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FROBENIUS SPLITTING OF EQUIVARIANT CLOSURES OF
REGULAR CONJUGACY CLASSES

JESPER FUNCH THOMSEN

Abstract. Let G denote a connected semisimple and simply connected algebraic
group over an algebraically closed field k of positive characteristic and let g denote
a regular element of G. Let X denote any equivariant embedding of G. We prove that
the closure of the conjugacy class of g within X is normal and Cohen-Macaulay. More-
over, when X is smooth we prove that this closure is a local complete intersection. As
a consequence, the closure of the unipotent variety within X share the same geometric
properties.

1. Introduction

Let G denote a connected semisimple linear algebraic group over an algebraically
closed field k of positive characteristic. Consider G as a G×G-variety by left and right
translation. An equivariant G-embedding is a normal G × G-variety X containing a
dense open subset G×G-equivariantly isomorphic to G. Let B denote a Borel subgroup
of G and let g denote an element of G. The closure of the double coset BgB within X
is called a large Schubert variety. As proved in [2] (see also [1]) large Schubert varieties
are normal and Cohen-Macaulay. In the present paper we will prove a similar result for
closures of diagonal G-orbits of regular elements within X.

Assume that G is simply connected. An element g in G is called regular if the central-
izer of g in G is of dimension equal to the rank l of G. By [13] the set of G-conjugacy
classes of regular elements is parametrized by the set of points in affine space Al. To
describe this correspondence, let χ1, . . . , χl denote the set of fundamental G-characters
and consider the Steinberg map χ : G→ Al defined by χ(h) = (χ1(h), . . . , χl(h)). Then
the fiber χ−1(a), associated to a point a in Al, contains a unique open dense G-orbit
consisting of the set of regular elements within χ−1(a). Thus χ−1(a) is the closure of a
unique regular conjugacy class within G.

Let g denote any regular element within G. We prove that the closure CG(g) of
the G-conjugacy class of g within an equivariant embedding X of G is normal and
Cohen-Macaulay. Moreover, when X is smooth we prove that CG(g) is a local complete
intersection and we calculate its associated dualizing sheaf. When X = G this statement
is equivalent to saying that the fibers of the Steinberg map are all normal, Cohen-
Macaulay and local complete intersections. The latter statement is due to Steinberg
(Thm.6.11 and Thm.8.1 in [13]). The case of primary interest to us is when g is a

regular unipotent element in G. In this case CG(g) coincides with the closure of the
unipotent variety U within X. In particular, when G coincides with the associated
group of adjoint type (i.e. type E8, F4 and G2) we obtain a description of the geometry
of the closure of the unipotent variety within the wonderful compactification of G.

In order to prove the described results we will use the theory of Frobenius splitting. It
is well known that any equivariant embedding X of G is Frobenius split. We prove that
there exists a Frobenius splittings of X which compatibly splits the closure CG(g) of a
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given regular conjugacy class. Moreover, we may choose such a splitting to be canonical
in the sense of Mathieu (see Chap. 4, [3]). In particular, when L is a G-linearized line

bundle on CG(g), then the associated set of global sections H0(CG(g),L) admits a good

filtration (as a G-module). We also prove that when X (and hence CG(g)) is projective

then the higher cohomology groups of globally generated line bundles on CG(g) are zero.
In the final section we prove that the boundary of the closure of CG(g) is independent of

g when G is assumed to be almost simple. This leads to a similar statement for arbitrary
connected, almost simple, semisimple linear algebraic groups over k. In particular, in
the adjoint case this applies to the wonderful compactification. The latter was recently
obtained by X. He [5].

We thank Michel Brion for useful comments and for suggesting simplifications of proofs
given in an earlier version of this paper. We also thank T. Springer for pointing out the
results by X. He.

2. Notation

Throughout this paper G will denote a connected semisimple linear algebra group over
an algebraically closed field k of positive characteristic p > 0. The associated group of
adjoint type will be denoted Gad. We will fix a Borel subgroup B and a maximal torus
T within B. The character (resp. co-characters) of T will be denoted by X∗(T ) (resp.
X∗(T )). We identify X∗(T ) with the group of B-characters X∗(B).

The set of roots associated with T will be denoted by R. We define a root to be
positive if the associated T -weight space (under the adjoint action) in the Lie algebra of
B is zero. The set of positive roots is denoted by R+ and the associated set of simple
roots is denoted by ∆ = {α1, . . . , αl}. To each root α in R there is an associated coroot
α∨ which we use to define the set of dominant weights in X∗(T ). When G is simply
connected every dominant weight is a positive linear combination of the fundamental
dominant weights ω1, . . . , ωl, where ωi denotes the fundamental weight associated to αi.

The Weyl group W associated with T parametrizes the set of Schubert varieties X(w)
in the flag variety G/B. When w ∈ W is represented by an element ẇ ∈ G we will write
BwB for the subset BẇB of G. The simple reflections, denoted by s1, . . . , sl, generate
the Weyl group and we use them to define the length l(w) of an element w ∈ W . The
unique element in W of maximal length is denoted by w0.

For any B-character λ we define a G-module by

H(λ) = {f : G→ k : f(gb) = λ(b)−1f(g), b ∈ B, g ∈ G}.

Then H(λ) is nonzero exactly when λ is a dominant T -character. When H(λ) is nonzero
there exists a unique B-stable line within H(λ). This line is called a lowest weight line
and its associated weight is w0λ. Similarly, H(λ) contains a unique highest weight line
invariant under the opposite Borel group B+ and of weight λ. The G-module H(λ)
coincides with the global sections of a unique G-linearized line bundle on G/B which we
denote by LG/B(λ).

When M is a G-module we consider the group of endomorphisms End(M) as a G×G-
module by

((g′, g) · f)(m) = g′ · (f(g−1 ·m))

for g, g′ ∈ G, f ∈ End(M) and m ∈ M . When considering End(M) as a G-module we
do this by identifying G with the subgroup G × {e} of G × G. The field k will always
be considered as the trivial representation.
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2.1. The Steinberg map. Let now G denote a simply connected group and let M
denote a finite dimensional rational G-module defined by a morphism : G → GL(M).
The G-character χM : G → k of M is by definition the composition of latter map with
the trace function on GL(M). The Steinberg map ([13]) is the map

χ : G→ Al,

g 7→ (χ1(g), . . . , χl(g)),

defined as the product of the G-characters χi associated to the G-modules H(ωi). When
a = (a1, . . . , al) ∈ Al we will by χ−1(a) denote the (scheme theoretic) fiber of χ at the
point a. As mentioned in the introduction we may consider the fibers of the Steinberg
map as closures of conjugacy classes of regular elements within G. Among all fibers the
fiber at a = (χ1(e), . . . , χl(e)) is of particular importance as this fiber coincides with the
set of unipotent elements within G.

3. Equivariant embeddings

In this section G denotes a connected semisimple linear algebraic group. We think
of G as a G × G-variety by left and right translation. An equivariant G-embedding (or
simply a G-embedding) is a normal G × G-variety X containing an open subset which
is G×G-equivariantly isomorphic to G.

3.1. The wonderful compactification. When G = Gad is of adjoint type there exists
a distinguished equivariant embedding X of G which is called the wonderful compactifi-
cation (see e.g. Section 6.1,[3]).

The wonderful compactification X is a smooth projective variety such that the comple-
ment of the open subset G is a finite union of smooth irreducible divisors which intersect
transversally. Moreover, the common intersection of the irreducible components of X\G
is a closed G×G-orbit Y which is G×G-equivariantly isomorphic to G/B×G/B. The
variety Y is the unique closed G×G-orbit within X.

3.2. Toroidal embeddings. An embeddingX of a semisimple groupG is called toroidal
if the canonical map φ : G → Gad admits an extension πX : X → X to the wonderful
compactification X of the group Gad of adjoint type.

When X is a complete toroidal embedding then every closed orbit of X will map to
the unique closed orbit Y ' G/B×G/B within X. As a consequence, every closed orbit
of X is then G×G-equivariantly isomorphic to G/B ×G/B.

A toroidal embedding is uniquely determined by the closure T of T within X. The
closure T is normal and hence T is a toric variety with respect to T . As toric varieties
admits resolutions by smooth toric varieties this essentially explains the following (see
also Prop.6.2.5,[3])

Theorem 3.1. For any equivariant G-embedding X there exists a smooth toroidal em-
bedding X ′ of G and a birational projective morphism X ′ → X extending the identity
map on G.

4. Frobenius splitting

LetX denote a scheme of finite type over an algebraically closed field k of characteristic
p > 0. The absolute Frobenius morphism on X is the morphism F : X → X of schemes,
which is the identity on the set of points and where the associated map of sheaves

F ] : OX → F∗OX
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is the p-th power map. We say that X is Frobenius split if there exists a morphism
s ∈ HomOX

(F∗OX ,OX) such that the composition s ◦ F ] is the identity map on OX .

4.1. Stable Frobenius splittings along divisors. Let D denote an effective Cartier
divisor on X with associated line bundle OX(D) and canonical section σD. We say that
X is stably Frobenius split along D if there exists a positive integer e and an morphism

s ∈ HomOX
(F e

∗OX(D),OX),

such that s(σD) = 1. In this case we say that s is a stable Frobenius splitting of X
along D of degree e. Notice that X is Frobenius split exactly when there exists a stable
Frobenius splitting of X along the zero divisor D = 0.

Remark 1. Consider an element s ∈ HomOX
(F e

∗OX(D),OX). Then the condition
s(σD) = 1 on s for it to define a stable Frobenius splitting of X, may be checked on
any open dense subset of X.

4.2. Subdivisors. Let D′ ≤ D denote an effective Cartier subdivisor and let s be a
stable Frobenius splitting of X along D of degree e. The composition of s with the map

F e
∗OX(D′) → F e

∗OX(D),

defined by the canonical section of the divisor D−D′, is then a stable Frobenius splitting
of X along D′ of degree e. Applying this to the case D′ = 0 it follows that if X is stably
Frobenius split along any effective divisor D then X is also Frobenius split.

Lemma 4.1. Let D1 and D2 denote effective Cartier divisors. If s1 (resp. s2) is a stable
Frobenius splitting of X along D1 (resp. D2) of degree e1 (resp. e2), then there exists a
stable Frobenius splitting of X along D1 +D2 of degree e1 + e2.

Proof. By the discussion above it suffices to prove that there exists a stable Frobenius
splitting of X along D1 + pe1D2 of degree e1 + e2. By the projection formula there exists
an identification

F e1+e2
∗ OX(D1 + pe1D2) ' F e2

∗ (OX(D2)⊗ F e1
∗ OX(D1)).

where we have used the relation F ∗OX(D2) ' OX(pD2). Hence, s1 defines a map

F e1+e2
∗ OX(D1 + pe1D2) → F e2

∗ (OX(D2)).

Composing the latter map with s2 we obtain a map

F e1+e2
∗ OX(D1 + pe1D2) → OX ,

which defines the desired stable Frobenius splitting of X. �

4.3. Compatibly split subschemes. Let Y denote a closed subscheme of X with sheaf
of ideals IY . When

s ∈ HomOX
(F e

∗OX(D),OX),

is a stable Frobenius splitting of X along D we say that s compatibly Frobenius splits Y
if the following conditions are satisfied

(1) The support of D does not contain any of the irreducible components of Y .
(2) s(F e

∗ (IY ⊗OX(D))) ⊆ IY .
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When s compatibly Frobenius splits Y there exists an induced stable Frobenius splitting
of Y along D ∩ Y of degree e. Notice that when only condition (2) is satisfied then Y is
still compatibly Frobenius split by the induced stable Frobenius splitting of X along the
zero divisor 0. In concrete situations condition (2) may be checked using the following
result

Lemma 4.2. Let s denote a stable Frobenius splitting of X along a divisor D and let
Y denote a closed subscheme of X satisfying the above condition (1). If Y is compatibly
Frobenius split by the induced stable Frobenius splitting of X along the zero divisor 0 ≤ D,
then Y is also compatibly Frobenius split by s.

Proof. Argue as in the proof of Prop.1.4 in [10]. �

Lemma 4.3. Let s denote a stable Frobenius splitting of X along D which compatibly
Frobenius splits a closed subscheme Y of X. If D′ ≤ D then the induced stable Frobenius
splitting of X along D′, defined in Section 4.2, compatibly Frobenius splits Y .

Proof. This follows immediately from the construction of the induced Frobenius splitting
of X along D′. �

Lemma 4.4. Let D1 and D2 denote effective Cartier divisors. If s1 (resp. s2) is a stable
Frobenius splitting of X along D1 (resp. D2) of degree e1 (resp. e2) which compatibly
splits a closed subscheme Y of X, then there exists a stable Frobenius splitting of X along
D1 +D2 of degree e1 + e2 which compatibly splits Y .

Proof. The stable Frobenius splitting of X along D1 +D2 defined in the proof of Lemma
4.1 compatibly Frobenius splits Y . �

As an easy consequence of the above definitions we find

Lemma 4.5. Let s denote a stable Frobenius splitting of X along an effective divisor D.
Then

(1) X is reduced and every irreducible component of X is compatibly Frobenius split.
(2) If s compatibly Frobenius splits a closed subscheme Y of X then each irreducible

component of Y is also compatibly Frobenius split by s.
(3) Assume that s compatibly Frobenius splits closed subschemes Y1 and Y2 and that

the support of D does not contain any of the irreducible components of the scheme
theoretic intersection Y1 ∩ Y2. Then s compatibly Frobenius splits Y1 ∩ Y2.

The following statement relates stable Frobenius splitting along divisors with compat-
ibly Frobenius splitting.

Lemma 4.6. Let D and D′ denote effective Cartier divisors and let s denote a stable
Frobenius splitting of X along (p − 1)D + D′ of degree 1. Then there exists a stable
Frobenius splitting of X along D′ of degree 1 which compatibly splits the closed subscheme
defined by D.

Proof. Define s′ to be the composition of s with the map

F∗OX(D′) → F∗OX((p− 1)D +D′),

defined by the canonical section σp−1
D of (p− 1)D. Then s′ is a stable Frobenius splitting

of X of degree 1. It remains to show that D is compatibly Frobenius split by s′. As
this is a local condition we may assume that OX(D) and OX(D′) are trivial line bundles
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and that X is affine. Identify σD and σD′ with elements in the coordinate ring k[X] and
consider s and s′ as maps from F∗k[X] to k[X]. By definition

s′(a) = s(aσp−1
D ) , a ∈ k[X].

Hence, when a = σDa
′ ∈ (σD) belongs to the ideal generated by σD we find

s′(a) = s(σpDa
′) = σDs(a

′) ∈ (σD).

It remains to prove that none of the components of D is contained in the support of D′.
Restricting, if necessary, to an open subset we may assume that D is irreducible and
nonempty. Now assume that D is contained in the support of D′. By Lemma 4.5 the
ideal (σD) is radical. Hence, σD′ is contained in (σD). In particular,

1 = s′(σD′) ∈ (σD),

which is a contradiction. �

4.4. Cohomology and Frobenius splitting. The notion of Frobenius splitting is par-
ticular useful in connection with proving higher cohomology vanishing for line bundles.
The main idea is that when s ∈ HomOX

(F e
∗OX(D),OX) is a stable Frobenius splitting

of X along the divisor D, then s defines a splitting of the injective map

OX → F e
∗OX(D).

Tensoring the latter map with a line bundle L on X we find a split injective map

L → F e
∗ (Lp

e ⊗OX(D)),

where we have applied the projection formula and the relation F ∗L = Lp. As F is a
finite morphism the following statement is an easy consequence.

Lemma 4.7. Let s denote a stable Frobenius splitting of X along D of degree e. Then
for every line bundle L on X and every integer i there exists an inclusion

Hi(X,L) ⊆ Hi(X,Lpe ⊗OX(D)),

of abelian groups. In particular, when X is projective, L is globally generated and D is
ample then the group Hi(X,L) is zero for i > 0.

Assume now, moreover, that Y is compatibly Frobenius split by the stable Frobenius
splitting s of X. Then s defines a splitting of the map

IY → F e
∗ (IY ⊗OX(D)),

f 7→ fp
e

σD.

Tensoring the latter map with a line bundle L on X then leads to

Lemma 4.8. Let s denote a stable Frobenius splitting of X along D of degree e and let
Y denote a closed compatibly Frobenius split subscheme of X. Then for every line bundle
L on X and every integer i there exists an inclusion

Hi(X, IY ⊗ L) ⊆ Hi(X, IY ⊗ Lp
e ⊗OX(D)),

of abelian groups. In particular, when X is projective, L is globally generated and D is
ample then the group Hi(X, IY ⊗ L) is zero for i > 0.
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4.5. Push forward. Let f : X → X ′ denote proper morphism of schemes and assume
that the induced map OX′ → f∗OX is an isomorphism. Then every Frobenius splitting
of X induces, by application of the functor f∗, a Frobenius splitting of X ′. Moreover,
when Y is a compatibly Frobenius split subscheme of X then the induced Frobenius
splitting of X ′ compatibly splits the scheme theoretic image f(Y ) (Prop.4, [7]).

We will need the following connected statement.

Lemma 4.9. Let f : X → X ′ denote a morphism of projective schemes such that
OX′ → f∗OX is an isomorphism. Let Y be a closed subscheme of X and denote by Y ′

the scheme theoretic image f(Y ). Assume that there exists a stable Frobenius splitting
of X along an ample divisor D which compatibly splits Y . Then f∗OY = OY ′ and
Rif∗OY = 0 for i > 0.

Proof. Let L denote an ample line bundle on X ′. By a result of G. Kempf (see Lemma
2.11, [10]) it suffices to prove, for sufficiently large values of n, that

(1) Hi(X, f∗Ln) = Hi(Y, f ∗Ln) = 0 for i > 0.
(2) The restriction map H0(X, f∗Ln) → H0(Y, f ∗Ln) is surjective.

Now apply the “in particular” statements in Lemma 4.7 and 4.8. �

4.6. Frobenius splitting of smooth varieties. When X is smooth there exists a
canonical OX-linear identification (see e.g. Section 1.3.7 in [3])

CX : F∗ω
1−p
X ' HomOX

(F∗OX ,OX).

Hence, a Frobenius splitting of X may be identified with a global section of ω1−p
X with

certain properties. A global section s of ω1−p
X which corresponds to a Frobenius splitting

will be called a Frobenius splitting.

Lemma 4.10. Assume that X is smooth and let τ denote a global section of ω1−p
X which

defines a Frobenius splitting of X. Then there exists a stable Frobenius splitting of X of
degree 1 along the Cartier divisor defined by τ . In particular, if τ = τ̃ p−1 is a (p− 1)-th
power of a global section τ̃ of ω−1

X , then X is Frobenius split compatibly with the zero
divisor of τ̃ .

Proof. Composing the evaluation map

HomOX
(F∗OX ,OX) → OX ,

s 7→ s(1),

with CX defines a stable Frobenius splitting of X of degree 1 along the Cartier divisor
defined by τ . This proves the first assertion. The second assertion follows from Lemma
4.6 with D′ = 0. �

4.7. Frobenius splitting of G/B. Let G denote a simply connected linear algebraic
group. The flag variety G/B is a smooth variety with dual canonical bundle

ω−1
G/B = LG/B(2ρ),

where ρ denotes the sum of the fundamental dominant weights. Consider the multipli-
cation map

φG/B : St⊗ St → H(2(p− 1)ρ) = H0(G/B, ω1−p
G/B),

where we have used the notation St to denote the Steinberg module H((p − 1)ρ). The
Steinberg module St is an irreducible selfdual G-module and hence there exists a unique
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(up to nonzero scalars) nondegenerate G-invariant bilinear form (, ) on St. Now we have
the following description

Theorem 4.1. ([6]) Let h =
∑

i fi ⊗ gi denote an element in St ⊗ St. Then φG/B(h)
defines a Frobenius splitting of G/B (up to a nonzero scalar) if and only if

∑
i(fi, gi) 6= 0.

As an easy consequence of this result (with G substituted with G×G) we have

Corollary 4.1. ([6]) Let v∆ denote a generator of the unique diagonal G-invariant line
in St⊗ St and let v− (resp. v+) denote a generator of the highest (resp. lowest) weight
line in St. Then

φ(G×G)/(B×B)(v∆ ⊗ (v− ⊗ v+))

defines a Frobenius splitting of G/B ×G/B (up to a nonzero scalar).

5. Preliminary results

Throughout this section G is simply connected and µ is a nonzero fixed dominant
T -character.

5.1. The morphism ψµ. Consider the G×G-equivariant defined by

ψµ : G→ Pµ := P(End(H(µ))⊕ k),

g 7→ [(g · IH(µ), 1)],

where IH(µ) denotes the identity map on H(µ). Let Oµ(1) denote the ample generator
of the Picard group of Pµ. The pull back ψ∗µ(Oµ(1)) is then (by the description of ψµ)
canonical isomorphic to the trivial line bundle on G. The induced map on global sections

ψ∗µ,G : End(H(µ))∗ ⊕ k ' H0(Pµ,Oµ(1)) → H0(G,ψ∗µ(Oµ(1))) ' k[G],

is given by

ψ∗µ,G(v∗ ⊗ v, a)(g) = v∗(gv) + a,

with v∗ ⊗ v ∈ H(µ)∗ ⊗ H(µ) ' End(H(µ))∗ and a ∈ k.
Let v−µ (resp. u−µ ) denote a lowest weight vector in H(µ) (resp. H(µ)∗). Similarly we

let v+
µ (resp. u+

µ ) denote a highest weight vector in H(µ) (resp. H(µ)∗). Let Trµ denote
the trace function on End(H(µ)). Then

Lemma 5.1. The function ψ∗µ,G(u−µ⊗v−µ , 0) on G is a generator of the lowest weight space
in H(−w0µ) ⊆ k[G]. Moreover, the function ψ∗µ,G(Trµ, 0) coincides with the G-character
χµ of H(µ).

Proof. That ψ∗µ,G(u−µ ⊗ v−µ , 0) is nonzero follows by evaluating at a representative of w0.
The first assertion then follows as u−µ ⊗ v−µ is B × B-semiinvariant (i.e. invariant up to
scalars) of weight (−µ,w0µ). The second assertion is clear from the discussion above. �

5.1.1. Regular functions on G. In connection with Lemma 5.1 we will later need a more
precise description of ψ∗µ,G(u−µ ⊗v−µ , 0) when µ is a fundamental dominant weight. Recall
that the coordinate ring k[G] is a unique factorization domain as G is assumed to be
simply connected. Then

Lemma 5.2. Let fi denote a generator of the lowest weight space in H(ωi). Then fi is
an irreducible element in k[G] and the ideal (fi) generated by fi in k[G] coincides with
the ideal of functions vanishing on the closure Bw0siB of the Bruhat cell Bw0siB.
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Proof. Write fi as a product of irreducible elements fi = fi,1 · · · fi,n. As fi is B × B-
semiinvariant each factor fi,j of this product is also B × B-semiinvariant. Hence, there
exists dominant weights ωi,j such that fi,j generates the lowest weight space in H(ωi,j).
Moreover, by the factorization of fi we must have ωi =

∑n
j=1 ωi,j. But then n must be

equal to 1 which proves the first part of the statement.
As fi is irreducible the ideal (fi) is a prime ideal of height 1. By the B × B-

semiinvariance of fi this ideal must coincide with the ideal of functions vanishing on
the closure of some Bruhat cell Bw0sjB of codimension 1. It remains to prove that
f(w) = 0, where w ∈ G denotes a representative for w0si. So assume that f(w) 6= 0.
When t ∈ T we may calculate f(tw) in two different ways. First by definition of H(ωi) :

f(tw) = f(ww−1tw) = ωi(w
−1t−1w)f(w) = (−w0siωi)(t)f(w).

But also f(tw) = (t−1·f)(w) = (−w0ωi)(t)f(w). In particular, we conclude that w0siωi =
w0ωi which is a contradiction. �

5.2. The closed orbit in Zµ. In the sequel we let Zµ denote the closure of the image
of ψµ.

Lemma 5.3. The element [(v−µ ⊗ u−µ , 0)] is the unique B ×B-invariant point of Zµ. In
particular, Zµ contains a unique closed G×G-orbit.

Proof. By Borel’s fixed point theorem the set of B×B-invariant points in Zµ is nonempty.
So consider a B × B-invariant point x = [(f, a)], f ∈ End(H(µ)), a ∈ k, of Zµ. Then f
is a B × B-semiinvariant element of End(H(µ)) = H(µ) ⊗ H(µ)∗. In particular, f is a
multiple of v−µ ⊗ u−µ . As v−µ ⊗ u−µ is a weight vector of nonzero weight this leaves us with
two cases; either x = [(v−µ ⊗ u−µ , 0)] or x = [(0, 1)].

Consider the homogeneous polynomial function P on End(H(µ))⊕k defined by P (g, b)
= det(g)− bdimk(H(µ)). Then P is G× G-invariant and P (IH(µ), 1) = 0. In particular, P
vanishes on Zµ and as P (0, 1) 6= 0 this proves the first assertion. The second assertion
now follows as every closed orbit contains a B ×B-invariant point. �

5.3. Morphisms into Zµ. In order to state the next result we define

p : End(H(µ))∗ ⊕ k → End(H(µ))∗

to denote the projection onto the first summand. Recall that by Frobenius reciprocity
there exists a unique (up to scalar) G-equivariant morphism H(µ)∗ → H(−w0µ).

Lemma 5.4. Let η : G/B × G/B → Zµ ⊆ Pµ denote a G × G-equivariant morphism.
Then

η∗(Oµ(1)) ' LG/B(−w0µ) � LG/B(µ)

and the associated map of global sections Rµ fits into a commutative diagram of G×G-
modules

End(H(µ))∗ ⊕ k

p

��

Rµ // H(−w0µ)⊗ H(µ)

End(H(µ))∗
' // H(µ)∗ ⊗ H(µ)

OO
,

where the right vertical arrow is defined from a (unique up to nonzero scalars) nonzero
map H(µ)∗ → H(−w0µ) of G-modules.
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Proof. By Lemma 5.3 the morphism η must be given by

η : G/B ×G/B → Zµ ⊆ P(End(H(µ))⊕ k),

(gB, g′B) 7→ [(gv−µ ⊗ g′u−µ , 0)].

Hence we may, via the Segre embedding, factor η through the map

G/B ×G/B → P(H(µ))× P(H(µ)∗),

(gB, g′B) 7→ ([(g · v−µ ], [g′ · u−µ ]).

As a consequence, we find that

η∗(Oµ(1)) ' LG/B(−w0µ) � LG/B(µ).

Moreover the associated map on global sections

Rµ : End(H(µ))∗ ⊕ k = Oµ(1)(Pµ) → H(−w0µ)⊗ H(µ)

is nonzero and factorizes through the projection map p. �

Lemma 5.5. The element Rµ(u
+
µ ⊗v−µ , 0) is a nonzero multiple of v+

−w0µ⊗v−µ . Moreover,
the element Rµ(Trµ, 0) is a nonzero generator of the unique diagonal G-invariant line in
H(−w0µ)⊗ H(µ).

Proof. The first statement follows from Lemma 5.4. It follows by Frobenius reciprocity
that H(−w0µ)⊗ H(µ) contains a unique diagonal G-invariant line. Hence, it suffices to
show that Rµ(Trµ, 0) is nonzero. Consider the decomposition

Trµ =
∑

θ∈X∗(T )×X∗(T )

(Trµ)θ

of Trµ into T × T -semiinvariant elements. Then (Trµ)(−w0µ,w0µ) is a nonzero multiple of
u+
µ ⊗ v−µ , and the second statement now follows from the first statement. �

6. Line bundles on equivariant embeddings

Throughout this section we assume that G is simply connected. We use the notation
introduced in Section 5. Let X denote an equivariant embedding of G.

Lemma 6.1. Assume that ψµ extends to a map

ψµ : X → Pµ,

and let τµ denote the pull back of the global section (u−µ ⊗ v−µ , 0) of Oµ(1). Then the
support of the divisor of zeroes of τµ does not contain any of the irreducible components
of X \G.

Proof. Notice first that the image ψµ(X) is contained in Zµ. If the support of the divisor
of zeroes of τµ contains an irreducible component of X \G then this support also contains
a G×G-orbit. Hence, also the support of the zero divisor of (u−µ ⊗ v−µ , 0) would contain
a G×G-orbit within Zµ. But the latter support is closed and hence it will contain the
unique closed G × G-orbit of Zµ (see Lemma 5.3). In particular, Rµ(u

−
µ ⊗ v−µ , 0), and

hence also Rµ(u
+
µ ⊗ v−µ , 0), is zero. By Lemma 5.5 this is a contradiction. �

Let Di denote the closure of the Bruhat cell Bsiw0B within X. Then



FROBENIUS SPLITTING OF REGULAR CONJUGACY CLASSES 11

Proposition 6.1. Assume that ψωi
extends to a morphism

ψωi
: X → Pωi

.

Then Di is a Cartier divisor and its associated line bundle OX(Di) (resp. canonical
section) is isomorphic to ψ∗ωi

(Oωi
(1)) (resp. ψ∗ωi

(u−ωi
⊗ v−ωi

, 0)).

Proof. By Lemma 5.1 we know that ψ∗ωi,G
(u−ωi

⊗v−ωi
, 0) is a generator of the lowest weight

line in H(−w0ωi). Let î denote the integer satisfying ωî = −w0ωi. Then w0sî = siw0 and
the statement is hence an immediate consequence of Lemma 5.2 and Lemma 6.1. �

As G is simply connected and as X is normal any line bundle on X will have a unique
G × G-linearization. This explains what is meant by an invariant global section in the
following statement.

Corollary 6.1. Assume that Di is a Cartier divisor on X. Then there exists a G×G-
equivariant morphism :

ψi : End(H(ωi))
∗ ⊕ k → H0(X,OX(Di)),

making the following diagram commutative

End(H(ωi))
∗ ⊕ k

ψ∗ωi,G

��

ψi // H0(X,OX(Di))

resX
G (Di)

��
k[G]

' // H0(G,OX(Di))

where the lower map is some (unique up to nonzero scalar) G × G-equivariant identifi-
cation. In particular, there exists a nonzero G×G-invariant global section of OX(Di).

Proof. Consider the closure Γ of the graph of ψωi
within X×Pωi

. Projection on the first
coordinate defines a birational projective morphism φ : Γ → X, which is an isomorphism
outside a closed subset of X of codimension ≥ 2 (see e.g. Prop.III.9.1,[9]). In particular,
there exists a G × G-stable open subset X ′ of X with X \ X ′ of codimension ≥ 2 and
an extension of ψωi

to X ′.
As X is normal H0(X,OX(Di)) = H0(X ′,OX(Di)), which means that it suffices to

prove the statement for X ′. As ψωi
extends to X ′ the first assertion now follows from

Proposition 6.1. To prove the second assertion it suffices to prove that ψi(0, 1) is nonzero.
But this follows as ψ∗ωi,G

(0, 1) is a nonzero (constant) function on G. �

Remark 2. When X is a normal variety and D is a Weil divisor in X we may define
H0(X,OX(D)) to be the set of rational functions f on X such that div(f)+D is effective.
With this convention the statement in Corollary 6.1 remains true without the assumption
that Di is Cartier.

7. Frobenius splittings of simply connected groups

In this section G denotes a simply connected group. The aim of this section is to
construct a class of Frobenius splittings of G. These will be constructed by restricting
Frobenius splittings of a certain equivariant embeddings X of G. We begin by fixing the
required properties of X.

Lemma 7.1. There exists a smooth complete toroidal embedding X of G such that the
morphisms ψωi

, i = 1, . . . , l, all extend to X.
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Proof. Start by choosing a complete toroidal embedding X ′ of G. Consider the product
map ψ :=

∏l
i=1 ψωi

: G→
∏l

i=1 Pωi
, and let Γ denote the normalization of the closure of

the graph of ψ within X ′ ×
∏l

i=1 Pωi
. Then any projective resolution (see Theorem 3.1)

of Γ has the desired properties. �

Remark 3. A closer study of toroidal embeddings reveals that ψωi
extends to arbitrary

toroidal embeddings. In particular, on a toroidal embedding of G the Weil divisors Di

are all Cartier.

For the rest of this section we will fix a toroidal embedding X of G satisfying the
requirements in Lemma 7.1 Fix a closed G × G-orbit Y within X. As noted in Section
3.2, we may G×G-equivariantly identify Y with the variety G/B ×G/B.

7.1. The canonical bundle. Let Xj, j = 1, . . . , n denote the boundary components
of X, i.e. the irreducible components of X \ G, all of codimension 1 as G is affine
(Chap.III,[4]). Let furthermore Di denote the closure of the Bruhat cell Bsiw0B within
X. By Prop.6.2.6 of [3] it follows that the dual canonical bundle of X is

ω−1
X ' OX

( n∑
j=1

Xj + 2
l∑

i=1

Di

)
.

As we will see below, the restriction of the line bundle OX(2
∑l

i=1Di) to Y is isomorphic
to LG/B(2ρ)�LG/B(2ρ), which is the dual canonical bundle of Y . Let now σj denote the

canonical section of the line bundle OX(Xj) and let D denote the divisor
∑l

i=1Di. Then
the following statement describes the usual way of constructing Frobenius splittings of
X.

Theorem 7.1. Let τ denote a global section of OX(2(p− 1)D) such that its restriction
τ|Y to Y corresponds to a Frobenius splitting of Y . Then the global section τ

∏n
j=1 σ

p−1
j

of ω1−p
X corresponds (up to a nonzero scalar) to a Frobenius splitting of X.

Proof. See e.g. proof of Thm.6.2.7 in [3]. �

7.2. Frobenius splittings of X. By the assumptions on X there exists a commutative
diagram of G×G-equivariant morphisms

Y
' //

� _

��

G/B ×G/B

η

��
X

ψωi // Zωi

Hence, combining Proposition 6.1 and Lemma 5.4 we obtain

Proposition 7.2. There exists a commutative diagram

End(H(ωi))
∗ ⊕ k

Rωi

��

ψi // H0(X,OX(Di))

resX
Y (Di)

��
H(−w0ωi)

∗ ⊗ H(ωi)
' // H0(Y,OX(Di))

In particular, the image of the restriction map resXY (Di) contains the unique B×B-stable
line of H0(Y,OX(Di)).
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It follows from Lemma 5.4 that the restriction of OX((p− 1)D) to Y is isomorphic to
the line bundle LG/B((p− 1)ρ) �LG/B((p− 1)ρ). This leads to the following statement.

Corollary 7.1. There exists a commutative diagram

⊗l
i=1(End(H(ωi))

∗ ⊕ k)⊗(p−1)

⊗iR
p−1
ωi

��

Q
ψp−1

i //

res

++VVVVVVVVVVVVVVVVVVVV
H0(X,OX((p− 1)D))

resX
Y ((p−1)D)

��⊗l
i=1(H(−w0ωi)

∗ ⊗ H(ωi))
⊗(p−1) // H0(Y,OX((p− 1)D))

where the map res is surjective.

Proof. By Proposition 7.2 the image of res is nonzero. Hence the statement follows as
H0(Y,OX((p− 1)D)) ' St⊗ St is a simple G×G-module �

Let v− (resp. v+) denote a generator of the lowest (resp. highest) weight space in
St and let v∆ denote a generator of the unique diagonal G-invariant line in St ⊗ St.
Applying Lemma 5.5 we find

Lemma 7.2. With a1, . . . , al ∈ k we have

(1) res(
⊗l

i=1(u
+
ωi
⊗ v−ωi

, 0)⊗(p−1)) is nonzero multiple of v+ ⊗ v−.

(2) res(
⊗l

i=1(Trωi, ai)
⊗(p−1)) is a nonzero multiple of v∆.

By Theorem 7.1 and Corollary 4.1 we can now state and prove.

Theorem 7.3. Let a1, . . . , al ∈ k. Then the global section

l∏
i=1

ψi(Trωi, ai)
p−1

l∏
i=1

ψi(u
+
ωi
⊗ v−ωi

, 0)p−1

n∏
j=1

σp−1
j ,

of ω1−p
X defines a Frobenius splitting of X (up to a nonzero constant).

7.3. Frobenius splittings of G. The canonical bundle ωG of G is trivial and we may
therefore choose a volume form dG freely generating the global sections of ωG as a k[G]-
module. Restricting the statement in Theorem 7.3 to the open subset G then implies

Corollary 7.2. Let a1, . . . , al ∈ k. Then the global section

l∏
i=1

ψ∗ωi,G
(Trωi, ai)

p−1

l∏
i=1

ψ∗ωi,G
(u+

ωi
⊗ v−ωi

, 0)p−1dG1−p,

of ω1−p
G defines a Frobenius splitting of X (up to a nonzero constant).

8. Frobenius splitting in the general case

In this section G denotes a simply connected linear algebraic group. Let X denote
an equivariant embedding of G and let Di (resp. D̃i) denote the closure of the Bruhat
cell Bsiw0B (resp. B+siB) within X. As in the previous section we let Xj, j = 1, . . . , n,
denote the irreducible components of X\G. Moreover when a ∈ Al, we let χ−1(a) denote
the closure of the associated Steinberg fibre within X.
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8.1. The smooth case. Assume first that X is smooth. In this case the divisors Xj

are all Cartier and we let σj denote the canonical sections of the associated line bundles
OX(Xi). By Prop.6.2.6. in [3] the dual canonical bundle of X is isomorphic to

ω−1
X ' OX

( n∑
j=1

Xj + 2
l∑

i=1

Di

)
.

In order to construct Frobenius splittings of X we have to construct global sections of
ω1−p
X . First we apply Corollary 6.1 and obtain for each i = 1, . . . , l, a commutative

diagram of G×G-equivariant maps :

End(H(ωi))
∗ ⊕ k

ψ∗ωi,G

��

ψi // H0(X,OX(Di))

resX
G (Di)

��
k[G]

' // H0(G,OX(Di))

Now we have the following generalization of Theorem 7.3

Corollary 8.1. Let a = (a1, . . . , al) ∈ Al. Then the global section

τa =
l∏

i=1

ψi(Trωi,−ai)p−1

l∏
i=1

ψi(u
+
ωi
⊗ v−ωi

, 0)p−1

n∏
j=1

σp−1
j

of ω1−p
X defines a Frobenius splitting of X (up to a nonzero constant) which compatibly

splits the closed subvarieties χ−1(a), D̃i, i = 1, . . . , l, and Xj, j = 1, . . . , n.

Proof. By Corollary 7.2 the restriction of τa to G defines a Frobenius splitting of G
and hence, by Remark 1, τa defines a Frobenius splitting of X. By Lemma 4.10 and
Lemma 4.5 each component of the zero divisor of τa is compatibly Frobenius split. In
particular, the boundary divisors Xj and (by Proposition 6.1) the subvarieties D̃i are
all compatibly Frobenius split. Finally, by Lemma 4.5, every component of the (scheme
theoretic) intersection of the zero divisors of ψi(Trωi,−ai) will be Frobenius split. But,
by Lemma 5.1, the component of this latter intersection which intersects G nontrivially
is exactly the subvariety χ−1(a). �

The following connected result will also be useful.

Proposition 8.1. Let a = (a1, . . . , al) ∈ Al. Then there exists a stable Frobenius split-
ting of X along the divisor

(p− 1)

( n∑
j=1

Xj +
l∑

i=1

D̃i

)
,

of degree 1 which compatibly Frobenius splits the subvariety χ−1(a).

Proof. By Lemma 4.10 and Lemma 4.6 the Frobenius splitting τa in Corollary 8.1 defines
a degree 1 stable Frobenius splitting s of X along the divisor

(p− 1)

( n∑
j=1

Xj +
l∑

i=1

D̃i

)
,
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which compatibly Frobenius splits the zero divisor of the global section
l∏

i=1

ψi(Trωi,−ai),

of the line bundleOX(
∑l

i=1Di).Denote by s′ the (by s) induced degree 1 stable Frobenius
splitting of X along the zero divisor 0. Combining Lemma 4.3 and Lemma 4.5 and
arguing as in the last part of the proof of Corollary 8.1, we find that the closed subvariety
χ−1(a) is compatibly Frobenius split by s′. By Lemma 4.2 it remains to prove that χ−1(a)

is not contained in the support of the divisor
∑n

j=1Xj +
∑l

i=1 D̃i.

So assume that χ−1(a) is contained in D̃i. Hence, B+siB will contain a B-conjugacy
{bgb−1 : b ∈ B} for some g in χ−1(a). But, then also the open subset B+Bg of G will
be contained in B+siB which is a contradiction. �

Corollary 8.2. Assume that X is projective and let a = (a1, . . . , al) ∈ Al. Then there
exists a stable Frobenius splitting of X along an ample divisor with support X \G which
compatibly Frobenius splits the subvariety χ−1(a).

Proof. By Proposition 8.1 and Lemma 4.3 there exists a stable Frobenius splitting of
X along the divisor

∑n
j=1Xj which compatibly splits χ−1(a). Applying Lemma 4.3

and Lemma 4.4 it suffices to show that there exists positive integers cj > 0 such that∑n
j=1 cjXj is ample. This follows from Prop.4.1(2) in [2]. �

8.2. The general case. For a general equivariant G-embedding we can now prove.

Theorem 8.2. Let X denote an arbitrary equivariant G-embedding and let a = (a1,
. . . , al) ∈ Al. Then X is Frobenius splits compatibly with the closed subvarieties χ−1(a),
D̃i, i = 1, . . . , l and Xj, j = 1, . . . , n.

Proof. By Theorem 3.1 there exists a resolution f : X ′ → X of X by a smooth G-
embedding X ′. By Zariski’s main theorem we know f∗OX′ ' OX . Hence, by the
discussion in Section 4.5 it suffices to prove the above statement for X ′. Now apply
Corollary 8.1. �

8.3. Canonical Frobenius splittings. Let Z denote an arbitrary G-variety and let
s : F∗OZ → OZ denote a Frobenius splitting of Z. For any root α we let xα : k → G
denote the associated root homomorphism satisfying t ∈ T, c ∈ k : txα(c)t

−1 = xα(α(t)c).
Recall (Defn.4.1.1,[3]) that s is said to be a canonical Frobenius splitting if s is T -invariant
and satisfies

xαi
(c)s =

p−1∑
j=1

cjsj

for every simple root αi, and certain elements sj ∈ HomOX
(F∗OZ ,OZ). The primary

reason for the interest in canonical Frobenius splittings comes from the following conse-
quence (see e.g. Thm.4.2.13 in [3])

Theorem 8.3. Assume that Z has a canonical Frobenius splitting. Let L denote a G-
linearized line bundle on Z. Then the G-module H0(Z,L) admits a good filtration, i.e.
there exists a sequence of G-modules

0 = M0 ⊆M1 ⊆M2 ⊆ · · ·
such that H0(Z,L) = ∪iM i and satisfying that the successive quotients M j+1/M j are
isomorphic to modules of the form H(λj) for certain dominant weights λj.
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Let a = (a1, . . . , al) ∈ Al and consider an arbitrary equivariant embedding X of G.
Then there exists a diagonal G-action on the closed subvariety χ−1(a). We claim

Corollary 8.3. The variety χ−1(a) admits a canonical Frobenius splitting. In particular,
when L is a G-linearized line bundle on χ−1(a) then the G-module H0(χ−1(a),L) has a
good filtration.

Proof. By the results in the previous section χ−1(a) is compatibly Frobenius split by a
Frobenius splitting s of X. Hence, it suffices to prove that s is a canonical Frobenius
splitting of X. By the proof of Theorem 8.2 it moreover suffices to consider the case
when X is smooth and s is defined from τa (with notation as in Corollary 8.1). Now
every factor of τa except

l∏
i=1

ψi(u
+
ωi
⊗ v−ωi

, 0)p−1

is invariant under the diagonal G-action. Hence we may concentrate on the (diagonal)
T -invariant factor ψi(u

+
ωi
⊗ v−ωi

, 0). The statement now follows as, for all j,

xαj
(c)v−ωi

= v−ωi
+ cvi,j,

xαj
(c)u+

ωi
= u+

ωi
,

for certain elements vi,j ∈ H(ωi) (recall that the (w0ωi + qαj)-weight space of H(ωi) is
zero for q > 1). �

9. Cohomology vanishing

In this section we will discuss various results which will enable us to prove that closures
of Steinberg fibers in arbitrary equivariant embeddings have nice geometric properties

9.1. Resolutions and direct images. Let X ′ denote a projective equivariant embed-
ding of G and let f : X → X ′ be a resolution of X ′ by a smooth projective equivariant
embedding. When a = (a1, . . . , al) ∈ Al we denote by χ−1(a) (resp. χ−1(a)′) the closure
of the Steinberg fiber at a within X (resp. X ′).

Corollary 9.1. With the notation described above we have

(1) f∗OX = OX′ and Rif∗OX = 0 when i > 0.
(2) f∗Oχ−1(a) = Oχ−1(a)′ and Rif∗Oχ−1(a) = 0 when i > 0.

Proof. As X ′ is normal and f is birational it follows from Zariski’s main theorem that
f∗OX = OX′ . Hence, by Lemma 4.9 it suffices to prove that there exists a stable Frobe-
nius splitting of X along an ample divisor which compatibly Frobenius splits χ−1(a).
Now apply Corollary 8.2. �

In the above Corollary the statement (1) also follows from [11].

9.2. Cohomology. We are now ready to prove the following statement about cohomol-
ogy of line bundles on closures of Steinberg fibers.

Proposition 9.1. Let X denote a projective equivariant embedding of G and let a =
(a1, . . . , al) ∈ Al. Let M (resp. L) denote a globally generated line bundle on X (resp.
χ−1(a)). Then

Hi(X,M) = Hi(χ−1(a),L) = 0 , i > 0.

Moreover, the restriction map

H0(X,M) → H0(χ−1(a),M),
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is surjective.

Proof. By Corollary 9.1 we may assume that X is smooth. Now apply Corollary 8.2 and
the “in particular” parts of Lemma 4.7 and Lemma 4.8. �

10. Geometry of closures of Steinberg fibers

In this section we will study the geometry of the closure of a Steinberg fiber within
an equivariant G-embedding X of a simply connected group G.

10.1. The smooth case. Assume that X is a smooth G-embedding and let a = (a1,
. . . , al) ∈ Al. Let Oa denote the restriction of the line bundle

OX

( n∑
j=1

Xj +
l∑

i=1

D̃i

)
to χ−1(a) and and let sa denote the associated restricted canonical section. Notice that
by Proposition 8.1 the section sa is nonzero.

Theorem 10.1. Let X denote a smooth G-embedding and let a = (a1, . . . , al) ∈ Al. Then
the closure χ−1(a) of the Steinberg fiber χ−1(a) within X is a local complete intersection.
Moreover, the dualizing sheaf on χ−1(a) equals the line bundle O−1

a .

Proof. As ω−1
X = OX(

∑
j Xj +

∑
i(Di + D̃i)) it suffices to prove that χ−1(a) coincides

with the intersection Z of the zero schemes of the sections ψi(Trωi,−ai), i = 1, . . . , l.
When X = G this is clearly the case. Hence, it suffices to prove that all components of
Z intersect the open subset G. So assume that Z ′ is a component of Z which does not
intersect G. Then Z ′ must be contained in one of the boundary components Xj. Choose
an open affine subset U such that ∅ 6= U∩Z ′ = U∩Z and such that the canonical bundle
ωU is trivial. Choose also a volume form dU , i.e. a global section of ωU generating the
set of global sections as a k[U ]-module. Then τa (with notation as in Corollary 8.1)
restricts to a Frobenius splitting of U of the form

(τa)|U =

( l∏
i=1

fp−1
i

l∏
i=1

gp−1
i

n∏
j=1

hp−1
j

)
· (dU)1−p

where fi, gi and hi are the functions on U defining the restrictions of the zero sets of
ψi(Trωi,−ai), ψi(u+

ωi
⊗ v−ωi

, 0) and σj respectively. By assumption, the common zero
V (f1, . . . , fl) of f1, . . . , fl is contained in the zero set V (hj) of hj. Hence by Hilberts
Nullstellensatz, hj is contained in the radical of the ideal (f1, . . . , fl). But (f1, . . . , fl) is
compatibly split by Lemma 4.10 and Lemma 4.5 and therefore it is radical by Lemma
4.5. We conclude, that hj ∈ (f1, . . . , fl) and hence

l∏
i=1

fp−1
i

l∏
i=1

gp−1
i

n∏
j=1

hp−1
j ∈ (fp1 , . . . , f

p
l ).

In particular, the Frobenius splitting (τa)|U of U will map the constant function 1 to an
element within the ideal (f1, . . . , fl). Therefore 1 ∈ (f1, . . . , fl) and hence

Z ′ ∩ U = V (f1, . . . , fl) = ∅,

which is a contradiction. �



18 JESPER FUNCH THOMSEN

Corollary 10.1. Let X denote a smooth G-embedding and let a = (a1, . . . , al) ∈ Al.
Then the closure χ−1(a) of the Steinberg fiber χ−1(a) within X is normal, Gorenstein
and Cohen-Macaulay.

Proof. By Theorem 10.1 it suffices to show that the closure χ−1(a) is smooth in codi-
mension 1. So let Z denote an irreducible component of the singular locus of χ−1(a). If
G ∩ Z 6= ∅ then the codimension of Z is ≥ 2 as χ−1(a) is normal by Thm.6.11 in [13].
So assume that Z is contained in one of the boundary components Xj of X.

Consider the scheme theoretic intersection Xj ∩χ−1(a) which is reduced by Corollary
8.1 and Lemma 4.5. Hence, as Xj is a Cartier divisor every smooth point of Xj ∩χ−1(a)
will also be a smooth point of χ−1(a). In particular, Z is properly contained in one
of the components of Xj ∩ χ−1(a). But the components of the latter scheme all have
codimension 1 in χ−1(a) and hence Z must have codimension ≥ 2 in χ−1(a). This ends
the proof. �

10.2. General G-embeddings. Now assume that X is an arbitrary equivariant em-
bedding of a simply connected group G. The following result is due to G. Kempf. The
version stated here is taken from [1].

Lemma 10.1. Let f : Z ′ → Z denote a proper map of algebraic schemes satisfying that
f∗OZ′ = OZ and Rif∗OZ′ = 0, i > 0. If Z ′ is Cohen-Macaulay with dualizing sheaf ωZ′

and if Rif∗ωZ′ = 0 for i > 0, then Z is Cohen-Macaulay with dualizing sheaf f∗ωZ′.

We will also need the following result due to Mehta and van der Kallen ([8])

Lemma 10.2. Let f : Z ′ → Z denote a proper morphism of schemes and let V ′ (resp. V )
denote a closed subscheme of Z ′ (resp. Z). Let IV ′ denote the sheaf of ideals of V ′. Fix
an integer i and assume

(1) f−1(V ) ⊆ V ′.
(2) Rif∗IV ′ vanishes outside V .
(3) V ′ is compatibly Frobenius split in Z ′.

Then Rif∗IV ′ = 0.

We are ready to prove

Theorem 10.2. Let X denote an arbitrary equivariant embedding of G and let a =
(a1, . . . , al) ∈ Al. Then the closure χ−1(a) of the Steinberg fiber at a in X is normal and
Cohen-Macaulay.

Proof. Any equivariant embedding has an open cover by open equivariant subsets of
projective equivariant embeddings. (see e.g. proof of Cor.6.2.8 in [3]) This reduces
the statement to the case where X is projective. Choose a projective resolution f :
X ′ → X of X by a smooth equivariant embedding X ′. Then f∗Oχ−1(a)′ = Oχ−1(a) and

Rif∗Oχ−1(a)′ = 0, i > 0, by Corollary 9.1. Hence by Corollary 10.1 this implies that

χ−1(a) is normal.
In order to show that χ−1(a) is Cohen-Macaulay we apply the above Lemma 10.1 and

Lemma 10.2. By Theorem 10.1 it suffices to prove that Rif∗O′−1
a = 0, i > 0. Let V ′

denote the closed subscheme of χ−1(a)′ defined by s′a. Combining Proposition 8.1 and
Lemma 4.6 we find that χ−1(a)′ is Frobenius split compatibly with the closed subscheme
V ′. Moreover, f : χ−1(a)′ → χ−1(a) is an isomorphism above the the open subset χ−1(a)
and

f−1(χ−1(a) \ χ−1(a)) ⊆ V ′
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Hence, by Lemma 10.2 we conclude Rif∗IV ′ = 0 for i > 0. But IV ′ ' O′−1
a which ends

the proof. �

Remark 4. Let χ−1(a) denote the closure of the Steinberg fiber at a point a ∈ Al within
some equivariant embedding X of G. Similar as to the situation for large Schubert
varieties (see [2]) we expect that χ−1(a) is strongly F -regular (see [12]). In order to prove
this it suffices to prove that χ−1(a) is globally F -regular (see [12]) when X is a projective
smooth embedding. In this case we have seen that χ−1(a) is compatibly Frobenius split by
a stable Frobenius splitting of X along an ample divisor D with support X \G (Corollary
8.2). By Thm.3.10 in [12] it therefore suffices to prove that χ−1(a) is strongly F -regular.
When χ−1(a) coincides with the conjugacy class of a regular semisimple element of G
this is clearly the case. However, for the most interesting fiber of χ, i.e. the unipotent
variety U of G, we do not know how to prove the latter statement.

11. The boundary of closures of Steinberg fibers

We use the notation introduced above, thus X will denote an equivariant embedding
of G. The subset ∂χ−1(a) := χ−1(a) \G of the closure of the Steinberg fiber at a within
X is called the boundary of χ−1(a). We have the following remarkable property.

Theorem 11.1. Let X denote an equivariant embedding of an almost simple group G.
Then the boundary ∂χ−1(a) is independent of a.

Proof. We first assume that X satisfies the requirements in Lemma 7.1. In particular,
we have morphisms

ψX,i : X → Pωi
= P(End(H(ωi))⊕ k),

extending the morphisms ψωi
defined in Section 5. By the proof of Theorem 10.1 the clo-

sure χ−1(a) coincides with the common intersection of the zero schemes of ψi(Trωi,−ai),
i = 1, . . . , l. Here (Trωi,−ai) is a section of the line bundle Oωi

(1) on Pωi
and ai is the

i-th coordinate of a. Thus it suffices to prove that the section ψi(0, 1) is identical zero
on the boundary of X.

The image of X under ψX,i is contained in the closed subset of Pωi
consisting of points

[(f, b)] satisfying det(f)− bNi = 0, where Ni is the dimension of the k-vectorspace H(ωi).
Let x ∈ X \G denote a boundary element and write ψX,i(x) = [(f, b)]. We have to prove
that b = 0 or equivalently that det(f) = 0. So assume that det(f) 6= 0 and consider the
morphism

ϕ : G→ Pωi
,

ϕ(g) = ψX,i(gx) = [(gf, b)].

Then ϕ(g) = ϕ(g′) if and only if g−1g′ acts trivially on H(ωi). As G is assumed to be
almost simple we conclude that ϕ is injective. In particular, the orbit map g 7→ gx is
injective which is a contradiction as the dimension of the boundary of X is strictly less
than the dimension of G.

Now let X ′ denote an arbitrary equivariant embedding of G and let X ′′ denote the
normalization of the closure of the diagonal image of G within X ′ × X. Choose a
resolution X̃ of X ′′ according to Theorem 3.1. Then there exists a G × G-equivariant
proper morphism p : X̃ → X ′ extending the identity map on G. Moreover, by the
above considerations the statement of the lemma is correct for X̃. By a dimension
argument, as in the above proof of the injectivity of ϕ, it follows that p−1(G) = G.
Thus the boundary of the closure of a Steinberg fiber within X̃ maps surjectively to the
corresponding boundary within X ′. This ends the proof. �
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11.1. Steinberg fibers for arbitrary semisimple groups. Let H denote a connected
semisimple linear algebraic group over k. The closure F of the conjugacy class of a regular
element in H is called a Steinberg fiber in H (see Section 6 in [13]). Let Y denote an
equivariant embedding of H and let F denote the closure of F within Y . The boundary
of F is then defined to be the set ∂F = F \H. Similar to Theorem 11.1 we now have :

Corollary 11.1. With notation as above assume that H is almost simple. Then the
boundary ∂F is independent of the Steinberg fiber F .

Proof. Let G denote the to H associated simply connected, almost simple, semisimple
linear algebraic group, and let X denote a complete equivariant embedding of G. Define
X ′ to be the normalization of the closure of the diagonal image of G within X × Y .
Then X ′ is an equivariant embedding of G with a proper G × G-equivariant morphism
p : X ′ → Y to Y . Hence, any closure of a Steinberg fiber F in Y is the image of a closure
of an associated Steinberg fiber F ′ in X ′. As p−1(H) = G it follows that the boundary
of F ′ maps surjectively onto the boundary of F . Now apply Theorem 11.1. �

In the case when H is of adjoint type and Y is the wonderful compactification of H
the boundaries of closures of Steinberg fibers have been completely described by X. He
[5]. As a consequence X. He also obtained the above result in this case.
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