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REMARKS ON DETERMINANT LINE BUNDLES,

CHERN-SIMONS FORMS AND INVARIANTS1

Johan L. Dupont

and

Flemming Lindblad Johansen

Abstract. We study generalized determinant line bundles for families of principal
bundles and connections. We explore the connections of this line bundle and give con-
ditions for the uniqueness of such. Furthermore we construct for families of bundles
and connections over manifolds with boundary, a generalized Chern-Simons invariant
as a section of a determinant line bundle.

0. Introduction

Determinant line bundles were �rst constructed for families of Riemann surfaces
by D. Quillen in [Q]. This was generalized to higher dimensions by D. Freed (see e.g.
[F1], [F2]) and in Freed-Dai [DF] it was used to de�ne a generalization of the Atiyah-
Patodi-Singer �-invariant for families of Riemannian manifolds with boundary as
a section of the inverse line bundle associated to the family of boundaries. All
these constructions were analytical ones involving kernel/cokernels of di�erential
operators.

In this paper we shall study a geometric construction of determinant line bundles
going back to T. R. Ramadas, I. M. Singer and J. Weitsman (see [RSW]) for the case
of families of connections in trivial SU(2) bundles over closed surfaces and for more
general families of principal bundles to the work by L. Bonora, P. Cotta-Ramusino,
M. Rinaldi and J. Stashe� (see [BCRS]; see also Brylinski [B]).

The construction in section 1 requires a smooth, closed, even-dimensional man-
ifold X and a family of principal bundles over X, each with a connection, which
constitute a �bre bundle over Z. Together with an invariant polynomial this en-
ables us to calculate transition functions of a line bundle L over Z. In section 2 we
explore the connections of this line bundle. If the family Az of connections can be
extended into a connection in the Z-direction also, there is a canonical connection
of the line bundle. We describe these connections and determine when they are
independent of the extensions.

1Work supported in parts by Statens Naturvidenskabelige Forskningsr�ad, Denmark.
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Section 3 deals with generalizations of the Chern-Simons invariant. This was
originally de�ned by S. S. Chern and J. Simons in [Cher-S] (see also Cheeger-
Simons [Chee-S] or [DK]) for a single connection in a principal bundle over a closed
manifold. In analogy with the construction by Freed and Dai of an �-invariant
section of the determinant line bundle mentioned above, we de�ne, for a family of
bundles and connections over a family of manifolds with boundary, a natural section
cs (\Chern-Simons section") of the inverse line bundle which is an exponentiated
version of a generalized Chern-Simons invariant. Finally in Section 4 we make
a calculation of the line bundle, its connection and Chern-Simons section in the
simplest possible case of 
at connections over genus g surfaces. It appears that the
connection in this case is 
at and that the section is parallel.

Notation. The sign convention in this paper has been chosen in accordance with
Bott and Tu (see [BT]). If � is a form on X and � is a form on Y then integration
over the �bre in X � Y ! X is de�ned asZ

Y

� ^ � =

�Z
Y

�

�
�: (0.1)

This implies that di�erentiation commutes with integration over the �bre, i.e.
dX
R
Y
� ^ � =

R
Y
(dX�) ^ �.

1. Geometric Construction of a Determinant Line Bundle

First let us recall the construction of a line bundle as in [BCRS] for the following
data.

Geometric Data 1.1.

(1) A smooth, closed, oriented manifold X of dimension 2k � 2
(2) A Lie group G, a principal G-bundle P ! X and an invariant polynomial

P 2 Ik0 (G)
(3) A �xed connection A0 of P
(4) A �bre bundle P ! E ! Z, where each �bre has a connection and the

transition functions are gauge transformations homotopic to the identity

A few explanatory remarks here would seem to be in order:

i) The set of invariant polynomials of degree k, that is, of the G-invariant sym-
metric, multilinear functions in k variables on the Lie algebra g, is denoted
Ik(G); the subset Ik0 (G) of I

k(G) consists of the polynomials whose image
under the Chern-Weil homomorphism is an integral cohomology class. (See
[Cher-S].)

ii) Note the following consequence of the geometric data 1.1. Let Ui and Uj be
open subsets of Z over which E is trivial. Let Ai(z) be the pull-back of the
connection of the �bre Ez to P via the trivialization

Ui �P ! EjUi (1.2)

2



and Aj(z) correspondingly. If gij denotes the transition function, then on
Ui \ Uj

Aj(z) = Ai(z)
gij (z)

is the gauge transformed connection of Ai(z) by gij(z).

Let G denote the group of gauge transformations of P. If G is not connected it must
be replaced by the connected component of the identity.

Theorem 1.3. The geometric data 1.1 de�ne a complex line bundle L ! Z with
a Hermitian metric.

For the proof we need the following preparations: For the geometric data 1.1 and
a set of trivializations 'i : Ui�P ! EjUi with transition functions gij as above we
wish to construct transition functions �ij : Ui \Uj ! U(1) to get a line bundle. Let

~gij : Ui \ Uj � I ! G (1.4)

be a homotopy from gij to the identity such that ~gij(z; 0) = id and ~gij(z; 1) = gij.
~gij can be considered as a gauge transformation in the bundle P � I ! X � I.

In general, for two connections A0 and A1 in a principal bundle P ! M over a
manifold M , let A be the convex combination

A(p; s) = (1 � s)A0(p) + sA1(p); p 2 P; s 2 [0; 1] (1.5)

This is a connection in P�I !M�I. Let P 2 Ik0 (G) be an invariant polynomial of
degree k and let FA be the curvature of the connectionA. Then P (FA) is horizontal
and the lift of a basic form, which will also be denoted by P (FA). We de�ne the
di�erential (2k � 1)-form on M :

De�nition 1.6.

TP (A0; A1) = 2�

Z 1

s=0

P
�
FA
�
:

Note that
TP (A1; A0) = �TP (A0; A1): (1.7)

In the following we apply this to the bundle P � I ! X � I.

Lemma 1.8. The form TP
�
Ai; A

~gij
i

�
is closed.

Proof. Let i0(x; t) = (x; t; 0) and i1(x; t) = (x; t; 1) be the inclusions i� : X � I !
X � I � I, � = 0; 1, and let Aij(x; t; s) = (1� s)Ai(x) + sAi(x)~gij (x;t). We have the
equationy

d

Z 1

s=0

P (FAij
)�

Z 1

s=0

dP (FAij
) = i�0P (FAij

)� i�1P (FAij
):

yThe signs may look unusual but are in agreement with the sign convention of [BT].
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P is an invariant polynomial applied to a curvature form, so P (FAij
) is closed.

Hence

dTP
�
Ai; A

~gij
i

�
= i�0P (FAij

)� i�1P (FAij
)

= P (FAi
) � P (g�ijFAi

)

= P (FAi
) � g�ijP (FAi

)

= 0;

since P (FAi
) is a basic form and the gauge transformation gij acts as the identity

on the base. �

De�ne the function �ij on Ui \ Uj relative to a choice of a �xed connection A0 in
P ! X.

De�nition 1.9.

�ij(z) = exp

�
i

Z
X�I

TP
�
A0; A

~gij (z;t)
i (z; x)

��
:

In future calculations we shall omit the parameters z, x, and t.

Lemma 1.10. The function �ij is independent of the homotopy ~gij .

Proof. Let ~g1ij and ~g2ij be two homotopies of gij to the identity and let �1ij and �
2
ij

be calculated by means of these two respectively. Then

�
�1ij
��1

�2ij = exp i

�
�

Z
X�I

TP
�
A0; A

~g1ij
i

�
+

Z
X�I

TP
�
A0; A

~g2ij
i

��

= exp

�
i

Z
X�S1

TP
�
A0; A

g
i

��

= exp

�
2�i

Z
X�S1

Z 1

s=0

P
�
F(1�s)A0+sA

g
i

��
:

Here, g is the \homotopy" on S1 made up of the two contributions ~g1ij and ~g2ij . Then

g is a gauge transformation and hence an automorphism of the bundle P � S1 !
X � S1. Indeed,

P � S1
g�1

����! P � S1??y ??y
X � S1

id
����! X � S1
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commutes. Now consider the mapping torus of P � S1 given by

T = (P � S1) � I= �

where we identify ((p; t); 0) � (g�1 �(p; t); 1). T is di�eomorphic to P�S1�S1. The
convex combination (1� s)A0 + sAgi is a connection in the bundle P � S1 � I, but
by the construction of the mapping torus, it becomes a connection in T . In fact, the
connection in P �S1� I at ((p; t); 0) is A0, and the connection at (g�1 � (p; t); 1) is
Agi . The connection at ((p; t); 0) should equal the pull-back along the identi�cation
map of the connection at (g�1 � (p; t); 1). But the pull-back of Ag0 along g�1� is

just (g�1)�Ag0 = Agg
�1

0 = A0. With this in mind we can make a replacement of the

integral from above: If we let ~A be the connection on T obtained from (1�s)A0+sA
g
i

under the mapping torus construction,Z
X�S1

Z 1

s=0

P
�
F(1�s)A0+sA

g
i

�
=

Z
T

P
�
F ~A

�
: (1.11)

This is the integral of an invariant polynomial P 2 Ik0 (G) over a closed manifold,
and the result is an integer. Multiplying by 2�i and taking exp concludes the proof.

�

Lemma 1.12. Let Ui, Uj and Uk be three open subsets of Z with nonempty
intersection. Then �ij , �jk and �ik satisfy the cocycle condition, �ij�jk = �ik.

Proof. For z 2 Ui \ Uj \ Uk,

�ij�jk = exp i

�Z
X�I

TP
�
A0; A

~gij
i

�
+

Z
X�I

TP
�
A0; A

~gjk
j

��
:

Since A
~gij (z;1)
i = Aj and A

~gjk(z;0)
j = Aj , the integrands agree at the endpoints of

the intervals, and after a slight reparametrization,

~gik(z; t) =

�
~gij(z; 2t) if 0 � t � 1

2

gij~gjk(z; 2t � 1) if 1
2 � t � 1

is a homotopy from the identity to gjk. Hence the sum of the two integrals above isZ
X�I

TP
�
A0; A

~gik
i

�

and the result follows by lemma 1.8. �

Proof of Theorem 1.3.. The functions in de�nition 1.9 are well-de�ned by lemma
1.10 and satisfy the cocycle condition by lemma 1.12. Hence the f�ijg's are transi-
tion functions of a line bundle L. Note that the transition functions are U(1)-valued,
and hence L can be equipped with a Hermitian metric. This concludes the proof of
theorem 1.3. �
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Proposition 1.13. The isomorphism class of L is independent of the choice of A0.

Proof. For the proof of this we need to rewrite the transition functions �ij . Let �2

be the two-simplex

�2 = fs0; s1; s2 2 R j s0 + s1 + s2 = 1; si � 0 for i = 0; 1; 2g:

For three connections A0, A1, and A2 of the principal bundle P ! X the set of
convex combinations fs0A0 + s1A1 + s2A2 j (s0; s1; s2) 2 �2g will be a connection
of the bundle P ��2 ! X ��2. De�ne the di�erential (2k � 2)-form on Xy

TP (A0; A1; A2) = 2�

Z
�2

P
�
Fs0A0+s1A1+s2A2

�
:

An easy calculation shows that

dTP (A0; A1; A2) = �

2X
i=0

(�1)iTP (::; Âi; ::); (1.14)

where TP (::; Âi; ::) is the (2k�1)-form from de�nition 1.6 withAi omitted. Inserting

the three connections A0, Ai and A
~gij
i into dTP and integrating over X � I we get

Z
X�I

dTP
�
A0; Ai; A

~gij
i

�
=

Z
X�I

TP
�
A0; A

~gij
i

�
�

Z
X�I

TP
�
Ai; A

~gij
i

�
;

since
R
X�I TP (A0; Ai) = 0 from a dimension argument. On the other hand,

Z
X�I

dTP
�
A0; Ai; A

~gij
i

�
=

Z
X

TP
�
A0; Ai; Aj);

and it follows that

Z
X�I

TP
�
A0; A

~gij
i

�
=

Z
X�I

TP
�
Ai; A

~gij
i

�
+

Z
X

TP
�
A0; Ai; Aj

�
: (1.15)

Let �3 denote the three-simplex and for four connections A0, A1, A2, A3 de�ne the
(2k � 3)-form on X

TP (A0; A1; A2; A3) = 2�

Z
�3

P
�
Fs0A0+s1A1+s2A2+s3A3

�

yThe form P (Fs0A0+s1A1+s2A2
) is horizontal and can be identi�ed with a basic form.
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as above, but in one dimension higher. We have

dTP (A0; A1; A2; A3) = �
3X
i=0

(�1)iTP (::; Âi; ::); (1.16)

where the TP 's in the sum are the (2k � 2)-forms from above. Also note thatR
X
dTP (A0; A1; A2; A3) = 0. Now let A0 and A1 be two �xed connections of P,

and for � = 0; 1 let

��ij = exp i

Z
X�I

TP
�
A0; A

~gij
i

�
:

Rewriting the integrals as in (1.15) and applying (1.16) yields

�0ij
�
�1ij
��1

= exp i

�Z
X

TP
�
A0; Ai; Aj

�
�

Z
X

TP
�
A1; Ai; Aj

��

= exp i

�Z
X

TP
�
A0; A1; Ai

�
�

Z
X

TP
�
A0; A1; Aj

��
;

but this is a coboundary and hence the f�0ijg's and the f�1ijg's de�ne isomorphic
line bundles. �

Remark 1.17. Note that the proof provides explicit isomorphisms.

Proposition 1.18. Let X be a closed surface, let P = X � G be the product
bundle and P = �C2 = � 1

8�2
Tr, minus the second Chern polynomial. Then the

transition functions �ij de�ne the same line bundle as the one of Ramadas, Singer
and Weitsman in [RSW].

Proof. First recall that the line bundle of Ramadas, Singer and Weitsman is con-
structed by means of a 3-manifold Y that has X as boundary and by de�ning the
Chern-Simons functional

CS( �A) =
1

4�

Z
Y

Tr

�
��( �Ad �A�

2

3
�A �A �A)

�
mod 2�Z: (1.19)

Then a cocycle is de�ned onA�G, whereA is the space of connections of X�SU(2)
and G is the group of gauge transformations, by

�(A; g) = exp i(CS( �A�g) � CS( �A))

where �A is an extension of A into Y and �g is an extension of g. This gives a line
bundle on the manifold As

F =G, the set of 
at, irreducible connections of X �SU(2)
modulo G. Given a covering fUig and transition functions fgijg, the transition
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functions in the line bundle are given by �(Ai; gij) and we shall show that this
equals �ij .

Recalling that the curvature of the connection A is given by FA = A ^ A + dA
we get

TP
�
A0; A

~gij
i

�
= �

i

4�

Z 1

s=0

Tr
�
F 2

sA0+(1�s)A
~gij
i

�

= �
i

4�

Z 1

s=0

Tr
�
(sA0 + (1� s)A

~gij
i )2 + d(sA0 + (1� s)A

~gij
i )

�2

Calculation of this integral yields

�
�
A
~gij
i ^ dA

~gij
i +

2

3

�
A
~gij
i

�3�
+
�
A0 ^ dA0 +

2

3
A3
0

�
� d(A0 ^A

~gij
i );

and when integrated over X � I the terms in parentheses vanish, as does the term

d(A0 ^ A
~gij
i ). In fact we get the terms A0 ^ Ai and A0 ^ Aj with opposite signs

from the two ends of the cylinder, and since Ai and Aj are gauge equivalent the
two terms cancel out each other when pulled back to the base. What is left is then

�ij = exp
1

4�

Z
X�I

Tr
�
A
~gij
i ^ dA

~gij
i +

2

3
(A

~gij
i )3

�
: (1.20)

Now letW be the closed manifold Y [(X�I)[(�Y ), where �Y denotes Y with the
opposite orientation. The integrands of (1.19) and (1.20) agree at the boundaries
of the constituents of W , and letting B denote the connection

B =

8><
>:

�Ai on Y

A
~gij
i on X � I

�Aj on � Y

;

we have

�(Ai; gij)
�1�ij = exp i

�
1

4�

Z
W

Tr
�
��(BdB +

2

3
B3)

��
:

This contains an integral of a Chern-Simons form over a closed manifold. Hence the
contents of the parentheses is an integer multiple of 2�, and the whole expression
equals 1, which completes the proof. �

In [RSW], Ramadas, Singer, and Weitsman show that the line bundle L de�ned
by the transition functions in de�nition 1.9 is isomorphic to the Quillen determinant
line bundle LD that arises from the family f�@AjA 2 As

Fg.

Remark 1.21. A slightly more general version of the line bundle is obtained if we
consider two �bre bundles E and F as in the geometric data 1.1 with families of
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connections Az and Bz respectively, both with local trivializations as in (1.2) and
with homotopies ~gAij and ~gBij respectively as in (1.4). De�ne transition functions

�ABij = exp i
R
X�I

TP
�
B
~gBij
i ; A

~gAij
i

�
. It is an easy calculation to show that �ABij di�er

from the product �Aij(�
B
ij )

�1 by a coboundary and hence de�ne the same line bundle.

Here �Aij and �
B
ij denote the transition functions of the A-family and the B-family

respectively. In other words, given the two families A and B we get a line bundle
LAB . If the B-family is constant and equal to A0 we get the same line bundle as
the one de�ned by the transition functions in de�nition 1.9. If H is a third �bre
bundle with connections C we get three relative line bundles, LAB , LBC, and LAC,
and it is not di�cult to show that there is an isomorphism LAB 
 LBC �= LAC .

2. Connections in the Line Bundle

In this section we shall describe connections of the line bundle L constructed in
the previous section.

Theorem 2.1. Given the geometric data 1.1, let A be a connection of the principal
bundle E ! Z �X which �bre-wise restricts to the connection of each �bre of the
bundle E ! Z. Then the induced line bundle L with transition functions �ij from
de�nition 1.9 has a canonical Hermitian connection whose curvature is

2�i

Z
X

P (FA):

Remark 2.2. Thus, for a connection in L we need an extension of the family
fA(z)g to a connection also in the Z direction. However, corollary 2.10 below
gives conditions (e.g. when A(z) is 
at for all z 2 Z) insuring the connection to be
independent of choice of extension. Notice also that such an extension always exists.
This is easily seen by considering the �bre bundle E as a principal G-bundle, which
locally, has the form G ! Ui �P ! Ui �X. Pulling back Ai(z) via Ui � P ! P
and using partition of unity yields a connection of E ! Z �X.

In the following we shall see how a connection in E ! Z � X gives rise to a
canonical connection of the line bundle L. Again choose a �xed connection A0 in
P ! X, and let �ij be the transition functions for L given by de�nition 1.9. The
local connection one-forms are now given as follows.

De�nition 2.3. Let !i be the 1-form on Ui � Z

!i = �i

Z
X

TP (A0; Ai):
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Lemma 2.4.

��1ij d�ij = i

�
�

Z
X

TP (A0; Ai) +

Z
X

TP (A0; Aj )

�
:

Proof. By (1.15),

�ij = exp i

�Z
X�I

TP (Ai; A
~gij
i ) +

Z
X

TP (A0; Ai; Aj )

�
;

where Ai and Aj are the pull-backs of the connections in EjUi ! Ui and EjUj ! Uj .
It is obvious that

d�ij = d exp i

�Z
X�I

TP (Ai; A
~gij
i ) +

Z
X

TP (A0; Ai; Aj )

�

= i�ijd

�Z
X�I

TP (Ai; A
~gij
i ) +

Z
X

TP (A0; Ai; Aj )

�

and so

��1ij d�ij = i

�
d

Z
X�I

TP (Ai; A
~gij
i ) + d

Z
X

TP (A0; Ai; Aj )

�
: (2.5)

Note that this is a di�erential form on Ui\Uj and of course depends on z 2 Ui\Uj.
The two terms are treated separately. First,

dZ

Z
X�I

TP (Ai; A
~gij
i ) =

Z
X�I

dTP (Ai; A
~gij
i ) �

Z
X�I

dX�ITP (Ai; A
~gij
i ):

The integral
R
X�I dTP (Ai; A

~gij
i ) is zero by lemma 1.8. The second term evaluates

to Z
X�I

dX�ITP (Ai; A
~gij
i ) = �

Z
X

TP (Ai; Aj):

The second integral in (2.5) is treated in the same way, i.e.

dZ

Z
X

TP (A0; Ai; Aj ) =

Z
X

dTP (A0; Ai; Aj )�

Z
X

dXTP (A0; Ai; Aj):

Stokes' theorem shows that the second term in this expression is zero, and by (1.14),

Z
X

dTP (A0; Ai; Aj) =

Z
X

�
�TP (A0; Ai) + TP (A0; Aj )� TP (Ai; Aj )

�
:
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This leads to

��1ij d�ij = i

�
�

Z
X

TP (A0; Ai) +

Z
X

TP (A0; Aj )

�
:

�

Note that !i is purely imaginary, and hence the connection is Hermitian.

Next, we calculate the curvature of !i. Since L is a line bundle, ! ^! = 0, and the
curvature of ! is just d!. It su�ces to show that

d!i = 2�i

Z
X

P (FAi
):

This is a direct calculation. According to the sign convention, integration along the
�bre commutes with the di�erential dZ .

d!i = �id

Z
X

TP (A0; Ai)

= �2�idZ

Z
X

Z 1

s=0

P (F(1�s)A0+sAi
)

= �2�i

Z
X

Z 1

s=0

dZP (F(1�s)A0+sAi))

= �2�i

Z
X

Z 1

s=0

(d � dX � ds)P (F(1�s)A0+sAi
)

= �2�i

Z
X

Z 1

s=0

dP (F(1�s)A0+sAi
) + 2�i

Z
X

dX

Z 1

s=0

P (F(1�s)A0+sAi
)

+ 2�i

Z
X

Z 1

s=0

dsP (F(1�s)A0+sAi
)

= 2�i

Z
X

P (FAi
)� 2�i

Z
X

P (FA0
)

= 2�i

Z
X

P (FAi
);

since the terms containing d and dX vanish; the form 2�i
R
X
P (FA0

) vanishes, since
it is independent of z 2 Z.

This concludes the proof of theorem 2.1. �

We shall now investigate how the connection of the line bundle depends on the
connection A of the principal bundle E ! Z �X. Given a connection AE in E,
AE can be written locally as

AEi = Ai +Bi; (2.6)
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where Ai contains all terms involving derivations in P-direction (dp's) and Bi con-
tains all terms involving derivations in Z-direction (dz's). If two di�erent connec-
tions AE1 and AE2 in E induce the same family fAi(z)gz2Ui in P then, locally

AE1;i = Ai +B1;i; AE2;i = Ai +B2;i (2.7)

because both AE1;i and A
E
2;i restrict to Ai(z) for �xed z.

Theorem 2.8. Let A1 and A2 be two connections of the bundle E ! Z �X. Let
!1 and !2 be two connections in the associated line bundle as de�ned in de�nition
2.3. Assume that both A1 and A2 restrict to A(z) for each z 2 Z. Then

!2 � !1 = �k

Z
X

P (F k�1
A ^ �):

Here k is the degree of P and � = A2 �A1 is a horizontal 1-form in E ! Z so that
the integral only involves the curvatures FA(z) along the �bres.

Proof. Consider a subset Ui � Z such that the local considerations from above
apply, i.e. !i can be calculated explicitly by the expression in de�nition 2.3. In the
proof the index i is left out. The �rst step is to show that !2�!1 = �i

R
X
TP (A1; A2).

It has already been shown that

dZ

Z
X

TP (A0; A1; A2) = �

Z
X

TP (A0; A1) +

Z
X

TP (A0; A2)�

Z
X

TP (A1; A2):

Hence it su�ces to show that dZ
R
X
TP (A0; A1; A2) = 0. Write A1 = A +B1 and

A2 = A +B2 and considerZ
X

TP (A0; A1; A2) = 2�

Z
X

Z
�2

P (Fs0A0+s1A1+s2A2
)

which is a function on Z and therefore can be calculated pointwise. Let A =
s0A0 + s1A1 + s2A2 and write FA = dA+A ^A as

FA = � + �+  ; (2.9)

where � contains all terms involving ds's, � contains all terms involving dx's only,
and  contains all terms involving dz's. Now, a term in the integralZ

X

Z
�2

P (FA ^ ::: ^ FA)

contributes with something non-vanishing when it contains exactly (2k � 2) dx's
and two ds's, i.e. such terms contain no  's. Hence, one can replace both A1 and
A2 by A and calculate:

dZ

Z
X

TP (A0; A1; A2) = dZ

Z
X

TP (A0; A;A) = 0:

12



This concludes the �rst step.

The second step deals with
R
X
TP (A1; A2). Recall that TP (A1; A2) is given by

2�
R 1
s=0

P (F(1�s)A1+sA2
). Splitting up A1 and A2 as in (2.7) gives

(1� s)A1 + sA2 = A+B1 + s(B2 �B1):

Then a calculation yields

F(1�s)A1+sA2
= FA + ds ^ � + 
;

where � = B2 � B1 and 
 do not contain any terms involving ds or dx's. Since P
is an invariant polynomial of degree k,

Z 1

s=0

P (F(1�s)A1+sA2
) =

Z 1

s=0

P
�
F(1�s)A1+sA2

^ ::: ^ F(1�s)A1+sA2

�

=

Z 1

s=0

P
�
(FA + � + 
) ^ ::: ^ (FA + � + 
)

�

=

Z 1

s=0

P
�
F k�1
A ^ � + F k�2

A ^ � ^ FA + :::+ � ^ F k�1
A

�

+

Z 1

s=0

R(s; x; z)

= k

Z 1

s=0

P (F k�1
A ^ �) +

Z 1

s=0

R(s; x; z)

= �kP (F k�1
A ^ �) +

Z 1

s=0

R(s; x; z);

where R contains all terms which are not on the form F k�1
A ^ �. Note that all the

terms containing 2k�2 derivations in the X-direction have been accounted for since
such forms must contain (k � 1) times FA. The form R(s; x; z) contains no such
terms and hence Z

X

Z 1

s=0

R(s; x; z) = 0:

This concludes the proof. �

Corollary 2.10. Assume that A1 = A+B1 and A2 = A+B2 are two connections
in E which agree along the �bres of E ! Z. If F k�1

Az
= 0 for each z, then A1 and

A2 induce the same connection !i in the associated line bundle. In particular this
happens when each Az is 
at. �

Remark 2.11. This construction covers the one of D. Freed (see [F1]) for a family
of Riemannian manifolds at least in the case of varying metrics on a �xed manifold
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X. In this case let Pz = F (X) be the oriented orthogonal frame bundle of X
with the Levi-Civita connection Az of the metric of the �bre, and let P be the
Â-polynomial. The curvature of the line bundle is 2�i

R
X
Â(FA).

Example 2.12. The case of [RSW]. Let X be a closed surface and P = X�SU(2).
To compare our connection and its curvature to the case in [RSW] consider ! as a
1-form on A. Let A 2 A, and � 2 TAA. Let 
 : (��; �) ! A be a curve such that

(0) = A, and 
0(0) = �. Then

!(�) = !
�

�(

d

dt
)
�
= 
�!(

d

dt
):

Since A is an a�ne space we can let 
(t) = A + t�. We wish to compare ! to
the form !̂RSW from [RSW] given by !̂RSW(�) = i

4�

R
X
Tr(A ^ �). Write A as

A = A0 +B, where A0 is a 
at connection. Then

(1) TP (A0; A) =
1
4�

Tr(BdA0
B + 2

3
B3)

(2) !(�) = i
4�

R
X
Tr(B ^ �),

where in this case P = �C2 = � 1
8�2

Tr is minus the second Chern polynomial. The
curvature is obtained from this and yields

d!(�; �) =
i

2�

Z
X

Tr(� ^ �)

in agreement with [RSW].

Remark 2.13. The connection one-form of the relative line bundle described in
Remark (1.27) is given by !ABi = �i

R
X
TP (Bi; Ai).

3. The Chern-Simons Invariant

We shall now extend the de�nition of the Chern-Simons invariant to a family of
bundles and connections over a family of odd-dimensional manifolds with boundary.
In this situation the Chern-Simons invariant determines a section of the inverse line
bundle L�1, where L is the line bundle constructed in section 1 for the family
of boundaries. In the case of a single bundle �P with connection �A over an odd-
dimensional manifold Y with boundaryX the Chern-Simons invariant of �A must be
de�ned relative to some "boundary conditions". For these we take once and for all
a �xed manifold Y0 with @Y0 = X together with a principal bundle �P0 ! Y0 with
connection �A00 extending our background connectionA0 on P overX. In the special
case of P = X�G we can take �P0 = Y0�G and A00 the Maurer-Cartan connection.
With these data we can now de�ne the relative Chern-Simons invariant cs( �A; �A00)
for P 2 I�0 (G) as follows. Consider the "glued" manifoldW = Y [ (X � I) [ (�Y0)
with G-bundle �P [ (X � I �G) [ �P0 and connection �B given by

�B =

8><
>:

�A on Y

(1� t)A + tA0 on X � I �G

�A00 on � Y0

14



Then we put
cs( �A; �A00) = exp

�
2�ihSP ( �B); [W ]i

�
; (3.1)

where SP ( �B) is the secondary characteristic class for the connection �B as de�ned
by Cheeger-Chern-Simons [Cher-S] or [Chee-S] (see also [DK]).

Returning to the case of a family we thus have the following general setup with
the above "boundary conditions" as point (5):

Geometric Data 3.2.

(1)-(4) as in the geometric data 1.1
(5) A smooth, compact, oriented, odd-dimensional manifold Y0 with @Y0 = X

and a principal G-bundle �P0 ! Y0 which extends P, i.e. �P0jX = P, and a
connection �A00 which extends A0.

(6) A smooth, compact, oriented, odd-dimensional manifold Y with @Y = X
and a principal G-bundle �P ! Y which extends P, i.e. �PjX = P,

(7) A �bre bundle �P ! �E ! Z, where each �bre has a connection �Az which
extends Az and such that the transition functions are gauge transformations
homotopic to the identity

Theorem 3.3. The geometric data 3.2 determine a global section cs of the inverse
line bundle L�1 ! Z. Furthermore, for an extension if �A to a connection in the
G-bundle �E ! Z � Y ,the covariant derivative of cs with respect to the connection
of section 2 is

r �A(cs) = 2�i

Z
Y

P (F �A)
 cs:

Corollary 3.4. Given the geometric data 3.2 the associated line bundle L is trivial.

For the proof of theorem 3.3 we choose a covering fUig of Z and local trivializa-
tions of �E

�'i : �EjUi ! Ui � �P: (3.5)

This gives rise to a connection �Ai(z) =
�
�'�1i

�� �Az in �P for each z 2 Z. The
trivializations give transition functions over Ui0 \ Uj0 :

�gij : Ui \ Uj ! �G; (3.6)

where �G is the group of gauge transformations of �P. Of course these trivializations
restrict to local trivializations of the boundary. Also choose a connection �A0 in
�P ! Y extending A0.

De�ne a section of the inverse line bundle L�1 = L� as follows. Over Ui, the section
is de�ned by

csi(z) = cs( �A0; �A00) � exp i

�
�

Z
Y

TP ( �A0; �Ai)

�
: (3.7)
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Lemma 3.8. The local sections de�ned in (3.7) patch together to a global section
of L�, independent of choice of �A0.

Proof. On Ui \Uj the transition function �ij \from Ui to Uj" (cf. de�nition 1.9) is
given by:

�ij (z) = exp i

�Z
X�I

TP (Ai(z); A
~gij
i (z)) +

Z
X

TP (A0; Ai(z); Aj (z))

�
:

Hence the transition functions ��ij of L
� are ��ij = ��1ij = �ji, or

��ij = exp i

�
�

Z
X�I

TP (Ai; A
~gij
i )�

Z
X

TP (A0; Ai; Aj)

�
:

On Ui \Uj we must show the compatibility condition csj = csi�
�
ij . To see this �rst

consider c�10 csi�
�
ij , where c0 = cs( �A0; �A00). Then

c�10 csi(z)�
�
ij (z)

= exp i

�
�

Z
Y

TP ( �A0; �Ai(z)) �

Z
X�I

TP (Ai(z); A
~gij
i (z))

�

Z
X

TP (A0; Ai(z); Aj (z))

�

= exp i

�
�

Z
Y

TP ( �A0; �Aj(z)) +

Z
Y

TP ( �Ai; �Aj )�

Z
X�I

TP (Ai(z); A
~gij
i (z))

�
;

since

�

Z
X

TP (A0; Ai; Aj ) =

Z
Y

TP ( �A0; �Ai) �

Z
Y

TP ( �A0; �Aj) +

Z
Y

TP ( �Ai; �Aj ):

Claim. Z
X�I

TP (Ai(z); A
~gij
i (z)) =

Z
Y

TP ( �Ai(z); �Aj (z)) mod 2�Z:

To show this we observe that

�

Z
Y

TP ( �Ai(z); �Aj (z)) =

Z
�Y

TP ( �Ai(z); �Aj (z));

where �Y denotes Y with the opposite orientation. Recall that by antisymmetry,R
Y
TP ( �Ai(z); �Ai(z)) = 0. Then consider the closed (2k�1)-manifoldW = Y [X�f0g

(X � I) [X�f1g (�Y ), where a connection B can be de�ned as

B(z) =

8><
>:

�Ai(z) on Y

A
~gij
i (z) on X � I

�Aj(z) on � Y

16



X � I

0 1
�YY

Figure 1. W = Y [X�f0g (X � I) [X�f1g (�Y )

The problem now reduces to showing that

Z
W

TP ( �Ai(z); B(z)) = 0 mod 2�Z: (3.9)

By earlier remarks there exists a gauge transformation �gij on �P such that �A
�gij
i = �Aj .

Then there is a gauge transformation g given by

h =

8><
>:

id on Y

~gij on X � I

�gij on � Y

such that B = �Ahi . With this the integral in (3.9) reads

Z
W

TP ( �Ai(z); �A
h
i (z));

or, with the de�nition of TP

2�

Z
W

Z 1

s=0

P
�
F(1�s) �Ai(z)+s �A

h
i (z)

�
: (3.10)

Now, at the ends of the manifold W � I, the di�erential form under the integral
are P (F �Ai(z)

) and P (F �Ah
i (z)

) respectively, but since we are dealing with forms on

the base, these two forms agree. Again we apply the mapping torus of �P. This
is �P � I= �, where (p; 1) � (h � p; 0), which on the base is just W � I= � with
(w; 1) � (w; 0). In other words the integral in (3.10) can be rewritten as

Z
W�S1

P
�
F(1�s) �Ai(z)+s �Ah

i
(z)

�
;

which is integer valued. This concludes the proof of the compatibility condition.
Next we show that the section does not depend on the extension �A0 of the connection
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A0. Let A0 be a connection in P. Let �A0 and �A0
0 be two connections in �P extending

A0. Let csi and cs0i be de�ned over Ui by

csi(z) = c0 exp i

Z
Y

TP ( �A0; �Ai(z)); cs0i(z) = c00 exp i

Z
Y

TP ( �A0
0;

�Ai(z))

with c0 = cs( �A0; �A00), c00 = cs( �A0
0;

�A00). Then

�
c�10 csi(z)

��1
c00cs

0
i(z) = exp i

�Z
Y

TP ( �A0; �Ai(z)) �

Z
Y

TP ( �A0
0;

�Ai(z))

�

= exp i

�Z
Y

TP ( �A0; �A
0
0) +

Z
X

TP (A0; A0; Ai(z))

�

= exp i

Z
Y

TP ( �A0; �A
0
0):

On the other hand, by (3.1) we have

c0(c
0
0)
�1 =exp

�
2�ihSP ( �B) � SP ( �B

0); [W ]i
�

exp

�
�i

Z
W

TP ( �B; �B0)

�
= exp

�
�i

Z
Y

TP ( �A0; �A
0
0)

�
:

by [DK] (2.10). This proves that cs is a well-de�ned section. Finally we calculate
the covariant derivative of the section with respect to the connection obtained in
section 2. Locally we have, using the formula for csi with c0 = cs( �A0; �A00):

dcsi = c0d exp

�
�i

Z
Y

TP ( �A0; �Ai)

�

= �idZ

Z
Y

TP ( �A0; �Ai) 
 csi

= �2�i

Z
Y

Z 1

s=0

dZP (F(1�s) �A0+s �Ai
) 
 csi

= �2�i

Z
Y

Z 1

s=0

(d� dY � ds)P (F(1�s) �A0+s �Ai
)
 csi

= 0� i

Z
X

TP (A0; Ai)
 si � 2�i

Z
Y

P (F �A0
)
 csi + 2�i

Z
Y

P (F �Ai
) 
 csi:

Here the form 2�i
R
Y
P (F �A0

) is zero, since it does not depend on z 2 Z. On the
other hand, the one-form !i that determines the connection of L was given by

!i = �i

Z
X

TP (A0; Ai);
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cf. de�nition 2.3. Hence the connection of L� is determined by the one-form

!�i = i

Z
X

TP (A0; Ai): (3.11)

It follows that

r(csi) = !�i 
 csi + dcsi = 2�i

Z
Y

P (F �Ai
)
 csi;

and hence, globally

r(cs) = 2�i

Z
Y

P (F �A) 
 cs:

�

Remark 3.12. The Chern-Simons section of the relative line bundle from remark
1.27 is given locally by csABi (z) = exp(�i

R
Y
TP ( �Bi(z); �Ai(z)), and its covariant

derivative is rAB(csABi ) = 2�i(
R
Y
P (F �Ai

) �
R
Y
P (F �Bi

))
 csABi .

4. Application to handle bodies

As an example we apply our results to a family of 
at connections over a genus
g surface X. We shall show the following:

Proposition 4.1. Let X be a genus g surface and Y the corresponding handle
body such that @Y = X. Let �z : �1(Y ) ! SU(2) be a family of representations
of the fundamental group of Y indexed by a manifold Z and choose one of these as
boundary condition. Then these data de�ne a line bundle L ! Z with a canonical

at connection and an everywhere non-zero Chern-Simons section which is parallel.

Proof. Let Y be the \massive interior" of X such that @Y = X. The homotopy
type of Y is the same as g circles, so the fundamental group is the free abelian
group with g generators.

y0

Figure 2. A genus 2 handle body with generators of the fundamental group
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Let ~Y be the fundamental covering of Y and � : ~Y ! Y the projection. Let

� : �1(Y )! SU(2)

be a representation of the fundamental group of Y . Let

~Y �� SU(2)

be the quotient by the equivalence relation (~y ��; g) � (~y; �(�)g) for � 2 �1(Y ). This
is a principal SU(2)-bundle over Y ; it is well-known that it is trivial. A set of such
representations f�zgjz2Z determine a family of (trivial) principal SU(2)-bundles Pz
and hence a line bundle L ! Z, cf. theorem 1.3. Now let U be a plane disc with g
holes and note that there is a deformation retraction

r : Y ! U:

Then the above family of 
at principal bundles is induced from U via r. It fol-
lows from dimension reasons that the integrals in the formulae of theorem 2.1 and
theorem 3.3 vanish, i.e., the connection has zero curvature, and the Chern-Simons
section is parallel. �
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