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Abstract

We review recent findings about geometric identities in integral ge-
ometry and geometric tomography, and their statistical application to
stereological particle analysis. Open questions are discussed.

Introduction

This paper is a review of geometric identities in integral geometry and geo-
metric tomography [15], developed during the last decades for applications to
quantitative microscopy or ‘stereology’ [53, 54, 1]. We hope it can also serve
as an introduction to modern stereological particle analysis for geometers, in
particular, researchers working in integral geometry and geometric measure
theory.

An earlier review of stereology for geometers can be found in [55]. Subse-
quently the development of three-dimensional microscopy, confocal microscopy
and other imaging modes has led to a revolution in stereological sampling and
measuring techniques. This involves both the development of new geometric
identities, and alternative interpretations of existing geometric identities. A
comprehensive treatment of stereology for statisticians has recently appeared
in [1], but for readers interested in the geometric fundamentals there seems to
be no up-to-date review.

Section 1 gives an overview of the paper. Section 2 describes the key
geometrical identities. Section 3 discusses how the geometric identities can be
used in the stereological analysis of particle populations. Section 4 discusses
inference about the particle size distribution. Section 5 describes approaches
to modelling shapes.
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1 Overview

Many identities in integral geometry and geometric tomography [15] take the
form

α(X) =

∫
β(X ∩ T ) dT (1.1)

where X is a subset of some Euclidean space, α and β are real valued function-
als, T ranges over a class of sets such as the k-dimensional planes, and typically
dT represents integration with respect to an appropriate ‘uniform’ measure.
The simplest example is the representation of the volume α(X) = V (X) of a
three-dimensional solid X as the integral of the areas β(X ∩ T ) = A(X ∩ T )
of its horizontal plane sections X ∩ T .

Such identities may be given a stochastic or statistical interpretation, which
is the basis of the science of stereology [53, 54, 1]. For example, the representa-
tion of volume in terms of the areas of plane sections was used by 19th century
geologist A.E. Delesse to obtain a practical method for determining the com-
position of rocks. Namely, the volume percentage (fraction of volume of rock)
occupied by a particular mineral of interest can be estimated from the fraction
of area occupied by the same mineral in a single plane section of the rock.
Note that this is different from applications to computed tomography, which
require information from all plane sections of the object.

Until the 1980’s, stereological techniques were based mainly on the classical
section formulae of integral geometry, taking the form (1.1), where α and β
are the intrinsic volumes or quermassintegrals in R

d for d = 1, 2, 3, and T is a
k-dimensional plane, k < d. These formulae, and the stochastic interpretations
that were placed on them, make it possible to statistically estimate volumes,
areas and lengths of three-dimensional structures using information obtained
from random plane sections of the structure [53, 54].

Stereologists use the generic term ‘particles’ to describe solid objects that
can be scientifically interpreted as discrete individuals (such as biological cells,
mineral grains, or enclosed holes). A ‘particle population’ is a finite or count-
able collection of disjoint particles.

The ‘particle problem’ in stereology is the problem of inferring the number,
average size, and distribution of sizes, of a population of particles, from a plane
section of the population. For example, given a microscope image of a plane
section of brain tissue, we may wish to estimate the number of neurons in the
brain, their average size, and the distribution of their sizes.

A general solution to the particle problem was not found in classical stereol-
ogy. The classical identities of integral geometry (and their classical stochastic
interpretation) only allow us to estimate ‘aggregate’ quantities α(X) where
X =

⋃
i Yi is the union of all the particles Yi in the population, and not ‘indi-

vidual’ particle properties such as the distribution of particle sizes α(Yi) .
Until the 1980’s, progress on the particle problem was achieved mainly

by assuming that the particles have a common, simple, known shape such as
spheres. Swedish mathematical statistician S.D. Wicksell first formulated the
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particle problem, and treated the case of estimating the size distribution of
spheres in three dimensions from two-dimensional plane sections [56]. In R

n,
the relation between the distribution function F of the radii of the spheres
and the distribution function F (n,k) of the radii of the spheres sectioned with
a k−dimensional plane is given by, cf. [42],

F (n,k)(x) = 1−
(n− k)

Mn−k

∫ ∞

x

u(u2 − x2)
n−k−2

2 (1− F (u)) du , (1.2)

where Mn−k is the (n−k)th moment of sphere radii assumed positive and finite.
Wicksell’s problem has attracted considerable attention among mathematical
statisticians, one reason being that it is an ill-posed problem implying that a
small perturbation of the data in the section may lead to a large change in the
estimated sphere size distribution.

Geometrical assumptions about particles - for example that the particles
are all spheres - are overly simplistic for most applications. It is therefore a
major advance that with the introduction of new sampling and measurement
techniques such fragile geometrical assumptions can be relaxed. An example
of these new techniques is ‘local’ sectioning of each particle through a refer-
ence point in the particle. Stereological methods based on such local sections
constitute the new field of local stereology which is closely related to geo-
metric tomography, cf. [16]. Moments of particle size (including mean and
variance) can be estimated stereologically without specific shape assumptions,
using information on such local sections. (As a side remark, Wicksell’s prob-
lem becomes trivial with such information at hand since the radius of a sphere
can be observed directly in a section through the centre of the sphere.)

Prompted by the need to utilize the new type of data, new geometric identi-
ties have been discovered or rediscovered during the last couple of decades and
have been used to renew stereological particle analysis. In the present paper
we will review these geometric identities and point to some missing ones.

2 Geometric identities

2.1 The Blaschke-Petkantschin formulae

The Blaschke-Petkantschin formulae play a fundamental role in modern stere-
ological particle analysis. They provide the mathematical tool for estimating
moments of particle volume from information on local p−dimensional sections
through the particles.

The Blaschke-Petkantschin formulae are geometric measure decompositions
of the q-fold product of Hausdorff measure in R

n. In the special case of de-
composition of one copy of n-dimensional Lebesgue measure Vn, the Blaschke-
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Petkantschin formula takes the following form for X ⊆ R
n compact and p > r

c(n− 1− r, p− 1− r)Vn(X)

=

∫

Ln
p(r)

∫

X∩Lp

||πL⊥r
x||n−p dxp dLn

p(r) . (2.1)

The normalizing constant is given by c(n, p) =
σnσn−1···σn−p+1

σpσp−1···σ1
, where σn =

2(π)
n
2 Γ(n

2
)−1 is the surface area of the unit sphere in R

n. Note that by con-
vention c(n, 0) ≡ 1. The outer integration in (2.1) is over the set Ln

p(r) of all

p-dimensional linear subspaces Lp (called for short p-subspaces in the following)
of R

n, containing a fixed r-subspace Lr, say. Note that Ln
p(0) = Ln

p , the set of p-

subspaces in R
n. The differentials dxp and dLn

p(r) are defined as dxp = Hn
p (dx)

and dLn
p(r) = µn

p(r)(dLp), where Hn
p is p-dimensional Hausdorff measure in R

n

and µn
p(r) is the unique measure on Ln

p(r) satisfying µn
p(r)(L

n
p(r)) = c(n− r, p− r)

such that µn
p(r) is invariant under rotations in SO(n, Lr) = {B ∈ SO(n) :

BLr = Lr}, the subgroup of rotations in R
n, keeping the r-subspace Lr fixed.

Furthermore, the symbol || · || in (2.1) denotes Euclidean norm in R
n and πL⊥r

is the orthogonal projection onto L⊥r , the orthogonal complement of Lr.
More generally, suppose that X1, X2, . . . , Xq are compact subsets of R

n.
For p ≥ q + r, we have

c(n− q − r, p− q − r)Vn(X1) · · ·Vn(Xq)

=

∫

Ln
p(r)

∫

X1∩Lp

· · ·

∫

Xq∩Lp

∇q(πL⊥r
x1, . . . , πL⊥r

xq)
n−p

q∏

i=1

dxp
i dLn

p(r) ,

where ∇q(x1, . . . , xq) = q!Hn
q (conv{o, x1, . . . , xq}) and conv{o, x1, . . . , xq} de-

notes the convex hull of the set {o, x1, . . . , xq}.
Early versions of the Blaschke-Petkantschin formulae for decomposition of

Lebesgue measures are due to [8, 9] and [41]. The one presented above has
been derived in [36]. The general decomposition of the q−fold product of
d−dimensional Hausdorff measure in R

n has been established in [57] and [28].
For d = n the decomposition reduces to the one presented above while for
d < n it involves the so-called G−factors which contain information about the
angle between the boundary of the sets Xi and the intersecting p−subspace.

The formula for decomposition of Lebesgue measures has been proved by
invariant measure theory [38] while the general formula for d−dimensional
Hausdorff measures has been established using geometric measure theory, see
[57] and [28]. A simplified proof, also utilizing induction in the dimension of
the spaces involved, can be found in [27].

2.2 A local slice formula

For d < n, the Blaschke-Petkantschin formulae depend on angles defined in
R

n which cannot be determined only from information on lower-dimensional
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sections X ∩ Lp. Also in the case d = 0 the decomposition is trivial so it is
not possible to get information about number using the Blaschke-Petkantschin
formulae. This has been the motivation for deriving geometric identities for
p−dimensional slices centred at a reference point. Such slices are p−subspaces
with some thickness.

The local slice formula gives a geometric decomposition of d−dimensional
Hausdorff measure in R

n for d = 0, 1, . . . , n. A p-slice Tp of thickness 2t is
a set of the form Lp + Bn(O, t), where Bn(O, t) = {x ∈ R

n : ||x|| < t} is
the open sphere in R

n with centre O ∈ R
n and radius t > 0. With T n

p(r)

we denote the set of p-slices Lp + Bn(O, t) for which Lp ⊇ Lr, where Lr is
a fixed r-subspace. Similar as in Section 2.1 the differential dT n

p(r) is defined

as dT n
p(r) = νn

p(r)(dTp), where νn
p(r) is the unique measure on T n

p(r) satisfying

νn
p(r)(T

n
p(r)) = c(n − r, p − r) such that νn

p(r) is invariant under rotations in

SO(n, Lr). Let X be a d−dimensional differentiable and bounded manifold in
R

n. Then, for arbitrary p, r satisfying 0 ≤ r < p < n, the local slice formula
takes the form

c(n− r, p− r)V d
n (X) =

∫

T n
p(r)

∫

X∩Tp

h
(n)
p(r)(x, Lr)

−1dxddT n
p(r) ,

where
h

(n)
p(r)(x, Lr) = Fn−p,p−r(t

2/‖πL⊥r
x‖2)

and Fa,b is the distribution function of the Beta distribution with parameters
(a/2, b/2).

An early version of this geometric identity can be found in [29]. The proof
of the slice identity uses the following reasoning that holds for any x ∈ R

n

∫

T n
p(r)

1{x ∈ Tp} dT n
p(r)

=

∫

Ln
p(r)

1{‖πL⊥p
x‖ < t} dLn

p(r)

= c(n− r, p− r)Fn−p,p−r(t
2/‖πL⊥r

x‖2) .

At the last equality sign it is used that the length of the isotropic projection
of a line segment is Beta distributed. The more general issue of isotropic
projections of simplices has been studied in [40]. Here the distribution becomes
that of a product of independent Beta-distributed random variables.

2.3 A geometric identity involving vertical sections

Vertical sections are hyperplanes parallel to a fixed axis. Such sections are
often used in microscopy to reveal structural information or for practical con-
venience. In the 1980s, Baddeley [4, 2, 3] and collaborators [5] showed how
a rotation invariant line in R

n can be generated via a vertical section. The
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important consequence is that results based on rotation invariant lines can be
transformed into results for lines generated on vertical sections. We will in
this subsection present this key result and show how it can be used to derive
an alternative local geometric identity for volume. The main application of
Baddeley’s result has, however, been in the development of a stereological es-
timator for surface area. This estimator has also relevance for stereological
particle analysis, as shown in Section 3.4.

Let Ln
n−1(1) be the set of hyperplanes through O containing v ∈ Sn−1, where

Sn−1 = {x ∈ R
n : ||x|| = 1}. Then, the key result proved by Baddeley can be

stated as follows

∫

Ln
1

h(L1) dLn
1

=

∫

Ln
n−1(1)

∫

L1⊆Ln−1

h(L1)| sin ∠(L1, v)|n−2 dLn−1
1 dLn

n−1(1) . (2.2)

In [7], (2.2) has been proved by first establishing the following identity, using
the coarea formula and spherical coordinates,

∫

Sn−1

f(u) dun−1

=

∫

Sn−2(v⊥)

∫

S1
+(span{l,v})

f(u)| sin∠(u, v)|n−2 du1dln−2 , (2.3)

where Sn−2(v⊥) is the unit sphere in the hyperplane v⊥ through the origin,
perpendicular to v, span{l, v} is the linear subspace of R

n, spanned by l and
v, and S1

+ = {ω = (ω1, ω2) ∈ S1 : ω2 > 0}. See Figure 1 for an illustration in
3D. Note that (2.2) is indeed implied by (2.3) since

∫

Ln
1

h(L1) dLn
1

=
1

2

∫

Sn−1

h(span{u}) dun−1

=
1

2

∫

Sn−2(v⊥)

∫

S1
+(span{l,v})

h(span{u})| sin∠(u, v)|n−2 du1dln−2

=

∫

Sn−2
+ (v⊥)

∫

S1
+(span{l,v})

h(span{u})| sin∠(u, v)|n−2 du1dln−2

=

∫

Ln
n−1(1)

∫

L1⊆Ln−1

h(L1)| sin ∠(L1, v)|n−2 dLn−1
1 dLn

n−1(1) .
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v
u

l

v⊥

S1
+(span{l, v})

S1(v⊥)

Figure 1: Illustration relevant for the identity (2.3), relating to vertical sec-
tioning.

As announced in the beginning of this subsection, (2.2) has been used to
derive a local identity for volume. Combining with the Blaschke-Petkantschin
formula (2.1) with p = 1 and r = 0, we get

Vn(X) =

∫

L1

∫

X∩L1

‖x‖n−1dx1dLn
1

=

∫

Ln
n−1(1)

β(X ∩ Ln−1) dLn
n−1(1) ,

where

β(X ∩ Ln−1) =

∫

L1⊆Ln−1

∫

X∩L1

‖x‖n−1| sin ∠(L1, v)|n−2dx1dLn−1
1 .

2.4 A geometric identity for surface area

As mentioned in Section 2.2, the Blaschke-Petkantschin formulae depend for
d < n on angles in R

n which cannot be determined on a lower dimensional
section. As an example, for an (n− 1)−dimensional manifold X we have

c(n− 1, p− 1)Sn(X) =

∫

Ln
p

∫

X∩Lp

‖x‖n−p/G(Tan[X, x], Lp) dLn
p ,

where Sn = Hn
n−1 denotes surface area in R

n, G(Ld, Lp) = | sin αd,p| and αd,p is
a generalized angle between the subspaces Ld and Lp. Furthermore, Tan[X, x]
is the tangent space of X at x ∈ X. In [27], it is shown that the geometric
identity can be modified such that only lower-dimensional angular information
is used. The modified geometric identity is of the following form

c(n− 1, p− 1)Sn(X) =

∫

Ln
p

β(X ∩ Lp) dLn
p ,
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where

β(X ∩ Lp) =

∫

Lp
1

∑

x∈X∩L1

‖x‖n−1h(tanβL1(x)) dLp
1 ,

βL1(x) is the angle between L1 and the unit normal vector of the tangent space
of X ∩ Lp at x, and h can be expressed as a hypergeometric function

h(u) = F (−1
2
, 1

2
(n− 1); 1

2
(p− 1);−u2) .

3 Stereological particle analysis

We will now discuss how the geometric identities can be used in the stereolog-
ical analysis of particle populations.

3.1 Stochastic model

A ‘particle’ is a compact, nonempty subset of R
n. For instance, the cells in a

biological tissue or the inclusions in steel may be modelled as a collection of
particles in R

3. To study the particle problem we must consider the intersection
between a collection of particles and a ‘probe’ T such as a plane or a line.
Either T is randomly positioned (a “design-based” approach) or the collection
of particles is random (a “model-based” approach). In this review we focus on
the model-based approach.

D. Stoyan, J. Mecke and collaborators [22, 34, 43, 44, 45, 46, 48] formulated
the particle problem using the theory of point processes [11]. First consider
the very simple case of a collection of spheres B(xi, ri) in R

3 with random
centres xi ∈ R

3 and random radii ri > 0. The collection of pairs (xi, ri) can
be treated as a point process in R

3×R+. Equivalently this is a ‘marked point
process’ in R

3 with marks in R+.
A marked point process in R

n with marks in some space M can be defined
formally as a point process in R

n × M satisfying certain conditions. It is
interpreted as a point process in R

n where each point xi ∈ R
n of the process

carries additional information in the form of a mark mi ∈ M. For details see
[47] or [37].

The class K of all particles is a Polish space, so a random particle (a random
element of K) can be defined in a straightforward manner [33]. A random
collection of particles is most conveniently modelled as a marked point process
in R

n with marks in K.
The particles are regarded as a realization of a marked point process Ψ =

{[xi; Ξi]} in R
n, where the xi’s are points in R

n and the marks Ξi are compact
subsets of R

n. The ith particle of the process is represented by the set Xi =
xi+Ξi. In this framework, xi is called the nucleus of the ith particle and Ξi the
‘primary’ or ‘centred’ particle. The corresponding process of nuclei is denoted
by Ψn = {xi}.
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The marked point process Ψ is assumed to be stationary, i.e. for all x ∈ R
n

we have Ψx ∼ Ψ, where Ψx = {[xi + x; Ξi]}. Furthermore, in some cases we
assume that the distribution of Ψ is invariant under rotations A ∈ SO(n, Lr),
i.e. AΨ ∼ Ψ, where AΨ = {[Axi; AΞi]}.

Since Ψ is stationary, the intensity measure of Ψ can be written as

Λ(B ×K) = E
∑

i

1{xi ∈ B, Ξi ∈ K} = Vn(B) NV (K) , (3.1)

for B ∈ B(Rn) and K ∈ K. Here B(Rn) is the Borel σ-algebra in R
n and

NV (K) is the mean number of particles per unit volume with marks in K.
The mark distribution is defined as

Pm(K) =
NV (K)

NV

, K ∈ K , (3.2)

where NV ∈ (0,∞) is the intensity of Ψn. Using (3.1) and (3.2) it can be
shown for any measurable nonnegative function h defined on R

n ×K,

E
∑

i

h(xi, Ξi) = NV

∫

Rn

∫

K

h(x, K)Pm(dK) dx . (3.3)

In what follows, we let Ξ0 be a random compact set with distribution Pm. If Ψ
is invariant under rotations in SO(n, Lr), then AΞ0 ∼ Ξ0 for all A ∈ SO(n, Lr).

3.2 Geometric sampling effects

When a population of particles is sectioned by a plane, two ‘sampling effects’
occur. First there is size-dependent sampling bias: the probability that a given
particle is hit by the section plane depends on the size of the particle. Second,
there is random reduction in size: a plane section of a particle is smaller than
the particle itself.

These effects were first explained by Wicksell [56] in the case of spherical
particles. Consider a stationary process of spheres in R

3, intersected by a fixed
two-dimensional plane. The plane section is a stationary process of circles in
R

2. Size-dependent sampling bias occurs because, roughly speaking, the prob-
ability that a given sphere is intersected by the section plane is proportional to
the sphere’s radius. Let NV denote the expected number of sphere centres per
unit volume in the population, and NA the expected number of circle centres
per unit area in the plane section. Then NV and NA are not equal, but instead
are related by

NA = E[R] NV , (3.4)

where E[R] is the mean radius of spheres in the original particle process. If the
sphere radii have cumulative distribution function F , then the spheres selected
by a random section plane have radii with distribution function

F1(r) =
1

E[R]

∫ r

0

s ds , (3.5)
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the size-biased counterpart of F .
For particles of more general shape, it was established by DeHoff and Rhines

[13] and others, then in complete generality by Stoyan [43], that

NV = E[H ] NA (3.6)

where NV is the intensity of the particle process (expected number of particle
centres xi per unit volume), NA is the intensity of the process of section profiles
(the expected number of particle profiles per unit area in the plane section)
and E[H ] is the mean particle height. The height H of a particle is the length
of its projection onto the subspace normal to the section plane. Relation (3.6)
is known as the ‘Rhines-DeHoff equation’. See Figure 2 for an illustration in
3D.

Figure 2: An explanation that Q must depend on the mean particle height
E[H ]. The two boxes contain equal numbers of particles. The particles on
the left are smaller than those on the right. A typical section plane cuts fewer
particles in the left box than it does on the right.

3.3 Particle number

An important task in stereology is the estimation of NV , the mean number
of particles per unit volume of the material of interest. Unfortunately, it
is not possible to estimate NV , in complete generality, from a plane section
alone. This can be seen from the Rhines-DeHoff relation (3.6). The population
average height of the particles E[H ] cannot generally be determined from a
plane section. The problem can be circumvented only when we have extra
information, for example when we have some knowledge about the particle
shape, or when particle height measurements are available.

In order to construct an unbiased estimator for NV in a situation where the
particles are of general shape, we need a different sampling scheme. Consider a
sampling scheme with the property that for any fixed sampling window W ∈ K
with positive volume and any particle X ∈ K

Vn({u ∈ R
n : X sampled in u + W}) = Vn(W ) . (3.7)

10



Let

S = {i : Xi sampled in W} .

Then, using (3.3) and (3.7), we conclude

EN(S) = E
∑

i

1{Xi sampled in W}

= NV

∫

Rn

∫

K

1{x + K sampled in W}Pm(dK) dx

= NV

∫

K

∫

Rn

1{K sampled in W − x} dxPm(dK)

= NV Vn(W ) .

Therefore an unbiased estimator for NV is given by

N̂V =
N(S)

Vn(W )
.

In practice Miles’ [35] associated point rule and Gundersen’s tiling rule [20, 21]
satisfy the basic require (3.7), see Figure 3 for an illustration in 2D of these
two sampling rules.

W W

Figure 3: Left: associated point rule, profiles with associated point in the
window are sampled. Right: tiling rule, profiles intersecting W but not the
thick lines extending to infinity are sampled.

3.4 Moments of particle size

The geometric identities presented in Section 2 can be used to derive estima-
tors of moments of particle size Eϕ(Ξ0)

q, q ≥ 1, where ϕ is a selected size
parameter. Below we give two examples of such estimators.
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3.4.1 Estimators based on the Blaschke-Petkantschin formula

As an example, let us use the identity (2.1) and let us suppose that the dis-
tribution of Ξ0 is invariant under the action of SO(n, Lr). Using (2.1), we
get

c(n− 1− r, p− 1− r)E Vn(Ξ0)

=

∫

Ln
p(r)

[
E

∫

Ξ0∩Lp

||πL⊥r
x||n−p dxp

]
dLn

p(r) . (3.8)

Now, since the distribution of Ξ0 is invariant under rotations around Lr, the
inner integral of the right-hand side of (3.8) does not depend on Lp and we get
for a particular p-subspace Lp0 ∈ L

n
p(r)

E Vn(Ξ0) =
σn−r

σp−r

E

∫

Ξ0∩Lp0

||πL⊥r
x||n−p dxp .

It follows that
σn−r

σp−r

∫

Ξ0∩Lp0

||πL⊥r
x||n−p dxp

is an unbiased estimator of EVn(Ξ0).

In practice, a sample of particles {xi + Ξi : xi ∈ W} is collected in a
sampling window W and a central section

(xi + Ξi) ∩ (xi + Lp0)

is determined through each particle. An illustration of this sampling scheme
for n = 2 and p = 1 is shown in Figure 4. For each sampled particle, we
determine

h(xi, Ξi) =
σn−r

σp−r

∫

(xi+Ξi)∩(xi+Lp0)

||πL⊥r
(x− xi)||

n−p dxp .

Using (3.3), we find

E
∑

{i:xi∈W}

h(xi, Ξi) = NV Vn(W )
σn−r

σp−r

E

∫

Ξ0∩Lp0

||πL⊥r
x||n−p dxp

= NV Vn(W )EVn(Ξ0) .

We can thereby construct an unbiased estimator of EVn(Ξ0) if an estimate of
NV can be constructed.

12



W

xi

xi + Ki

xi + L10

Figure 4: Local sampling scheme. Particles xi + Ξi satisfying xi ∈ W are
sampled using a fixed line L10.

3.4.2 Estimators based on vertical sections

In the same way, other identities from Section 2 can be used to construct
estimators of EVn(Ξ0)

q or ESn(Ξ0).

The identity (2.2) involving vertical sections presented in Section 2.3 pro-
vides an alternative for estimating ESn(Ξ0) if the distribution of Ξ0 is invariant
under rotations around the vertical axis v. The identity is used in combina-
tion with the classical Crofton formula. Let us suppose that the particles are
non-overlapping and let

Z =
⋃

i

(xi + Ξi) .

Then, using (3.3) we find

ESn(Z ∩W ) = NV Vn(W )ESn(Ξ0) . (3.9)

We now use one of the Crofton formulae for Hausdorff rectifiable closed sets,
stating that

Sn(Z ∩W ) =
1

ωn−1

∫

Ln
1

∫

L⊥1

N(Z ∩W ∩ (L1 + t)) dtn−1dLn
1 ,

where ωn−1 = π
n−1

2 Γ(n−1
2

+ 1)−1 is the Lebesgue measure of the unit sphere
in R

n−1 and N(·) = Hn
0 (·) denotes counting measure. The stationarity of Z

implies

EN(Z ∩W ∩ (L1 + t)) = NL(L1) Ln(W ∩ (L1 + t)) ,

where NL(L1) is the average number of intersection points per unit length of
test lines in direction L1 and Ln(·) = Hn

1 (·) denotes length in R
n. Hence, using

13



Fubini and (2.2), we conclude

ESn(Z ∩W ) =
1

ωn−1

∫

Ln
1

NL(L1)

∫

L⊥1

Ln(W ∩ (L1 + t)) dtn−1dLn
1

=
1

ωn−1
Vn(W )

∫

Ln
1

NL(L1) dLn
1

=
1

ωn−1
Vn(W )

∫

Ln
n−1(1)

(v)

∫

L1⊆Ln−1

NL(L1)

× | sin ∠(L1, v)|n−2 dLn−1
1 dLn

n−1(1) . (3.10)

Because of the rotational invariance of Z around the vertical axis v, NL(L1)
only depends on ∠(L1, v), NL(L1) = NL(∠(L1, v)), say, and the inner integral
of (3.10) does not depend on Ln

n−1(1). Choosing a particular vertical plane

Ln−1,0 we get, using (3.9)

ESn(Ξ0) = E
Sn(Z ∩W )

NV Vn(W )

=
1

NV

σn−1

ωn−1

∫

L1⊆Ln−1,0

NL(∠(L1, v))| sin∠(L1, v)|n−2 dLn−1
1 .

After normalization, the integral can be interpreted as the mean number of
intersection points per unit length of test line for a random line L1 with a
density with respect to dLn−1

1 proportional to | sin ∠(L1, v)|n−2.

4 Inference on the particle size distribution

At present, there exists no method of obtaining the entire particle size distri-
bution from sections without assumptions about particle shape.

If the particles are spheres, (1.2) gives the relation between the distribu-
tion function F of sphere radii and the distribution function F (n,k) of radii of
sectioned spheres on a k−dimensional affine subspace. A proof of (1.2) can be
found in [42] for a stationary marked point process of spheres, intersected by
a fixed k−dimensional affine subspace. Note that the point process of spheres
centres need not follow a Poisson process.

For particles of varying and general shape, Eϕ(Ξ0) and Eϕ(Ξ0)
2 can be

estimated from sections as explained in Section 3.4 for selected size parameters
ϕ. The variance of ϕ(Ξ0) can therefore be estimated. If the variance in the
distribution of estimated sizes is close to the variance in the distribution of
true sizes, then the distribution of estimated sizes will be close to the true size
distribution. The potential of this reasoning is investigated in [30].

In recent years, there has been an increasing interest in estimating stere-
ologically the tail of the particle size distribution. From a practical point of
view, this is clearly of interest since the property of a material may be related
to the extreme particle sizes rather than the mean particle size. For example,
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in the production of clean steels the occurrence of imperfections - so-called in-

clusions - cannot be avoided. Furthermore, the fatigue strength of a block of
clean steel is largely dependent on the size of the largest inclusions it contains,
so inference on extreme inclusion size forms an important part of quality con-
trol. The data is usually collected on planar slices which leads to an extreme
value version of a stereological problem: how to predict extremal size from
measurements on planar slices. In the following we give a brief introduction
into this relatively new field of stereology of extremes, see also [7] for a more
detailed survey.

Extreme value theory has been used to get information about the tail of the
particle size distribution in the case of spherical particles, under the assumption
that the radii of the spheres are i.i.d. and independent of the process of
sphere centres. Let {Yi, i ≥ 1} be the sequence of independent and identically
distributed sphere radii with common distribution function F . Denote the
sample maximum by

Zn = max(Y1, . . . , Yn) , n ≥ 1 .

If there are sequences of normalizing constants an > 0 and bn ∈ R such that

Zn − bn

an

d
→ L ,

where L is a nondegenerate distribution function, then F is said to lie in the
domain of attraction of L, F ∈ D(L). It is well known that there are only
three types of possible limiting distributions L [14, 12], namely

Li,α(x) =

{
exp(−x−α) x ≥ 0 , i = 1 ,

exp(−(−x)α) x ≤ 0 , i = 2 ,
α > 0 ,

and
L3(x) = exp(−e−x) , x ∈ R .

L1,α, L2,α and L3 are called Fréchet, Weibull and Gumbel distributions respec-
tively.

For spherical particles, (1.2) has been used to show that

F ∈ D(L1,α) , α > r =⇒ F (r) ∈ D(L1,α−r) ,

F ∈ D(L2,α) , α > 0 =⇒ F (r) ∈ D(L2,α+ r
2
) ,

F ∈ D(L3) =⇒ F (r) ∈ D(L3) .

A proof of these results can be found in [32].
These stability properties can be used to estimate the normalizing constants

of F (r) from data in the section plane Lk and the aim is then to get back to
the normalizing constants of F and predict its extremes. In a series of papers
this was done in the spherical case, using a generalized gamma model for the
distribution function F [49, 50, 51, 52].
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A slight extension of this approach was recently obtained for spheroidal
particles in R

3 [23, 24]. Suppose the particles are ellipsoidal with two equal
major semiaxes whose length is X. Denote the minor semiaxis by W . Then
a particle is completely determined (up to position) by the bivariate variable
(X, T ), where

T =
X2

W 2
− 1 (4.1)

is called a shape factor. Note that the spherical case is obtained for T = 0 and
deviation from spherical shape increases with T . Under certain isotropy and
independence assumptions the observed ellipses in the section plane can be
described by a size-shape variable (Y, Z), where Y is the length of the major
semiaxis of the ellipse and Z is a shape factor similarly defined as in (4.1).
Assuming that (X, T ) has a density f(x, t), one can derive a relation between
f(x, t) and the density g(y, z) of (Y, Z), see [10]. Using this relationship it is
possible to prove stability properties as in the spherical case. A simulation
study where f(x, t) follows a continuous Farlie-Gumbel-Morgenstern type of
distribution can be found in [6].

5 Shape modelling

Shape modelling of planar and spatial objects with no obvious landmarks has
attracted much attention in the last ten years. One approach in this direction
uses the normal deformation of a sphere, which is defined via the spherical-
harmonic basis on the unit sphere, see e.g. [17, 25, 26]. This shape model can
easily be generalized to higher dimensions. Thus, let Ξ0 ⊆ R

n be star-shaped
relative to z ∈ Ξ0. The boundary of Ξ0 is determined by

{z + r(ω) ω : ω ∈ Sn−1} ,

where r(ω) is the distance from z to the boundary of Ξ0 in direction ω. We can
express the radius-vector function r(ω) in terms of the spherical harmonics

{S
(n)
k,m(ω) : k ∈ N0, m = 1, . . . , N(n, k)} ,

which constitute an orthonormal basis on Sn−1 [19, 39]. Here N(n, k) denotes
the number of linearly independent spherical harmonics of degree k in n vari-
ables. The Fourier-Legendre series expansion of the radius-vector function is
given by

r(ω) =
∞∑

k=0

N(n,k)∑

m=1

a
(n)
k,mS

(n)
k,m(ω) ,

where

a
(n)
k,m =

∫

Sn−1

r(ω)S
(n)
k,m(ω) dω .
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For modelling shape variability, the coefficients a
(n)
k,m are chosen to be random

and are modelled as independent Gaussian random variables with common
mean zero and variances λ

(n)
k,m,

a
(n)
k,m ∼ N(0, λ

(n)
k,m) , k ∈ N0 , m = 1, . . . , N(n, k) .

Assuming moreover that

λ
(n)
k,m = λ

(n)
k , k ∈ N0 , m = 1, . . . , N(n, k) , (5.1)

we get, using the addition theorem for spherical harmonics,

Cov(r(ω1), r(ω2)) =
∞∑

k=0

λ
(n)
k

N(n,k)∑

m=1

S
(n)
k,m(ω1)S

(n)
k,m(ω2)

=
1

σn

∞∑

k=0

λ
(n)
k N(n, k)P

(n)
k (ω1 · ω2) , (5.2)

where ω1, ω2 ∈ Sn−1 and P
(n)
k (·) denotes the Legendre polynomial of degree k

in n variables. From (5.2) we see that assumption (5.1) implies stationarity on
the sphere, in the sense that the covariance between two points on the sphere
depends only on the angle between these points. Since in (5.2) σn, N(n, k) and

P
(n)
k (·) are known, the covariance is completely determined by the variances

λ
(n)
k . Parametric models for the variances λ

(n)
k in the planar and spatial case

(n = 2, 3) are discussed in [17, 18, 26].

6 Open problems

The list of geometric identities presented in Section 2 is not complete in the
sense that it would be of great practical interest in stereological particle anal-
ysis if identities of the type (1.1) could be derived for other functionals α than
powers of volume and surface area. Such an identity is, however, only of in-
terest in applications if it is possible to determine β(X ∩ T ) from information
inside the section T . In particular, it is important to derive identities of this
type with α equal to squared surface area. Another class of identities still
missing are those with α equal to intrinsic volumes in R

n or β equal to intrin-
sic volumes on the sections. Some progress on the second problem has been
made in [31] but the first problem remains open. In fact, the first problem is
the one with most practical interest.

Prediction of extreme particle sizes in the case of spherical or spheroidal
particles is the first step in creating a theory of “Stereology of extremes”, but
having applications in mind it is clearly of great importance to develop methods
for particles with more complicated shape. A major problem is that only for
simple particle shapes it is possible to derive relationships between the particle
sizes of interest such as (1.2). For example, Cruz-Orive has shown [10] that
the size distribution of ellipsoidal particles in R

3 with three different semiaxes
cannot be uniquely determined using information from plane sections.
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