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APPROXIMATING NUMBERS WITH MISSING DIGITS BY
ALGEBRAIC NUMBERS

SIMON KRISTENSEN (EDINBURGH)

ABSTRACT. We show that for a given base b and a proper subset E C {0,...,
b—1}, #E < b — 1, the set of numbers x € [0, 1] which have no digits from F in
their expansion to base b consists almost exclusively of S*-numbers of type < 2.
We also give upper bounds on the Hausdorff dimension of some exceptional sets.

1. INTRODUCTION

Let K C [0,1] be a compact set and suppose that K supports a measure u such
that for constants ¢y, co > 0,

(1) ar® < u(le—rie+7)) < cor’
for c € K and r > 0 small enough. It is easy to see that any non-atomic measure
supported on K satisfying hypothesis (1) must also satisfy

(2) ulle —erye+er]) < ecsepulle — e+ 1)),

for some c3 > 0, whenever r and € are small and ¢ € R. This is the appropriate one-
dimensional specialisation of the notion of an absolutely d-decaying measure, used
in [5, 9]. Here and subsequently, we will assume that p has been normalised so that
p(K) =1.

Let n € N and let A,, denote the set of algebraic numbers of degree < n. For an
algebraic number «, we denote its height by H(«), i.e., the maximum modulus of
the coefficients of the minimal polynomial of a. We are concerned with the approx-
imation of elements of K by elements of A,,, where the quality of approximation is
measured in terms of the height of the approximating number. Let 1 : R>; — Ry,
We define the set

(3) K, K)={x € K:|r—af <¢(H(a)) for co many o € A, }.

Properties (1) and (2) are important because of the following theorem, which com-
bines specialisations of a theorem by Hutcheson [4] and of Kleinbock, Lindenstrauss
and Weiss [5] with [3, Theorem 9.3|.

Theorem. Let {hy,...,h} be a family of affine contractions of R, such that for
some open set U C R,

(4) hi(U) CU foralli=1,...t, and i # j = hy(U) N h;(U) = 0.
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2 SIMON KRISTENSEN

Suppose further that no finite set {xq,...,xy} is invariant under the full family
{h1,...,hs}. Then, there is a unique non-empty compact set K such that

which supports a non-atomic measure satisfying condition (1) (and consequently
condition (2)). Furthermore, § is the positive real number satisfying

t
> =1
=1

where p; > 0 is the ratio with which h; contracts (i.e., hi(x) = £p;x + 7;).

Condition (4) is known as the open set condition, and is sufficient to ensure the
existence of the set K. The additional restriction that no finite set is invariant under
the action of the family is to ensure that the limiting measure is non-atomic. The
theorem has a higher dimensional generalisation, but this is not relevant for the
purposes of this paper.

Let b € N, b > 2 and let £ C {0,...,b — 1}. Consider the set Cp p C [0, 1] of
numbers whose expansion to base b does not contain any of the digits in £. This
generalises the well-known ternary Cantor set, which is obtained when b = 3 and
E = {1}. Of course, if #E = b — 1, the set Cj g consists of a single point and
0 = 0. We will disregard this degenerate case and assume that #F < b— 1. It
is straightforward to construct a family of contractions having Cj, g as their limit
set (see e.g. [4]). One can easily show that this family satisfies the conditions
of the above theorem. By that theorem, C} p supports a measure satisfying (1).
Consequently, in all results below, we may read C, g for K to obtain statements
about these sets. Also, we easily see that 6 = log(b — #FE)/logb.

The set K (v;[0,1]) has been widely studied (see [2]). When n = 1, we are
approximating elements of K by rationals, and further results on the measure and
dimension are known [5, 9, 11|. In the present paper, we are interested in finding
upper bounds for the measure and Hausdorff dimension of the sets K% (1; K), where
K is subject to condition (1). A particular example of such sets are the Cj, g, with
the only restriction that #F < b—1. This has some number theoretic consequences.

We briefly mention some related questions and results. Mabhler asked [8] how
close an element in the ternary Cantor set can be approximated by rationals (see
also [7] and [6], where it is conjectured that the sets C, g contain no algebraic
irrationals). The partial answer by Weiss [11] was ‘almost surely not better than
expected’. The present paper gives a similar answer for approximation by algebraic
numbers of bounded degree. Pollington [10] has calculated the Hausdorff dimension
of I (r +— r~("*DA: N) where N is the set of numbers which are non-normal to every
base. This coincides with the Hausdorff dimension of the set K (r +— r~=("*DA; [0, 1])
which was shown by Baker and Schmidt [1] to be 1/A.

2. STATEMENT OF RESULTS

We will first find a criterion on the function v under which we are guaranteed that
the set K (¢; K) is null with respect to p. We will obtain the following theorem:
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Theorem 1. Let K C [0,1] be a compact set supporting a measure p satisfying (2).
Suppose that 1 : R>1 — Rs( s non-increasing and such that either

Zrzn‘sflw(r)‘; <00 or Zr”¢(r)5
r=1 r=1

Then
1 (K (¢; K)) = 0.

When n = 1 and K = (5, this reduces to the theorem of [11]. Note that
whenever § < (n+1)/2n, the first convergence condition is stronger than the second.
In Koksma’s classification of transcendental numbers, we encounter the quantities

*

wk(z) = sup{w > 0: |z —a| < H(a) ™! for co many o € A, }

w*(x) = lim sup w”T(:U),

n—oo

and

defined for any transcendental number z. If w*(x) < oo, z is said to be an S*-number
of type w*(x). Note that we are using the definitions from [2]. See the discussion in
that book for alternative definitions of the quantities used. We have the following
corollary to theorem 1.

Corollary 2. For p-almost every x € K, w!(z) < min{2n — 1,(n +1 —9)/0}.
Consequently, p-almost every x € K is an S*-number of type < min{2,1/6}.

Note that we have lost some information by restricting to a Cantor set. Indeed, it
is well-known that almost all real numbers are S*-numbers of type < 1 (see e.g. |2,
Theorem 3.3]). At present, I do not know if the bound on the type can be improved
for general sets satisfying (1).

In analogy with Koksma'’s classification, we have Mahler’s classification (which
actually predates Koksma’s). In this clas&ﬁcaﬂon we have quantities

wy(x) =sup{w > 0: |P(x)| < H(P)™" for co many P € Z[X],deg(P) < n}

and
Wn (x )

w(zr) = limsup .
n—oo

If 0 < w(x) < oo, x is said to be an S-number of type w(z). We now have a second
corollary to theorem 1.

Corollary 3. For p-almost every x € K, w,(z) < min{3n—2, (14+J)n+1—-25)/0}.
Consequently, p-almost every x € K is an S-number of type < min{3, (14 6)/d}.

We now turn our attention to the Hausdorff dimension of the null sets from
theorem 1. Denote by H?*(E) the s-dimensional Hausdorff measure of the set £ and
by dimg(E) the Hausdorff dimension of E (see e.g. |[3] for the definitions). If K
supports a measure satisfying (1), it follows directly that dimy(K) = §. We will
show the following:

Theorem 4. Let K C [0,1] be a compact set supporting a non-atomic measure fi
satisfying (1). Let s € [0,0] and let ¢ : Rs; — Ryg be non-increasing. Suppose that

either . .
ZTZ”J’lw(T)S < o0 or ZT"Q/}(T) < 00
r=1 r=1
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Then
HA(IC,,(¥; K)) = 0.

From theorem 4, we may deduce an upper bound on the Hausdorff dimension of
the sets K (¢; K). For a function 1 : Rs; — Ry, we define the lower order at

infinity of 1/ to be

—1
Ay = lim inf 28 4T)
r—oo  log(r)

Corollary 5. Let ¢ : R>; — Ry be non-increasing with Ay, > min{2n, (n+1)/0}.
Then

dimy (K (¢; K)) < min { 2n0 ntl } :

Ao A

Of course, as K} (v; K) C K (1:]0,1]) and as dimy (K (¢;[0,1])) = (n 4+ 1)/Ay
under the same assumptions as in corollary 5 (see [2, Theorem 6.7]), we recognise
the second upper bound as the one of this theorem. The first estimate is stronger
only if § < (n+ 1)/2n. This is certainly satisfied for all n if 6 < 1/2. For higher ¢,
new information is only gained for suitably small n.

The results obtained in the present paper are unlikely to be best possible. This is a
consequence of the methods used in the proofs, and we will make conjectures on the
best possible results in the final section. To prove stronger results of the type in this
paper, information on the distribution of all algebraic numbers of bounded degree
nearby K is needed. For the very general K studied here, we do not have sufficiently
accurate information to obtain the conjectured results. Instead, we make do with
weak distributional results which hold on all of R, and use measure theoretical
arguments to deduce distributional results for algebraic numbers nearby K.

3. PROOF OF THEOREM 1

We first prove that the convergence of the first series ensures that the measure is
zero. This is by fra the most difficult part of the proof. We will use a consequence of
[2, Corollary A.2|. Tt is a consequence of this corollary, that if o and [ are distinct
algebraic numbers of degree at most n, then

(6) v = B = eal () "H(B)™",

where the constant ¢, > 0 depends solely on n. If for some k € N, 2% < H(a), H(f3) <
21 this implies that |a — 3] > $¢,272"%. Consequently, for distinct algebraic num-
bers a; with 28 < H(a;) < 25*!, the intervals [a; — $¢427 %" o + 1¢4272%7] are
disjoint.

Let k£ € N. We will show that as k£ — oo,

o(r)

2k§T<2k+1 471042721611

(7) = o(1).

Indeed, suppose to the contrary that there is a ¢; > 0 and a strictly increasing
sequence {k;}3°; C N such that for any ¢ € N

¥(r)

— s
oki<p<okitl 41 2 2kin
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By the convergence assumption of the theorem together with Cauchy’s condensation
criterion,

i 92kndy)y (k)0 — i (22kznw(2k))5 < oo,
k=1 k=1

On the other hand, as 1 is non-increasing,

00 o 5
2kn k) O 5.5 ’QD(T’)
> (o) 2 4 Z(mx W)

o0
> 470658 Z 1 = o0,

which is the desired contradiction.
Consider the sets

E.=  |J [le—v¢(H(@);a+(H ).
2%1?5322’““

Clearly, for k large enough
wBy) < Y (o= d(H(a);a + ¢(H(a)])

OleAn
2k <H () <2k

< c3cjaT02% (25 3T (e — e 27 o+ Leg27 M),

QEAn
2k <H(a)<2k+1

where we have used (2) and (7). The intervals in the final sum are disjoint. Hence,
the sum of their measure is bounded from above by the measure of K, which is equal
to 1. We have shown that for k > kg,

//J(Ek) S 03024—622kn6¢<2k)6‘

To complete the proof of this case, we note that K (1; K) is the set of points
falling in infinitely many of the Ej. But

Z N(Ek) < 03034—5 Z 22kn6,¢(2k>6‘
k=ko k=ko

Using Cauchy’s condensation criterion and the convergence assumption of the the-
orem, the latter converges. Hence, the Borel-Cantelli lemma implies the theorem.

To show that the convergence of the second series is sufficient to ensure zero
measure, we note that

(8) #{aeA,:ae|0,1,H(a)=H} <n(n+1)2H +1)".

By (1), for any such a, we have p([a—¢(H);a+1(H)]) < cetb(H)® for some cg > 0.
Elements of K (¢; K) fall in infinitely many of these intervals, and as

S0 wlla—¢(H)a+¢(H)) <n(n+1)cg Y (2H + 1)")(H)’,
H=1 aaee[éq] H=1
H(a)=H

which converges by assumption, the measure of K (¢; K) is zero by the Borel-
Cantelli lemma. O
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We now prove corollary 2. Let n be fixed and suppose that w}(z) > min{2n — 1,
(n+1-208)/6}. Then, for some € > 0, z € Kx(r +— r~wn@=1=¢ ) Tfw?(z) > 2n—1,

then
0o oo
E :T2n671r(72n+17176)6 _ E 7,,71756 < 00,
r=1 r=1

so x is in some set of measure zero by theorem 1. If w > (n + 1 — )/, then
ZT”T((_n_1+6)/6_1_6)6 _ Zr—l—ée < 00,
r=1 r=1
so again x is in some set of measure zero by theorem 1. Hence, for fixed n € N,
wi(z) <min{2n —1,(n+ 1 —¢)/d} almost surely. This proves the first part of the
corollary.

Suppose now that z is not an S*-number of type < min{2,1/§}. FEither = is
algebraic, an S*-number of higher type or a 7*- or U*-number. The algebraic
numbers may be disregarded, as there are only countably many of them, and so
almost no such numbers (recall that p is non-atomic). Consider now the set

J{z e K:w)(x)>min{2n — 1, (n+ 1 - 4)/6}}.

By the above argument, this is a countable union of null sets, and so a null set itself.
Hence, almost all x € K are in the complement, and so satisfy for any n € N,

wr(z) <min{2n —1,(n+1—16)/d},

and consequently

w*(x) = limsup wn () < limsupmin{(2n — 1)/n,(n +1—§)/nd} = min{2,1/0}.

n—oo n n—oo
This completes the proof. 0
Finally, we prove corollary 3. From |2, Theorem 3.4] we know that
wy(z) <w)(z) +n—1.

Inserting the bounds of corollary 2 into this inequality yeilds the first statement.
The second statement is derived as in the proof of corollary 2. Alternatively, it can
be deduced directly from this corollary together with [2, Theorem 3.6]. O

4. PROOF OF THEOREM 4

We will define a family indexed by kg of covers of K with intervals and use these
to obtain an upper bound on the Hausdorff s-measure of K} (¢; K') which tends to
zero as kg tends to infinity. This will imply the theorem.

Suppose first that the first series converges. We define

Dy ={a€h,:2" <H(a) <2 [a—v2");a+v(2")|NK #0}.
With ¢4 defined by (6), we see that by disjointness
#chl47562272kn6 < /JJ< U [Oé - %64272kn; a+ Z_11642721671])
acD
< pu(K) =1
Consequently,
(9) #Dk S 01_14662622]6”6.
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For any ky € N, the family

U Ufla = ¢@%);a+ ¢}

k=ko a€D
covers K (1; K). Hence, for s € [0, ],

(K*(w K Z 22 w 2k < 925 ¢ —145 -4 Z 22kn5w 2k

k=ko a€D k=kg

Using Cauchy’s condensation criterion, we see that the latter tends to zero as ko
tends to infinity by assumption.
Suppose now that the second series converges. In this case, we cover K} (1; K) by

for any Hy € N. Using (8),

H (K (45 K Z Y. Z9(H)Y <2n(n+1) Y (2H +1)"(H)’,
H=Hy achA, H=Hj
a€(0,1]
H(a)=H
which tends to zero as Hj tends to infinity by assumption. O
Finally, we prove corollary 5. Let n > 0 be fixed and let s = 2nd/\y; + 7.
Choose € < 2nén(2nd/Ay +n)~" and let ro be sufficiently large that for r > ro,

log(r)/logr > —Ay + €. Then,

oo (o.) o

_ 1 _ 1
Zrzms lw(r)s < ZTQM 1-2n6—2ndn+e(2nd/Ay+n) _ E :r 1 ¢
r=rg r=rQo T=To0

where € = 2ndn — e(2nd/Ay +n)~' > 0. Hence, the series converges, and

2nd
dimy (K, (4 K)) < 5= + 1.
(U

As n > 0 was arbitrary, the first upper bound of the corollary follows. The second
upper bound follows as K% (¢; K) C Kk (4; [0, 1]), so that

dimy (1, (¢; K)) < dimp (K, (43 0, 1)) = (n + 1)/ Ay

by [2, Theorem 6.7]. Of course, this could also be shown to follow from the conver-
gence of the second series of theorem 4. O

5. CONCLUDING REMARKS

The results of this paper are unlikely to be best possible, except possibly when
n = 1 where approximation by rationals is considered. The reason for this is the
use of inequality (6). When n = 1, this is sharp, since for p/q,p’/q € Q with
2k < q,q < 21 [ Ip/a—1p'/d'| > 1/(q¢’) > 27%*. Under the assumption this
is best possible, since if (¢,¢') = 1, we may choose p,p’ such that ¢p’ — ¢'p = 1.
However, inequality (6) is not in general best possible when we consider algebraic
numbers of bounded degree, which are not as regularly distributed as rationals.
Indeed, if it was best possible, we would have to the order of 22" algebraic numbers
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of degree < n and height H € [2%;2%T1) in the unit interval, but by (8), there are
only to the order of 2¢(*1) such numbers. Hence, there must be larger gaps between
at least some of these numbers. Identifying these gaps is a difficult problem, and at
present we have no way of ensuring that the large gaps do not all fall outside of the
sets K. Hence, our result is not as strong as could be desired.

In the light of [2, Theorem 6.7], the sharpest upper bound is likely to be obtained
when the exponent 2nd — 1 of r in the first series of theorems 1 and 4 is replaced by
(n+1)6 — 1. Such an upper bound would imply that for any K C [0, 1] supporting
measure 4 satisfying (1), p-almost all numbers in K would be S*-numbers of type
< 1. It would also remove the restrictions on 0 under which corollary 5 improves
upon what is known from |2, Theorem 6.7|. Better knowledge of the distribution of
algebraic numbers than what is used here is clearly needed in order to prove this.
It will be the subject of further study.
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