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Abstract

The growth of planar and spatial objects is often modelled using one-dimensional size
parameters, e.g. volume, area or average radius. We take a more detailed approach and
model how the boundary of a growing object expands in time. We mainly consider
star-shaped planar objects. The model can be regarded as a dynamic deformable
template model. The limiting shape of the object may be circular but this is only
one possibility among a range of limiting shapes. An application to tumour growth
is presented. Two extensions of the model, involving time series and Lévy bases,
respectively, are briefly touched upon.

Key words: Fourier expansion, Gaussian process, growth pattern, Lévy basis, periodic
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1. Introduction

Modelling of biological growth patterns is a rapidly developing field of mathematical biol-
ogy. Its state-of-the-art was explored at the successful conference On Growth and Form,
held in 1998 in honour of D’Arcy Thompson (1860-1948) and his famous book, cf. Thomp-
son (1917). Out of the conference grew a monograph which contains substantial biolog-
ical material and an overview of mathematical modelling of spatio-temporal systems, cf.
Chaplain et al. (1999). Examples of growth mechanisms studied are growth of capillary
networks, skeletal growth and tumour growth.

Modelling of tumour growth has attracted particular interest in recent years. Tumour
growth was one of the high priority topics of the recent multidisciplinary conference ar-
ranged by the European Society for Mathematical and Theoretical Biology in July 2002.
More than 500 scientists from a wide range of disciplines participated. One of the subjects
discussed were pattern formation problems, relating to tumour formation and progression,
in particular the question of tumour shape.

The models suggested for tumour growth are either continuous or discrete. In Murray
(2003), the continuous approach is explained in relation to brain tumours. The simplest
models involve only total number of cells in the tumour, with growth of the tumour usually
assumed to be exponential, Gompertzian or logistic (Swan (1987), Marusic et al. (1994)).
More powerful deterministic models describe the change of the spatial arrangement of the
cells under tumour growth. A simple continuous model of this type predicts that the



concentration of cells at position x and time t is

c(x, t) =
c

t
exp

(

ρt− ||x||2
Dt

)

where ρ is the net growth rate of cells, including proliferation and death (or loss) and D
is the diffusion coefficient. This more realistic model has been used to make prediction of
the time evolution of one-dimensional quantities related to growth from which the model
parameters can be estimated from experimental data. See also the work by Byrne (1999)
and references therein. The discrete models are most often cellular automaton models, cf.
Qi et al. (1993), Kansal et al. (2000).

The growth literature contains very few examples of statistical modelling and analysis
of growth patterns. An exception is the paper by Cressie and Hulting (1992). Growth of
a planar star-shaped object is here modelled, using a sequence of Boolean models. The
object Yt+1 at time t + 1 is the union of independent random compact sets placed at
uniform random positions inside the object Yt at time t. More formally,

Yt+1 = ∪{Z(xi) : xi ∈ Yt},
where {xi} is a homogeneous Poisson point process in the plane and Z(xi) is a random
compact set with position xi. Note that this model is Markov since Yt+1 only depends on
the previous objects via Yt. The model is applied to describe the growth pattern of human
breast cancer cell islands. Practical methods of estimating the model parameters, using
the information of the complete growth pattern, are devised. A related continuous model
has recently been discussed in Deijfen (2003). The object Yt is here a connected union of
randomly sized Euclidean balls, emerging at exponentially distributed times. It is shown
that the asymptotic shape is spherical.

In the present paper, we propose a Gaussian radial growth model for star-shaped
planar objects. The model is a dynamic version of the p−order shape model introduced
in Hobolth et al. (2003). The object at time t + 1 is a stochastic transformation of the
object at time t such that the radius vector function of the object fulfils

Rt+1(θ) = Rt(θ) + Zt(θ), θ ∈ [0, 2π),

where Zt is a cyclic Gaussian process. The coefficients of the Fourier series of Zt

Zt(θ) = µt +

∞
∑

k=1

[At,k cos(kθ) +Bt,k sin(kθ)], θ ∈ [0, 2π), (1)

have important geometric interpretations relating to the growth process. The overall
growth from time t to t+ 1 is determined by the parameter µt. The coefficients At,1 and
Bt,1 determine the asymmetry of growth from time t to t + 1, while At,k and Bt,k affect
how the growth appears globally for small k ≥ 2 and locally for large k ≥ 2. Under the
proposed p-order growth model

At,k ∼ Bt,k ∼ N(0, λt,k), k = 2, 3, . . . ,

where the variances satisfy the following regression model

λ−1
t,k = αt + βt(k

2p − 22p), k = 2, 3, . . . .

In Section 2 we introduce the Gaussian radial growth model. In Section 3, we study
the induced distributions of object size and shape under the model. An application to
tumour growth is discussed in Section 4. Two extensions of the model, involving time
series and Lévy bases, respectively, are briefly described in Sections 5 and 6. A 3D version
of the Gaussian radial growth model is presented in an Appendix.
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2. The Gaussian radial growth model

Consider a planar compact object with size and shape changing over time. The object at
time t is denoted by Yt ⊂ R

2. We suppose that Yt is star-shaped with respect to a point
z ∈ R

2 for all t. Then, the boundary of Yt can be determined by its radius vector function
Rt = {Rt(θ) : θ ∈ [0, 2π)} with respect to z, where

Rt(θ) = max{r : z + r(cos θ, sin θ) ∈ Yt}, θ ∈ [0, 2π).

In Hobolth et al. (2003), a deformable template model is introduced, describing a random
planar object as a stochastic deformation of a known star-shaped template, see also the
closely related models described in Hobolth and Jensen (2000), Kent et al. (2000) and
Hobolth et al. (2002). We use this approach here and describe the object at time t+ 1 as
a stochastic transformation of the object at time t, such that

Rt+1(θ) = Rt(θ) + Zt(θ), θ ∈ [0, 2π). (2)

Here, {Zt} is a series of independent stationary cyclic Gaussian processes with Zt short
for {Zt(θ) : θ ∈ [0, 2π)}. The initial value R0 of the radius vector function is assumed to
be known.

Note that Yt is used as a template in the stochastic transformation, resulting in Yt+1.
The increment process Zt can be written as

Zt(θ) = µt + Ut(θ), θ ∈ [0, 2π),

where µt ∈ R represents a constant radial addition and Ut a stochastic deformation with
mean zero of the expanded object with radius vector function Rt + µt, cf. Figure 1. (The
object with radius vector function Rt+µt is in geometric tomography known as the radial
sum of Yt and a circular disc of radius µt, cf. Gardner (1995).) Because of the independence

Figure 1: The object Yt+1 is a stochastic transforma-
tion of the object Yt (grey), using a constant radial
addition (shown stippled) followed by a deformation.

of the Zts, the model is Markov in the sense that it uses information about the object at
the immediate past to describe the object at the present time. More specifically, under
(2) the conditional distribution of Rt+1 given Rt, . . . , R0 only depend on Rt. The model
suggested in Cressie and Hulting (1992) possesses a similar Markov property.

If Yt is non-circular, it can be natural to extend the model (2), using an increasing
time change function Γt : [0, 2π] → [0, 1] such that Zt ◦ Γ−1

t is stationary. If the boundary
length of Yt is finite, one possibility is to choose

Γt(θ) =
Lt(θ)

Lt(2π)
, (3)
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where Lt(θ) is the distance travelled along the boundary of Yt between the points indexed
by 0 and θ. Note, however, that if R0 ≡ 0, then the boundary of Yt is expected to be
approximately circular, since E(Zt(θ)) does not depend on θ ∈ [0, 2π).

The following result is important for the construction of parametric models in the
framework of model (2). The result also implies a simple simulation procedure for a
stationary cyclic Gaussian process on [0, 2π).

Proposition 2.1 The process Zt is a stationary cyclic Gaussian process on [0, 2π) with
mean µt ∈ R if and only if there exist λt,k ≥ 0, k ∈ N0, such that

∑

∞

k=0 λt,k <∞ and

Zt(θ) = At,0 +

∞
∑

k=1

[At,k cos(kθ) +Bt,k sin(kθ)], θ ∈ [0, 2π),

where At,0, At,k, Bt,k, k = 1, 2, . . . , are all independent, At,0 ∼ N(µt, λt,0) and At,k ∼
Bt,k ∼ N(0, λt,k).

The Fourier coefficients

At,0 =
1

2π

∫ 2π

0
Zt(θ) dθ,

At,k =
1

π

∫ 2π

0
Zt(θ) cos(kθ) dθ, k = 1, 2, . . . (4)

Bt,k =
1

π

∫ 2π

0
Zt(θ) sin(θk) dθ, k = 1, 2, . . .

have interesting geometric interpretations relating to the growth process. It is clear that
the coefficient At,0 determines the overall growth from Yt to Yt+1. The Fourier coefficients
At,1 and Bt,1 play also a special role. Numerically large values of the coefficients will imply
an asymmetric growth from Yt to Yt+1. In order to interpret geometrically the remaining
Fourier coefficients At,k and Bt,k, k = 2, 3, . . ., let us consider an increment process for
which all Fourier coefficients except those of order 0 and k are zero,

Zt(θ) = At,0 +At,k cos(kθ) +Bt,k sin(kθ), θ ∈ [0, 2π).

Such a process exhibits k-fold symmetry, i.e.

Zt

(

θ +
2πi

k

)

, i = 0, 1, . . . , k − 1, θ ∈ [0, 2π),

does not depend on i. Therefore, At,k and Bt,k affect how the growth appears globally for
small k and locally for large k. The variances λt,k control the magnitude of the Fourier
coefficients.

Since the zero- and first-order Fourier coefficients play a special role in relation to the
growth process and may in applications well depend on explanatory variables, we shall
desist from specific modelling of these coefficients. In the following we will assume that
At,0 = µt is deterministic. Furthermore, we suppose that At,1 = Bt,1 = 0 or, equivalently,
we concentrate on modelling

Zt(θ) −At,1 cos θ −Bt,1 sin θ, θ ∈ [0, 2π).

A special case of the Gaussian radial growth model is the p-order growth model. This
model is inspired by the p-order model described in Hobolth et al. (2003), where the
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stochastic deformation process is a stationary Gaussian process with an attractive covari-
ance structure. The model is called p-order because it can be derived as a limit of discrete
p-order Markov models defined on a finite, systematic set of angles θ, cf. Hobolth et al.
(2002).

Definition 2.2 A stochastic process Y = {Y (θ) : θ ∈ [0, 2π)} follows a p-order model, if

Y (θ) = µ+

∞
∑

k=2

[Ak cos(kθ) +Bk sin(kθ)], θ ∈ [0, 2π),

where Ak ∼ Bk ∼ N(0, λk) are all independent and

λ−1
k = α+ β(k2p − 22p), k = 2, 3, . . . .

The parameters satisfy µ ∈ R, α, β > 0 and p > 1
2 .

If Y follows a p−order model, we will write Y ∼ Gp(µ, α, β). Clearly, µ is the mean of
Y . Furthermore, the covariance function of Y is of the form

σ(θ) = Cov(Y (0), Y (θ)) =
∞

∑

k=2

λk cos(kθ) =
∞
∑

k=2

cos(kθ)

α+ β(k2p − 22p)
,

θ ∈ [0, 2π). The parameters α and β determine the variance of lower order and higher
order Fourier coefficients, respectively. Furthermore, p determines the smoothness of the
curve Y . In fact, the curve Y is k − 1 times continuously differentiable where k is the
unique integer satisfying p ∈ (k − 1

2 , k + 1
2 ] (Hobolth et al. (2003)). Note that the first

Fourier coefficients of Y are set to zero.
We can now give the definition of the p−order growth model.

Definition 2.3 The series Z = {Zt} follows a p−order growth model if the Zts are inde-
pendent and Zt ∼ Gp(µt, αt, βt) for all t.

The parameters αt and βt determine, respectively, the global and local appearance of
growth from Yt to Yt+1. As before, p determines the smoothness of the curves Zt. The
overall growth pattern is specified by the µts. Their actual form depends on the specific
application. Tumour growth has often been described by a Gompertz growth pattern

ρt = ρ0 exp
[η

γ
(1 − exp(−γt))

]

,

where ρt is the average radius at time t and η and γ are positive parameters determining
the growth, implying that

µt = ρt

(

exp
[η

γ
exp(−γt)(1 − exp(−γ))

]

− 1
)

.

For more details, see e.g. Steel (1977).
Figure 2 shows simulations of the increment process Zt from time t to t+1 for different

values of αt and βt under the second-order growth model. A large value of αt gives
increments that are fairly constant while a small value of αt provides a more irregular
growth on a global scale. The parameter βt controls the local appearance of the increment
process, the smaller βt the more pronounced irregularity on a local scale.
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Figure 2: Simulated objects under the second-order growth model. The object at
time t is fixed while the object at time t + 1 is simulated under the indicated values
of αt and βt.

3. Distributional results

In this section, we study the induced distribution of object size and shape under the p-
order growth model. The limiting shape may be circular but, as we shall see, there is a
whole range of possibilities.

Unless otherwise explicitly stated, we assume that R0 ≡ 0. We then have for θ ∈ [0, 2π)

RT (θ) = ρT +
∞
∑

k=2

[ATk cos(kθ) +BT
k sin(kθ)], (5)

where ATk ∼ BT
k ∼ N(0, λTk ) are all independent,

ρT =

T−1
∑

t=0

µt, (6)

and

λTk =
T−1
∑

t=0

λt,k. (7)

The shape of the object at time T will be represented by its normalized radius vector
function

RT
E(RT (0))

=
RT
ρT

,

which can be regarded as a continuous analogue of the standardized vertex transformation
vector in shape theory, cf. Hobolth et al. (2002).

Under the assumption of independent increments, the distribution of the area of the
object at time T is known.
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Proposition 3.1 Let the radius vector function RT of the object YT at time T satisfy
(5)–(7). Then,

A(YT ) ∼ πρ2
T +

π

2

∞
∑

k=2

λTk Vk,

where Vk, k = 2, 3, . . . , are mutually independent χ2(2)-distributed random variables.

Proof. The area of the object at time T is

A(YT ) =
1

2

∫ 2π

0
RT (θ)2dθ.

Note that since
∞
∑

k=2

(ATk )2 + (BT
k )2 <∞, P-a.s.,

we have that RT ∈ L2([0, 2π]), P-a.s. Using equation (5) and Parseval’s equation, we get
that

A(YT ) = πρ2
T +

π

2

∞
∑

k=2

[(ATk )2 + (BT
k )2]

= πρ2
T +

π

2

∞
∑

k=2

λTk Vk,

where Vk, k = 2, 3, . . . , are mutually independent χ2(2)-distributed random variables. �

The distribution of the area of YT is thus a sum of independent Gamma distributed
random variables. The saddlepoint approximation of such a distribution is easily derived,
cf. Jensen (1992).

It does not seem possible to get a correspondingly simple result for the distribution
of the boundary length of YT . This seems apparent from the expression for the boundary
length of YT

∫ 2π

0

√

R′

T (θ)2 +RT (θ)2dθ,

which is valid in the case where RT is differentiable.
As we shall see now, the class of p-order growth models is quite rich in the sense that

the shape of the limiting object, represented by its normalized radius vector function, may
be distributed according to any p-order model Gp(1, α, β) with mean 1. For large values
of α and β, the shape is close to circular.

Let us consider the p-order growth model with proportional parameters, i.e. αt = γβt.
Equivalently, we assume that there exists a sequence {τt} of positive real numbers such
that

Zt = µt + τtXt (8)

and {Xt} are independent and identically Gp(0, α, β) distributed. If σ2 = V(Xt(θ)), then
Zt(θ) ∼ N(µt, τ

2
t σ

2) under (8).
Examples of choices of τt are τt = 1,

√
µt or ρt+1, cf. (6). If τt = 1, the variance

of the increment Zt(θ) is constant in time. If τt =
√
µt, we obviously need that µt ≥ 0

for all t and we have that V(Zt(θ)) ∝ E(Zt(θ)) such that the variance of the increment
Zt(θ) is proportional to the average increase in the radius at time t. If τt = ρt+1, then the
distribution of the shape of the object defined by the radius vector function

{ρt + Zt(θ) : θ ∈ [0, 2π)}
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is constant in time, i.e. the distribution of

ρt + Zt(θ)

E(ρt + Zt(θ))

does not depend on t.
In the proposition below, we show that under (8) the shape of Yt is distributed accord-

ing to a p-order model.

Proposition 3.2 Suppose that Z = {Zt} satisfies (8) where Xt, t ∈ N0, are independent
and identically Gp(0, α, β)−distributed. Then, the normalized radius vector function of
YT is distributed as

RT
E(RT (0))

∼ Gp(1, ᾱT , β̄T )

where

ᾱT = αρ2
T /

T−1
∑

t=0

τ2
t , β̄T = βρ2

T /

T−1
∑

t=0

τ2
t .

Proof. It suffices to show that

Cov(RT (0), RT (θ))

[E(RT (0)]2
=

∞
∑

k=2

cos(kθ)

ᾱT + β̄T (k2p − 22p)
.

Using (5) and (8), we find

Cov(RT (0), RT (θ))

[E(RT (0)]2
=

1

ρ2
T

∞
∑

k=2

λTk cos(kθ)

=
1

ρ2
T

∞
∑

k=2

T−1
∑

t=0

τ2
t

cos(kθ)

α+ β(k2p − 22p)

=

∞
∑

k=2

cos(kθ)

ᾱT + β̄T (k2p − 22p)
.

�

Below, we study examples of different limiting shapes under the model (8).

Example 3.3 (Constant increment growth) Let the situation be as in Proposition
3.2 with µt = µ and τt = 1 in (8). The increment processes Zt are thereby independent
and identically distributed. It follows from Proposition 3.2 that

RT
ERT (0)

∼ Gp(1, ᾱT , β̄T ),

where ᾱT = Tµ2α and β̄T = Tµ2β. Since ᾱT → ∞ and β̄T → ∞ for T → ∞, the boundary
of the object becomes more circular and smooth as T increases. An example is shown in
Figure 3. The limiting object has circular shape.

Example 3.4 (Wiener growth) Let the situation be as in Proposition 3.2 with µt
arbitrary and τt =

√
µt in (8). This special case is called a Wiener growth model since

V(RT ) ∝ E(RT ). If µt = µ such that ρT = Tµ, the process is called a Wiener process with

8



linear drift. If ρT = δTψ for some δ, ψ > 0, then RT − ρT is self-similar with parameter
H = ψ

2 , i.e.

Rat − ρat ∼ aH(Rt − ρt), a ≥ 0. (9)

Notice that
RT

ERT (0)
∼ Gp(1, αρT , βρT ).

If ρT → ρ < ∞, the limiting object can have any stochastic shape determined by
Gp(1, αρ, βρ).

Example 3.5 Let the situation be as in Proposition 3.2 with µt arbitrary and τt = ρt+1

in (8). The normalized radius vector function is distributed as

RT
ERT (0)

∼ Gp(1, α
ρ2
T

∑T
t=1 ρ

2
t

, β
ρ2
T

∑T
t=1 ρ

2
t

).

If ρ2
T /

∑T
t=1 ρ

2
t → 0 as T → ∞, the objects become more irregular both globally and

locally as T increases. An example is shown in Figure 4.

Figure 3: Left: Simulated growth pattern under the constant increment second-order
growth model. Right: The corresponding normalized profiles, representing the shape
of the object.

Figure 4: Left: Simulated growth pattern under the model described in Example 3.5.
Right: The corresponding normalized profiles, representing the shape of the object.
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4. An application

For illustrative purposes, we consider a data set consisting of human breast cancer cell
islands, which have been observed in vitro in a nutrient medium on a flat dish. This data
set has earlier been analysed in Cressie and Hulting (1992). Three profiles of cancer cell
islands are available. The data set is presented in the upper left corner of Figure 5.

Figure 5: The tumour growth data (upper left corner) and simulations under the second-order growth
model with µt, αt and βt replaced by the maximum likelihood estimates.

The centre of mass of Y0 is used as reference point. The data consist of increments

zt

(2πi

nt

)

, i = 0, 1, . . . , nt − 1,

in nt directions, equidistant in angle, t = 0, 1. For convenience, zt is normalized with
the average radius of Y0. Only digitized images are available. As nt, we have used ap-
proximately 25% of the number of pixels on the boundary of the digitized image of Yt,
t = 0, 1.

Under the p-order growth model, the mean value parameters µt can be estimated by
the average observed increment at time t. The variance parameters can be estimated using
the likelihood function

L(α0, β0, α1, β1) =
∏

t=0,1

Lt(αt, βt),

where Lt(αt, βt) is the likelihood function based on the Fourier coefficients At,k and Bt,k
of Zt of order k ≤ Kt, say. Since At,k ∼ Bt,k ∼ N(0, λt,k) are all independent and

λ−1
t,k = αt + βt(k

2p − 22p), k = 2, 3, . . . ,

the likelihood becomes

Lt(αt, βt) =

Kt
∏

k=2

[αt + βt(k
2p − 22p)] exp(−ct,k[αt + βt(k

2p − 22p)]),

where ct,k = [a2
t,k + b2t,k]/2 are the observed phase amplitudes. In applications, at,k and

bt,k are replaced by discrete versions of the integrals in (4).
The choice of the cut-off value Kt is very important. Clearly, Kt must not be too

large in order to avoid that the estimates are influenced by the digitization effects. On the
other hand, if the cut-off value Kt is too small information about the growth pattern is
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lost. The choice of Kt should be an intermediate value for which the estimate of the local
parameter βt is stable. Whether a specific choice of Kt is appropriate can also be judged
from visual inspection of simulated growth patterns under the estimated model.

For the two increments z0 and z1, we used (n0,K0) = (60, 25) and (n1,K1) = (120, 30),
respectively. The maximum likelihood estimates under the second-order growth model are

µ̂0 = 1.04, log(α̂0) = 5.29, log(β̂0) = −1.88,

µ̂1 = 2.53, log(α̂1) = 3.18, log(β̂1) = −3.54.

The estimated regression lines

λ̂t,k =
1

α̂t + β̂t(k4 − 24)
, t = 0, 1 k = 2, 3, . . .

are shown in Figure 6, together with 95% confidence limits for the logarithm of the phase
amplitudes. The model fits the data well which can also be seen from the QQ plots for
the normalized Fourier coefficients, also shown in Figure 6.

Figure 6: The two upper figures show the observed phase amplitudes (full-drawn lines)
together with the estimated regression line (stippled) and 95% confidence limits. The

two lower figures show QQ plots for the normalized Fourier coefficients
at,k
√

λ̂t,k

,
bt,k
√

λ̂t,k

together with 95% confidence limits.

Simulations under the second-order growth model with µt, αt and βt replaced by the
maximum likelihood estimates are shown in Figure 5.

Since the data set only contains two increments, it is not meaningful to try to eval-
uate the Markov assumption. Note also that the Zt’s are assumed independent but not
necessarily identically distributed. If

αt = γβt, (10)

we have that
√

βt(Zt − µt) ∼ Gp(0, γ, 1)

11



are independent and identically distributed. Thus, under the assumption (10) of propor-
tionality and with sufficient number T of time points, we can examine the independence
of

√

βt(Zt(θ) − µt), t = 0, 1, . . . , T − 1,

for selected values of θ ∈ [0, 2π), using a runs test, for instance.

5. A time series extension

Let us suppose that
Zt = µt + τtXt,

where X = {Xt} is a stationary time series of cyclic Gaussian processes satisfying the
ARMA model equation

Xt − φ1Xt−1 − · · · − φrXt−r = Wt − ψ1Wt−1 − · · · − ψsWt−s. (11)

We assume that W = {Wt} is a sequence of i.i.d. stationary cyclic Gaussian processes on
[0, 2π) with

Wt ∼ Gp(0, α, β).

If φi = 0, i = 1, . . . , r, and ψj = 0, j = 1, . . . , s, Z follows the p-order growth model with
independent increments, treated in the previous sections.

Under the general ARMA model (11), the Fourier coefficients of X and W of a given
order follow a one-dimensional ARMA model. Furthermore, for fixed θ ∈ [0, 2π), Xt(θ)
follows a one-dimensional ARMA model. Aspects of this time series approach has earlier
been discussed in Alt (1999). An early example concerning year ring widths is discussed
in Kronborg (1981).

Note that in the special case of a MA model (φ1 = · · · = φr = 0), the marginal
distribution of Zt belongs to the class of p-order models

Zt ∼ Gp(µt, αt, βt),

where

αt =
α

τ2
t [1 + ψ2

1 + · · · + ψ2
s ]
, βt =

β

τ2
t [1 + ψ2

1 + · · · + ψ2
s ]
.

Note also that in this case Zt and Zt′ are independent if |t− t′| > s.

6. A Lévy based extension

Following the approach in Barndorff-Nielsen and Schmiegel (2003), let P = [0, 2π) × R

and B = B(P), and consider the following model equation

Rt+1(θ) = Rt(θ) + Zt(θ), θ ∈ [0, 2π) (12)

where

Zt(θ) =

∫

At(θ)
ht(a; θ)Z(da), (13)

At(θ) ∈ B and Z is a normal Lévy basis on P. In particular, for a bounded set A ∈ B,

Z(A) ∼ N(ν(A)µ, ν(A)σ2),

12



where ν is the Lebesgue measure on P. The so-called ambit set At(θ) and the weight
function ht(a; θ) must be defined cyclically such that Zt becomes a cyclic stochastic process.
Also, ht(a; θ) is assumed to be suitable for the integral to exist.

Since

Cov(Zt(θ1), Zt′(θ2)) = σ2

∫

At(θ1)∩A
t′

(θ2)
ht(a; θ1)ht′(a; θ2) da,

the ambit sets At(θ) and the weight functions ht(·; θ) determine the correlation structure
of the increment processes {Zt}. Note that if

At(θ1) ∩At′(θ2) = ∅,

then Zt and Zt′ are independent. Note also that asymmetric growth patterns are generated
if the weight function ht(·; θ) or the ambit set At(θ) depend on the angle θ.

The model specification (13) is attractive because both the angular and temporal
correlations of the increment processes can be expressed explicitly. The question is now
whether it is possible to specify At and ht such that Zt follows a p−order model. In
the appendix, we show that a first-order model is attainable within this framework. The
general question remains open.

7. Discussion

The p−order growth model has mainly been suggested as a general tool for analyzing
observed radial growth patterns. The model may, however, also be of interest as a building
block in other modelling situations, for instance in models for tessellations where cells are
created by radial growth from each point of a point process.

The p−order growth model can be extended in various ways. It is obviously easy
to modify the model such that the increments are Gaussian after a transformation. An
example is log-Gaussian increments. If the number of increments observed is not too small
it is also of interest to try to model the dependency in the series Z = {Zt}. We have looked
at time series and Lévy based models. A detailed study of the Lévy based growth models
with not necessarily normal Lévy bases is ongoing research in our group, cf. Schmiegel
et al. (2004). These models can be formulated continuously in time

Rt(θ) = r0(θ) +

∫ t

0
Zs(θ) ds,

where r0 is a deterministic function.
The likelihood used in the application is correct if the increments are independent. If

the marginal distributions of the Zts belong to the class of p-order models but the Zts are
dependent, the likelihood may still be used as a pseudo-likelihood.

In relation to tumour growth in particular, it will also be of interest in the future to
try to embed specific mathematical models in a stochastic framework. A starting point
could here be a study of dynamic point process models with a specified time-dependent
intensity function. One example of such an intensity function is given in the introduction.
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Appendix

A Lévy based extension

In the following, we will show that a first-order model for Zt can be obtained within the
Lévy based framework (12) and (13). We will here represent functions on [−π, π) rather
than on [0, 2π).

Let us assume that ht ≡ 1, such that Zt(θ) = Z(At(θ)) and

Cov(Zt(θ1), Zt(θ2)) = σ2ν(At(θ1) ∩At(θ2)), (14)

where ν denotes Lebesgue measure. Also assume that the ambit sets are on the following
form

At(θ) = (θ, 0) +At(0), θ ∈ [−π, π),

with a cyclic definition in the angle θ. Furthermore, let us suppose that there exists a
continuous function ft on [−π, π) with the properties

ft(θ) = ft(−θ) (15)

ft is decreasing on [0, π) (16)

ft(0) = t (17)

such that
At(0) = {(θ′, t′) : ft(π) ≤ t′ ≤ ft(θ

′)}. (18)

Note that Zt−1 and Zt are independent if t− 1 < ft(π).
It is not difficult to show that

ν(At(0) ∩At(θ)) = 2

∫

−π+ θ

2

−π

ft(φ) dφ + 2

∫ π

θ

2

ft(φ) dφ − 2πft(π), (19)

for θ ∈ [0, π). Furthermore, since

ν(At(0) ∩At(−θ)) = ν(At(0) ∩At(θ)), (20)

the Fourier expansion of the intersection areas are of the form

ν(At(0) ∩At(θ)) =
∞

∑

k=0

λt,k cos(kθ). (21)

In a similar way,

ft(θ) =

∞
∑

k=0

γt,k cos(kθ). (22)

Using equations (19) and (22), we find the following alternative expression for the inter-
section areas

ν(At(0) ∩At(θ)) = −4 sign(θ)
∑

k odd

γt,k
k

sin
(

k
θ

2

)

+ 2π
∑

k odd

γt,k − 2π
∑

k even

γt,k. (23)
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Comparing the Fourier expansions (21) and (23) we get the following relation between the
λt,ks and γt,ks,

λt,0 =
∑

k odd

[

2π − 8

πk2

]

γt,k − 2π
∑

k even

γt,k

λt,j =
16

π

∑

k odd

1

(2j)2 − k2
γt,k, j = 1, 2, . . . .

Now consider a model where the functions ft defining the ambit sets are of the form

ft(θ) = γt,0 + γt,1 cos(θ).

In this case we have the following restrictions on the parameters γt,0 and γt,1

γt,0 + γt,1 = t, γt,1 ≥ 0.

We find

λt,0 =
[

2π − 8

π

]

γt,1 − 2πγt,0

λt,j =
16

π

1

(2j)2 − 1
γt,1, j = 1, 2, . . . .

It follows that Zt is distributed according to a first-order model.

Extension to three dimensions

The p-order growth model for planar objects can easily be extended to three dimen-
sions. Consider a spatial compact object Yt ⊂ R

3 which is star-shaped for all t with respect
to z ∈ R

3. Clearly the boundary of the object can be determined by

{z +Rt(θ, ϕ) : θ ∈ [0, 2π), ϕ ∈ [0, π]},

where Rt(θ, ϕ) is the distance from z to the boundary of Yt in direction

ω(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ).

In the same way as in the planar case we let the object Yt+1 be a stochastic transformation
of the object Yt, such that

Rt+1(θ, ϕ) = Rt(θ, ϕ) + Zt(θ, ϕ), θ ∈ [0, 2π), ϕ ∈ [0, π],

where {Zt} is a time series of Gaussian procesess on [0, 2π)× [0, π]. Writing the stochastic
process Zt in terms of its Fourier-Legendre series expansion we get, cf. Hobolth (2003),

Zt(θ, ϕ) =

∞
∑

n=0

m=n
∑

m=−n

At,n,mφn,m(θ, ϕ),

where φn,m are the spherical harmonics and At,n,m are random coefficients. Using a similar
reasoning as in Hobolth (2003) it can be seen that At,0,0 determines the overall growth
from Yt to Yt+1. The coefficients At,1,m, m = −1, 0, 1, control the asymmetry of growth,
and the remaining coefficients At,n,m for n ≥ 2, m = −n, . . . , n, affect how the growth
appears globally for small n and locally for large n. A p-order growth model can be defined
by assuming that At,0,0 = µt, At,1,m = 0 for m = −1, 0, 1 and

At,n,m ∼ N(0, λt,n), n = 2, 3, . . . ,m = −n, . . . , n, independent,
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where
λ−1
t,n = αt + βt(n

2p − 22p).

As in the planar case, the increment processes may be chosen to be normal after a transfor-
mation. A simulation from such a model, where {Zt} is a series of log-Gaussian processes,
is shown in Figure 7.

Figure 7: Simulation from a 3D log-Gaussian radial growth model.
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