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Abstract

We discuss a stochastic differential equation, as a modelling framework for

the turbulent velocity field, that is capable of capturing basic stylized facts of

the statistics of velocity increments. In particular, we focus on the evolution

of the probability density of velocity increments characterized by a normal

inverse Gaussian shape with heavy tails for small scales and aggregational

Gaussianity for large scales. In addition, we show that the proposed model is

in accordance with Kolmogorov’s refined similarity hypotheses.
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1 Introduction

Since the pioneering work of Kolmogorov (1962) and Obukhov (1962), intermittency
of the turbulent velocity field is of major interest in turbulence research. From a
probabilistic point of view, intermittency refers, in particular, to the increase of
the non-Gaussian behaviour of the probability density function (pdf) of velocity
increments with decreasing scale. A typical scenario is characterized by a Gaussian
shape for the large scales (larger than scales at the so-called inertial range), turning
to exponential tails within the inertial range and stretched exponential tails for
dissipation scales (below the inertial range) [3, 4].

It was reported in [5] that the evolution of the pdf of velocity increments for all
amplitudes and all scales can be described within one class of tractable distributions,
the normal inverse Gaussian (NIG) distributions. Furthermore, the subsequent anal-
ysis of the observed parameters of the NIG distributions revealed that the pdf’s of
different data sets with different Reynolds numbers (ranging from Rλ = 80 up to
Rλ = 17000) all collapse after applying a scale transformation that is related to
one of the parameters of the estimated NIG distributions. As a consequence, the
collapse of pdf’s immediately resulted in a broader and more general reformulation
of the concept of Extended Self Similarity [6] in terms of a stochastic equivalence
class.

The analysis in [5] is to a large extent based on purely empirical footings without
providing a theoretical model for the turbulent velocity field. In view of the signifi-
cance of the derived results, a theoretical basis is clearly asked for. This is one goal
we want to achieve in this paper. We present a general spatio-temporal framework
for modelling the turbulent velocity field, leading to a stochastic differential equa-
tion that is able to reproduce the observed evolution of the pdf of turbulent velocity
increments.

The second goal we want to achieve in this paper is to present our model as a class
of stochastic processes that are, to a large extent, in accordance with Kolmogorov’s
refined similarity hypotheses (K62) [1]. The first hypothesis states that the pdf of
the stochastic variable

Vr =
∆u(r)

(rεr)1/3
(1.1)

depends, for r ≪ L, only on the local Reynolds number Rer = r(rεr)
1/3/ν. Here,

∆u(r) denotes the velocity increment at scale r, ν the viscosity, L the integral scale
and rεr is the integrated energy dissipation over a domain of linear size r. The
second hypothesis states that, for Rer ≫ 1, the pdf of Vr does not depend on Rer,
either, and is therefore universal. Although, for small r, an additional r dependence
of the pdf of Vr has been observed [7], the validity of several aspects of K62 has been
verified experimentally and by numerical simulation of turbulence [7, 8, 9].

The outline of the paper is as follows. In Section 2 we present our stochastic
framework for the turbulent velocity field in its full generality. Section 3 provides the
necessary mathematical background on quadratic variation, infinitely divisible dis-
tributions and Lévy processes. Infinitely divisible distributions and Lévy processes
are the main building blocks of the model. Quadratic variation will be proposed
as a natural substitute for the usual definition of the integrated energy dissipation
which is not applicable for non-differentiable stochastic processes. As a special case
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of the general spatio-temporal framework for the turbulent velocity field we discuss
in Section 4 a one-dimensional model that allows to gain analytical insight into the
dynamics of the velocity field. The focus is on the evolution of the pdf of velocity
increments across scales and statistics related to K62. The theoretical results are
illustrated and supplemented in Section 5 through simulations. Section 6 concludes
with an outlook.

2 Modelling framework

We propose to study a modelling framework for the turbulent velocity field based
on the concept of stochastic differential equations. In full generality the framework
specifies the velocity vector ut(σ) at time t and position σ as a stationary process,
defined as a stochastic integral

ut(σ) = ū+

∫ t

−∞

∫

S

g(t− s; |ρ− σ|) dMs(dρ) (2.1)

where ū is the mean velocity, g is a deterministic kernel, and M is a random measure
on R× S, S denoting the space of possible locations.

In the present paper we limit discussion to the main component of the velocity
vector and we shall only consider the dynamics at a single fixed location. We
therefore drop reference to the location in the notation and let

ut = ū+

∫ t

−∞

g(t− s) dMs. (2.2)

The aim is to show that suitable choices of g and M can reproduce key stylized
features of the time-wise behaviour of the velocity. Without loss of generality we
assume that g(0) = 1.

We choose the process M to satisfy a stochastic differential equation

dMt = βεt dt+
√
εt dWt (2.3)

where ε denotes a positive stationary process and W is a Brownian motion indepen-
dent of ε. This type of process M is often encountered in other areas of application,
in particular financial econometrics.

Combining (2.2) and (2.3) we get

ut = ū+ β

∫ t

−∞

g(t− s)εs ds+

∫ t

−∞

g(t− s)
√
εs dWs. (2.4)

In the present context of turbulence we conceive of ε as expressing the time varying
intermittency while W generates independent innovation impulses.

The strength of the modelling framework (2.4) lies in the fact that the inter-
mittency generating term ε and the function g can, to a large extent, be chosen
arbitrarily. In the next Section we identify ε with the local energy dissipation.
Therefore, the model (2.4) establishes a framework that derives the model for the
velocity field directly from the presumed model for the local energy dissipation.
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The calculations in Section 4 show that a considerable part of the statistics of the
velocity field are independent of the specific choice of the model for the energy dis-
sipation. In particular, the evolution of the pdf of velocity increments from heavy
tails to a Gaussian shape with increasing scale and the statistics related to K62 are
predominantly mediated by the structure of (2.4).

3 Mathematical background

This Section outlines the mathematical tools we require for modelling the turbu-
lent velocity field as a spatio-temporal stochastic process. The basic notions are
semimartingales, Lévy processes and quadratic variation. For later purposes we also
provide the definitions and basic properties of normal inverse Gaussian distributions
and inverse Gaussian distributions. While the former approximates the distribution
of velocity increments for all scales and all amplitudes, the latter will be used to
explicitely model the intermittency of the velocity field.

The stochastic processes we propose as a model for the velocity field are nowhere
differentiable, thus the definition of the energy-dissipation as the square of velocity
derivatives does not make sense in this context. As an alternative definition of the
energy-dissipation for the more general case of stochastic processes we propose to
use the concept of quadratic variation, as outlined below.

3.1 Semimartingales and quadratic variation

In the language of stochastic analysis the process u, as given by (2.4), is a Brownian
semimartingale. A key result of stochastic analysis states that for any semimartin-
gale u, whether Brownian or not, the limit

[u]t = lim
n→∞

n
∑

j=1

(

utj/n − ut(j−1)/n

)2
(3.1)

exists, as a limit in probability. The derived process [u] expresses the cumulative
variation exhibited by u and is called the quadratic variation (QV). The monograph
[11] is a lucid and comprehensive account of the basic parts of stochastic analysis.
For further properties, see [12].

We may calculate [u] from (2.4) using Ito algebra. Specifically, the differential
of u is

dut = at dt+
√
εt dWt (3.2)

where

at = βεt + β

∫ t

−∞

g′(t− s) (εs ds+
√
εs dWs) (3.3)

is of finite variation. Thus

(dut)
2 = a2

t (dt)
2 + 2at

√
εt dt dWt + εt(dWt)

2. (3.4)

By Ito algebra (dt)2 = dt dWt = 0 while (dWt)
2 = dt. All in all, we obtain

(dut)
2 = εt dt (3.5)
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and

[u]t =

∫ t

0

(dut)
2 ds =

∫ t

0

εs ds. (3.6)

In the setting of stochastic differential equations of the Brownian semimartingale
type the quantity (dut)

2/dt is the natural analogue of the squared first order deriva-
tive of the velocity which in the classical formulation is taken to express the local
energy dissipation. Consequently, the quadratic variation [u]t is the stochastic ana-
logue for the integrated energy dissipation and εt can be identified with the local
energy dissipation.

It is to note that the quadratic variation [u]t is independent of β, i.e. independent
of the second term in (2.4). That term is responsible for the skewness of velocity
increments. The skewness of the distribution of ut−u0 has a relatively complicated
expression, and in this paper we restrict attention to the infinitesimal skewness
E{(dut)3}, noting that E{dut} = 0 due to the stationarity of ut. Here, E{} denotes
the expectation. From the differential of u (3.2) we get, using the independence of
ε and W

E{(dut)3} = 3β

(

E{ε2
0}+

∫

∞

0

g′(t)E{ε0εt} dt

)

(dt)2. (3.7)

Under the additional simplifying (weak) assumptions

∫

∞

0

|g′(t)|dt = 1 (3.8)

and
E{ε2

0} − E{ε0εt} > 0 (3.9)

and g monotonically decreasing, we finally get

E{(dut)3} = 3β(dt)2

∫

∞

0

|g′(t)|
(

E{ε2
0} − E{ε0εt}

)

dt > 0. (3.10)

This result is in accordance with the positive skewness of temporal turbulent ve-
locity increments as follows from the famous 4/5-law of Kolmogorov [13], invoking
Taylor’s Frozen Flow Hypothesis [14]. In our stochastic framework (2.4), the pos-
itive skewness of temporal velocity increments is directly related to the positive
autocorrelation (3.9) of the local energy dissipation.

3.2 Lévy processes and OU processes

Besides the Brownian semimartingales two other basic types of semimartingales are
Lévy processes and Ornstein-Uhlenbeck (OU) processes. These are also central to
our general modelling approach.

A Lévy process is a stochastic process with independent and identically dis-
tributed increments. The Poisson process and the stable processes (Lévy flights)
as well as Brownian motion are of this type. But the class of Lévy processes is
much wider than this, the inverse Gaussian and the normal inverse Gaussian Lévy
processes being important examples; these are Lévy processes for which the laws of
the increments are, respectively, inverse Gaussian and normal inverse Gaussian (For
definition and properties of these laws, see subsection 3.3 below).
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The Lévy processes, other than Brownian motion, enter our modelling framework
only indirectly via the concept of OU processes. An OU process is a stationary
process Z satisfying a stochastic differential equation of the form

dZt = −λZt dt+ dLt (3.11)

where L is a Lévy processes, called the background driving Lévy process (BDLP).
This equation has a stationary solution for any Lévy process L such that
E {log(1 + |L1|)} < ∞. In particular, taking L to be an inverse Gaussian Lévy
process we obtain as solution Z the so called OU-IG process, which will be applied
in the sequel, as a model for the intermittency.

Integrated with respect to Brownian motion, OU-IG processes have the property
to show a pronounced NIG-shape with heavy tails for the increments at small scales.
For the large scales, the pdf of increments tends to a Gaussian-like shape. This is
the property we want to model for the turbulent velocity field.

3.3 Normal inverse Gaussian and inverse Gaussian

distributions

The normal inverse Gaussian law, with parameters α, β, µ and δ, is the distribution
on the real axis R having probability density function

p(x;α, β, µ, δ) = a(α, β, µ, δ)q

(

x− µ

δ

)

−1

K1

{

δαq

(

x− µ

δ

)}

eβx (3.12)

where q(x) =
√

1 + x2 and

a(α, β, µ, δ) = π−1α exp
{

δ
√

α2 − β2 − βµ
}

(3.13)

and where K1 is the modified Bessel function of the third kind and index 1. The
domain of variation of the parameters is given by µ ∈ R, δ ∈ R+, and 0 ≤ |β| < α.
The distribution is denoted by NIG(α, β, µ, δ).

The standardised third and fourth order cumulants are

c̄3 =
c3

c
3/2
2

= 3
ρ

{δα(1− ρ2)1/2}1/2

c̄4 =
c4
c22

= 3
1 + 4ρ2

δα(1− ρ2)1/2
(3.14)

where ρ = β/α. We note that the NIG distribution (3.12) has semiheavy tails;
specifically,

p(x;α, β, µ, δ) ∼ const. |x|−3/2 exp (−α |x|+ βx) , x→ ±∞. (3.15)

NIG shape triangle For some purposes it is useful, instead of the classical
skewness and kurtosis quantities (3.14), to work with the alternative asymmetry and
steepness parameters χ and ξ defined by

χ = ρξ (3.16)

6



Figure 1: The shape triangle of the NIG distributions with the log density functions
of the standardized distributions, i.e. with mean 0 and variance 1, corresponding to
the values (χ, ξ) = (±0.8,0.999), (±0.4,0.999), (0.0,0.999), (±0.6,0.75), (±0.2,0.75),
(±0.4,0.5), (0.0,0.5), (±0.2,0.25) and (0.0,0.0). The coordinate system of the log
densities is placed at the corresponding value of (χ, ξ). Furthermore, the line corre-
sponding to ρ = 0.1, i.e. χ = 0.1ξ, is shown.

and

ξ = (1 + γ̄)−1/2 (3.17)

where γ̄ = δ
√

α2 − β2. Like c̄3 and c̄4, these parameters are invariant under location-
scale changes and the domain of variation for (χ, ξ) is the normal inverse Gaussian
shape triangle

{(χ, ξ) : −1 < χ < 1, 0 < ξ < 1}. (3.18)

The distributions with χ = 0 are symmetric, and the normal law occurs as limiting
case for (χ, ξ) near to (0, 0). Figure 1 gives an impression of the shape of the NIG
distributions for various values of (χ, ξ). The dashed line in Figure 1 corresponds
to ρ = 0.1 and represents the location of the pdf of turbulent velocity increments as
reported in [5].

As discussed in the papers cited in [5], the class of NIG distributions and pro-
cesses have been found to provide accurate modelling of a great variety of empirical
findings in the physical sciences and in financial econometrics.

As a second infinitely divisible distribution we need the inverse Gaussian distri-
bution (IG). This distribution will be used to model the intermittency of the velocity
field. The inverse Gaussian law, with parameters δ and ψ, is the distribution on the
positive real axis R+ having probability density function

p(x; δ, ψ) =
δ√
2π
eδψx−3/2 exp{−(δ2x−1 + ψ2x)/2} (3.19)

where the parameters δ and ψ satisfy δ > 0 and ψ ≥ 0.
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4 A temporal model for the turbulent velocity

field

Section 2 introduced the modelling framework for the turbulent velocity field in its
full generality. Here, we focus on two specific properties of the turbulent veloc-
ity field, namely the evolution of the pdf of velocity increments across scales, and
statistics related to K62. In order to keep the mathematics as simple as possible, we
restrict the discussion of the model to the one-dimensional, purely temporal set-up
(2.4). The restriction to temporal dynamics fully covers the standard experimental
situation where only a time series of one component of the velocity at a fixed spatial
position is accessible.

We also neglect the skewness of the velocity field, setting β = 0 in (2.4) for
mathematical convenience. The skewness of the velocity field is not essential for
the evolution of the pdf of velocity increments from heavy tails at small scales to
a Gaussian shape at large scales. We also expect that neglecting the skewness of
the velocity field does not alter the basic statistical properties of the Kolmogorov
variable (1.1), in particular its conditional distributions. A more detailed discussion
of the influence of the skewness term will be given elsewhere.

4.1 Evolution of the pdf of velocity increments

We discuss the pdf of velocity increments ut−u0, where t > 0, in terms of cumulants.
In our non-skewed set-up (2.4) with β = 0, the third order cumulant is zero for all
scales t. Therefore, the fourth order cumulant is the first order that distinguishes
between a Gaussian shape for the large scales and heavy tails for small scales. With-
out specifying the function g and the local energy dissipation εt in detail, the large
scale limit of ut−u0 approaches a Gaussian shape. In addition, we are able to show
analytically, for specific choices of g and εt, that the small scale limit has pronounced
heavy tails.

We shall denote the m-th order cumulant of an arbitrary random variable u by
cm(u) and write the cumulant function of u as

C{ζ ‡ u} = log E
{

eiζu
}

. (4.1)

Furthermore, for any positive random variable X we define the kumulant function
K̄ of X by

K̄{θ ‡X} = log E
{

e−θX
}

. (4.2)

To get some insight into the statistical properties of the stationary increments ut−u0,
we first calculate the cumulant function. We have

ut − u0 =

∫ t

−∞

(

g(t− s)− 1(−∞,0](s)g(−s)
)√

εs dWs, (4.3)

where 1[a,b] denotes the indicator function on [a, b]. Since, conditionally on ε, the
process u is Gaussian, we get for the cumulant function of ut − u0 the form

C{ζ ‡ ut − u0} = K̄{1
2
ζ2 ‡Q(t)} (4.4)
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where

Q(t) = c2 (ut − u0|ε) =

∫ t

−∞

(

g(t− s)− 1(−∞,0](s)g(−s)
)2
εs ds (4.5)

is the conditional variance of ut − u0 given ε.
Differentiating the cumulant function (4.4) gives

c2(ut − u0) = E {Q(t)} = c1(ε0)G(t) (4.6)

where

G(t) =

∫ t

−∞

(

g(t− s)− 1(−∞,0](s)g(−s)
)2

ds. (4.7)

Furthermore,
1
3
c4(ut − u0) = c2 (Q(t)) = c2 (ε0) 〈g, τ〉(t) (4.8)

where

〈g, τ〉(t) =

∫ t

−∞

∫ t

−∞

h(t, s)h(t, s′)τ(|s− s′|) ds ds′, (4.9)

h(t, s) =
(

g(t− s)− 1(−∞,0](s)g(−s)
)2

(4.10)

and where τ is the autocorrelation function of ε.
It follows that

c̄4(ut − u0) =
c4(ut − u0)

c2(ut − u0)2
= 3

c2(ε0)〈g, τ〉(t)
(c1(ε0)G(t))2 . (4.11)

For the large scale limit we get from (4.7) and (4.9)

lim
t→∞

〈g, τ〉(t) = 4

∫

∞

0

∫

∞

0

g2(s)g2(s′)τ(|s− s′|) ds ds′ (4.12)

and

lim
t→∞

c̄4(ut − u0) = 3
c2(ε0)

c1(ε0)2

∫

∞

0

∫

∞

0
g2(s)g2(s′)τ(|s− s′|) ds ds′

(∫

∞

0
g(s)2 ds

)2 . (4.13)

We therefore have the upper bound (noting τ(t) ≤ 1)

lim
t→∞

c̄4(ut − u0) ≤ 3
c2(ε0)

c1(ε0)2
. (4.14)

Consequently, for small c2(ε0)/c1(ε0)
2 we may expect the law of ut − u0 to be close

to Gaussian. In this case, if the law of ut− u0 has heavy tails for small to moderate
t, our model (2.4) will show the evolution of the pdf of velocity increments from
heavy tails at small scales to a Gaussian shape at large scales.

The result (4.14) is a rough upper bound for the large scale limit of c̄4(ut − u0).
For a more accurate statement, including the small scale limit t → 0, one has to
specify the function g and the local energy dissipation εt. A simple example is given
by assuming the process εt to be of OU-IG-type (3.11)

εt =

∫ t

−∞

e−λ(t−s) dLs (4.15)
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and setting
g(t) = e−γt. (4.16)

The parameter λ controls the correlations of the local energy dissipation as follows
from τ(t) = e−λt. The parameter γ controls the correlations of the velocity field
since τ̄ (t) = e−γt, where τ̄ denotes the autocorrelation function of u. In this case we
obtain after a straightforward calculation of G(t) and 〈g, τ〉(t) in (4.11)

lim
t→∞

c4(ut − u0) =
3c2(L1 − L0)

2c1(L1 − L0)2

γλ

2γ + λ
. (4.17)

and

lim
t→0

c4(ut − u0) =
3c2(L1 − L0)

2c1(L1 − L0)2
λ. (4.18)

The heaviness of the tails of the pdf of velocity increments increases with increasing
λ, i.e. with a faster decrease of correlations of the local energy dissipation. Qualita-
tively, the same behaviour is observed for turbulent flows where the heaviness of the
tails of the pdf of velocity increments increases with increasing Reynolds number
and with increasing intermittency exponent µ [15], defined as E{ε0εt} ∼ t−µ. (Due
to this power-law behaviour, the assumption of ε following an OU-IG process, for
which E{ε0εt} = c2(L1 − L0)(2λ)−1e−λt + c1(L1 − L0)

2λ−2, is not a realistic ap-
proach for modelling the local energy dissipation. We come back to this point in
the concluding Section.)

Combining the two limits (4.17) and (4.18) yields

limt→0 c4(ut − u0)

limt→∞ c4(ut − u0)
= 2 +

λ

γ
. (4.19)

It is the ratio of the exponents λ and γ that spans the range for the evolution of the
density of velocity increments ut − u0. Depending on the choice of the parameters
λ and γ, we can model arbitrary small and large scale limits of c̄4(ut − u0).

4.2 Statistics of the Kolmogorov variable

We now turn to the discussion of the statistics of the Kolmogorov variable (1.1)
within our stochastic framework (2.4) with β = 0. In particular, we show that
the Kolmogorov variable V can be represented as the product of two independent
variates, namely a standard normal random variable and a process that completely
contains the dependence of V on the integrated energy dissipation. Based on this
decomposition, some analytical results concerning the conditional pdf of V for the
small and large scale limit can be derived.

Following the discussion in Section 3.1 we replace the integrated energy dissi-
pation in (1.1) by the quadratic variation and define the stochastic analogue of the
classical Kolmogorov variable as

Vt =
ut − u0

(ū [u]t)
1/3
. (4.20)

The introduction of the mean velocity ū turns Vt into a non-dimensional stochastic
process.
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To reveal the basic statistical properties of the process Vt we note that (4.20)
may be rewritten as

Vt =
ut − u0

Q(t)1/2

Q(t)1/2

(ū [u]t)
1/3

= URt (4.21)

where

U =
ut − u0

Q(t)1/2
(4.22)

and

Rt =
Q(t)1/2

(ū [u]t)
1/3
. (4.23)

The variable U is a standard normal random variable and independent of Rt. The
dependence of Vt on [u]t - or, equivalently, εt - is thus completely contained in the
process Rt.

To proceed further, we specify the function g to be of the form (4.16). We gain
some insight into the properties of the process Rt for t→ 0 noting the decomposition
of the conditional variance of velocity increments

Q(t) =
(

1− e−γt
)2

∫ 0

−∞

e2γsεs ds+

(
∫ t

0

e−2γ(t−s)εs ds− [u]t

)

+ [u]t. (4.24)

Focusing on the first term on the right hand side of (4.24) we get in leading order
for t→ 0

E

{

(

1− e−γt
)2

∫ 0

−∞

e2γsεs ds

}

= c1(ε0)(2γ)
−1

(

1− e−γt
)2 ∼ c1(ε0)γ

2
t2. (4.25)

For the second term in (4.24) we have, by (3.6)

∫ t

0

e−2γ(t−s)εs ds− [u]t = −
∫ t

0

(

1− e−2γ(t−s)
)

εs ds (4.26)

and in the limit t→ 0, to leading order

E

{
∫ t

0

(

1− e−2γ(t−s)
)

εs ds

}

= c1(ε0)
(

t− (2γ)−1
(

1− e−2γt
))

∼ 2c1(ε0)γt
2. (4.27)

Since the first term in (4.24) is strictly positive and the second one is strictly negative
we conclude that they are both predominantly of order t2 for small t. Therefore, since
the mean of [u]t is linear in t, we conclude that the quadratic variation dominates
in (4.24) for small t and consequently

Vt ∼ U [u]
1/6
t . (4.28)

The small scale dependence of Vt on the integrated energy dissipation is in confor-
mity with the corresponding result for the turbulent velocity field that follows from
kinematic considerations at scales smaller than dissipation scales.

We can also draw a conclusion for the large scale limit t→∞. If we assume the
intermittency process εt to be ergodic, we get [u]t ∼ tc1(ε0). Furthermore, since

E {Q(t)} = c1(ε0)γ
−1

(

1− e−γt
)

(4.29)
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we get for t→∞
E {|Vt|} ∼ t−1/3. (4.30)

The behaviour E{|Vt|} ∝ t−0.4 is reported for high Reynolds number atmospheric
data in [7]. In their analysis the range of t where the exponent 0.4 holds is small.
For larger t an exponent of 1/3 seems to better fit their data.

The small scale limit (4.28) and the large scale limit (4.30) are both in accordance
with the corresponding experimental results. For the time being we are not able to
analytically treat the case of moderate t which is the most interesting in view of
K62. For these scales we have to refer to the simulations in the next Section.

5 Simulation

The analytical results in the last Section mainly concern the statistics of velocity
increments and the statistics of the Kolmogorov variable for the small and large scale
limits. The corresponding results for moderate scales are only accessible through
numerical simulation.

For the simulations we use a discretised version of the non-skewed model (2.4)
with β = 0. For the weight function we set

g(t) = e−γt1[0,T ]. (5.1)

where γ and T are positive numbers. The introduction of T associates a finite
decorrelation time to the velocity field u. We further specify the process ε as a
truncated OU-IG process, i.e.

εt =

∫ t

t−T̄

e−λ(t−s) dLs, (5.2)

where L is an IG(δ, ψ)-Lévy process. The assumption (5.2) coincides for T̄ → ∞
with the definition of an ordinary OU-IG process.

The values for the parameters of the simulation of u are ū = 1, λ = 1, T̄ = 100,
γ = 0.1, δ = 1, ψ = 1 and T = 40 and we discretised all stochastic integrals with a
finite step size ∆t = 1. Hence we simulated, for t = 0, 1, . . . , N with N = 2 · 106,

εt =

t−1
∑

j=t−T̄

e−λ(t−j) (Lj+1 − Lj) (5.3)

and

ut =

t−1
∑

j=t−T

e−γ(t−j)
√
εj (Wj+1 −Wj) . (5.4)

For the quadratic variation we used the approximation

[u]t =

t−1
∑

j=0

(uj+1 − uj)
2 (5.5)

which coincides with the usual definition of the energy dissipation for the temporal
resolution ∆t = 1.
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Figure 2: Logarithm of the probability densities of the simulated increments ut−u0

with t = 1, 2, 8, 16, 32, 98. The solid lines denote the approximation within the class
of NIG distributions (fitting by maximum likelihood).

Figure 2 shows the evolution of the probability densities of the simulated incre-
ments ut−u0 for various scales t. We clearly observe heavy tails for the small scales
and an approximately Gaussian shape for the large scales. The solid lines denote the
approximation of the densities within the class of NIG-distributions. The densities
of ut − u0 qualitatively display the empirical findings about the evolution across
scales of turbulent velocity increments reported in [5].

We further substantiate the scale dependence in Figure 3 which shows the NIG
shapes for the densities as displayed in Figure 2. The parameter χ is zero for all
scales reflecting the symmetry of the densities. The steepness parameter ξ decreases
with increasing scale. Noting the expression ξ = (1 + 3/c4)

−1/2 for symmetric NIG-
distributions, Figure 3 visualizes the evolution from heavy tails (large ξ) to an
approximately Gaussian shape (in the limit (ξ, χ) → (0, 0)). These findings are very
similar to the corresponding results for the turbulent velocity field as reported in [5]
(see also Figure 1).

We now turn to the investigation of the Kolmogorov variable Vt. Figure 4 shows
the unconditional densities of Vt. We first note that the unconditional densities
at moderate and large scales are approximately Gaussian, in accordance with the
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Figure 3: NIG shapes for the densities of the simulated
increments ut−u0, with t = 1, 2, 4, 8, 16, 32, 64, 98 (from
top to bottom).

findings in [10, 7, 8, 9]. For not too large scales, the densities collapse for small
amplitudes while for large amplitudes, the densities are scale dependent. For the
very small scales, a bimodal distribution is observed. The bimodality is related to
the heavy tails of the pdf of velocity increments at small scales [16].

Comparable results are reported in [8]. The authors discuss the evolution of
the second order empirical moments of Vt across scales, showing an increase with
increasing scale, reaching a plateau at intermediate scales and finally a decrease with
further increasing scale. The same behaviour holds for the simulation of our model.
Figure 5 shows the second order moments of Vt as a function of scale t.

Figures 6–8 show the conditional densities p(Vt|[u]1/3t ) for various scales t and

various values of [u]
1/3
t . For small t, the conditional densities strongly depend on

[u]
1/3
t . With decreasing values of [u]

1/3
t , the dependence gets smaller and for large

enough t (t ≈ 16 in our simulation), the conditional densities do not depend on

[u]
1/3
t . This independence also holds for the larger scales 16 ≤ t < T̄ (not shown

here). These findings agree well with results reported for the turbulent velocity field
[10, 7, 8] and reveal the gist of K62.

14



−4 −2 0 2 4

−
8

−
6

−
4

−
2

0

−2 −1 0 1 2
−

3.
5

−
3.

0
−

2.
5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

lo
g
(p

(V
t
))

lo
g
(p

(V
t
))

Vt Vt

(a) (b)

Figure 4: (a) Logarithm of the simulated unconditional densities p(Vt) of the Kol-
mogorov variable Vt for t = 1 (•), t = 2 (◦), t = 4 (△), t = 8 (+), t = 16 (×), t = 32
(⋄), t = 64 (▽) and t = 98 (⊠). (b) Amplification of the relevant part of (a) for
t = 1 (•), t = 8 (+) and t = 98 (⊠).

0 1 2 3 4

0.
3

0.
4

0.
5

0.
6

0.
7

V
a
r(

V
t
)

t

Figure 5: Estimated variance Var(Vt) of the simulated
Kolmogorov variable Vt.

15



−2 −1 0 1 2

−
6

−
5

−
4

−
3

−
2

−
1

0

lo
g

p
(V

t
|([

u
] t
)1

/
3
)

Vt

t = 2

Figure 6: Logarithm of the conditional densities p(Vt|[u]1/3t ) of the simu-

lated Kolmogorov variable Vt for t = 2 with [u]
1/3
t = 0.45 (◦), [u]

1/3
t = 0.77

(△), [u]
1/3
t = 0.99 (+) and [u]

1/3
t = 1.20 (×).

16



−2 −1 0 1 2

−
6

−
5

−
4

−
3

−
2

−
1

0

lo
g

p
(V

t
|([

u
] t
)1

/
3
)

Vt

t = 4

Figure 7: Logarithm of the conditional density p(Vt|[u]1/3t ) of the simulated Kol-

mogorov variable Vt for t = 4 with [u]
1/3
t = 0.55 (◦), [u]

1/3
t = 0.66 (△), [u]

1/3
t = 0.76

(+), [u]
1/3
t = 0.86 (×), [u]

1/3
t = 0.96 (⋄), [u]

1/3
t = 1.07 (▽), [u]

1/3
t = 1.17 (⊠),

[u]
1/3
t = 1.27 (∗) and [u]

1/3
t = 1.38 (N).

17



−3 −2 −1 0 1 2 3

−
7

−
6

−
5

−
4

−
3

−
2

−
1

0

lo
g

p
(V

t
|([

u
] t
)1

/
3
)

Vt

t = 16

Figure 8: Logarithm of the conditional density p(Vt|[u]1/3t ) of the simulated Kol-

mogorov variable Vt for t = 16 with [u]
1/3
t = 0.98 (◦), [u]

1/3
t = 1.16 (△), [u]

1/3
t = 1.26

(+), [u]
1/3
t = 1.35 (×), [u]

1/3
t = 1.44 (⋄), [u]

1/3
t = 1.53 (▽), [u]

1/3
t = 1.63 (⊠),

[u]
1/3
t = 1.72 (∗), [u]

1/3
t = 1.81 (N), [u]

1/3
t = 1.9 (⊕) and [u]

1/3
t = 2.0 (⊞).

18



6 Conclusion

Summarizing the main results, we state that our proposed semimartingale framework
allows modelling in conformity with the observed evolution of the pdf of velocity
increments across scales and with the experimental verification of Kolmogorov’s
refined similarity hypotheses. The relation between general stochastic processes
and K62 is also discussed in [10]. The authors propose fractional Brownian motion
(fBm) as a stochastic process that diplays the main properties of K62. However, the
use of fBm there is accompanied with a mathematical inconsistency, connected to the
fact that for fBm (except Brownian motion itself) the quadratic variation is either
identically 0 or ∞. (This, incidentally, implies that fBm is not a semimartingale.)
Furthermore, fBm is a non-stationary Gaussian process and does not capture the
heavy tails for the pdf of velocity increments at small scales. Thus, to our knowledge,
the model (2.4) seems to be the first approach to the turbulent velocity field that
comprises both, the evolution of the density of velocity increments across scales and
the statistics of the Kolmogorov variable V .

For the simulation we restricted to a very simple form of the intermittency term εt
as an OU-IG process which is easy to implement but not realistic for the turbulent
energy dissipation field. A realistic approach would be to use a more advanced
model for the energy dissipation. In particular we think of Lévy based models that
allow to explicitely control the correlation structure of the energy dissipation field
[17, 18, 19, 20]. Controlling the correlation structure of the energy dissipation seems
to enable to model the evolution of the density of velocity increments in a way that
displays the detailed behaviour reported in [5].

The fact that using an OU-IG process for εt works so surprisingly well indicates
that models of the form (2.4) are the appropriate framework in the turbulence
context. In particular, the calculations in Section 3.1 and Section 4 show that
main parts of the turbulence statistics can be reproduced without specifying the
intermittency terms εt and weight functions g. In this respect, only a more detailed
modelling of the correlation structure of the intermittency term can narrow these
degrees of freedom.
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