Relaxation

49 · 1
0.05 3 135:37 6:02

0.10 5 180:00 (0.061) 12:25

49 · 5
0.05 13 180:00 (0.000) 180:00 (0.037)
0.10 25 − q − − q −

49 · 10
0.05 25 180:00 (0.000) 180:00 (0.010)
0.10 50 − q − − q −

As expected we see that computation time increases drastically with the number of
scenarios as well as with the size of the network. The increase in CPU time, when a larger
number of possible outcomes of future demand is generated, is partly explained by the fact
that a larger number of second-stage multicommodity flow problems have to be solved in
each iteration. More important, however, was the increased effort required to solve the
master problems as the number of binary variables increase. When a network containing a
larger number of edges is considered, on the other hand, not only the number of scenarios
(and hence the number of second-stage problems and the number of binary variables in
the master problem) increases, but also the number of first-stage variables. Hence the
problem complexity is heavily dependent on the number of edges in the network, as
illustrated by the difference in CPU time for the New York problem compared to the two
smaller instances. Finally, we observed that the p-restricted problems were increasingly
difficult to solve, as the value of p was increased. Hence for the New York network the
algorithm was only practicable for the case of deterministic demand, unless only very
small values of p were considered.
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Chapter 9

Deployment of Mobile Switching

Centers

Mobile telecommunications network operators have been facing a rapid growth in demand
for several years and this trend seems likely to continue. This development forces the
network operator to constantly expand the capacity of the network in order to provide an
acceptable grade-of-service to customers. There is a vast amount of literature concerning
the optimal expansion of link capacities in a telecommunications network. Apart from
the work in this direction presented in previous chapters of this thesis, we refer to e.g.
Balakrishnan et al. [6, 7, 8] and Chang and Gavish [33, 34] for different approaches to
such types of problems. The link capacities, however, do not constitute the only potential
bottleneck in a telecommunications network, since capacity restrictions may be imposed
not only on traffic but also on the number of customers served by the network. In
this chapter we study a network design problem in which some capacity constraints are
imposed to restrict traffic on links in the network while others are imposed to restrict the
number of customers served by nodes in the network. As in the preceding chapters, the
problem is formulated as a two-stage stochastic program in order to take due account of
the inherent uncertainty involved in the assessment of future demand.

9.1 Problem Formulation

In the following sections we go through a thorough description of the network design
problem that we are concerned with. First, we give a brief outline of the problem, and in
particular we discuss the general structure of a mobile telecommunications network. The
problem formulation is subsequently formalized, and we discuss in detail all of the param-
eters and variables involved before we finally present a two-stage stochastic programming
formulation of the problem.

9.1.1 General Outline

The region of service is partitioned into a number of cells, each of which is served by a
base transceiver station (BTS) that picks up the signal from customers’ mobile phones.
Each BTS is connected to one base station controller (BSC), and each BSC, on the other
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hand, serves a number of BTSs and is connected to one mobile switching center (MSC).
Finally, each MSC serves a number of BSCs, and the MSCs are interconnected in a
meshed network. A small sample network is illustrated in Figure 9.1.

1
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c BTS / Cell

BSC

MSC

Figure 9.1: Illustration of a mobile telecommunications network.

As described above, each MSC serves a number of cells. All information about customers
that are presently located in one of these cells is stored in a database in the MSC, referred
to as the visitor location register (VLR). This VLR has a limited capacity, thus restricting
the number of customers that can be served (through BTSs and BSCs) by an MSC. For
this reason the network operator not only has to expand the link capacities but should
also consider when and where to deploy new MSCs in order to be able to serve the
increasing demand from customers. The BTSs and BSCs, on the other hand, are already
distributed across the country so as to cover the entire region of service, and they do not
constitute a potential bottleneck. Therefore we will treat the number and locations of
BTSs and BSCs as exogenous input for the network design problem. Hence we consider
a problem involving three major groups of decisions — deployment of a number of new
MSCs, allocation of BSCs to new and existing MSCs, and capacity expansion of the
transmission links interconnecting the MSCs. These decisions must be made so as to
minimize the incurred costs while meeting customer demand and observing the capacity
restrictions of VLRs as well as of transmission links.

The total costs incurred will consist of four terms. Associated with each group of
decisions is a corresponding cost term, i.e. the cost of new MSCs, the cost of connecting
BSCs to MSCs, and the cost of expanding the link capacities. In addition, we include
a penalty cost for supporting so-called MSC handovers. In general, a handover occurs
whenever a customer passes from one cell to another during an ongoing call. Hence,
three different kinds of handovers may occur — BTS handovers occur when the two cells
involved are served by the same BSC, BSC handovers occur when the two cells involved
are served by two different BSCs, each of which is connected to the same MSC, and finally
MSC handovers occur when the two cells involved are served by two different MSCs.

Example 9.1.1. Consider the network in Figure 9.1. Here, a BTS handover occurs for
example when a customer moves from cell 1 to cell 2, a BSC handover occurs for example
when a customer moves from cell 4 to cell 5, and finally, an MSC handover occurs for
example when a customer moves from cell 2 to cell 3.
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BTS handovers and BSC handovers are relatively easily handled, since the two cells
involved are served by the same particular MSC. When an MSC handover occurs, on the
other hand, the control of the ongoing call must be passed from one MSC to another, and
this is a technically complicated task leading to an increased risk of loosing the call. The
penalty cost is included to limit the number of such MSC handovers. Clearly, we cannot
completely eliminate the occurrence of MSC handovers, but the penalty cost should be
large enough to ensure that the cells served by an MSCs constitutes a geographically
connected region. (The connection of BTSs to BSCs already ensures that the cells served
by some particular BSC constitute a geographically connected region.)

Tzifa et al. [155] study a problem that is similar to that outlined above, but the au-
thors consider only the access network (i.e. the tree-like network connecting BTSs to the
core network), thus ignoring the capacity expansion of transmission links interconnecting
the MSCs. Moreover, the problem of optimally assigning BSCs to MSCs has been ad-
dressed by several authors such as Merchant and Sengupta [91] and Saha, Mukherjee, and
Bhattacharya [135]. Apart from minimizing the cost of connecting BSCs to MSCs and
the handover cost, it is customary to enforce some degree of load balancing among the
MSCs. Tzifa et al. and Saha, Mukherjee, and Bhattacharya explicitly include a penalty
cost on uneven loads in the objective function, whereas Merchant and Sengupta propose
to handle the load balancing problem parametrically. Here we will not explicitly consider
load balancing, but the parametric approach of Merchant and Sengupta may easily be
adopted in our setting.

The above-mentioned authors all follow a deterministic approach in the sense that the
cost parameters, the number of customers, and the demand for bandwidth are assumed
to be known at the point of decision. It is a fact, however, that the time that passes
from the moment at which deployment of MSCs is resolved on, until the equipment is
actually in place and available for use, is rather long (about a year). This means that the
network operator does not have complete knowledge about several important parameters
of the model at the time the decision has to be made. For this reason the definitive
decision on allocation of BSCs to MSCs should be put off for as long as possible, allowing
uncertainty to be at least partially revealed. This is the incentive for us to model the
problem as a two-stage stochastic program with mixed-integer recourse, representing the
uncertain parameters by random variables. Here the first stage consists of deployment
of MSCs. At the point in time the deployment must be planned, the only available
information about the uncertain parameters is assumed to be conveyed through their
distribution, and hence the first-stage decision cannot be based on the actual outcome
of these parameters — i.e. the decision must be non-anticipative. In the second stage,
outcomes of all random parameters are observed and an optimal allocation of BSCs to
MSCs and a corresponding routing of traffic in the resulting network are determined.

The true distribution of the random variables describing future demand and prices
can at best be estimated from historical data combined with expert opinions on future
development, and this distribution is most likely absolutely continuous with a multivari-
ate distribution function. As pointed out also in the preceding chapters, though, such
an approach would lead to severe computational difficulties, and hence once again we
employ a scenario approach, representing the uncertain outcome of random parameters
by a finite number of scenarios with prescribed probabilities of occurrence.



126 Deployment of Mobile Switching Centers

9.1.2 Parameters

We will consider a finite number of potential locations for new MSCs and hence the nodes
of the network will be described by three finite sets representing the locations of MSCs
and BSCs.

· V1 : The set of locations of existing MSCs.

· V2 : The set of potential locations for new MSCs.

· W : The set of locations of BSCs.

Note that a given location may very well be represented as a node in more than one
of the sets (even in all of them). In fact, the model allows for a single location to be
represented as several nodes in one set, for example if we consider deploying more than
one MSC at a location. Now, the network interconnecting the MSCs is modeled as a
connected undirected graph G = (V,E), where the node set V = V1 ∪ V2 represents the
existing and potential locations of MSCs, and the edge set E represents the existing and
potential links {i, j} between nodes i, j ∈ V .

There are two groups of demand input for the model — demand for bandwidth on links
of the network, and demand for VLR-capacity at the nodes of the network. As pointed
out also in the preceding chapters, modeling the actual process of real-time call-by-call
routing within a long-term planning model, as the one considered here, is obviously not
viable. Hence, the demand for bandwidth is not considered as individual telephone calls,
but is given as a set of capacity requirements between node-pairs, needed to maintain a
prescribed grade-of-service for customers.

Remark 9.1.1. As discussed in Remark 7.2.1 on page 96, a possible way of transforming
a general stochastic process of demands into a static capacity requirement was proposed
by Dempster, Medova, and Thompson [40] and Medova [90]. Here the authors consider
ATM-based broadband integrated services digital networks (B-ISDN) and use a chance-
constrained stochastic programming approach to determine the capacity requirements for
each point-to-point pair as the effective bandwidth requirements needed to ensure that
a set of blocking probabilities are not exceeded.

We will consider demand for bandwidth at BSC level and we assume that all traffic is
bidirectional. For modeling purposes, however, it is much more convenient to work with
directed flow. Therefore we assign an arbitrary direction to each point-to-point demand
and refer to its origin and destination. In particular, given some numbering of the BSCs,
we assume that all traffic between some particular pair of BSCs originates at the lower
numbered BSC and terminates at the higher numbered BSC. In other words, rather than
saying that a certain amount of bandwidth is required for calls between some particular
pair of BSCs, we will say that an equivalent amount of flow should be sent from the lower
numbered BSC to the higher numbered BSC. Still, to allow for the appropriate routing of
bidirectional traffic, edge capacities are dimensioned with respect to the total traffic on
a given edge, disregarding the arbitrarily assigned directions of flow. As in the preceding
chapters, the demand for bandwidth on the links of the network is described by a set K
of commodities, and hence the demand input for the model is given by the following sets
of parameters.
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· Ds
kr : The net demand for commodity k at BSC r under scenario s (k ∈ K, r ∈W ,

s ∈ {1, . . . , S}).

· Ls
r : The load of BSC r under scenario s on the VLR in the MSC to which it is

connected (r ∈W , s ∈ {1, . . . , S}).

Remark 9.1.2. Two main approaches for defining the set of commodities K have been
used in the literature. A disaggregated formulation defines a commodity for each point-
to-point demand, resulting in a total of O(|W |2) commodities. Such an approach was
followed in Chapter 8. In the present setting we generally find it more convenient, though,
to reduce the number of variables by working with an aggregated formulation containing a
total of only O(|W |) commodities. This is achieved by letting each commodity correspond
to demand originating at a given BSC with respect to the arbitrary directions assigned to
traffic. A similar approach was followed in Chapter 7 in connection with the capacitated
network design problem. One should note, however, that if survivability constraints are
to be imposed, the more detailed description of traffic provided by the disaggregated
formulation may prove favorable.

Remark 9.1.3. Consider some particular scenario s ∈ {1, . . . , S}. We emphasize that for
all k ∈ K and r ∈ W the parameter Ds

kr is the net demand for commodity k at BSC r
under scenario s, and hence

∑

r∈W Ds
kr = 0 for all k ∈ K. Furthermore, for k ∈ K and

r ∈ W we have Ds
kr < 0 if and only if BSC r is the origin of commodity k, and in that

case the parameter represents the total demand for commodity k. Using the aggregated
formulation of commodities, we have for all k ∈ K and r ∈ W such that BSC r is not
the origin of commodity k, that the parameter Ds

kr is non-negative and represents the
amount of bandwidth that is required for calls between the origin of commodity k and
BSC r. Employing the disaggregated formulation, on the other hand, we have for k ∈ K
and r ∈W that Ds

kr > 0 if and only if BSC r is the destination of commodity k.

Corresponding to the two types of demand, we have two types of existing capacity in
the network — capacity restricting flow on edges of the network and capacity restricting
the number of customers served by nodes in the network.

· Cij : Current flow-capacity of the edge {i, j} ({i, j} ∈ E).

·Mi : VLR-capacity of the MSC located at node i (i ∈ V ).

The cost structure is described by the following sets of parameters some of which are
treated as deterministic, while others are assumed to be uncertain at the point in time
the decision has to be made, thus depending on the future scenario that will occur.

· ci : The cost of deploying an MSC at node i (i ∈ V2).

· ps
ij : The cost of adding one unit of capacity on the edge {i, j} under scenario s

({i, j} ∈ E, s ∈ {1, . . . , S}).

· qs
ri : The cost of connecting BSC r to node i under scenario s (r ∈ W , i ∈ V ,

s ∈ {1, . . . , S}).

· hs
rt : The penalty cost (for supporting handovers) incurred if BSC r and BSC t are

connected to different MSCs under scenario s (r, t ∈ W , r < t, s ∈ {1, . . . , S}).
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Remark 9.1.4. Note that we assume the cost of expanding the capacity of a connection
to be linear and that we do not include a fixed cost for establishing the connection. The
reason for this is the fact that SONOFON, the company in cooperation with which this
research project was engaged upon, had already available a physical network with suf-
ficient link capacities. In order to utilize this capacity, however, it may be necessary to
install additional equipment at the end-points of connections, and this cost is assumed to
be linear with respect to the capacity provided. It would certainly be more appropriate
to assume that capacity could only be installed in multiples of a fixed batch size, cf.
Chapter 8 where another capacity expansion model was considered for the same partic-
ular network. Since the capacity expansion of transmission links is only of secondary
importance in the present context, though, we found the approximation provided by the
linear cost function satisfactory.

Remark 9.1.5. Regarding the penalty cost for supporting handovers, it should be noted
that for all r, t ∈ W with r < t and for s ∈ {1, . . . , S}, the parameter hs

rt should reflect
the frequency of customers crossing from the region served by BSC r to the region served
by BSC t or vice versa during an ongoing call.

9.1.3 Variables

The main decisions to be made are deployment of new MSCs and allocation of BSCs to
MSCs. These decisions are represented by the following two sets of binary variables.

· xi =

{

1 if an MSC is deployed in node i;
0 otherwise,

i ∈ V2.

· ys
ri =

{

1 if BSC r is connected to node i;
0 otherwise,

r ∈W, i ∈ V, s ∈ {1, . . . , S}.

As indicated by the dependency of the variables y on the future scenario, the allocation
of BSCs to MSCs is allowed to depend on the outcome of the random parameters. That
is, the decision on allocation of BSCs to MSCs is postponed to the second stage to take
full advantage of the additional information which is available at this point.

Finally, the following sets of variables are used to describe flow in the network, and
the capacity expansion of links needed to carry this flow. Since flow does not occur until
demand is realized, these variables all belong in the second stage.

· f s
ijk : Flow of commodity k on edge {i, j} in direction from i to j under scenario s

(k ∈ K, {i, j} ∈ E, s ∈ {1, . . . , S}).

· f s
jik : Flow of commodity k on edge {i, j} in direction from j to i under scenario s

(k ∈ K, {i, j} ∈ E, s ∈ {1, . . . , S}).

· vs
ij : Additional capacity to be installed on edge {i, j} under scenario s ({i, j} ∈ E,

s ∈ {1, . . . , S}).

Remark 9.1.6. The variables f are described as directed flow but, as previously discussed,
their practical interpretation is somewhat different. Thus, recall that the traffic flow was
introduced to represent the bandwidth requirements between pairs of BSCs, in the sense
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that an amount of flow equivalent to the required bandwidth is routed between each pair
of BSCs. Hence a flow of some commodity k ∈ K in any direction on an edge of the
network, simply implies that an equivalent amount of bandwidth on that edge should
be designated to the demand for commodity k. Also, note that it is easy to extract an
individual routing of the point-to-point demands by disaggregating f .

9.1.4 Two-Stage Formulation

We are now ready to formulate the problem of optimally deploying a number of new MSCs
and allocating BSCs to MSCs as a two-stage stochastic program. For s ∈ {1, . . . , S} we
assume that the probability of scenario s to actually occur is known, and we denote it
by πs. The first-stage objective is to minimize the sum of the cost of new MSCs and the
expected value of the cost incurred in the second stage,

min
∑

i∈V2

cixi +

S
∑

s=1

πsQs(x) (9.1.1a)

s.t. x ∈
� |V2|. (9.1.1b)

Here, for s ∈ {1, . . . , S}, the second-stage value function Qs is given by

Qs(x) = min
∑

r∈W

∑

i∈V

qs
riy

s
ri +

∑

{i,j}∈E

ps
ijv

s
ij +

∑

r,t∈W

r<t

hs
rt

∑

i∈V

(ys
ri − ys

ti)
+ (9.1.2a)

s.t.
∑

r∈W

Ls
ry

s
ri ≤Mi, i ∈ V1, (9.1.2b)

∑

r∈W

Ls
ry

s
ri ≤Mixi, i ∈ V2, (9.1.2c)

∑

i∈V

ys
ri = 1, r ∈W, (9.1.2d)

∑

j:{i,j}∈E

f s
jik −

∑

j:{i,j}∈E

f s
ijk =

∑

r∈W

Ds
kry

s
ri, i ∈ V, k ∈ K, (9.1.2e)

∑

k∈K

(

f s
ijk + f s

jik

)

≤ Cij + vs
ij , {i, j} ∈ E, (9.1.2f)

ys ∈
� |W ||V |, vs ∈

� |E|
+ , f s ∈

�2|E||K|
+ . (9.1.2g)

We have used the notation a+ to denote max{0, a} for a ∈
�

, and hence for r, t ∈W and
s ∈ {1, . . . , S} the third term of the second-stage objective (9.1.2a) includes the handover
cost between BSCs r and t if and only if these BSCs are allocated to different MSCs under
scenario s. The constraints (9.1.2b) and (9.1.2c) ensure that the total load from the BSCs
connected to an MSC does not exceed the capacity of the VLR. Moreover, (9.1.2c) ensures
that a BSC can only be connected to an MSC if this is actually deployed (xi = 1), while
(9.1.2d) ensures that all BSCs are connected to exactly one MSC. Next, (9.1.2e) is a flow
conservation constraint stating that the net flow of a commodity into some MSC should
equal the aggregate net demand for the commodity from BSCs connected to that MSC.
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Finally, the constraint (9.1.2f) states that the aggregate flow on an edge cannot exceed
the total capacity installed on the edge.
Remark 9.1.7. We note that the nonlinear term in the second-stage objective may easily
be replaced by a linear one. Hence for all r, t ∈ W with r < t and for s ∈ {1, . . . , S},
we let Hs

rt be a variable representing the handover cost incurred between BSCs r and t
under scenario s. These variables may be appropriately defined within the model using
a number of linear constraints,

Hs
rt ≥ hs

rt(y
s
ri − ys

ti) i ∈ V, r, t ∈W, r < t, s ∈ {1, . . . , S}, (9.1.3)

and the nonlinear term may be replaced by a simple summation of the new variables.
Thus, if the constraints (9.1.3) are added in the definition of Qs(x) for s ∈ {1, . . . , S},
then the third objective term may be replaced by

∑

r,t∈W

r<t

Hs
rt.

9.2 Solution Procedure

As already pointed out, problem (9.1.1)-(9.1.2) is a two-stage stochastic program with
binary first stage and mixed-integer recourse, and hence in principle it may be solved as
such by any of the general purpose algorithms for such problems discussed in Section 3.3.
In the application of the model to the network of SONOFON, however, we chose simply
to enumerate the first-stage solutions. This was done for the following reasons. First,
the first-stage decision x is a binary vector of relatively small dimension, and hence the
number of possible solutions is limited. Second, the cost of a new MSC is orders of
magnitude higher than any other cost parameter, implying that an optimal deployment
of MSCs consists of a minimum number of new MSCs providing enough capacity to
satisfy demand. Since only one or two new MSCs were required to provide sufficient
capacity in the instances we considered, this means that the number of solutions to be
considered is very limited. Finally, when the first-stage solutions are simply enumerated,
all that is needed is a number of evaluations of the functions Qs, s = 1, . . . , S. These
evaluations are relatively easily performed for fixed values of x, in particular when only
one or two new MSCs are to be deployed, since in that case all variables and constraints
in problem (9.1.2) that are related to MSCs which are not to be deployed, may simply
be eliminated from the formulation.

Algorithm 9.1

Step 1 (Initialization) Let n = 0 and z̄ = ∞.

Step 2 (Enumeration) Let the candidate list L consist of the
(

|V2|
n

)

first-stage solu-
tions corresponding to the deployment of exactly n new MSCs.

Step 3 (Evaluation) Let z̄ = min
x∈L

{

∑

i∈V2
cixi +

∑S
s=1 π

sQs(x)
}

.

Step 4 (Termination) If z̄ <∞, stop; the solution that yielded the upper bound z̄
is optimal. Otherwise, let n = n + 1 and return to Step 2.
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Remark 9.2.1. Clearly, enumeration may not always be the preferred alternative for
solving problem (9.1.1)-(9.1.2). If, for example, one considers a greenfield case where no
MSCs are currently in place, an enumeration tree of considerable size may have to be
created, and hence it may prove advantageous to resort to one of the general purpose
algorithms discussed in Section 3.3. In particular, the dual decomposition procedure,
outlined on page 42, may be directly applied to solve the problem. With binary first-
stage decisions this algorithm is guaranteed to terminate with an optimal solution in a
finite number of iterations. Moreover, the procedure involves the solution of scenario
subproblems with |V2| + n2 variables and m2 constraints, where n2 and m2 denotes the
number of variables and constraints, respectively, in the second-stage problem (9.1.2).
Hence, because of the small dimension of the first-stage solution vector, the size of these
scenario subproblems is not critically increased compared to the size of the second-stage
problems.

In order to solve problem (9.1.1) using enumeration of the first-stage solutions as sug-
gested above, we need an efficient procedure for solving the second-stage problems (9.1.2).
To this end we applied the concept of branch-and-cut which has proved to be a powerful
tool for the solution of (mixed-) integer programming problems. As in ordinary branch-
and-bound, we start with the LP-relaxation of the mixed-integer programming problem
and build a partitioning of the solution space in order to obtain an integral solution. The
crucial idea in branch-and-cut is to combine this approach with a continuous generation
of cutting planes tightening the formulation and thus reducing the size of the branching
tree. For a thorough discussion of the branch-and-cut approach, we refer to Padberg and
Rinaldi [105] and Günlük [53].

9.2.1 Valid Inequalities

In this section we consider two classes of valid inequalities that proved useful for the
solution of problem (9.1.1)-(9.1.2). First of all we consider an inequality based on the
total VLR-capacity installed through deployment of new MSCs. The inequality sim-
ply states that the total capacity of all VLRs in the resulting network should exceed
the total demand from all BSCs. Formally the inequality is derived by summing the
constraints (9.1.2b)-(9.1.2c), rearranging, and rounding.

Proposition 9.2.1. Let M = maxi∈V2{Mi}. The following inequality is valid for the
feasible region K2 =

{

x ∈
� |V2| |

∑S

s=1 π
sQs(x) <∞

}

,

∑

i∈V2

xi ≥ max
s∈{1,...,S}

⌈

1

M

(

∑

r∈W

Ls
r −

∑

i∈V1

Mi

)

⌉

.

Remark 9.2.2. As mentioned in the previous section, we used an enumeration scheme
to solve the problem instance considered in Section 9.3. Hence the above inequality
was not actually included in the formulation but was merely used at initialization of
Algorithm 9.1, letting n = maxs∈{1,...,S}

⌈

1
M

(
∑

r∈W Ls
r −

∑

i∈V1
Mi

)⌉

. If, however, one was
to employ the dual decomposition procedure as briefly discussed in Remark 9.2.1, the
inequality should be included in all scenario subproblems.
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As cutting planes in the branch-and-cut procedure used to solve the second-stage
problems, we used the following class of valid inequalities. The inequalities are based on
the VLR-capacity of the individual MSCs and can be used to enforce the fact that each
BSC must be allocated to a unique MSC. Again, the underlying idea of the inequalities
is simple — if the total demand from a group of BSCs exceeds the VLR-capacity of
an MSC, we cannot allocate all of these BSCs to the MSC in question. More formally,
the constraints (9.1.2b) and (9.1.2c) give rise to standard cover inequalities derived for
knapsack constraints (see e.g. Nemhauser and Wolsey [97]).

Proposition 9.2.2. Let U be a subset of W such that
∑

r∈U L
s
r > Mi for some MSC

i ∈ V and some scenario s ∈ {1, . . . , S}. Then the following inequality is valid for the
feasible region of the second-stage problem (9.1.2),

∑

r∈U

ys
ri ≤ |U | − 1.

Remark 9.2.3. Naturally, this inequality will only be useful when the subset U of W is
minimal in the sense that

∑

r∈U\{t} L
s
r ≤Mi for all t ∈ U , since it is otherwise dominated

by other inequalities of the same type.

9.3 Computational Experiments

In this section we describe the practical application of our model. We have implemented
the solution procedure in C++ using procedures from the callable library of CPLEX 6.6
to solve the second-stage problems. The algorithm was used to solve a real-life problem
provided by SONOFON.

9.3.1 Problem Instance

The network of SONOFON has 7 existing MSCs, 33 BSCs, and 14 potential locations
for new MSCs. The network interconnecting the existing MSCs is complete and we
do not preclude any potential edges from consideration when new MSCs are installed
— hence the edge set E consists of 210 edges. In the implementation, the number of
binary variables was reduced by dividing the area of interest into a number of regions
and precluding from consideration certain allocations of BSCs to MSCs across regions.
In the resulting formulation, each second-stage problem has 433 binary variables, 14598
continuous variables, and 12045 constraints.

The cost of connecting a BSC to an MSC was set to zero if the BSC is currently con-
nected to this particular MSC, and otherwise the total cost of a movement was estimated.
Furthermore, as previously discussed, the cost of expanding link capacities is given by
the total cost of installing new equipment at the end-points of connections. The issue of
determining an appropriate level for the artificial penalty cost for handovers, however, is
a more complicated matter. Setting this level too low, may result in a solution with a
large number of handovers, which is not acceptable from a practical viewpoint. A high
level, on the other hand, may result in configurations for which the gained practicability
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obtained by reducing the number of handovers is not sufficient to justify the increased
installation cost. In practice we chose to adjust the handover costs, observing their effect
on solutions, so as to ensure that the BSCs allocated to each particular MSC constitute
a geographically connected region.

The current demand for bandwidth and VLR-capacity was estimated from observa-
tions of traffic and the number of customers, respectively. As previously explained, the
demand for bandwidth is given as a capacity requirement between each pair of BSCs.
The aggregate commodities were defined by introducing a numbering of the BSCs and
treating the capacity requirement between a given pair of BSCs as a demand for traffic
to be routed from the lower numbered BSC to the higher numbered BSC. Hence the
demand matrix {Dkr}k∈W,r∈W is upper triangular, and for all k, r ∈ W with k < r the
demand for commodity k at BSC r is in fact the capacity requirement between BSCs k
and r. Now, future demand was calculated using the estimates of current demand scaled
by different scenario dependent growth factors. We have used the following expression
to generate demand for VLR-capacity from each BSC under each scenario,

Ls
r = µs · ρs

r · Lr, r ∈W, s ∈ {1, . . . , S}.

Here, for r ∈ W the parameter Lr denotes the current demand for VLR-capacity from
BSC r. Moreover, for s ∈ {1, . . . , S} the parameter µs is used to reflect the average
growth in demand for VLR-capacity for the entire region of service, while for r ∈ W
and s ∈ {1, . . . , S} the parameter ρs

r is used to reflect regional fluctuations from this
average growth. To capture the correlation between the demand for VLR-capacity and
the demand for bandwidth, we calculated the net demand for commodity k at BSC r
under scenario s for k ∈ K, r ∈W \ {k}, and s ∈ {1, . . . , S}, using current demand Dkr,
the above-mentioned parameters reflecting growth in the number of customers, and a
third parameter σs reflecting growth in the demand for bandwidth per customer,

Ds
kr = µs ·

√

ρs
k · ρ

s
r · σ

s ·Dkr, k ∈ K, r ∈W \ {k}, s ∈ {1, . . . , S}.

Finally, the total demand for each commodity was calculated as

Ds
kk = −

∑

r∈W\{k}

Ds
kr, k ∈ K, s ∈ {1, . . . , S}.

Likewise, the different cost terms were generated for each scenario by introducing stochas-
tic fluctuations on future prices. The growth factors were all sampled from uniform dis-
tributions reflecting the expectations of SONOFON for the time horizon under considera-
tion. Since scenarios were generated by sampling, we used uniform scenario probabilities,
i.e. πs = 1/S for s ∈ {1, . . . , S}.

Remark 9.3.1. As previously pointed out, the second-stage decision of allocation of BSCs
to MSCs is to be made after one year, and this was the time horizon used when estimating
growth factors for the cost terms. As for customer demand, however, we have used a
longer time horizon when estimating the appropriate growth factors. This was done to
ensure a somewhat stable solution guaranteeing sufficient network capacity for a few
additional years beyond the completed deployment of new MSCs. This means, however,
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that demand is in fact only partially revealed at the time the second-stage decisions are
to be made. Still, since the additional information available at this point will provide an
improved estimate of the true rate of growth in demand, the gain of postponing some
decisions to the second stage is likely to be considerable.

9.3.2 Computational Results

A series of computational experiments were performed on the network of SONOFON. In
accordance with the precepts described above, we randomly generated instances with 5,
10, 50, and 100 scenarios, respectively, using a four-year time horizon for the estimation
of growth factors for demand. We also considered the expected value problem (EVP),
replacing all random parameters by their expected values. To investigate the effect of
the valid inequalities discussed in Section 9.2.1, each of the instances was solved using
two different versions of the algorithm — one that employs the cover inequalities of
Proposition 9.2.2 for the solution of the second-stage problems, and one that does not.
(We should mention that for these instances the valid inequality of Proposition 9.2.1
implied the deployment of just one new MSC, and hence the effect of the inequality in
reducing the size of the enumeration tree was negligible.) Results of the experiments
are reported in Table 9.1. For each instance we report the total number of second-stage
problems solved during computation. We note that some of the first-stage solutions in the
enumeration tree lead to infeasible second-stage problems, and non of these problems are
counted as subproblems solved. We also report the average number of cover inequalities
added to each second-stage problem and the average number of branching nodes required
to solve these problems. Finally, the total CPU time spent by the procedure is reported
as minutes:seconds.

Table 9.1: Computational Results (four-year time horizon)

Subproblems
solved

Average number
of cover cuts

Average number of
branching nodesa

Overall
CPU timeaS

(EVP) 1 8 22 308 (424) 0:38 (0:41)
5 40 20 307 (465) 2:35 (3:08)
10 77 19 264 (431) 4:38 (5:51)
50 367 20 336 (631) 27:38 (37:13)
100 732 20 329 (564) 52:55 (72:34)

aResults when no cover cuts are employed are given in brackets.

As can be seen from Table 9.1, the cover inequalities of Proposition 9.2.2 effectively helped
to reduce the average number of branching nodes and hence the overall CPU time. The
optimal solution of the instances with 5, 10, 50, and 100 scenarios were identical, all
suggesting the deployment of one new MSC at the same particular location. The optimal
solution of the expected value problem, on the other hand, also suggested the deployment
of one new MSC but at a different location. Evaluating the solution of the expected value
problem in the objective of the stochastic program with 100 scenarios, it turns out that
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we achieve a 3.5% reduction in the expected number of MSC handovers and a 2.1%
reduction in the expected capacity expansion cost by solving the stochastic program
rather than the expected value problem. Thus, the computational experiments clearly
illustrate the importance of imitating the dynamics of the decision process through the
stochastic programming model, postponing the second-stage decisions until uncertainty
has been revealed rather than basing all decisions simply on the expected value of random
parameters.

We also generated a number of instances using a six-year time horizon for the estima-
tion of growth factors for demand. In this case, the valid inequality of Proposition 9.2.1
implied the deployment of at least two new MSCs for all instances with 5, 10, 50, or
100 scenarios, respectively, and hence for these instances all nodes corresponding to the
deployment of just one new MSC could be discarded from the enumeration tree at ini-
tialization of the algorithm. Computational results are reported in Table 9.2.

Table 9.2: Computational Results (six-year time horizon)

Subproblems
solved

Average number
of cover cuts

Average number of
branching nodesa

Overall
CPU timea

S

1 (EVP) 1 60 3035 (3389) 0:36 (0:35)
5 128 32 644 (1060) 23:06 (28:31)
10 183 30 677 (1090) 35:53 (44:54)
50 618 39 1130 (1809) 200:54 (240:46)
100 981 41 1243 (1948) 353:44 (421:56)

aResults when no cover cuts are employed are given in brackets.

Using the six-year time horizon, the importance of using a stochastic programming model
becomes even more obvious since in this case the solution of the expected value problem
suggested the deployment of just one new MSC and hence turned out to be infeasible
for all of the instances of the stochastic program with 5, 10, 50, and 100 scenarios. The
optimal solution of these instances, on the other hand, all suggested the deployment of
two new MSCs at the same particular locations.



Chapter 10

Internet Protocol Network Design

The foundation of IP (internet protocol) was laid in the late 1960s as the US Department
of Defense sought to create a network resilient enough to withstand an enemy attack.
The ARPANET (Advanced Research Projects Agency Network), initially connecting
four US universities, has since then grown to what is known today as the internet. The
rapid growth of the internet and its use alone provides a constantly increasing source
of traffic to be carried over the IP networks of today, and moreover, IP is expected to
serve as a general platform for providing data and telecommunications services in the
future. Hence the problem of constructing IP networks, providing sufficient capacity for
the rising demand, in a cost-efficient way, is of great importance for network providers.
For a brief introduction to the concepts and terms related to IP networks, we refer to
Challinor [32]. In this chapter we consider the IP network of TDC, the largest Danish
network operator. Due to historical reasons, the number of IP POPs (points of presence)
in the network has reached a level believed to be too high. To point out potential IP
POPs for dismantling, we consider a network planning problem concerning dimensioning
of the IP POPs and capacity expansion of the transmission links of the network. This
problem is formulated as a two-stage stochastic program with linear recourse, using a
finite number of scenarios to describe the uncertain outcome of future demand.

10.1 Problem Formulation

In the following sections we go through a thorough description of the IP network design
problem. First we give a brief outline of the problem before formalizing the problem
formulation and discussing in detail all of the parameters and variables involved. Finally,
we present a two-stage stochastic programming formulation of the problem.

10.1.1 General Outline

The IP network basically consists of a large number of IP POPs interconnected by a
number of transmission links in the form of optical fiber cables with SDH (synchronous
digital hierarchy) equipment. With IP, data to be transmitted to some destination in
the network is broken down into a number of small datagrams or packets, each of which
is addressed with the destination before being passed into the network. The packets are

136
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sent from one IP POP to another through the network, with each IP POP examining
the destination address to decide where to send the packet next. Hence, the IP POPs
serve two main purposes — they handle the routing of traffic in the network and they
serve as access points to the network for customers. During the period of time when the
network was built up, forming its present structure, customers accessed the network by
modem through the PSTN (public switched telephone network) and access was charged
as regular telephone calls. Since at that time, telephone calls in Denmark where classified
as either short-distance or long-distance and charged accordingly, it was felt by TDC that
all customers should be able to access the internet at the lower short-distance rate. This
policy has resulted in a network with a large number of IP POPs (approximately 200)
distributed across the country. Today, however, a variety of internet products is offered
to customers, providing alternative technologies for access as well as several different
charging schemes, all of which are independent of the physical location of the IP POP
providing access for the customer to the network. Moreover, all IP POPs in the network
must be maintained and, more importantly, upgraded so that sufficient capacity to switch
the increasing volume of IP traffic is available. Since the total amount of switching in
the network (given a certain amount of traffic) increases with the number of IP POPs in
the network, these considerations have lead TDC to believe that it may be economically
and practically profitable to dismantle some of the IP POPs in outer, sparsely populated
regions. To point out potential IP POPs for dismantling, we formulate the network
design problem of TDC as a mathematical programming problem, taking into account
the maintenance and upgrading of IP POPs, the connection of customers to the network,
and the capacity expansion of transmission links.

To plan the design of the IP network, it is essential to have a qualified estimate of the
future number of customers as well as the future volume of IP traffic to be carried over
the network. Bearing in mind the rapid growth of the internet and its use, and the fact
that new services to be carried over IP networks frequently emerge, it is clear that such
an estimate is not readily available. In other words, the assessment of future demand
inevitably involves a large degree of uncertainty that should be taken into account in
the formulation of the problem, so that the performance of the resulting network is
not too sensitive with respect to the actual outcome of future demand. Therefore, we
employ a stochastic programming approach, treating the future number of customers and
the future volume of IP traffic as random variables. Now, the network design problem
fits into the class of two-stage stochastic programming problems with linear recourse,
where the decisions are divided into two groups — a group of first-stage decisions that
must be taken without certain knowledge about the outcome of random parameters, and
a group of second-stage decisions that may be postponed until the actual outcome of
random demand has been observed. In the present context, the first stage corresponds
to the decisions on network design that must be planned some time ahead and hence
have to be based solely on the uncertain estimates of future demand, whereas the second
stage corresponds to the routing of IP traffic in the resulting network which is naturally
postponed until demand has actually occurred.

Typically, it is most natural to think of the probability distribution of future demand
as absolutely continuous. To handle the problem computationally, however, we employ
a scenario approach as in the preceding chapters, replacing this absolutely continuous
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distribution with a discrete one. Hence, the uncertain outcome of future demand is
described by a finite number of scenarios with prescribed probabilities of occurrence.

Remark 10.1.1. In fact, as described in Section 10.3.1, scenarios were generated for the
IP network of TDC, not in an attempt to approximate some true probability distribution
of random demand, but merely to represent the spectrum of possibly future outcomes of
demand. Hence, some may say that our stochastic programming model should rather be
referred to as a robust optimization problem (see Mulvey, Vanderbei, and Zenios [96]),
cf. Remark 7.2.2 on page 97.

10.1.2 Network Representation

We start off with a conceptual description of the current network, facilitating the formu-
lation of the network design problem as a mathematical program. First of all the region
serviced by the network is partitioned into a number of subregions corresponding to the
service areas of current IP POPs, so that all customers in any subregion are currently
connected to the network through the same particular IP POP. Next, we will distinguish
between two different network segments — the core network and the distributed network.
The core network is a meshed network interconnecting a number of large IP POPs using
SDH STMs (synchronous transfer modules). The transmission rates are STM-1, run-
ning approximately 155 Mbit/s (equivalent to an OC3), STM-4, running approximately
622 Mbit/s (equivalent to an OC12), and STM-16, running approximately 2.5 Gbit/s
(equivalent to an OC48). The distributed network, on the other hand, consists of a large
number of smaller IP POPs, each of which is connected to the rest of the network by ei-
ther ATM (asynchronous transfer mode) PVCs (permanent virtual circuits) or a number
of E1 (2 Mbit/s) circuits. For now, we will assume that each IP POP in the distributed
network is connected to the rest of the network by two alternatively conveyed links of
equal type and capacity. (In reality things are in fact a bit more complicated as discussed
in Section 10.3.1.) A small sample IP network is illustrated in Figure 10.1.
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Figure 10.1: Illustration of a small IP network.
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The network will be represented by a connected undirected graph G = (V,E). The
node set V represents the set of regions corresponding to current IP POPs, and hence a
node i ∈ V corresponds to a region in which all customers are currently connected to some
particular IP POP. The edge set E, on the other hand, represents the set of transmission
links in the network, and hence each edge {i, j} ∈ E corresponds to a transmission link
between IP POPs in regions i ∈ V and j ∈ V . The partition of the network into the core
network and the distributed network is given by the following sets.

· V1 : The set of regions corresponding to IP POPs in the distributed network.

· V2 : The set of regions corresponding to IP POPs in the core network.

· E1(i) : The set of transmission links connecting the IP POP in region i to the rest
of the network (i ∈ V1).

· E2 : The set of internal transmission links in the core network.

Note that V = V1∪V2, where the sets V1 and V2 are disjoint, and E =
(
⋃

i∈V1
E1(i)

)

∪E2,
where the sets E1(i), i ∈ V1, and E2 are pairwise disjoint. Also note that each of the
sets E1(i), i ∈ V1, consists of just two edges. To ease the exposition, we will assume that
any IP POP in the distributed network is eligible for dismantling. (The model is easily
adjusted to account for the case that only some subset of the IP POPs are eligible for
dismantling.) Furthermore, we will only allow an IP POP to be dismantled, if any other
IP POP using it as a transit node is also dismantled.

If some IP POP is to be dismantled, the customers in the corresponding region must
be connected to the network through an alternative IP POP. The following sets specify
how customer connections may be transferred between IP POPs in neighboring regions.

· N(i) : The set of regions corresponding to IP POPs to which customers in region i
can be connected if the IP POP in region i is dismantled (i ∈ V ).

· N(i) : The set of regions from which customers may be connected to the IP POP
in region i (i ∈ V ).

Note that N(i), N(i) ⊆ V and that we have i ∈ N(i) but i 6∈ N(i) for all i ∈ V .

Example 10.1.1. The network in Figure 10.1 may be divided into a distributed network
with node set V1 = {1, 2, 3, 4, 5} and a core network with node set V2 = {6, 7, 8, 9}. The
corresponding edge sets are given by E1(1) =

{

{1, 6}, {1, 7}
}

, E1(2) =
{

{2, 6}, {2, 7}
}

,
E1(3) =

{

{3, 7}, {3, 9}
}

, E1(4) =
{

{4, 5}, {4, 9}
}

, and E1(5) =
{

{5, 8}, {5, 9}
}

for the
distributed network, and E2 =

{

{6, 7}, {6, 8}, {6, 9}, {7, 9}, {8, 9}
}

for the core network.
Clearly, the definition of the sets N(i) and N(i), i ∈ V , depends on the practical possibil-
ities to connect customers to IP POPs, and also on any specific preferences of the network
operator. As mentioned above, we assume that the network operator considers all IP
POPs in the distributed network eligible for dismantling. Suppose now that for practical
reasons we have N(1) = {2, 6, 7}, N(2) = {1, 6, 7}, N(3) = {7, 9}, N(4) = (5, 9), and
N(5) = {4, 8}. Also, since the IP POPs in the core network cannot be dismantled, we
let N(6) = N(7) = N(8) = N(9) = ∅. Now, the sets N(i), i ∈ V , should be defined con-
sistently by N(1) = N(2) = {1, 2}, N(3) = {3}, N(4) = N(5) = {4, 5}, N(6) = {1, 2, 6},
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N(7) = {1, 2, 3, 7}, N(8) = {5, 8}, and N(9) = {3, 4, 9}. Finally, note that IP POP 5 is
used as a transit node by IP POP 4, and hence it can only be dismantled if IP POP 4 is
dismantled.

10.1.3 Variables

The most important group of decisions to be made is whether each individual IP POP
should be dismantled, or maintained and possibly upgraded. To this end we assume that
a set H of different IP POP classes are available, each class h ∈ H being characterized by
a certain customer- and switch-capacity of the IP POP, and the class 0 ∈ H corresponding
to dismantling of the IP POP. For each region i ∈ V we denote by H(i) ⊆ H the set of
available IP POP classes that may be selected in region i. The dimensioning of IP POPs
is now described by the variables

· xih =

{

1 if a class h IP POP is selected in region i (i ∈ V, h ∈ H(i));

0 otherwise.

The next group of decisions concerns the connection of customers to the network. We
assume that all customers in regions where the IP POP is maintained remain connected
to the network through that particular IP POP. Customers in regions where the IP POP
is to be dismantled, however, must be connected to the network through an alternative
IP POP. The transfer of customer connections to alternative IP POPs clearly cannot
be decided on an individual basis, and hence we divide the customers in any particular
region into a number of groups, so that, if the IP POP in that region is to be dismantled,
all customers in a given group must be connected to the network through the same
alternative IP POP. For each region i ∈ V , we denote by G(i) the set of customer groups
in region i. Note that the sets G(i), i ∈ V , are disjoint and hence form a partition of
the set of all customer groups, G =

⋃

i∈V G(i). Now, the connection of customers to the
network is given by the variables

· yig =

{

1 if group g is connected to IP POP in region i
(

i ∈ V, g ∈
⋃

j∈N(i)G(j)
)

;

0 otherwise.

The last group of decisions concerns the dimensioning of transmission links. As pre-
viously discussed, we assume that all IP POPs in the distributed network are connected
to the rest of the network through two alternatively conveyed transmission links of equal
type and capacity, and hence we use just one variable to represent the dimensioning of
these two connections for each IP POP. The transmission links in the distributed network
currently use either E1 circuits or ATM PVCs, and we allow a future change of type for
each IP POP. Also, the transmission links from an IP POP in the distributed network
may be replaced by STM-1’s (implying that the IP POP becomes part of the future
core network). Thus the connections in the distributed network may be selected to be
one of three types — E1 circuits (type 1), ATM PVCs (type 2), or STM-1 (type 3). If
STM-1 connections are selected, the standard capacity of 155 Mbit/s is provided on each
of the two connections. If, on the other hand, E1 circuits or ATM PVCs are selected,
the capacity of the transmission links must be decided. Hence the variables concerning
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dimensioning of transmission links in the distributed network are

· zil =

{

1 if type l connections are selected from region i (i ∈ V1, l = 1, 2, 3);

0 otherwise.

· vi : Number of E1 circuits to be added to both connections from region i (i ∈ V1).

· wi : ATM PVC capacity to be added to both connections from region i (i ∈ V1).

For the connections in the core network, three types are available — STM-1 (type 1),
STM-4 (type 2) or STM-16 (type 3) — and hence we only have one group of decisions,

· uijl =

{

1 if the connection {i, j} is selected of type l ({i, j} ∈ E2, l = 1, 2, 3);

0 otherwise.

10.1.4 Parameters

Associated with each group of decisions is a corresponding cost term. First we have the
cost associated with the selection of a certain IP POP class for each region and the cost
of connecting customers to the future network.

· pih : Cost of selecting a class h IP POP in region i (i ∈ V, h ∈ H(i)). This parameter
includes all costs associated with any potential upgrading of the IP POP in
region i ∈ V , as well as the expected present value of future maintenance costs.
The cost of upgrading an IP POP is given as the cost of new equipment minus
the value of existing equipment. Thus we note in particular that for all regions
i ∈ V such that 0 ∈ H(i) we have pi0 ≤ 0.

· qig : Cost of connecting group g to the IP POP in region i
(

i ∈ V, g ∈
⋃

j∈N(i)G(j)
)

.

Next is the cost associated with capacity installments on the links of the network. For
the transmission links in the distributed network, the cost structure is rather complicated
since the three types of capacity — E1 circuits, ATM PVCs, or STM-1 — are completely
different in nature. If E1 circuits are preferred from some particular IP POP, capacity
is installed in lumps of 2 Mbit/s on each of the two links connecting this IP POP to the
rest of the network. If, on the other hand, ATM PVCs are preferred, a fixed cost of the
ATM equipment is incurred, whereas the cost of increasing capacity on each of the two
connections is assumed to be linear. (Obviously, capacity is also installed in lumps on
ATM connections, but the assumption of linear cost in this model, is justified by the fact
that ATM connections are shared by the IP network with a number of other services.)
Finally, a fixed cost is incurred when connecting an IP POP to the rest of the network
by two STM-1 connections, each providing the capacity of 155 Mbit/s. The structure
of the capacity expansion cost for a transmission link, on which no capacity is currently
installed, is illustrated in Figure 10.2. The matter is further complicated by the fact that
some capacity, in the form of either E1 circuits or ATM PVCs, is already installed on all
transmission links in the distributed network. If an IP POP in the distributed network is
pointed out for dismantling or if a change of type of capacity on the connection from the
IP POP to the rest of the network is decided, some of the currently installed equipment
may be reused and hence represents a certain value. If ATM PVCs are currently used,
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Figure 10.2: Cost structure for transmission links in the distributed network.

the reusable “equipment” consists of ATM equipment installed in the IP POP as well
as the ATM PVC capacity currently used on the connections from the IP POP to the
rest of the network. If E1 circuits are currently used, the only reusable equipment is the
actual circuits. All in all, the following parameters will be used to describe the capacity
expansion of transmission links in the distributed network.

· ril : Fixed cost incurred if type l connections are selected from the IP POP in region i
(i ∈ V1, l = 1, 2, 3). Note that if type l connections are currently used from the
IP POP in region i, we have ril = 0. If, on the other hand, some other type
of connections are currently used, the parameter ril represents the fixed cost
associated with type l connections minus the value of existing equipment that
may be reused.

· ai : Cost of adding an E1 circuit on both connections from the IP POP in region i
to the rest of the network (i ∈ V1).

· bi : Cost of increasing the ATM PVC capacity by 1 Mbit/s on both connections
from the IP POP in region i to the rest of the network (i ∈ V1).

· ṽi : The number of E1 circuits currently installed on each of the two connections
from the IP POP in region i to the rest of the network (i ∈ V1).

· w̃i : The current ATM PVC capacity of each of the two connections from the IP
POP in region i to the rest of the network (i ∈ V1).

For the transmission links in the core network, on the other hand, the cost structure is
significantly simpler, since a fixed cost is associated with the capacity provided by the
preferred type of connection.

· cijl : Cost incurred if a type l connection is selected between the IP POPs in regions i
and j ({i, j} ∈ E2, l = 1, 2, 3). Again, the parameter is a net cost given as the
cost of new equipment minus the value of existing equipment.

· Cl : Capacity of a type l connection in the core network (l = 1, 2, 3).
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The next group of parameters concerns the dimensioning of IP POPs. As previously
mentioned, each IP POP class is characterized by a certain customer- and switch-capacity.
The customer-capacity restricts the number of customers that can be connected to the
network through an IP POP, and is expressed as a number of sockets available for cus-
tomer connections. The switch-capacity, on the other hand, restricts the amount of traffic
that can be switched by an IP POP and is measured in Mbit/s.

·Mh : Customer-capacity of a class h IP POP (h ∈ H). Note that M0 = 0.

· Nh : Switch-capacity of a class h IP POP (h ∈ H). Note that N0 = 0.

The final group of parameters describes demand in the form of requests for customer
connections and IP traffic, the latter being modeled as in previous chapters by means of
a set K of commodities.

Remark 10.1.2. As pointed out also in previous chapters, the set K of commodities may
essentially be defined in two different ways. In the present context, a disaggregated for-
mulation defines each commodity k ∈ K as traffic from some customer group o(k) ∈ G to
another group d(k) ∈ G, thus resulting in a total of O(|G|2) commodities. An aggregated
formulation, on the other hand, defines each commodity k ∈ K as all traffic originating
in a given group o(k) ∈ G, thus resulting in a total of only O(|G|) commodities. In
general, the disaggregated formulation provides a more detailed description of traffic,
favorable for example when survivability requirements are to be formulated. The aggre-
gated formulation, on the other hand, provides the advantage of reducing considerably
the number of variables and constraints.

As already mentioned, future demand is not known with certainty at the point in time
when the network design problem is to be solved, and we include this inherent uncertainty
in the formulation using a scenario approach. Hence a number of scenarios is defined,
each scenario corresponding to a possible future outcome of random demand.

· Ls
g : Number of sockets required to connect group g to an IP POP under scenario s

(g ∈ G, s ∈ {1, . . . , S}).

· Ds
kg : Net demand for commodity k from group g under scenario s (k ∈ K, g ∈ G,

s ∈ {1, . . . , S}). We emphasize that this parameter represents net demand,
and hence it is given a sign so that for all k ∈ K and s ∈ {1, . . . , S} we have
∑

g∈GD
s
kg = 0, Ds

kg ≥ 0 for g ∈ G \ {o(k)}, and Ds
k,o(k) < 0.

· ds
g : Total amount of traffic that terminates at group g under scenario s (g ∈ G,

s ∈ {1, . . . , S}). The parameter includes the traffic to group g from any other
customer group under scenario s (i.e.

∑

k∈K:o(k)6=gD
s
kg) as well as all internal

traffic in group g under scenario s.

Remark 10.1.3. Employing the aggregated formulation of commodities, we see that for
s ∈ {1, . . . , S}, k ∈ K, and g ∈ G\{o(k)}, the parameterDs

kg represents traffic from group
o(k) to group g, whereas the parameter Ds

k,o(k) represents total traffic from group o(k) to
all other customer groups. Using the disaggregated formulation, on the other hand, we
see that for s ∈ {1, . . . , S} and k ∈ K, the parameters Ds

k,o(k) and Ds
k,d(k) both represent

traffic from group o(k) to group d(k), whereas Ds
kg = 0 for g ∈ G \ {o(k), d(k)}.
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Finally, we will need to define the maximum aggregate traffic demand

· D = max
1≤s≤S

{

∑

k∈K

∑

g∈G\{o(k)}

Ds
kg

}

.

10.1.5 Capacity Constraints

Capacity constraints will be imposed in two different contexts. The first group of capacity
constraints concern the customer-capacity of each individual IP POP. Here we find it
convenient to introduce for i ∈ V and s ∈ {1, . . . , S} the variable λs

i representing the
shortage of sockets for customer connections to the IP POP in region i under scenario s.
For each scenario s ∈ {1, . . . , S} the constraints are now formulated as

∑

h∈H(i)

Mhxih + λs
i ≥

∑

j∈N(i)

∑

g∈G(j)

Ls
gyig, i ∈ V. (10.1.1)

The remaining capacity constraints concern the restrictions on the flow of IP traffic in
the network. To formulate these constraints, we need to determine the traffic flow in the
network under any scenario. To this end we define for each s ∈ {1, . . . , S}, {i, j} ∈ E and
k ∈ K the variables f s

ijk and f s
jik representing the flow under scenario s of commodity k

on the edge {i, j} in direction from i to j and j to i, respectively. The flow of traffic is
now determined by the following flow conservation constraints, stating that the net flow
of a commodity into some IP POP should equal the net demand for the commodity from
customers connected to that particular IP POP. Hence for each scenario s ∈ {1, . . . , S}
we impose the constraints

∑

j:{i,j}∈E

f s
jik −

∑

j:{i,j}∈E

f s
ijk =

∑

j∈N(i)

∑

g∈G(j)

Ds
kgyig, i ∈ V, k ∈ K. (10.1.2)

Remark 10.1.4. Note that the flow conservation constraints (10.1.2) correspond to those
of a standard multicommodity flow problem, and in particular that the possibility of free
flow distribution is implicitly assumed. In other words, we implicitly assume that the
flow of traffic between any pair of nodes may be divided arbitrarily among a number
of different paths. This is not, however, in accordance with the facts of IP routing cf.
the discussion in Holmberg and Yuan [62]. Still, computational results presented by
Holmberg and Yuan show that the standard multicommodity flow constraints provide a
reasonable approximation of a much more complex model for IP routing.

The following constraints concern the switch-capacity of the IP POPs. Again we
define for i ∈ V and s ∈ {1, . . . , S} the variable γs

i representing the shortage of switch-
capacity of the IP POP in region i under scenario s. Hence for s ∈ {1, . . . , S} the
constraints are formulated as

∑

h∈H(i)

Nhxih + γs
i ≥

∑

j∈N(i)

∑

g∈G(j)

ds
gyig +

∑

k∈K

∑

j:{i,j}∈E

f s
ijk, i ∈ V. (10.1.3)

Here the amount of traffic switched by an IP POP is determined as the total flow out of
the IP POP — that is, the sum of traffic terminating at customers connected to the IP
POP and traffic sent on through the network.
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For the transmission links in the distributed network, we require not only that the
total traffic in either direction on a link should not exceed the capacity of that link, but
also that each of the two alternative connections from an IP POP in the distributed
network to the rest of the network, has enough capacity to carry 60% of the total traffic
into and out of the IP POP. Here we define for i ∈ V1 and s ∈ {1, . . . , S} the variables
τ s
i representing the shortage of capacity under scenario s on the two transmission links

from the IP POP in region i to the rest of the network. Now, for s ∈ {1, . . . , S} the
constraints are,

2(ṽizi1 + vi) + w̃izi2 + wi + C1zi3 + τ s
i ≥

∑

k∈K

f s
ijk, i ∈ V1, {i, j} ∈ E1(i), (10.1.4a)

2(ṽizi1 + vi) + w̃izi2 + wi + C1zi3 + τ s
i ≥

∑

k∈K

f s
jik, i ∈ V1, {i, j} ∈ E1(i), (10.1.4b)

2(ṽizi1 + vi) + w̃izi2 + wi + C1zi3 + τ s
i ≥ 0.6

∑

k∈K

∑

j:{i,j}∈E1(i)

f s
ijk, i ∈ V1, (10.1.4c)

2(ṽizi1 + vi) + w̃izi2 + wi + C1zi3 + τ s
i ≥ 0.6

∑

k∈K

∑

j:{i,j}∈E1(i)

f s
jik, i ∈ V1. (10.1.4d)

Remark 10.1.5. Note that since we are considering an IP network using optical trans-
mission systems, each link in the network can carry flow in either direction and, more
importantly, these flows do not interfere.

Finally, for the transmission links in the core network, the only capacity constraints
are for each scenario s ∈ {1, . . . , S} that

3
∑

l=1

Cluijl + σs
ij ≥

∑

k∈K

f s
ijk, {i, j} ∈ E2, (10.1.5a)

3
∑

l=1

Cluijl + σs
ij ≥

∑

k∈K

f s
jik, {i, j} ∈ E2, (10.1.5b)

where σs
ij denotes the shortage of capacity on the transmission link {i, j} ∈ E2 under

scenario s.

10.1.6 Two-Stage Formulation

As previously discussed, the decisions concerning network design must be made so as to
minimize total costs incurred while ensuring that enough capacity is installed to accom-
modate any future demand scenario. The latter restriction is formulated implicitly using
functions Qs, defined for each scenario s ∈ {1, . . . , S} by

Qs(x, y, z, v, w, u) = min
∑

i∈V

(

λs
i + γs

i

)

+
∑

i∈V1

τ s
i +

∑

{i,j}∈E

σs
ij

s.t. (10.1.1) − (10.1.5),

f s ∈
�2|E||K|

+ , λs, γs ∈
� |V |

+ , τ s ∈
� |V1|

+ , σs ∈
� |E2|

+ .

(10.1.6)
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Obviously, sufficient capacity to accommodate demand scenario s ∈ {1, . . . , S} is installed
if and only if the decisions concerning network design are such thatQs(x, y, z, v, w, u) = 0.
Hence the network design problem may be formulated as

min
∑

i∈V

∑

h∈H(i)

pihxih +
∑

i∈V

∑

j∈N(i)

∑

g∈G(j)

qigyig

+
∑

i∈V1

(

3
∑

l=1

rilzil + aivi + biwi

)

+
∑

{i,j}∈E

3
∑

l=1

cijluijl

(10.1.7a)

s.t.
∑

h∈H(i)

xih = 1 i ∈ V (10.1.7b)

xj0 ≤ xi0 i, j ∈ V1, {i, j} ∈ E1(i) (10.1.7c)
∑

j∈N(i)

yjg = xi0 i ∈ V1, g ∈ G(i) (10.1.7d)

yig = 1 − xi0 i ∈ V1, g ∈ G(i) (10.1.7e)
yig = 1 i ∈ V2, g ∈ G(i) (10.1.7f)

3
∑

l=1

zil = 1 − xi0 i ∈ V1 (10.1.7g)

vi ≤ Dzi1 i ∈ V1 (10.1.7h)
wi ≤ Dzi2 i ∈ V1 (10.1.7i)

3
∑

l=1

uijl = 1 {i, j} ∈ E2 (10.1.7j)

Qs(x, y, z, v, w, u) = 0 s = 1, . . . , S (10.1.7k)

x ∈
�X , y ∈

�Y , z ∈
�3|V1|, u ∈

�3|E2|, v ∈
� |V1|

+ , w ∈
� |V1|

+ . (10.1.7l)

Here X =
∑

i∈V |H(i)| and Y =
∑

i∈V

∑

j∈N(i) |G(j)|. The objective function (10.1.7a)
consists of four terms, corresponding to installment of IP POPs, connection of customers
to the network, capacity expansion of transmission links in the distributed network,
and capacity expansion of transmission links in the core network, respectively. Ac-
cording to (10.1.7b), one IP POP class is selected for each region, and (10.1.7c) en-
sures that an IP POP is only dismantled if any other IP POP using it as a transit
node is also dismantled. If some IP POP in the distributed network is to be disman-
tled (x·0 = 1), the customers in the corresponding region should be connected to the
network through an alternative IP POP. If, on the other hand, the IP POP is main-
tained (x·0 = 0), the customers in the corresponding region remain connected to the
network through this particular IP POP. This is achieved by the constraints (10.1.7d)
and (10.1.7e). For an IP POP in the core network, on the other hand, all customers in the
corresponding region remain connected to the network through this particular IP POP
cf. (10.1.7f). Next, a type of connection should be selected from each IP POP in the
distributed network that is maintained cf. (10.1.7g). Also, for each transmission link con-
necting an IP POP in the distributed network to the rest of the network, (10.1.7h) and
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(10.1.7i) ensure that capacity in the form of E1 circuits or ATM PVCs may be expanded
if and only if this particular type of capacity is selected. (Note that we use the maximum
aggregate traffic demand D as a “big-M coefficient”.) Next, the constraint (10.1.7j) re-
quires a type of connection to be selected for each transmission link connecting a pair of
IP POPs in the core network. Finally, (10.1.7k) ensures that enough capacity is installed
to accommodate all demand scenarios.

Remark 10.1.6. Clearly, no customers should be connected to the network through an
IP POP that is pointed out for dismantling. Hence any feasible solution of the network
design problem should satisfy the constraints

yig ≤ 1 − xi0 i ∈ V1, g ∈
⋃

j∈N(i)G(j).

These constraints are implied, however, by e.g. the constraints (10.1.1) and (10.1.7k),
and hence we do not include them in the formulation.

Remark 10.1.7. The second-stage constraint (10.1.3) ensures that no flow of traffic can
occur out of an IP POP that is pointed out for dismantling. Hence if the IP POP in
some region is to be dismantled, the constraint (10.1.2) ensures that no flow of traffic can
occur into this IP POP since no customer groups are connected to it cf. Remark 10.1.6.
Thus no flow of traffic can occur into or out of IP POPs that are to be dismantled.

10.2 Solution Procedure

To ease the exposition we find it convenient in the following to simplify the notation, writ-
ing the aggregate first-stage solution vector (x, y, z, u, v, w) simply as x̃, and for each sce-
nario s ∈ {1, . . . , S} writing the vector of second-stage shortage variables (λs, γs, τ s, σs)
simply as ρs. Also, we will consider the network design problem (10.1.7) only in the
conceptual form,

min cx̃

s.t. Ax̃ = b,

Qs(x̃) = 0, s = 1, . . . , S,

x̃ ∈ X̃,

(10.2.1)

where c ∈
�

n1 represents the first-stage objective (10.1.7a), b ∈
�

m1 and A ∈
�

m1×n1 rep-
resent the first-stage constraints (10.1.7b)-(10.1.7j), and X̃ ⊆

�n1
+ is a subset, restricting

the appropriate components of x̃ to be either binary, integer or real numbers. Likewise,
the second-stage problem (10.1.6) is considered only in a conceptual form, written for
x̃ ∈

�
n1 and s ∈ {1, . . . , S} as

Qs(x̃) = min
{

eρs |W sf s +W ′ρs ≥ hs − T sx̃, f s ∈
�n2

+ , ρ
s ∈

�n′
2

+

}

, (10.2.2)

where hs ∈
�

m2 , W s ∈
�

m2×n2, W ′ ∈
�

m2×n′
2 , and T s ∈

�
m2×n1 represent the capacity

constraints (10.1.1)-(10.1.5), and e = (1, . . . , 1) ∈
�

n′
2 .

The fundamental idea in the cutting plane method for problem (10.2.1) presented be-
low, is to relax the constraints Qs(x̃) = 0, s = 1, . . . , S, and iteratively re-enforce them by
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means of so-called feasibility cuts. Hence, we start with a relaxation of problem (10.2.1),
referred to as the master problem, in which the constraints Qs(x̃) = 0, s = 1, . . . , S, have
been removed. Given a solution x̃ν ∈

�
n1 of the master problem in some iteration ν,

the feasibility cuts are derived from the second-stage problem (10.2.2) with x̃ = x̃ν .
Specifically, we consider the corresponding dual problem, defined for s ∈ {1, . . . , S} by

Qs(x̃) = max
{

(hs − T sx̃)πs | πsW s ≤ 0, πsW ′ ≤ e, πs ∈
�m2

+

}

. (10.2.3)

Obviously, problems (10.2.2) and (10.2.3) are both feasible, and hence they are both
solvable and their optimal values are identical and clearly non-negative. In particular,
if x̃ν ∈

�
n1 is such that insufficient capacity is installed to accommodate some demand

scenario s ∈ {1, . . . , S} (i.e. Qs(x̃ν) > 0), then a feasible solution πs,ν of the dual prob-
lem (10.2.3) exists such that (hs − T sx̃ν)πs,ν > 0. Moreover, since πs,ν is feasible for the
dual problem (10.2.3), we see that for all x̃ ∈

�
n1 with Qs(x̃) = 0 we have

(hs − T sx̃)πs,ν ≤ 0. (10.2.4)

The constraint (10.2.4) is referred to as a feasibility cut, and as described above it can be
used to cut off the current solution of the master problem x̃ν ∈

�
n1 whenever Qs(x̃ν) > 0

for some scenario s ∈ {1, . . . , S}.
The algorithm progresses by sequentially solving a master problem and adding vio-

lated feasibility cuts generated through the solution of subproblems (10.2.2)-(10.2.3).

Algorithm 10.1

Step 1 (Initialization) Set ν = 0, and let the current master problem be defined
by min

{

cx̃ | Ax̃ = b, x̃ ∈ X̃
}

.

Step 2 (Solve master problem) Set ν = ν + 1. Solve the current master problem
and let x̃ν be an optimal solution vector.

Step 3 (Solve subproblems) For each s ∈ {1, . . . , S}, solve the second-stage prob-
lem (10.2.2) with x̃ = x̃ν , and let πs,ν be a corresponding optimal dual solution.
If (hs − T sx̃ν)πs,ν > 0 for some s ∈ {1, . . . , S}, add a feasibility cut (10.2.4)
to the master problem and return to Step 2. Otherwise, stop; the current
solution x̃ν is optimal.

Proposition 10.2.1. If problem (10.2.1) is feasible, then Algorithm 10.1 terminates with
an optimal solution of the problem in a finite number of iterations.

Proof. Finite convergence is an immediate consequence of validity of the feasibility cuts
cf. the discussion above, and the fact that only a finite number of extreme points of the
feasible region in (10.2.3) exist.

Remark 10.2.1. The requirement of feasibility in Proposition 10.2.1 is certainly not unrea-
sonable, since it should always be possible to install sufficient capacity to accommodate
demand. Clearly, though, problem (10.1.7) becomes infeasible if demand rises beyond a
certain level. Therefore, in such a case, the formulation is not appropriate, and one may
have to allow for the placement of new IP POPs as well as for the installment of several
facilities (STM-1, STM-4 or STM-16) on connections in the future core network. For the
IP network of TDC, however, the formulation presented here was found appropriate.
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Remark 10.2.2. Note that Algorithm 10.1 employs a mixed-integer programming for-
mulation of the master problem in each iteration. The generation of feasibility cuts,
however, may as well be carried out for fractional solutions cf. our discussion above, and
hence it seems natural to assume that it is not worthwhile to put a lot of effort into
finding integral first-stage solutions in early iterations of the algorithm. In fact, we recall
that the capacitated network design problem was formulated as a two-stage stochastic
program with linear recourse in Chapter 7, and a solution method was proposed that is
similar in vein to Algorithm 10.1, but in which integer requirements are initially removed
in the master problem. This algorithm then proceeds to restore integrality and feasibility
simultaneously through a branch-and-cut scheme, with feasibility cuts being generated
at all nodes of the branching tree. Furthermore, as pointed out also in Remark 7.3.3
on page 103, Albareda-Sambola, van der Vlerk, and Ferńandez [2], compared different
versions of a similar algorithm for a class of stochastic generalized assignment problems,
and concluded that such a branch-and-cut scheme performed superior to a branch-first-
cut-second scheme such as Algorithm 10.1. We did in fact also try a branch-and-cut
algorithm for problem (10.2.1). It turned out, however, that for the particular instance
considered here, the major effort lies in solving the second-stage problems, whereas solv-
ing even a mixed-integer formulation of the master problem is relatively easily done with
the CPLEX Mixed Integer optimizer. This means that generating cuts via the solution of
the second-stage problems throughout the branching process is simply too time consum-
ing, and very little movement in the lower bound was observed for the branch-and-cut
algorithm. Hence for this problem, the branch-first-cut-second scheme of Algorithm 10.1
actually proved superior.

10.2.1 Valid Inequalities

As pointed out in Remark 10.2.2, for the IP network of TDC the main computational
effort in solving problem (10.1.7) using Algorithm 10.1, lay in the generation of feasibility
cuts. Furthermore, since no capacity constraints are initially present in the master prob-
lem, a direct application of Algorithm 10.1 as it was presented above would require a large
number of feasibility cuts to be imposed to properly reflect the capacity requirements in
the second stage. In fact we tried a direct application of Algorithm 10.1, and observed
that a vast amount of time was spent solving second-stage problems to generate feasibil-
ity cuts, achieving only very little movement in the optimal value of the master problem.
Therefore, to improve performance of the algorithm, we determined a large number of
capacity constraints that could be generated a priori without solving any second-stage
problems. In the following we choose to work with an aggregated formulation of the com-
modities, defining a commodity for each customer group, i.e. K = G, so that commodity
k ∈ K corresponds to IP traffic originating at group k. If a disaggregated formulation is
employed, however, the constraints remain valid with only notational corrections.

First, it is obvious that the constraints concerning the customer-capacity of each
individual IP POP can be used directly in the master problem, since they are independent
of the routing of traffic in the second stage cf. (10.1.1). Hence we used the constraints

∑

h∈H(i)

Mhxih ≥
∑

j∈N(i)

∑

g∈G(j)

Ls
gyig, i ∈ V, s = 1, . . . , S. (10.2.5)
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The constraints concerning the switch-capacity of each individual IP POP, on the
other hand, clearly depend on the routing of traffic in the second stage cf. (10.1.3), and
hence they cannot be used directly in the master problem. Instead, we used the following
group of constraints to reflect the second-stage requirement for switch-capacity,

∑

h∈H(i)

Nhxih ≥
∑

j∈N(i)

∑

g∈G(j)

(

ds
g −

∑

j′∈N(i)

∑

g′∈G(j′)

Ds
gg′

)

yig, i ∈ V, s = 1, . . . , S. (10.2.6)

To see that these are in fact valid inequalities, we note that for any s ∈ {1, . . . , S},
i ∈ V , j ∈ N(i), and g ∈ G(j) the first term in the parentheses on the right-hand side,
ds

g ≥ 0, gives the total amount of traffic that terminates at group g under scenario s,
whereas the second term, −

∑

j′∈N(i)

∑

g′∈G(j′)D
s
gg′ ≥ 0, gives the total amount of traffic

originating at group g under scenario s (i.e. −Ds
gg) minus the part of this traffic that

terminates at groups that may be connected to the network through the IP POP in
region i

(

i.e.
∑

j′∈N(i)

∑

g′∈G(j′)\{g}D
s
gg′

)

. Hence, for any possible allocation of customer
groups to IP POPs, the right-hand side of (10.2.6) provides a lower bound on the total
amount of traffic that must be switched by the IP POP in region i ∈ V under scenario
s ∈ {1, . . . , S}, and hence it is a valid inequality. In general, the lower bound on the
required switch-capacity provided by (10.2.6) is not tight, and in particular we note that
no transit traffic is included. Since the switch-capacities of the different IP POP classes
are generally far apart, though, the constraints turned out to be quite effective in our
computational experiments.

To generate cuts for the required capacity on links in the distributed network, our
starting point was the constraints (10.1.4c) and (10.1.4d), stating that each of the two
alternative connections from an IP POP in the distributed network to the rest of the
network, is required to have enough capacity to carry 60% of the total traffic into and
out of the IP POP. Here we used the constraints,

2(ṽizi1 + vi) + w̃izi2 + wi + C1zi3 ≥ 0.6
∑

j∈N(i)

∑

g∈G(j)

(

∑

j′∈V2

∑

g′∈G(j′)

Ds
gg′

)

yig,

i ∈ V1, s = 1, . . . , S.

(10.2.7a)

2(ṽizi1 + vi) + w̃izi2 + wi + C1zi3 ≥ 0.6
∑

j∈N(i)

∑

g∈G(j)

(

∑

j′∈V2

∑

g′∈G(j′)

Ds
g′g

)

yig,

i ∈ V1, s = 1, . . . , S.

(10.2.7b)

To see that (10.2.7a) is a valid inequality, we note that for any s ∈ {1, . . . , S}, i ∈ V1,
j ∈ N(i), and g ∈ G(j), the term in the parentheses on the right-hand side gives
the total amount of traffic that must be routed from group g to customer groups in
regions in the core network under scenario s. Hence for any i ∈ V1 and s ∈ {1, . . . , S}
and for any possible allocation of customer groups to IP POPs, the right-hand side in
(10.2.7a) is clearly a lower bound on the amount of traffic from region i to regions in the
core network under scenario s, and hence the inequality is valid. Obviously, a similar
observation goes for (10.2.7b) only with the direction of traffic reversed. Again we note
that the lower bounds provided by (10.2.7a) and (10.2.7b) are obviously not tight, but
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since traffic between a region i ∈ V1 and other regions in the distributed network is
typically negligible compared to the traffic between region i and the core network, the
inequalities turned out quite useful.

Finally, to generate cuts for the required capacity on links in the core network, we
used a generalization of the well-known cutset inequalities, employed for example for the
capacitated network design problem considered in Chapter 7. (See Section 7.1.2 for a
thorough discussion of these inequalities.) To this end, for some U ⊆ V2 we consider
the partition π = (U, V2 \ U) of V2, and let Eπ =

{

{i, j} ∈ E2

∣

∣ |{i, j} ∩ U | = 1
}

be
the corresponding cutset. Moreover, since only one customer group was defined for all
regions corresponding to IP POPs in the core network, cf. Section 10.3.1 below, we let
G(i) = {gi}, i ∈ V2, for ease of notation. Now, we used the following constraints,

∑

{i,j}∈Eπ

3
∑

l=1

Cluijl ≥ max
s∈{1,...,S}

max

{

∑

i∈U

∑

j∈V2\U

Ds
gigj

,
∑

i∈U

∑

j∈V2\U

Ds
gjgi

}

,

π = (U, V2 \ U), U ⊆ V2.

(10.2.8)

It is easily seen that these are in fact valid inequalities since the right-hand side of (10.2.8)
is a lower bound on the amount of traffic that must be routed across the cutset Eπ. Fur-
thermore, cf. our discussion of the inequalities (10.2.7) above, we note that the traffic
between regions in the core network and regions in the distributed network is typically
negligible compared to the interregional traffic in the core network, and hence the in-
equalities proved quite useful.

Remark 10.2.3. Note that since the commodity demands for the IP network of TDC was
generated by a gravitational model, cf. Section 10.3.1 below, the traffic matrix was in fact
symmetric, and hence in practice we did not have to consider traffic in both directions
for the link-capacity constraints as stated here in (10.2.7) and (10.2.8).

Obviously, a potentially large number of constraints may be generated a priori from
(10.2.5)-(10.2.8). This is true in particular for the generalized cutset inequalities (10.2.8),
and hence we chose to consider only those cutsets corresponding to subsets U ⊆ V2

consisting of one or two IP POPs. Moreover, to control the size of the master problem,
we chose to generate all cuts from (10.2.5)-(10.2.8) at initialization of the algorithm and
store them in a cutpool. Then, in each iteration of the algorithm, before the second-stage
problems are solved to possibly generate violated feasibility cuts, this cutpool is scanned
to search for violated capacity constraints. If any violated constraints are found they are
included in the master problem (at most 10 at a time), and the problem is re-solved.

10.3 Computational Experiments

The algorithm described in the previous section was implemented in C++ using proce-
dures from the callable library of CPLEX 6.6. In particular, the mixed-integer master
problem was solved with the CPLEX Mixed Integer optimizer cf. Remark 10.2.2. A se-
ries of computational experiments were performed on the IP network of TDC. In this
section we discuss the practical application of the model presented in Section 10.1, and
we present results of our computational experiments.
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10.3.1 Problem Instance

Let us first consider the IP network of TDC. Here the core network consists of 39 IP
POPs interconnected by a total of 70 transmission links. The distributed network, on
the other hand, consists of 155 IP POPs, most of which are connected to the rest of the
network by two alternatively conveyed links of equal type and capacity as assumed in the
model. Some exceptions from the idealized network structure of the model presented in
Section 10.1 had to be dealt with, however. First, for some IP POPs in the distributed
network, the two alternatively conveyed links, connecting the IP POP to the rest of the
network, does not presently have equal capacities. In these cases, we simply used the
average of the two as the existing capacity for the model input. Second, for specific
reasons, a few IP POPs in the distributed network actually have an extra STM-1 link to
the rest of the network. These extra links were included in the model, but no upgrading
of the connections were allowed. Finally, a few IP POPs in the distributed network are
connected to the rest of the network through “hoops” of two IP POPs. This is best
illustrated by a small example.

Example 10.3.1. Figure 10.3 illustrates a “hoop”, connecting IP POPs 1 and 2 to the
rest of the network through IP POPs A and B.

1 2

A B

2 · x Mbit/s

x Mbit/s

2 · x Mbit/s

Figure 10.3: Illustration of a “hoop”.

Clearly, it is possible to accurately represent such a hoop within the integer programming
formulation of the model. We did not find the improved accuracy of such a formulation
sufficient to justify the increased model complexity, though, and hence we chose simply
to treat IP POPs such as 1 and 2 in Figure 10.3 as if they both had a link with capacity x
to IP POP A and a link with capacity x to IP POP B.

A total of seven different IP POP classes were defined (including the class ’0’), with
at most five potential IP POP classes available for selection in any particular region.
Also, for all regions corresponding to IP POPs that may be dismantled, the customers
were divided in up to four groups, and up to three potential alternative IP POPs for
the customers were specified. (For IP POPs that are not eligible for dismantling, it
obviously does not make sense to divide customers into more than one group, or to
specify alternative IP POPs.)

All in all, we ended up with a two-stage stochastic program with recourse, containing
in the first stage a total of 1960 variables, most of which are binary, and 1137 constraints
at initialization. Moreover, when the algorithm progresses, the number of constraints
increases as cuts are imposed to re-enforce (10.1.7k). Clearly, though, the special struc-
ture of constraints such as e.g. (10.1.7e) and (10.1.7f) allowed CPLEX MIP Presolve to



10.3 Computational Experiments 153

reduce the size of the problem considerably, removing a priori a large number of first-
stage variables and constraints. Given a first-stage solution and a particular scenario, the
second-stage problem, on the other hand, is a linear programming problem with 206737
continuous variables and 53268 constraints.

The only available demand input for the model was the current groupwise demand
for customer connections, denoted here by Lg, g ∈ G, and the current regionwise demand
for IP traffic, expressed as the total amount of IP traffic terminating at each IP POP and
denoted here by Ti, i ∈ V . Using this data we had to estimate the groupwise demand for
IP traffic, and generate a number of future demand scenarios. This was done as follows.
First of all, for s ∈ {1, . . . , S} the future groupwise demand for customer connections
under scenario s was calculated as

Ls
g = µs · ρs

g · Lg, g ∈ G,

where µs is a parameter reflecting the average growth in demand for customer connec-
tions, and ρs

g, g ∈ G, are parameters reflecting regional fluctuations from this average
growth. Now, to calculate an estimate of the groupwise demand for IP traffic, we used
the estimated future demand for customer connections to split the regionwise demand
Ti, i ∈ V , among groups. Hence, for s ∈ {1, . . . , S} the future groupwise demand for IP
traffic under scenario s, expressed as the total volume of IP traffic terminating at each
group, was calculated as

ds
g = λs · γs

g ·
Ls

g
∑

g′∈G(i) L
s
g′
· Ti, i ∈ V, g ∈ G(i),

where λs is a parameter reflecting the average growth in demand for IP traffic, and
γs

g , g ∈ G, are parameters reflecting regional fluctuations from this average growth.
The growth factors were all generated by random sampling from appropriate uniform
distributions.

Remark 10.3.1. To capture the correlation between growth in demand for customer con-
nections and growth in demand for IP traffic, we actually independently generated pa-
rameters µs, λ̃s, ρs

g and γ̃s
g for all g ∈ G and s ∈ {1, . . . , S}, and then defined λs = µs · λ̃s

and γs
g = ρs

g · γ̃
s
g for g ∈ G and s ∈ {1, . . . , S}.

Finally, we used an aggregated formulation of the commodities, defining a commodity
for each customer group, i.e. K = G, so that commodity k ∈ K corresponds to IP traffic
originating at group k. The commodity demand was then calculated by gravitation,
using the estimates of the future volume of IP traffic terminating at each group. Hence
for s ∈ {1, . . . , S} the commodity demand for IP traffic was calculated as

Ds
kg =

ds
g · d

s
k

∑

g′∈G d
s
g′
, k ∈ K, g ∈ G \ {k},

and

Ds
kk = −

∑

g∈G\{k}

Ds
kg, k ∈ K.
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10.3.2 Computational Results

A series of computational experiments were performed on the IP network of TDC. We
generated instances of the problem with 1, 5, 10, 50, and 100 scenarios, and solved the
problems using Algorithm 10.1 as described in Section 10.2. The instance with only
one scenario was generated by replacing all random parameters by their expected values,
and hence it will be referred to as the expected value problem (EVP). At termination of
each run we recorded the number of iterations performed, the number of feasibility cuts
applied, the total number of generated cuts, the number of cuts in the master problem
(referred to as active cuts), and the CPU time spent by the procedure. Results are
reported in Table 10.1.

Table 10.1: Computational Results
S Iterations Feas. cuts Total cuts Active cuts CPU time

(EVP) 1 15 14 1337 152 2:17
5 13 32 3183 680 4:12

10 19 119 5555 1426 7:23
50 20 520 24234 2013 25:42

100 23 1096 47651 2662 47:33

The optimal solution of the two instances with 50 and 100 scenarios, respectively, sug-
gested dismantling of the same particular 18 IP POPs. The optimal solution of the
instances with 5 and 10 scenarios only disagreed with this suggestion for one and four IP
POPs, respectively. The optimal solution of the expected value problem, on the other
hand, suggested dismantling of just 10 IP POPs, one of which was not suggested for
dismantling in any of the other solutions. To investigate the effect of using a stochas-
tic programming model with multiple scenarios, we fixed the dismantling of IP POPs
suggested by the solution of the expected value problem, and subsequently solved the
stochastic programming problem with the same 100 scenarios as before. The resulting
total cost turned out to be 3.5% larger than the minimum cost determined in the pre-
vious run. Hence, given the size of the total installment cost, the saving obtained by
solving the stochastic programming problem rather than the expected value problem, is
considerable.



Appendix A

Prerequisites from Probability Theory

In this appendix we present a few basic concepts and results from probability theory that
are used throughout the thesis. For a more thorough discussion of these topics we refer
to the textbooks by e.g. Dudley [43] and Hoffmann-Jørgensen [61].

A.1 Probability Spaces

Given some set Ω let us recall that the so-called power set 2Ω is the set of all subsets
of Ω. Also, given some set F ∈ 2Ω we denote by F c = Ω \F the complement of F . Now,
our starting point here is the following definitions.

Definition A.1.1. A non-empty collection of subsets F ⊆ 2Ω of a set Ω is said to be a
σ-algebra of subsets of Ω if the following two properties hold:

(i) F c ∈ F whenever F ∈ F ;

(ii)
∞
⋃

n=1

Fn ∈ F whenever F1, F2, . . . ∈ F .

Definition A.1.2. A tuple (Ω,F) is said to be a measurable space if Ω is a set, and F
is a σ-algebra of subsets of Ω.

Remark A.1.1. Given a set Ω and a measurable space (Λ,G), any mapping f : Ω 7→ Λ is
easily seen to introduce a σ-algebra of subsets of Ω, namely F = f−1(G). This is referred
to as the σ-algebra generated by f .

Definition A.1.3. Let (Ω,F) be a measurable space. A real-valued function P : F 7→
�

is said to be a probability measure on F if the following three properties hold:

(i) P (Ω) = 1;

(ii) P (F ) ≥ 0 whenever F ∈ F ;

(iii) P
( ∞

⋃

n=1

Fn

)

=
∞

∑

n=1

P (Fn) whenever F1, F2, . . . ∈ F , Fn ∩ Fm = ∅, m 6= n.

With these basic definitions we may now formally define the notion of a probability space.
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Definition A.1.4. A tuple (Ω,F , P ) is said to be a probability space if Ω is a set, F is
a σ-algebra of subsets of Ω, and P is a probability measure on F .

Throughout the thesis we are particularly concerned with one specific σ-algebra, the
Borel σ-algebra on some subset Ξ ⊆

�
N denoted by B(Ξ). This σ-algebra may be

equivalently defined either as the smallest σ-algebra on Ξ containing all open subsets
of Ξ, or as the smallest σ-algebra on Ξ containing all closed subsets of Ξ. A set B ∈ B(Ξ)
is called a Borel set and is said to be Borel measurable. Hence, for any subset Ξ ⊆

�
N ,

(Ξ,B(Ξ)) is a measurable space, and a probability measure on B(Ξ) will be referred to
as a Borel probability measure on Ξ. The set of all Borel probability measures on Ξ is
denoted by P(Ξ).

A.2 Random Variables and Random Vectors

To formally define the notion of random variables and random vectors, we need the
following.

Definition A.2.1. Let (Ω,F) and (Λ,G) be measurable spaces. A mapping f : Ω 7→ Λ
is said to be measurable if the following property holds:

f−1(G) ∈ F whenever G ∈ G.

Definition A.2.2. Let (Ω,F , P ) be a probability space. A random variable is a mea-
surable mapping ξ : Ω 7→

�
, and a random vector is a measurable mapping ξ : Ω 7→

�
N .

Given a random vector ξ : Ω 7→
�

N defined on a probability space (Ω,F , P ), we will
be particularly concerned with the composite mapping µ = P ◦ξ−1. Since ξ is measurable
we have ξ−1(B) ∈ F for all B ∈ B(

�
N ), and hence it is easily seen that µ is in fact a

Borel probability measure on
�

N . We will refer to µ as the induced probability measure
on

�
N .

A.3 Expectations

Definition A.3.1. Let (Ω,F , P ) be a probability space and let ξ : Ω 7→
�

N be a random
vector. The expectation of ξ is

� [ξ] =

∫

Ω

ξ(ω)P (dω) (A.3.1)

Remark A.3.1. A formal definition of the integral in (A.3.1) is beyond the scope of our
presentation here. Let us just note that the classical Riemann integral was extended by
Lebesgue to apply to functions on more general spaces and with respect to general mea-
sures. For details, we refer to the textbooks by Dudley [43] and Hoffmann-Jørgensen [61].

Typically, stochastic programming models involve functions of random vectors. Given
a random vector ξ : Ω 7→

�
N defined on a probability space (Ω,F , P ) and a measurable

function g :
�

N 7→
�

, the composite mapping g ◦ξ is easily seen to be a random variable.
Here, the so-called first transformation theorem provides a convenient formula for the
expectation of g ◦ ξ in terms of the induced probability measure µ = P ◦ ξ−1.
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Proposition A.3.1. Let (Ω,F , P ) be a probability space, let ξ : Ω 7→
�

N be a random
vector, let µ = P ◦ ξ−1 be the induced probability measure on

�
N , and let g :

�
N 7→

�
be

a measurable function. Then

� [g(ξ)] =

∫

Ω

g(ξ(ω))P (dω) =

∫

�
N

g(t)µ(dt) (A.3.2)

A.4 Weak Convergence

A recurring subject throughout the thesis is that of stability analysis of stochastic pro-
gramming models, which concerns certain continuity properties of optimal solutions when
the underlying probability measure is subjected to perturbations. When dealing with
such a stability analysis we will be interested in continuity properties of the expectation
in (A.3.2) when the distribution µ varies in some subset of P(

�
N ). To this end, we will

endow the set P(
�

N ) of all Borel probability measures on
�

N with the notion of weak
convergence defined as follows.

Definition A.4.1. Let µ ∈ P(
�

N ) and let {µn}∞n=1 be some sequence of probability
measures in P(

�
N ). If for any bounded continuous function, g :

�
N 7→

�
, we have

∫

�
N

g(t)µn(dt)
n→∞
−−−−→

∫

�
N

g(t)µ(dt),

then the sequence {µn}∞n=1 is said to converge weakly to µ and we write µn
w

−→ µ.

A.5 Marginal and Conditional Distributions

Let us now consider a random vector (ξ1, ξ2) : Ω 7→
�

N1 ×
�

N2 defined on a probability
space (Ω,F , P ), and let us define again the induced probability measure µ = P ◦(ξ1, ξ2)

−1.
Furthermore, let π1 and π2 be the usual projections from

�
N1×

�
N2 to

�
N1 and

�
N2 ,

respectively. In this case the induced probability measures µ1 = µ◦π−1
1 and µ2 = µ◦π−1

2

are referred to as the marginal distributions of ξ1 and ξ2, respectively. Also, the (regular)
conditional distribution of ξ1 given ξ2 is a mapping µ2

1 : B(
�

N1) ×
�

N2 7→
�

with the
following properties:

(i) µ2
1(·, t2) is a Borel probability measure on

�
N1 for any t2 ∈

�
N2 ;

(ii) µ2
1(B, ·) is a measurable function on

�
N2 for any B ∈ B(

�
N1);

(iii) for any B ∈ B(
�

N1×
�

N2), we have

µ(B) =

∫

�N2

∫

�N1

1B(t1, t2) µ
2
1(dt1, t2)µ2(dt2),

where 1B denotes the indicator function of the set B,

1B(t1, t2) =

{

1 if (t1, t2) ∈ B;

0 otherwise.
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