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Algebra of Principal Fibre Bundles, and

Connections.

Anders Kock

The purpose of the present note is to advocate Ehresmann’s groupoid
PP−1, derived from a principal G-bundle P → M , and to enlarge it to a
groupoid on M + {∗} (the “comprehensive groupoid of P”), in which many
calculations with P and G become pure “multiplicative” algebra. This kind
of principal-bundle algebra goes particularly well together with the combi-
natorial formulation which we elsewhere have advocated for the theory of
connections and differential forms, in the context of synthetic differential
geometry.

In so far as connection theory is concerned, this paper is a sequel to [14],
and we presuppose some of the notions presented there. Part of the note
may also be seen as a rewriting of [9]. A preliminary version of the first five
Section appeared in [17]. The last section owes credit to discussions with
Larry Breen and William Messing.

1 Principal bundles and groupoids

Consider a group object G in a left exact category E, and let M be an
object in E. Recall that a principal G-bundle over M is an object P over
M , π : P →M with a right G-action P ×G

·
→ P so that

P ×G
· -

proj
- P

π- M

is exact, i.e. it is a coequalizer diagram, and also a kernel pair diagram, and
with π a universal effective descent epi.

In the category of smooth manifolds, say, any surjective submersion, in
particular, a local product, is a universal effective descent epi. In the category
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of sets, and more generally, in any topos, any epi (= surjection) is a universal
effective descent epi.

If we talk about E as if it were the category of sets – which we henceforth
shall do – then a right G-action on P makes a surjection π : P → M into a
principal G-bundle iff for all a ∈ M and all x, z ∈ Pa (= π−1(a)), there exists
a unique g ∈ G with x · g = z.

By the uniqueness of such g, it is natural to denote it x−1z. We are going
to present a result implying that this x−1z is not just a natural notation, but
is a literal composite x−1 ◦ z in a groupoid Φ.

We compose from right to left in groupoids.

Theorem 1 Given a principal G-bundle P →M as above, then there exists
a transitive groupoid Φ with set of objects M + {∗} such that G = Φ(∗, ∗)
and Pa = Φ(∗, a) for a ∈ M . The G-action is by composition in Φ; and for
x, z ∈ Pa, x

−1z = x−1 ◦ z,

∗
z - a

x−1
- ∗.

The groupoid described in the Theorem, one may call the comprehensive
groupoid of the principal bundle P →M . It will facilitate many calculations
later on.

The full subgroupoid determined by M is a transitive subgroupoid with
object set M , denoted, PP−1. The notation comes about, because any arrow
in it, say from a ∈M to b ∈M , may be presented as a ”fraction”

a
x−1

- ∗
y - b.

Similarly, since the elements of G may be presented as fractions x−1z, G may
be denoted P−1P .

The method for constructing Φ is: one first gives an independent de-
scription of PP−1, and of its G-invariant left action on P . This PP−1 and
its notation is due to Ehresmann; we recall this construction in set theo-
retic terms; once this is done, the construction of the ’total’ comprehensive
groupoid Φ will become almost trivial.

So an arrow in PP−1 from a to b is given as an equivalence class of pairs
(y, x) with x ∈ Pa, y ∈ Pb, under the equivalence relation

(y, x) ≡ (y · g, x · g)
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for g ∈ G. The equivalence class (”fraction”) of (y, x) is denoted yx−1. If we
have arrows

a
yx−1

- b
uz−1

- c

with z ∈ Pb, we find the unique g ∈ G with z · g = y, and then the composite
is taken to be the fraction (u ·g, x−1). If we denote the unique g with z ·g = y
by z−1y, the definition of composition reads

(uz−1) ◦ (yx−1) := (u · z−1y)x−1.

Associativity of the composition thus defined comes from associativity of the
G-action on P .

To describe the left PP−1-action on P , let yx−1 be an arrow a → b, as
above, and let v ∈ Pa. Then (yx−1) · v is defined by

(yx−1) · v := y · (x−1v), (1)

where x−1v ∈ G is the unique g with x · g = v. This action is equivariant for
the right G-action; for, for any h ∈ G, the unique element of G which takes
x to v · h is g · h (with x, v, g as before), so

(yx−1) · (v · h) = y · (g · h) = (y · g) · h = (yx−1 · v) · h.

It is easy to see that, conversely, any map φ : Pa → Pb which is equivariant
for the right G-action, comes about as left multiplication by a unique arrow
a→ b in PP−1. For, pick xα ∈ Pa and let y := φ(x) ∈ Pb. Then for arbitrary
v ∈ Pa,

yx−1 · v = y · (x−1v) = φ(x) · (x−1v) = φ(x · x−1v) = φ(v),

the third equality sign by equivariance of φ. This proves existence, and
uniqueness follows by taking v = x.

The construction of the groupoid Φ of the Theorem is now essentially
trivial. The set of objects is M + {∗}. The set of arrows is the disjoint union
of PP−1, P−1P , and two copies of P which we denote P+ and P−,

arrows(Φ) = PP−1 + P+ + P− + P−1P,

with PP−1 as the full subgroupoid on the subset M with P−1P as the full
subgroupoid (group, in fact) on the object ∗; and, for a ∈ M , x ∈ Pa,
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considered in the copy P+ is considered to be an arrow ∗ → a, and considered
in P− is considered as its inverse x−1 : a → ∗. Compositions in the full
subgroupoids PP−1 and P−1P already have been defined, or are given, and
the remaining compositions are essentially given by the actions. Thus, for
x, v ∈ Pa, y, w ∈ Pb,

∗
v - a

yx−1
- b := ∗

(yx−1) · v- b,

a
yx−1

- b
w−1

- ∗ := a
(x · y−1w)−1

- ∗,

a
x−1

- ∗
y - b := a

yx−1
- b

∗
v - a

x−1
- ∗ := ∗

x−1v - ∗.

The verifications that these data provide a groupoid is trivial. The upshot
is that all the defining formulas for PP−1, Φ, etc. can safely be forgotten,
since the algebra of the groupoid Φ takes care of it. In fact, what previously
was just convenient notation, e.g. z−1y for the unique g with z · g = y, is
now literally the composition z−1 ◦ y in the groupoid Φ. Also, the defining
equation (1) of (yx−1) · v a y · (x−1v) etc. now is an identity which follows
from the associative law for the composition ◦ in Φ. Similarly for the above
four defining equations. And finally, there is no need any more to distinguish
between the composition ◦, and the dots · denoting the PP−1- or P−1P -
actions on P ; they may all be denoted ·, say, or omitted from notation
altogether.

Remark 1. The notion of “principal bundle overM” may be axiomatized
without apriori mention of any group G acting, through the notion of pre-
groupoid advocated in [9]; the primitive notion is a π : P →M equipped with
a partially defined ternary operation yx−1z (defined whenever π(x) = π(z)).

Out of this ternary operation, both the groupoid PP−1
→
→M and the group

P−1P are constructed, with elements given by ”fractions” yx−1 and x−1z,
respectively, – and acting on P , exactly as above. The theory we develop
in the present article could be developed more symmetrically in these (less
familiar) terms. For the purposes at hand, it makes no difference, but note
that the category of pregroupois over M is different from the category of
principal G-bundles over M . – The pregroupoids considered in [11] are more
general, and geared rather to foliation theory, [13].
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Remark 2. The notion of fibre bundle – rather than principal bundle –
likewise admits an algebraic formulation, subordinate, though, to the notion
of principal bundle. In fact, in the same way as principal bundles on M are
seen as certain transitive groupoids Φ on M + {∗}, we see fibre bundles on
M as (left) actions by Φ on sets E → M + {∗}. We refer the reader to [10]
for this viewpoint. – A principal bundle is itself a fibre bundle, and the same
applies to its gauge group bundle, which we now describe.

2 Gauge group bundle

For any groupoid Ψ→
→M with object set M , there is a group bundle on M ,

namely
∐

a∈M

Ψ(a, a) →M,

sometimes ([18]) called the gauge group bundle of Ψ, gauge(Ψ). It carries
a left conjugation action by Ψ: if ψ : a → b in Ψ, and h ∈ Ψ(a, a), then
ψ ◦ h ◦ ψ−1 ∈ Ψ(b, b). In particular, the group bundle on M , defined in this

way from the groupoid PP−1
→
→M , is sometimes called the adjoint bundle of

P , ad(P ) or gauge(P ).
In the case where P−1P = G is commutative, gauge(P ) → M may canon-

ically be identified with the constant group bundle M×G→M (with trivial
PP−1-action): an element of gauge(P ) over a ∈M is given by a fraction

yx−1 ∈ PP−1(a, a)

with x and y both in Pa. But then also x−1y ∈ P−1P makes sense, and the
process yx−1 7→ x−1y is well defined if G is commutative: another presenta-
tion of the same fraction is (yg)(xg)−1, but

(yg)(xg)−1 = g−1(x−1y)g = x−1y,

the last equality by commutativity of G; so the identification of gauge(P )
with M ×G is

yx−1 7→ (a, x−1y) ∈M ×G,

for x, y ∈ Pa.
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3 Connections versus connection forms

Consider a principal bundle π : P → M , with group G, as above. We shall
assume that M and P are equipped with reflexive symmetric relations ∼,
called the neighbour relation. The set of pairs (x, y) ∈ M ×M with x ∼ y
is a subset M(1) ⊆ M ×M , called the first neighbourhood of the diagonal,
and similarly for P(1) ⊆ P × P . We assume that π : P → M preserves the
relation ∼, and also that it is an “open submersion” in the sense that if a ∼ b
in M , and π(x) = a, then there exists a y ∼ x in P with π(y) = b. In fact,
we assume that for any “infinitesimal k-simplex” a0, . . . , ak in M (meaning
a k + 1-tuple of mutual neighbours), and for any x0 ∈ P above a0, there
exists an infinitesimal k-simplex x0, . . . , xk in P (with the given first vertex
x0) which by π maps to a0, . . . , ak. Finally. the action of any g ∈ G on P is
assumed to preserve the relation ∼ on P .

This is motivated by Synthetic Differential Geometry (SDG), cf. [6], and
more recently [14], where the notion of connection (infinitesimal parallel
transport) and differential form is elaborated in these terms.

The groupoid viewpoint for connections is also in essence due to Ehres-
mann. In SDG, this connection notion becomes paraphrased (see [9], [12]

or [14], Section 8): for a groupoid Φ→
→M , a connection in it is just a map

∇ : M(1) → Φ of reflexive symmetric graphs over M , so for a ∼ b ∈ M ,
∇(b, a) is an arrow a→ b in Φ.

If P →M is a principalG-bundle, a connection in the groupoid PP−1
→
→M

is sometimes called a principal connection in P . By the identification of ar-
rows in PP−1(a, b) with right G-equivariant maps Pa → Pb, described above,
one may also describe principal connections in such more concrete (but less
elementary) terms; explicitly, for each a ∼ b, ∇(b, a) is a right G-equivariant
map Pa → Pb.

Let π : P → M be a principal fibre bundle. To any connection ∇ in the
groupoid PP−1 (i.e. to any principal connection), one may associate a 1-form
ω on P with values in the group P−1P , as follows. For u and v neighbours
in P , with π(u) = a, π(v) = b, put

ω(u, v) := u−1(∇(a, b) · v). (2)

Note that both u and ∇(a, b)·v are in the π-fibre over a, so that the “fraction”
u−1(∇(a, b) · v) makes sense as an element of P−1P .
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The defining equation is equivalent to

u · ω(u, v)
︸ ︷︷ ︸

∈P−1P

= ∇(π(u), π(v))
︸ ︷︷ ︸

∈PP−1

·v. (3)

If we agree that (for u, v in P a pair of neighbours in P ) ∇(u, v) denotes
∇(π(u), π(v)), this equation may be written more succinctly

u · ω(u, v) = ∇(u, v) · v. (4)

It is possible to represent the relationship between ∇ and the associated
ω by means of a simple figure:

u

v• �

6· ω(u, v)

∇(u, v)·

The figure reflects something geometric, namely that ω(u, v) acts inside the
fibre (vertically), whereas ∇ defines a notion of horizontality.

We have the following two equations for ω. First, let x ∼ y in P , and
assume that g has the property that also xg ∼ y. Then

ω(xg, y) = g−1ω(x, y). (5)

Also, for x ∼ y and any g ∈ G

ω(xg, yg) = g−1ω(x, y)g. (6)

To prove (5), let us denote π(x) = π(xg) by a and π(y) by b. Then we have,
using the defining equation (3) for ω twice,

xg ω(xg, y) = ∇(a, b)y = xω(x, y),

and now we may calculate in the comprehensive groupoid of P : first cancel
the x on the left, then multiply the equation by g−1 on the left. To prove
(6), we have, with a and b as above,

xg ω(xg, yg) = ∇(a, b)yg = xω(x, y)g,
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by the defining equation (3) for ω(xg, yg), and by (3) for ω(x, y), multiplied
on the right by g, respectively. From this, we get the result by first cancelling
x and then multiplying the equation by g−1 on the left.

The following Proposition is now the rendering, in our context, of the
relationship between a connection ∇ and its connection 1-form ω:

Proposition 1 The process ∇ 7→ ω just described, establishes a bijective
corresondence between 1-forms ω on P , with values in the group P−1P and
satisfying (5) and (6), and connections ∇ in the groupoid PP−1.

Proof. Given a 1-form ω satisfying (5) and (6), we construct a connection
∇ as follows. Let a ∼ b in M . To define the arrow ∇(a, b) in PP−1, pick
u ∼ v above a ∼ b, and put

∇(a, b) = u(vω(v, u))−1.

We first argue that this is independent of the choice of v, once u is chosen.
Replacing v by vg ∼ u, we are in the situation where (5) may be applied; we
get

u(vg ω(vg, u))−1 = u(vg g−1ω(v, u))−1 = u(vω(v, u))−1;

the left hand side is ∇(a, b) defined using u, vg, the right hand side is using
u, v.

To prove independence of choice of u: any other choice is of form ug for
some g ∈ G. For our new v, we now chose vg (the result will not depend
on the choice, by the argument just given). Again we calculate. By (6), we
have the first equality sign in

ug(vgω(vg, ug))−1 = ug(vgg−1ω(u, v)g)−1 = ug(vω(u, v)g)−1 = u(vω(u, v))−1,

and the two expressions here are ∇(a, b), defined using, respectively, ug, vg
and u, v.

The calculation that the two processes are inverse of each other is trivial
(using ω(u, v) = ω(v, u)−1 and ∇(a, b) = ∇(b, a)−1).

4 Gauge forms versus horizontal equivariant

forms

We consider a principal fibre bundle π : P → M as in the previous section.
The horizontal k-forms that we now consider, are k-forms on P with values
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in the group G = P−1P . Horizontality means for a k-form θ that

θ(u0, u1, . . . , uk) = θ(u0, u1 · g1, . . . , uk · gk) (7)

for any infinitesimal k-simplex (u0, u1, . . . , uk) in P , and any g1, . . . gk ∈ P−1P
with the property that (u0, u1 · g1, . . . , uk · gk) is still an infinitesimal simplex
(which is a strong ”smallness” requirement on the gi’s).

Note that the connection form ω for a connection ∇ is not a horizontal
1-form, since ω(x, yg) = ω(x, y)g, not = ω(x, y).

We say that a k form θ, as above, is equivariant if for any infinitesimal
k-simplex (u0, . . . , uk), and any g ∈ P−1P , we have

θ(u0 · g, u1 · g, . . . , uk · g) = g−1θ(u0, u1, . . . , uk)g. (8)

Note that connection forms are equivariant in this sense, by (6).

Proposition 2 Assume that the group G = P−1P is commutative. Then
any horizontal equivariant k-form θ on P can be written π∗(Θ) for a unique
G-valued k-form Θ on the base space M .

Proof. It is evident that any form π∗(Θ) is horizontal and equivariant
(which here is better called invariant, since the equivariance condition now
reads θ(u0 · g, u1 · g, . . . , uk · g) = θ(u0, u1, . . . , uk)). Conversely, given an
equivariant (= invariant) k-form θ on P , and given an infinitesimal k-simplex
a0, . . . , ak in M , define

Θ(a0, . . . , ak) := θ(x0, . . . , xk)

where x0, . . . , xk is any infinitesimal k-simplex above a0, . . . , ak. The proof
that this value does not depend on the choice of the xi’s proceeds much like
the proof of the well-definedness of a connection given a connection-form, in
Proposition 1 above: First we prove, for fixed x0 above a0, that the value is
independent of the choice of the remaining xi’s, and this is clear from the
verticality assumption on θ. Next we prove that changing x0 to x0 · g (and
picking x1 · g, . . . , xk · g for the remaining vertices in the new k-simplex) does
not change the value either, and this is clear from equivariance (= invariance).

Recall that a k-form with values in a group bundle E → M associates to
an infinitesimal k-simplex a0, ..., a1 in M an element in the fibre of Ea0

. We
are interested in the case where E is the gauge group bundle of a groupoid;
such forms we call gauge valued forms, for brevity.
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Proposition 3 There is a natural bijective correspondence between horizon-
tal equivariant k-forms on P with values in G = P−1P , and k-forms on M
with values in the gauge group bundle gauge(PP−1).

Proof/Construction. Given a horizontal equivariant k-form θ on P as
above, we construct a gauge valued k-form θ̌ on M by the formula

θ̌(a0, . . . , ak) := (u0 · θ(u0, . . . , uk))u
−1
0 , (9)

or equivalently
θ̌(a0, . . . , ak) · u0 = u0 · θ(u0, . . . , uk), (10)

where (u0, . . . , uk) is an arbitrary infinitesimal k-simplex mapping to the
infinitesimal k-simplex (a0, . . . , ak) by π (such exist, since π is a surjective
submersion). Note that the enumerator and the denominator in the fraction
defining the value of θ̌ are both in the fibre over x0, so that the value is an
endo-map at a0 in the groupoid PP−1, thus does belong to the gauge group
bundle. — We need to argue that this value does not depend on the choice of
the infinitesimal simplex (u0, . . . uk). We first argue that, once u0 is chosen,
the choice of the remaining ui’s in their respective fibres does not change the
value. This follows from (7). To see that the value does not depend on the
choice of u0: choosing another one amounts to choosing some u0 · g, for some
g. But then we just change u1, . . . , uk by the same g; this will give the arrow
in PP−1

(u0 · g · θ(u0 · g, . . . , uk · g))(u0 · g)
−1.

Now we calculate using Theorem 1, i.e. we calculate in the comprehensive
groupoid Φ; so we drop partentheses and multiplication dots; using the as-
sumed equivariance (8), this expression then yields

u0gg
−1θ(u0, . . . , uk)gg

−1u−1
0 ,

which clearly equals the expression in (9).
Conversely, given a gauge valued k-form α on M , we construct a P−1P -

valued k-form α̂ on P by putting

α̂(u0, u1, . . . , uk) := u−1
0 (α(a0, a1, . . . , ak) · u0) (11)

where ai denotes π(ui). Since, for i ≥ 1, this expression depends on ui only
through π(ui) = ai, it is clear that (7) holds, so the form α̂ is horizontal.
Also,

α̂(u0 · g, . . . , uk · g) = (u0 · g)
−1(α(a0, . . . , ak) · (u0 · g));
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by calculation in the comprehensive groupoid of P , this immediately calcu-
lates to the expression in (11).

Finally, a calculation with the the comprehensive groupoid again (can-
celling u−1

0 with u0) immediately gives that the two processes θ 7→ θ̌ and
α 7→ α̂ are inverse to each other.

We may summarize the bijection α 7→ α̂ from gauge(PP−1)-valued forms
on M to horizontal equivariant P−1P -valued forms on P by the formula

u0 · α̂(u0, , , , , uk) = (π∗α)(u0, ..., uk) · u0 (12)

(which is essentially just a rewriting of (10)). In the case that the group
G = P−1P is commutative, we may cancel the “external” u0’s, and get

α̂(u0, ..., uk) = (π∗α)(u0, ..., uk),

for all infinitesimal k-simplices u0, ..., uk. So under the identification (in the
commutative case) of gauge valued forms with G-valued forms implied by
Section 2, we have

α̂ = π∗α. (13)

Recall that if ∇ and ∇1 are two connections in a groupoid Φ→
→M , we

may form a 1-form ∇1∇
−1 with values in the gauge group bundle; it is given

by
∇1∇

−1(a, b) = ∇1(a, b) · ∇(b, a).

For the case where the groupoid is PP−1, we have the following Propo-
sition, which we shall not use in the sequel, but include for possible future
reference:

Proposition 4 Let P →M be a principal bundle, and let ∇ and ∇1 be two
connections in the groupoid PP−1. Then

(∇1∇
−1)̂ = ω1 · ω

−1

where ω and ω1 are the connection forms of ∇ and ∇1, respectively.

Proof. Let x ∼ y, over a and b ∈M , respectively. Then

(∇1∇
−1)̂(x, y) = x−1(∇1(a, b)∇(b, a)x)

= x−1∇1(a, b)yω(y, x)

= x−1xω1(x, y)ω(y, x)

= ω1(x, y)ω(y, x)

= (ω1ω
−1)(x, y),
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using the defining relation (12) for (−)̂, and the relation (3) for ∇ and ∇1,
respectively.

5 Curvature versus coboundary

Recall [14] that the curvature of a connection in a groupoid Φ→
→M is the

gauge(Φ)-valued 2-form R = R∇ given by

R(a0, a1, a2) = ∇(a0, a1) · ∇(a1, a2) · ∇(a2, a0),

and recall [7], [14] that if ω is a 1-form with values in a group G, then dω is
the G-valued 2-form given by

dω(x0, x1, x2) = ω(x0, x1) · ω(x1, x2) · ω(x2, x0).

We apply this to the case where Φ = PP−1 and G = P−1P , for a principal
fibre bundle π : P → M . Then the curvature R, which is a gauge(PP−1)
-valued 2-form on M , gives, by Proposition 3, rise to a (horizontal and equiv-
ariant) P−1P -valued 2-form R̂ on P .

We then have the following:

Theorem 2 Let π : P → M be a principal fibre bundle with group G, and
let ∇ be a principal connection in it, i.e. a connection in the groupoid PP−1.
Let ω be its connection form (a G-valued 1-form on P ), and let R be its
curvature (a gauge(P )-valued 2-form on M). Then

R̂ = dω, (14)

( as G-valued 2-forms on P , called the curvature form of ∇), or equivalently

R = (dω)̌. (15)

(as gauge(P )-valued 2-forms on M). In particular, the curvature form dω is
horizontal and equivariant.

For the case where G is commutative, we may identify gauge(P )-valued
forms with G-valued forms; in particular, the curvature R may be seen as a
G-valued 2-form on M ; and (14) then reads, by (13),

π∗(R) = dω. (16)
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Proof. Let x, y, z be an infinitesimal 2-simplex in P , and let a = π(x),
b = π(y), and c = π(z). We calculate the effect of the (left) action of
the arrow R(a, b, c) on x (note that R(a, b, c) is an endo-arrow at a in the
groupoid):

R(a, b, c) · x = ∇(a, b) · ∇(b, c) · ∇(c, a) · x

= ∇(a, b) · ∇(b, c) · z · ω(z, x)

= ∇(a, b) · y · ω(y, z) · ω(z, x)

= x · ω(x, y) · ω(y, z) · ω(z, x)

= x · dω(x, y, z),

using the defining equations for R and for dw for the two outer equality signs,
and using (3) three times for the middle three ones. Then (15) follows by
formula (10).

Remark. By [6] I.18, or in more detail, [7]), there is a bijective correspon-
dence between G-valued k-forms θ on a manifold P (where G is a Lie group,
say P−1P ), and differential k-forms θ, in the classical sense, with values in
the Lie algebra g of G (i.e. multilinear alternating maps TP×P ...×P TP → g.
Under this correspondence, the horizontal equivariant 2-form dω considered
in the Theorem corresponds to the classically considered ”curvature 2-form”
Ω on P , as in [20] II.4, [1] 5.3, or [4] V bis 4, (perhaps modulo a factor ±2,
depending on the conventions chosen). This is not completely obvious, since
Ω differs from the exterior derivative dω of the classical connection form ω by
a ”correction term” 1/2[ω, ω] involving the Lie Bracket of g; or, alternatively,
the curvature form comes about by modifying dω by a “horizontaliztion op-
erator” (this “modification” also occurs in the treatment in [19]). The fact
that this “correction term” (or the “modification”) does not come up in our
context can be explained by Theorem 5.4 in [7] (or see [6] Theorem 18.5); here
it is proved that the formula dω(x, y, z) = ω(x, y) · ω(y, z) · ω(z, x) already
contains this correction term, when translated into ”classical” Lie algebra
valued forms.

The Theorem has the following Corollary, which is essentially what [19]
call the infinitesimal version of Gauss-Bonnet Theorem (for the case where
G = SO(2)):

Corollary 1 Assume P−1P is commutative, and let the connection ∇ in
PP−1 have connection form ω. Then the unique G-valued 2-form Ω on M
with π∗Ω = dω is R (the curvature of ∇).
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Let us remark that [19] also gives a version of the Corollary for the non-
commutative case, their Proposition 6.4.1; this, however, seems not correct.
In this sense, our Theorem 2 is partly meant as a correction to Prop. 6.4.1,
partly a “translation” of it into the pure multiplicative principal bundle cal-
culus, which is our main concern.

6 Čech-de Rham theory of principal bundles

The characteristic classes of a smooth principal G-bundle P → M (G a Lie
group) arise, by the Chern-Weil procedure, from the curvature of an arbitrary
principal connection on P . The curvature itself is a gauge(PP−1)-valued 2-
form R on the base manifold M .

Since the bundle P itself may be presented by a G-valued Čech 1-cocycle
(=transition functions) on an open covering U on M , it is desirable to de-
scribe a connection, and hence its curvature, directly in terms of the G-valued
Čech cocycle g, together with the auxiliary data of a partitition of unity f
relative to U (with values in R, the reals); cf. [2] §23, “Concluding Remarks”.

The crux is the well-known possibility of forming affine combinations of
connections. In the present context, this is a consequence of the possibility of
forming affine combinations of a set of mutual 1-neighbours: if x0, ..., xn ∈M
are mutual 1-neighbours, and ti ∈ R have t0 + t1 + ...+ tn = 1, then

t0 · x0 + t1 · x1 + ... + tn · xn ∈M

may be defined, using some chart Rm →M around the xi’s, but the resulting
point in M does not depend on the chart chosen; see [15] Theorem 2.2.

Further, any (smooth) map preserves such affine combinations (and pre-
serves the property of being 1-neighbours). In particular, in the case where
M = G is a Lie group, and g ∈ G is an arbitrary element in it, we have for
an arbitrary set g0, ..., gn of mutual 1-neighbours

g · (t0 · g0 + ... + tn · gn) = t0 · g · g0 + ...+ tn · g · gn,

and similarly for multiplication by g on the right, so this looks deceptively
like high school arithmetic with numbers.

Assume, then, that U = {Uα}α∈I is an open cover of a manifold M , and
that g = {gαβ : Uα ∩ Uβ → G} (α, β ∈ I) is a G-valued Čech 1-cocycle on
U . Then, as usual, a (right) principal G-bundle on M is constructed as the
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set of equivalence classes of pairs (xα, g) = (x, α, g) with x ∈ Uα and g ∈ G,
under the equivalence relation

(xα, g) ≡ (xβ , g(xβ, xα) · g),

where we write g(xβ, xα) for gαβ(x).
Using a locally finite partition of unity f = {fα : Uα → R} (α ∈ I)

relative to U , we shall construct a principal connection ∇ on P . As an
auxiliary data, we construct first a G-valued 1-form θ on

∐
Uα, as follows.

Note that if yβ ∼ xα, then β = α, by disjointness of the coproduct, so it
suffices to define θ(yα, xα) for x ∼ y ∈M . We put

θ(yα, xα) :=
∑

γ

fγ(x) · g(yα, yγ) · g(xγ, xα).

We have first to argue that the combination makes sense. First,
∑

γ fγ(x) = 1
(with only finitely many significant terms), since {fγ} is locally finite, so the
combination is an affine one. Also, the g(yα, yγ) · g(xγ, xα), as γ ranges over
I, are mutual neighbours. For fix α and x. Then, as a function of y,

(g(yα, yγ) · g(xγ, xα))−1 · (g(yα, yβ) · g(xβ, xα))

is e if y = x, so is ∼ e if y ∼ x, hence

g(yα, yγ) · g(xγ, xα) ∼ g(yα, yβ) · g(xβ, xα)

for all γ ,β ∈ I. So the affine combination defining θ(yα, xα) makes sense.
We shall prove that

g(yβ, yα) · θ(yα, xα) = θ(yβ, xβ) · g(xβ, xα). (17)

Starting on the left hand side, we calculate

g(yβ, yα) · θ(yα, xα) = g(yβ, yα) ·
∑

γ

fγ(x) · g(yβ, yγ) · g(xγ, xα)

=
∑

γ

fγ(x) · g(yβ, yα) · g(yα, yγ) · g(xγ, xα) by high school arithmetic

=
∑

γ

fγ(x) · g(yβ, yγ) · g(xγ, xα) by the cocycle condition

=
∑

γ

fγ(x) · g(yβ, yγ) · g(xγ, xβ) · g(xβ, xα) by the cocycle condition
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= (
∑

γ

fγ(x) · g(yβ, yγ) · g(xγ, xβ)) · g(xβ, xα) by high school arithmetic

= θ(yβ, xβ) · g(xβ, xα).

This is the right hand side in (17), which thus is proved.
Using the G-valued 1-form θ on

∐
Uα, we define a principal connection ∇

on P → M as follows. Let x ∼ y in M , and let (xα, g) represent an element
in Px. So x ∈ Uα. By openness of Uα, y ∈ Uα as well, so yα makes sense, and
we can write down the following definition:

∇(y, x) · (xα, g) := (yα, θ(yα, xα) · g). (18)

We have to argue that this is well defined. Another representative for (xα, g)
is of the form (xβ , g(xβ, xα)·g); if we had used this representative, the defining
equation would give

∇(y, x) · (xβ , g(xβ, xα) · g) = (yβ, θ(yβ, xβ) · g(xβ, xα) · g)

= (yβ, g(yβ, yα) · θ(yα, xα) · g),

(by (17)), but this is equivalent to the right hand side of (18), by the definition
of ≡.

It is clear from the formula (18) that the ∇(y, x) thus defined is right
G-equivariant, thus gives a principal connection in P .

Let us calculate the curvature of ∇ in terms of θ, so let x, y, z be an
infinitesimal 2-simplex in M . The curvature R = R∇ takes this 2-simplex to
an element of the gauge group bundle of P , sitting over x, namely the rightG-
equivariant map Px → Px given by (xα, g) 7→ ∇(x, y)·∇(y, z)·∇(z, x)·(xα, g);
we calculate this using the defining equation of ∇ in terms of θ three times,
as follows (cf. Section 5),

∇(x, y)·∇(y, z)·∇(z, x)·(xα, g) = (xα, θ(xα, yα)·θ(yα, zα)·θ(zα, xα)·g) (19)

which we recognize as (xα, (dθ)(xα, yα, zα) ·g), with the standard coboundary
d of combinatorial differential forms.

Calculating instead the action of ∇(x, y) · ∇(y, z) · ∇(z, x) on another
representative of (xα, g), say (xβ , g(xβ, xα)·g), and utilizing that we know that
the ∇’s are well defined, we conclude in particular, by a simple calculation,
that

g(xβ, xα) · (dθ)(xα, yα, zα) = (dθ)(xβ , yβ, zβ) · g(xβ, xα). (20)
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We shall now be interested in the case where G is commutative, say
G = C∗, the nonzero complex numbers.

Then (20) implies that the G-valued 2-form dθ on
∐
Uα descends along

δ :
∐
Uα →M , i.e. that it is of the form δ∗(Ω) for a G-valued 2-form Ω on M ,

and, in fact, under the identification of G-valued forms with gauge(P )-valued
forms which is now available, the equation (19) just says that dθ = δ∗R

This gives us the possibility of describing the process which from g, f leads
to a connection (and hence to curvature and characteristic classes), in terms
of the G-valued Čech-de Rham double complex K••, as expounded in [2],
say. In the setting of SDG, this double complex arises from a bisimplicial set
K•• which we now describe. An element of the set Kp,q, i.e. a (p, q)-simplex,
is a (p + 1) × (q + 1) matrix where each row has the row property, meaning
that its entries are mutual neighbours (so each row forms an infinitesimal q
simplex, in the sense of [16]); and where each column has the column property
Meaning that its entries are of the form

(xα0
, . . . , xαp

)

for some x ∈ M (you may prefer to think of such a column as an x ∈ M
together with a p + 1-tuple of indices αi, such that x ∈ Uαi

for each i =
0, . . . , p). We note that if a matrix has the column property for all columns,
then the row property for just one row implies the row property for all rows.

The Kp,q jointly have a bisimplicial structure, with the face operators δi
and dj being, respectively, “omit the i’th row”, and “omit the jth column”.

Now let Kp,q be the set of maps from Kp,q to G (so Kp,q is the set of
G-valued Čech-de Rham (p, q)-cochains). If we temporarily use additive no-
tation in G (assumed commutative), we get the usual Čech coboundary op-
erators

δ :=
p

∑

i=0

(−1)iδi : Kp,q → Kp+1,q,

where δi is “composing with δi”; but we also get de Rham coboundary oper-
ators d by a similar formula

d :=
q

∑

j=0

(−1)jdj : Kp,q → Kp,q+1.

Returning to multiplicative notation, we have

θ ∈ K0,1 and g ∈ K1,0
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and the equation (17) may, by commutativity of G, be rewritten

θ(yα, xα)−1 · θ(yβ, xβ) = g(xβ, xα)−1 · g(yβ, yα),

which is to say
δ(θ) = d(g) ∈ K1,1.

The process which from the Čech cocycle g (and the partition of unity f , as
auxiliary data) leads to curvature R and hence characteristic classes, can be
described in terms of “homological tic-tac-toe” ([2]) in the double complex
K••, as follows:

R
δ∗ - •

θ

d

6

δ - •

g

d

6

δ - 0

where the (G-valued) deRham complex of M itself is the leftmost column,
corresponding to p = −1. (The connection, of which R is the curvature, has
been described during the construction, but does not fit into the diagram.
The connection form could be displayed if we expanded the bisimplicial set
into a tri-simplicial one, by considering also the simplicial kernel of P →M .)

Remark. Unlike the case of the real-valued Čech-de Rham bicomplex,
the zero row K•0 in K•• is not exact, since partitions of unity with values in
G are not in general available. However, the rows K•q for q > 0 are exact,
since the set of G-valued q-forms on M form a vector space, and so partitions
of unity can be used.
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