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SHAPE DISCRIMINATION BY TOTAL CURVATURE,
WITH A VIEW TO CANCER DIAGNOSTICS

R. J. GARDNER, A. HOBOLTH, E. B. V. JENSEN, AND F. B. SØRENSEN

Abstract. This paper studies the use of total curvature for shape discrimination of objects
via profiles of their planar sections (not assumed star shaped). Methods of estimating to-
tal curvature from observation of a finite number of points on the boundary of the object
are investigated, including a simple discrete approximation method and various interpolation
methods. Total curvature is capable of revealing shape differences on a local scale, as demon-
strated by the analysis of two data sets of malignant and normal or benign tumor cell nuclear
profiles.

1. Introduction

Diagnostic examination of tissue samples from neoplasms is performed every day by pathol-
ogists. A number of morphological features are subjectively evaluated in the diagnostic dis-
crimination between benign and malignant cell proliferations. On the macroscopic scale, ma-
lignant neoplasms (cancers) appear less ordered than benign and normal tissue from which the
malignant proliferations may have derived. On the microscopic scale, the nuclear chromatin
texture, the nuclear size and variability of nuclear size are recognized cytological parameters
that are evaluated in the diagnosis of malignancy. Furthermore, the architectural pattern of
the tumor histology is used in the process of malignancy grading. Stereological methods of
estimating some of these parameters have been developed in [13, 14, 15, 22]. The shape of
cell nuclei also appears to be an important parameter for some types of cancers. Often, the
boundary of cell nuclei from cancer tissue are more irregular on a local scale; see [4, 9, 12].

In the shape literature, various types of shape descriptors of planar objects have been
studied; see [1] and [21, Part II] for a review. The most familiar is the geometric shape
ratio 4πA/B2, where A is the area of the object and B its boundary length. Most of these
shape descriptors are not directed specifically to reveal shape differences on a local scale. For
instance, cell nuclei with a locally irregular boundary may have a small value of 4πA/B2 but
such a small value can also be obtained for a very elongated, but locally smooth object.

In [12] (see also [10, 11]), parametric shape modelling is studied in relation to cancer diag-
nostics. Using the suggested p-order model, global and local shape differences can be detected.
However, the model described in [12] only applies to star-shaped objects. For certain types
of cancer this is a serious limitation because the boundaries of cancer cell nuclei can be very
irregular and certainly not in general star shaped.
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In the present paper we study the use of total curvature as a means of shape discrimination,
with particular reference to cancer diagnostics. Total curvature is, as a shape discriminator,
surely local and can be defined for non-star-shaped objects. Furthermore, for convex objects,
the total curvature is always equal to 2π. Total curvature can therefore also be regarded as a
measure of convexity or non-convexity.

In Section 2, we define total curvature and provide various formulas for calculating it.
In Section 3, estimation of total curvature from discrete data is discussed, and in Section
4 indicators of convexity are considered. Examples of the use of total curvature in cancer
diagnostics are given in Sections 5 and 6. Clinical consequences of our work are outlined in
Section 7.

2. Total curvature and Fenchel’s theorem

Let P be a closed polygon in Rn, that is, a polygonal arc with vertices p0, . . . , pm−1, pm,
where pm = p0 and pi 6= pi+1 for i = 0, . . . ,m−1. Let ψi be the exterior angle at pi, that is, the
angle between the prolongation of the edge [pi−1, pi] and the edge [pi, pi+1], or, alternatively,
between the vectors pi − pi−1 and pi+1 − pi. (See Figure 1; throughout the paper indices will
be taken modulo m.) Then the total curvature M(P ) of P is defined to be

M(P ) =
m−1∑
i=0

ψi.

Let C be any closed curve in Rn. The total curvature M(C) of C is defined by

(1) M(C) = sup{M(P ) : P is a polygon inscribed in C}.

C

ψ

pi+1

pi

i

pi-1P

Figure 1. A polygon P inscribed in a curve C.

There is a convenient alternative definition when the curve C is C2; if κ(s) is the signed
curvature of C at the point where the arc length, measured from some base point in some
preferred direction around C, is s, then

(2) M(C) =

∫

C

|κ(s)| ds.



SHAPE DISCRIMINATION 3

More generally, if C is piecewise C2 on arcs Ai, i = 0, . . . , m− 1, whose union is C, then

(3) M(C) =
m−1∑
i=0

∫

Ai

|κ(s)| ds +
m−1∑
i=0

ψi,

where ψi is the exterior angle at the point pi where Ai−1 and Ai meet. The definition of ψi

is the intuitive one, namely, the angle between the appropriately directed tangent vectors to
Ai−1 and Ai at pi.

The above definitions are well known, but the concept of total curvature is surprisingly
elusive in the literature (at least in book form). Our definition (1) coincides with that utilized
by Milnor [18], who attributes it to the mathematician R. H. Fox. The alternative definition
(2) is more widely used, but of course it applies only to C2 curves. The fact that (1), (2), and
(3) are consistent is proved by Milnor [18, Section 2].

Proposition 2.1. Let C be a closed curve in Rn. Then

M(C) ≥ 2π,

with equality if and only if C is the boundary of a two-dimensional compact convex set.

In this paper we shall only employ Proposition 2.1 when n = 2 and refer to the result
as Fenchel’s theorem. In fact, Fenchel proved the theorem for C2 curves and n ≤ 3, and
the extension to C2 curves and n ≥ 2 was carried out by K. Borsuk. The general result
stated above is established by Milnor [18, Theorem 3.4], where references can also be found.
Far-reaching extensions to manifolds are stated in [2, Section 29].

A possible point of confusion arises because some authors, for example Santaló [20, p. 113],
define total curvature as in (2) (or, more generally as in (3)) but with the absolute value
signs removed. In this case, when C is a simple closed curve in R2, the expression is always
equal to ±2π, the sign depending on the orientation of the curve; this is a special case of the
Gauss-Bonnet theorem (see, for example, [7]).

Some authors refer to the theorem of turning tangents when discussing such results. This
is because

(4) M(C) =

∫

C

|κ(s)| ds =

∫

C

‖T ′(s)‖ ds,

where T (s) denotes the unit tangent vector to C at s. It follows that M(C) measures how
much the tangent turns as a point moves around C, or, in other words, how crooked the
boundary of C is.

For the sequel it will be convenient to have some more explicit formulas in hand. If P is
the closed polygon defined above, we clearly have

(5) M(P ) =
m−1∑
i=0

arccos

(
(pi − pi−1) · (pi+1 − pi)

‖pi − pi−1‖ ‖pi+1 − pi‖
)

.

Let A be an arc in R2, parameterized by a parameter t, so that A = A(t) = (f(t), g(t)) for
0 ≤ t ≤ 1. Then arc length is given by

s =

∫ s

0

(
f ′(t)2 + g′(t)2

)1/2
dt,
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so we have
ds

dt
=

(
f ′(t)2 + g′(t)2

)1/2
.

The formula for the curvature κ(t) is (see, for example, [8, p. 11])

κ(t) =
f ′(t)g′′(t)− g′(t)f ′′(t)

(f ′(t)2 + g′(t)2)3/2
,

and it follows that ∫

A

|κ(s)| ds =

∫ 1

0

∣∣∣∣
f ′(t)g′′(t)− g′(t)f ′′(t)

f ′(t)2 + g′(t)2

∣∣∣∣ dt.

The total curvature of a piecewise C2 curve may be calculated from this and (3) by the formula

(6) M(C) =
m−1∑
i=0

∫ 1

0

∣∣∣∣
f ′i(t)g

′′
i (t)− g′i(t)f

′′
i (t)

f ′i(t)2 + g′i(t)2

∣∣∣∣ dt +
m−1∑
i=0

ψi,

where Ai = Ai(t) = (fi(t), gi(t)) for 0 ≤ t ≤ 1 and

ψi = arccos

(
f ′i(0)f ′i−1(1) + g′i(0)g′i−1(1)

[
(f ′i(0)2 + g′i(0)2)

(
f ′i−1(1)2 + g′i−1(1)2

)]1/2

)
,

for i = 0, . . . ,m− 1.
It may happen that the curve C is a simple closed curve containing the origin in its interior

that bounds a region star shaped with respect to the origin. In this case we can describe C
as a function r(θ), 0 ≤ θ ≤ 2π, in polar coordinates. When C is C2, we have

(7) M(C) =

∫ 2π

0

|γ′(θ)| dθ =

∫ 2π

0

∣∣∣∣
r2 + 2(r′)2 − rr′′

r2 + (r′)2

∣∣∣∣ dθ,

where the previous integrand is the absolute value of the curvature of C in polar coordinates
and 0 ≤ γ(θ) < 2π is the angle between the tangent line to C at the point (r, θ), directed in
the counterclockwise sense, and the positive x-axis.

3. Total curvature from discrete data

Suppose that the closed curve C in R2 is only accessible via a finite set of points p0, . . . , pm−1

in C, where it is assumed that these points occur in order of increasing arc length around C
measured from some fixed base point. How can M(C) be estimated?

Perhaps the simplest method is to define

(8) MD(C) = M(P ),

where P is the polygon with vertices p0, . . . , pm−1 and M(P ) is given by (5). Then MD(C) is
an estimate of M(C).

In practice, however, the fact that total curvature is not continuous in the Hausdorff metric
may sometimes cause extra difficulties. If D and E are closed curves in R2, we can estimate
how close they are by the Hausdorff distance

δH(D′, E ′) = max{max
x∈D′

d(x,E ′), max
x∈E′

d(x,D′)}
between the compact sets D′ and E ′ they enclose, where d(x,M) denotes the distance between
the point x and the set M . The “cookie cutter” on the right in Figure 2 is close in this sense to



SHAPE DISCRIMINATION 5

the circle on the left, but has much larger total curvature. Suitable polygonal approximations
to these curves would clearly exhibit the same phenomenon. We will address this problem in
Section 5.

Figure 2. Closed curves with very different total curvatures.

Another natural method of estimating M(C) is to generate a suitable simple closed curve
Cm that interpolates the points p0, . . . , pm−1, p0, and then calculate the total curvature of
Cm. Suppose that Cm is piecewise C2, the union of C2 arcs Ai with endpoints pi and pi+1,
i = 0, . . . , m− 1. Then we can estimate M(C) by MA(C), where

(9) MA(C) = M(Cm),

and M(Cm) is given by (3).
Cubic spline and Fourier interpolation are discussed in the Appendix. Figure 3 illustrates

these two interpolation procedures. On the left is a closed polygon with 30 vertices (actually
one of the cell nuclear profiles in the data set shown in Figure 4). The center image depicts
the cubic spline interpolation, and the right-hand image shows the Fourier interpolation.
We let MAS(C) and MAF (C) be the estimates of M(C) based on cubic spline and Fourier
interpolation, respectively.

Figure 3. Approximating polygon, cubic spline, and Fourier interpolation.

Yet another approach to estimate M(C) is to compute the natural discrete approximation
to the integrals in the various expressions for M(C). We illustrate in the situation where C
is given as a function r(θ) in polar coordinates as above, and the given points on C are of the
form pi = (r(θi), θi), i = 0, . . . , m− 1, where

0 ≤ θ0 < · · · < θm−1 < 2π

holds and moreover θi+1 − θi = ∆ for i = 0, . . . , m− 1. (The assumption that the angles are
equally spaced can be avoided and is merely a matter of convenience.) We have

r′(θi) ≈ r(θi+1)− r(θi)

∆
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and

r′′(θi) ≈ r(θi+2)− 2r(θi+1) + r(θi)

∆2
,

for i = 0, . . . ,m− 1. Substituting these quantities into the discrete form of (7), we obtain

(10) MI(C) = ∆
m−1∑
i=0

∣∣∣∣1 +
r(θi+1)

2 − r(θi)r(θi+2)

r(θi)2∆2 + (r(θi+1)− r(θi))
2

∣∣∣∣ .

Then MI(C) can be used to estimate M(C).

4. Indicators of convexity

The convexity of a set E in Rn can be tested by examining its two-dimensional sections
through a fixed point. It is easy to see, for example, that E is convex if and only if E ∩ S
is convex for each two-dimensional plane containing the origin. In this way, the problem is
essentially reduced to its two-dimensional version. (As far as we know, the related problem of
estimating the total curvature of a set E in Rn from measurements of sections E ∩S is open.)

For a closed curve C in R2, Proposition 2.1 shows that

K(C) = M(C)− 2π ≥ 0,

with equality if and only if C is the boundary of a convex body. Each of M(C) and K(C) is
therefore a measure of convexity in the sense of [16, Section 5], that is, a real-valued function
f defined on a collection E of sets such that for some fixed value α, f(E) = α for a set E ∈ E
if and only if E is convex. (In our case we take E to be the collection of all sets E whose
boundary is a closed curve.) Preference is given here to K(C) merely because it is easier to
assess when given in numerical form.

Suppose that each closed curve C is only accessible via a finite set of points pi, i = 0, . . . , m−
1 on its boundary. Define KD(C) = MD(C) − 2π, KAS(C) = MAS(C) − 2π, KAF (C) =
MAF (C)− 2π, and KI(C) = MI(C)− 2π.

Clearly
KD(C) = M(P )− 2π ≥ 0,

with equality if and only if P , the closed polygon with vertices pi, i = 0, . . . , m − 1, is the
boundary of a convex polygon. Similarly,

KAS(C) = M(Cm)− 2π ≥ 0,

with equality if and only if the interpolating curve Cm is the boundary of a convex body.
As noted in the Appendix, problems may arise in the case of Fourier interpolation if the
interpolating curve Cm contains the origin; but if this is not the case, we again have

KAF (C) = M(Cm)− 2π ≥ 0,

with equality if and only if Cm is the boundary of a convex body.
Thus each of the above three quantities, while not satisfying the definition of a measure of

convexity, can be regarded as an indicator of convexity, a term that we deliberately do not
define rigorously.

The quantity KI(C) is more problematic. If the points pi = (r(θi), θi), i = 0, . . . , m − 1,
lie on a circle centered at the origin, then KI(C) = 0. However, it is not generally true that
KI(C) ≥ 0; for example, when m = 4 and r(θi) = 1, 2, 6, and 28 for θi = πi/2, and i = 0, 1,
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2, and 3, respectively, we have KI(C) = −0.0194. Moreover, when m = 4 and r(θi) = 1, 2,
6, and 27 for θi = πi/2, and i = 0, 1, 2, and 3, respectively, we have KI(C) = 0.1108, so by
continuity there are non-circular curves C such that KI(C) = 0. It is also easy to find curves
C that bound convex bodies for which KI(C) > 0. Thus while experimental evidence indicates
that it is rare for KI(C) to be negative, and while we expect KI(C) to be generally larger
when C bounds a non-convex region, it is not such a straightforward indicator of convexity
as the three considered above.

5. Experimental data

The indicators of convexity in the previous section were tested on two sets of experimental
data. In the first set, measurements r(θi), where θi = 2πi/30, i = 0, . . . , 29, were taken of
profiles of two samples of star-shaped cell nuclei. Here a profile means a two-dimensional
section of the cell nucleus, and the measurement r(θi) gives the distance from a fixed point
inside the nucleus to its boundary in the direction θi. Each sample consisted of 27 cell nuclear
profiles from a malignant and a benign tumor of the human skin - a malignant melanoma and
its benign counterpart, a benign melanocytic nevus. The profiles were observed on 4 µm thick
histological sections of plastic embedded tissue biopsies. The histopathological discrimination
between these two types of tumors represents an often-encountered problem in histopatho-
logical routine diagnostic practice. The profiles were observed using light microscopy. The
measurements are normalized so that the average value for each nucleus is 1.

Figure 4. Data Set 1: Tumor cell nuclear profiles from a malignant melanoma
of the human skin.

Figure 5. Data Set 1: Tumor cell nuclear profiles from a benign melanocytic
nevus of the human skin.

The 30 data points for each nuclear profile form the vertices of a closed polygon that can
be used to approximate the profile. Figures 4 and 5 show these polygonal approximations for
the two samples. These profiles have also been analyzed in [9, 13]. We assign to each nuclear
profile in each sample a number j, j = 1, . . . , 27, in the natural way. For example, the sixth
nuclear profile in the second row in each sample shown in Figures 4 and 5 is assigned the
number 15.
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A second set of data is shown below in Figures 6 and 7. Both samples consist of 50 cell
nuclei, observed on 4 µm thick histological sections of plastic embedded tissue biopsies. The
first sample consists of nuclear profiles in a malignant T-cell lymphoma, and the second sample
represents nuclear profiles of normal T-lymphocytes obtained from the interfollicular T-zone
of a hyperplastic lymph node. The profiles were again observed by light microscopy. A search
algorithm was used to identify approximately 250 (the precise number varies from profile
to profile) pixels on the boundary, each identified by a point with integer coordinates. The
approximately 250-sided polygons with these points as vertices are shown in Figures 6 and 7.
Numbers are assigned to each nuclear profile in each sample first by row and then by column
in the way described above. As can be seen from malignant tumor cell nuclear profile numbers
7, 12, and 47, the profiles are generally not star shaped.

Figure 6. Data Set 2: Cell nuclear profiles from a malignant T-cell lymphoma.

Figure 7. Data set 2: Cell nuclear profiles from normal T-lymphocytes.
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6. Results

Beginning with the first data set, Figure 8 shows the distribution of each indicator of
convexity for the malignant and benign cell nuclear profiles. We tested for each indicator
of convexity the hypothesis that the mean value for the benign tumor cell nuclear profiles is
equal to the mean value for the malignant tumor cell nuclear profiles, against the alternative
hypothesis that the former mean is less than the latter. This was done with an ordinary
t-test, applied to the log-transformed data which could be regarded as normally distributed.
The resulting p-values for the indicators KD(C), KAS(C), KAF (C), and KI(C) were all below
10−3. Based on this test alone, one could claim that each of the four indicators successfully
distinguishes between the malignant and benign tumor cell nuclear profiles.

log K_D

C
ou

nt
s

−4 −2 0 2

0
2

4
6

8
10

log K_AS

C
ou

nt
s

−4 −2 0 2

0
2

4
6

8
10

log K_AF

C
ou

nt
s

−4 −2 0 2

0
2

4
6

8
10

log K_I

C
ou

nt
s

−4 −2 0 2
0

2
4

6
8

10

Figure 8. Distributions for malignant (white) and benign (grey) tumor cell
nuclear profiles from Data Set 1.

If each indicator is truly estimating convexity, each pair of indicators should be strongly
correlated for both the malignant and benign tumor cell nuclear profiles. In Figure 9, the
value of each indicator is plotted against the corresponding value of any other indicator.
In each plot, the correlation coefficients for the malignant and benign tumor cell nuclear
profiles, respectively, are also indicated. The results show the expected strong (and statistically
significant) correlation between the indicators.

In the case of the benign tumor cell nuclear profiles, the correlation coefficients involving
the indicator KAS(C) are somewhat smaller. This is probably a consequence of the fact that
the spline fit we employ yields a curve that is generally not C2 at one point (see the Appendix
for details), resulting in a relatively higher value especially for profiles that are nearly convex.
In the case of the malignant tumor cell nuclear profiles, the correlation coefficients involving
the indicator KAF (C) are somewhat smaller. This is probably due to the fact that the Fourier
interpolation does not preserve convexity. Often the interpolating curve will tend to oscillate
between positive and negative curvature more than the original; malignant tumor cell nuclear
profile 18 is an extreme example, resulting in an KAF (C) value much larger than those of the
other indicators, see also Figure 3. The cubic spline interpolation generally seems better at
preserving convexity. The benign tumor cell nuclear profile 12 is an outlier, though it seems
to be close to convex in Figure 5. Figure 10 shows that the boundary meanders along the two
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Figure 9. Bivariate distributions and correlation coefficients for pairs of indi-
cators and malignant (white) and benign (grey) tumor cell nuclear profiles from
Data Set 1.

nearly straight sides of this long, thin nuclear profile, which causes the indicators to increase
as they accumulate contributions from the parts of the boundary with positive or negative
curvature.

Figure 10. Approximating polygon for benign tumor cell nuclear profile 12.

This latter phenomenon influenced our different treatment of the second data set. We
focused solely on the indicator KD(C), since our results for the first data set show that it
should serve as well as any of the others. Tables 1 and 2 show quantities labelled KD(C)[n],
where n = 30, 40, 50, 60, and n = all. Here “n = all” means we are computing M(P ) from
(5) using all 250 or so vertices of the polygons shown in Figures 6 and 7. For other values of
n, we select n vertices of each polygon with indices that are “equally spaced” and compute
M(P ) from (5) using only these vertices. Specifically, if p1, . . . , pm is the set of all vertices of
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Nuclear section KD(C)[30] KD(C)[40] KD(C)[50] KD(C)[60] KD(C)[all]
1 2.0590 2.9551 3.2456 3.3380 47.9075
2 1.8144 3.4742 4.1426 4.6028 38.0010
3 4.2602 5.7165 6.9114 7.6445 46.0629
4 4.6298 4.6922 5.8948 6.0484 45.8929
5 2.7515 4.2656 5.4225 7.2089 48.6369
6 3.5551 5.0903 6.4781 6.7929 42.1838
7 8.6546 9.7279 10.2741 12.1720 62.6602
8 3.7211 5.2781 6.3524 6.7588 51.5887
9 2.7754 3.3878 4.9737 6.3190 35.3330
10 4.8233 5.7369 6.1232 6.8854 41.2185

mean (all 50) 3.4668 4.3700 5.1903 6.0039 45.1406

Table 1. Data Set 2: An indicator of convexity for nuclear profiles from a
malignant T-cell lymphoma.

a given polygon, we select those with indices

1 +

〈
i(m− 1)

n

〉
,

for i = 0, 1, . . . , n − 1, where 〈x〉 denotes the integer nearest to x (rounding up in the case
of a half integer). Due to the size of the data sets, we give only the values for the first 10
nuclear profiles in each sample, but the mean values listed are taken over all 50 nuclear profiles.
Initially, we computed for each profile only KD(C)[all] = M(P [all])− 2π, where P [all] is the
corresponding polygon with all 250 or so vertices shown in Figures 6 and 7, and M(P [all]) is
calculated by (5) with P = P [all]. The relatively large numbers in the last columns in Tables 1
and 2 indicate that there are very many small oscillations in the boundaries of these polygons.
For example, KD(C)[all] = 45.2115 for normal T-lymphocyte nuclear profile number 8, which
appears to be nearly convex in Figure 7. Thus the “noise” produced by these oscillations tends
to obscure the true differences in total curvatures of the boundaries of the underlying sections.
For this reason, we pruned the numbers of vertices of the defining polygons down to 30, 40,
50, or 60 and recalculated the indicator, with the results shown in the first four columns of
Tables 1 and 2. Note that the small values for normal T-lymphocyte nuclear profile number
8 in these columns reflect much more accurately the true total curvature.

To determine an appropriate number of vertices to select, we adopted the following proce-
dure based on artificial test profiles. These are curves defined by equations from which the
exact total curvature can be calculated. These can be processed by the pixel-searching algo-
rithm mentioned in Section 5 to produce approximating polygons with about 250 vertices. For
various values, n vertices can be selected and the corresponding values of KD(C)[n] computed
and compared to each other and the true value. Examples of the processed test sections used
are illustrated in Figure 11. On the left is an ellipse C1 and on the right a curve C2 with
polar coordinate equation r = 1 + (cos 4t)/5, 0 ≤ t ≤ 2π. Of course, the selection of test
sections must be done appropriately, to reflect the general shapes of the nuclear profiles under
consideration.
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Nuclear section KD(C)[30] KD(C)[40] KD(C)[50] KD(C)[60] KD(C)[all]
1 1.8843 2.4189 3.5436 4.5881 36.7899
2 0.7177 1.6724 1.7865 3.9492 41.1426
3 2.6482 3.7745 4.1270 5.3468 41.3884
4 4.9628 6.2477 7.4093 8.1417 44.6059
5 1.5126 2.1565 3.2621 3.3866 39.2501
6 2.6179 4.1476 4.5150 5.1322 44.0384
7 4.0745 4.0371 4.8487 6.6306 45.7032
8 0.0786 0.4571 1.4246 2.3964 45.2115
9 5.3890 6.8319 7.6325 8.1063 56.4050
10 1.8296 3.2040 3.6161 4.1344 47.1799

mean (all 50) 2.1450 2.9764 3.7094 4.6439 43.0405

Table 2. Data Set 2: An indicator of convexity for nuclear profiles of T-
lymphocytes from a hyperplastic lymph node.

Figure 11. Processed test profiles.

We have M(C1) = 2π and by direct computation using (7), M(C2) = 12.6405 · · · . The
quantities MD(C1)[n]−2π and MD(C2)[n]−12.6405 were computed for n = 5, 10, . . . , 120 and
are displayed in Figure 12 on the left and right, respectively. As expected, when n is too large,
MD(Ci)[n] is significantly larger than the true value M(Ci), for i = 1, 2. Observe also that for
the non-convex test section with boundary C2, MD(C2)[n] is significantly smaller than M(C2)
when n ≤ 20, an effect caused by the approximating polygon P [n] becoming more convex as
n becomes smaller. Thus in general a balance must be achieved, and our test profiles indicate
that values of n between 30 and 60 are appropriate.

We tested for the second data set, and for each n = 30, 40, 50 and 60, the hypothesis that
the mean value of KD(C)[n] for the normal T-lymphocyte nuclear profiles is equal to the mean
value of KD(C)[n] for the malignant T-cell nuclear profiles, against the alternative hypothesis
that the former mean is less than the latter. This was done with an ordinary t-test, applied
to log-transformed data. The resulting p-values were all below 10−3.

Based on this test, we can again claim that the indicator KD(C) successfully distinguishes
between the malignant T-cell and normal T-lymphocyte nuclear profiles. To be more spe-
cific, the differences between the mean values for the two samples are highly significant when
anywhere between 30 and 60 vertices are used for the approximating polygons. This and the
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Figure 12. MD(C1)[n]− 2π (left) and MD(C2)[n]− 12.6405 (right) against n.

very high correlation between the values of KD(C)[n] for n = 30, 40, 50, and 60 (we omit the
details) suggest that the procedure is robust in that the choice of n is not too critical.

7. Perspectives

The examples used in this paper focus on the cytological aspects of the transformation
from normal or benign to malignant nuclear characteristics as evidenced by two-dimensional
profiles. In the routine practice of histopathology the cytological evaluation of nuclear fea-
tures is mandatory for tentatively diagnosing a neoplastic cell population as malignant, and
both nuclear size and nuclear shape are variables used in the diagnosis. If such qualitative
judgements can be quantified in a diagnostic setting, objective and reproducible diagnosis of
malignancy is a possibility in a (semi)-automated image analysis setting. Moreover, the shape
discrimination technique based on total curvature is expected to be applicable in a much
broader context, for example in malignancy grading at the histological architectural level and
not only at the cytological level. Thus, one could use the technique for quantifying the degree
of glandular irregularity in adenocarcinomas, and in this way provide objective malignancy
grading data of prognostic impact in common malignant neoplasms like breast cancer.

8. Appendix

Given a finite set of points p0, . . . , pm−1 on a closed curve C in R2, there are many methods of
generating a simple closed curve Cm that interpolates the points p0, . . . , pm−1, p0. A standard
one is cubic spline interpolation. Between each successive pair of points pi and pi+1 a cubic
curve is defined, of the form

Ai(t) = (ai0 + ai1t + ai2t
2 + ai3t

3, bi0 + bi1t + bi2t
2 + bi3t

3),

for 0 ≤ t ≤ 1. There are many different formulas for the coefficients of these cubics. It is
possible to generate a curve Cm that is C2. It is also possible to guarantee that various features
of the polygon P are preserved by Cm. An ideal interpolation would be one that results in
a C2 curve Cm that is simple if P is simple and does not have any unnecessary kinks. The
latter can be achieved if Cm also preserves local convexity and concavity of P . As hints to the
quite substantial literature on this topic we refer the reader to [6, 17, 19] and the references
in these papers.

We did not attempt an optimal interpolation here, instead preferring to utilize a ready-made
implementation, the SplineFit function in Mathematica. This produces a curve Cm that is
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C2 except possibly at the initial point p0. Accordingly, we calculated MAS(C) by

(11) MAS(C) = M(Cm),

where Cm is the curve produce by Mathematica’s SplineFit function and M(Cm) is given by
(6). Note that in this case ψi = 0 for i = 1, . . . , m− 1, but ψ0 is not in general zero and must
be calculated. The coefficients of all the cubic polynomials involved in the interpolation can
be obtained in Mathematica, making the computations possible.

We also employed Fourier interpolation, when C is a function r(θ), 0 ≤ θ ≤ 2π in polar
coordinates. Then pi = (r(θi), θi), i = 0, . . . , m− 1, where

0 ≤ θ0 < · · · < θm−1 < 2π.

We followed the approach via splines on the circle described in [23, pp. 21–24]. The method
produces approximations to given data that minimize a certain energy function that depends
on a parameter λ; if we set λ = 0, the curves obtained are in fact interpolations, agreeing
exactly with the given data at the corresponding values of θ.

For simplicity, we suppose that m is even and θi = (2πi)/m, i = 0, . . . , m− 1. The Fourier
coefficients for the interpolation are given by

a0 =
1

m

m−1∑
i=0

r(θi),

am/2 =
1

m

m−1∑
i=0

r(θi) cos πi,

and for k = 1, . . . , m/2− 1,

ak =

√
2

m

m−1∑
i=0

r(θi) cos kθi

and

bk =

√
2

m

m−1∑
i=0

r(θi) sin kθi.

Then the Fourier interpolation curve Cm has radial function

(12) rCm(θ) = a0 +

m/2−1∑

k=1

(√
2ak cos kθ +

√
2bk sin kθ

)
+ am/2 cos(mθ/2),

for 0 ≤ θ ≤ 2π.
While rCm(θ) is clearly infinitely differentiable as a function of θ, it is unfortunately not

true that the curve Cm is always smooth. A specific example is obtained by taking m = 2,
r(θ0) = 1 and r(θ1) = 0, which results in

rC1(θ) =
1

2
(1 + cos θ).

This curve is a cardioid, which has a cusp at the origin. Other problems can arise when the
curve given by (12) passes through the origin. It is easy to generate examples where the curve
obtained is not even a simple curve.
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The formula for curvature in polar coordinates (inside the absolute value signs in the inte-
grand in (7)) shows that the curve Cm will be a simple smooth curve provided it does not pass
through the origin. This is easy to check and was always the case for our data. Accordingly,
we calculated MAF (C) by

(13) MAF (C) = M(Cm),

where M(Cm) is given by (7).
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