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Abstract

This paper presents algorithms for computing the Gröbner fan of an arbi-
trary polynomial ideal. The computation involves enumeration of all reduced
Gröbner bases of the ideal. Our algorithms are based on a uniform definition
of the Gröbner fan that applies to both homogeneous and non-homogeneous
ideals and a proof that this object is a polyhedral complex. We show that
the cells of a Gröbner fan can easily be oriented acyclically and with a unique
sink, allowing their enumeration by the memory-less reverse search procedure.
The significance of this follows from the fact that Gröbner fans are not always
normal fans of polyhedra in which case reverse search applies automatically.
Computational results using our implementation of these algorithms in the
software package Gfan are included.

1 Introduction

The Gröbner fan of an ideal I ⊆ k[x1, . . . , xn] was defined by Mora and Robbiano in
[16]. It is a fan of polyhedral cones indexing initial ideals of I. The full-dimensional
cones are in bijection with the distinct monomial initial ideals with respect to term
orders or equivalently, the reduced Gröbner bases of the ideal. In this paper we
will describe algorithms for computing Gröbner fans of arbitrary polynomial ideals
allowing us to study their structure in detail. Our algorithms are implemented in
the software package Gfan [12].

The computation of the Gröbner fan of I in terms of reduced Gröbner bases
yields a universal Gröbner basis of I, a set of polynomials which is a Gröbner basis
of I with respect to every term order. The Gröbner fan also plays an important
role in Gröbner basis conversion [5] and the emerging field of tropical mathematics
as it contains the tropical variety of I as a subfan [4]. Many of the well-known
theoretical applications of Gröbner bases rely on the existence of a Gröbner basis or
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initial ideal for an ideal with prescribed properties such as a particular complexity
(a specified degree or squarefree-ness) or homological properties (Cohen-Macaulay,
Gorenstein etc). The (even partial) computation of the Gröbner fan makes such
experimentations possible. No software package for the computation of Gröbner
fans is available at present.

In the literature a distinction is often made between the case of I being homo-
geneous where the Gröbner fan is a complete fan in Rn, and the case of I being
non-homogeneous, where the restricted Gröbner fan with support equal to Rn

≥0 is
considered. In this paper we avoid this distinction by giving a new uniform defini-
tion of the Gröbner fan and we prove that this actually defines a fan in the sense
of a polyhedral complex — a proof that was left out in [16] but was proven for the
special case of homogeneous ideals in [18]. See Section 2.

In [18, Algorithm 3.2 and 3.6] and [16, Section 6] methods for computing the
Gröbner fan of a polynomial ideal were given. In this paper we shall study [18,
Algorithm 3.6] in detail. This algorithm traverses the maximal cones of the Gröbner
fan. In the special case of toric ideals the traversal algorithm was already studied
and implemented in [11]. The traversal is graph-like — given a maximal cone we
need to be able to find its facets and we need to be able to walk through a facet to
the neighboring maximal cone. Algorithms for performing these local computations
are discussed in Section 4. These amount to solving linear programming problems
and using the local basis change procedure due to [5]. We explain how to apply
these methods to our case.

The Gröbner fan of a homogeneous ideal I is known to be the normal fan of
a polytope, the state polytope of I ([18, Theorem 2.5]). In this homogeneous case
traversal of the maximal cones in the Gröbner fan by walking through facets is
equivalent to traversal of the edge graph of the state polytope. In [1] the memory-
less reverse search procedure for traversing the edge graph of a polytope was given.
This procedure easily applies to Gröbner fans of homogeneous ideals. However, the
question is what happens if the ideal is not homogeneous. In [13] a non-regular
Gröbner fan was presented — a fan that is not the normal fan of any polyhedron.
In light of this example it is not clear that the reverse search technique applies to
Gröbner fans in general. In Section 3 we prove that all Gröbner fans have what we
shall call the reverse search property, allowing them to be traversed efficiently.

Gröbner fans are often computed for ideals that possess a great deal of symmetry.
In Section 4.4 we describe how to take advantage of symmetry in the computations.
The methods used here are similar to those in Rambau’s software package TOPCOM
[17] for traversing the secondary fan of a point configuration up to symmetry.

In Section 5 we discuss the complexity of our enumeration algorithm and in
Section 6 we present several examples of Gröbner fans computed using Gfan. This
software package uses the GNU multi-precision library [10] for exact arithmetics and
Cddlib [7] for solving linear programming problems.

2 The Gröbner fan of a polynomial ideal

Let R = k[x1, . . . , xn] be the polynomial ring in n variables over a field k and let
I ⊆ R be an ideal. The Gröbner fan and the restricted Gröbner fan of I are n-
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dimensional polyhedral fans defined in [16]. We recall the definition of a fan in Rn.
A polyhedron in Rn is a set of the form {x ∈ Rn : Ax ≤ b} where A is a matrix
and b is a vector. Bounded polyhedra are called polytopes. If b = 0 the set is a
polyhedral cone. The dimension of a polyhedron is the dimension of the smallest
affine subspace containing it. A face of a polyhedron P is either the empty set or a
non-empty subset of P which is the set of maximizers of a linear form over P . We
use the following notation for the face maximizing a form ω ∈ Rn:

faceω(P ) = {p ∈ P : 〈ω, p〉 = maxq∈P 〈ω, q〉}.

A face of P is called a facet if its dimension is one smaller than the dimension of P .

Definition 2.1 A collection C of polyhedra in Rn is a polyhedral complex if:

1. all non-empty faces of a polyhedron P ∈ C are in C, and

2. the intersection of any two polyhedra A, B ∈ C is a face of A and a face of B.

The support of C is the union of its members. A polyhedral complex is a fan if it only
consists of cones. A fan is pure if all its maximal cones have the same dimension.

A simple way to construct a fan is to take the normal fan of a polyhedron.

Definition 2.2 Let P ⊆ Rn be a polyhedron. For a face F of P we define its
normal cone

NP (F ) := {ω ∈ Rn : faceω(P ) = F}

with the closure being taken in the usual topology. The normal fan of P is the fan
consisting of the normal cones NP (F ) as F runs through all non-empty faces of P .

If the support of a fan is Rn, the fan is said to be complete. It is clear that the
normal fan of a polytope is complete. Not all fans arise as the normal fan of a
polyhedron [9, page 25].

For α ∈ Nn we use the notation xα := xα1

1 . . . xαn
n for a monomial in R. By a

term order on R we mean a total ordering on all monomials in R such that:

1. For all α ∈ Nn\{0} : 1 < xα and

2. for α, β, γ ∈ Nn : xα < xβ ⇒ xαxγ < xβxγ .

By a term we mean a monomial together with its coefficient. Term orders are used
for ordering terms, ignoring the coefficients. For a vector ω ∈ Rn

≥0 and a term order
≺ we define the new term order ≺ω as follows:

xα ≺ω xβ ⇐⇒ 〈ω, α〉 < 〈ω, β〉 ∨ (〈ω, α〉 = 〈ω, β〉 ∧ xα ≺ xβ).

Let ≺ be a term order. For a non-zero polynomial f ∈ R we define its initial term,
in≺(f), to be the unique maximal term of f with respect to ≺. In the same way
for ω ∈ Rn we define the initial form, inω(f), to be the sum of all terms of f whose
exponents maximize 〈ω, ·〉. The polynomial f is ω-homogeneous if inω(f) = f . The
ω-degree of a term cxα is 〈ω, α〉 and the ω-degree of a non-zero polynomial f is the
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common ω-degree of the terms of inω(f). The initial ideals of an ideal I with respect
to ≺ and ω are defined as

in≺(I) = 〈in≺(f) : f ∈ I\{0}〉 and inω(I) = 〈inω(f) : f ∈ I〉.

Note that in≺(I) is a monomial ideal while inω(I) might not be. A monomial in
R\in≺(I) (with coefficient 1) is called a standard monomial of in≺(I).

Although initial ideals are defined with respect to not necessarily positive vectors,
Gröbner bases are only defined with respect to true term orders:

Definition 2.3 Let I ⊆ R be an ideal and ≺ a term order on R. A generating set
G = {g1, . . . , gm} for I is called a Gröbner basis for I with respect to ≺ if

in≺(I) = 〈in≺(g1), . . . , in≺(gm)〉.

The Gröbner basis G is minimal if {in≺(g1), . . . , in≺(gm)} generates in≺(I) mini-
mally. A minimal Gröbner basis is reduced if the initial term of every g ∈ G has
coefficient 1 and all other monomials in g are standard monomials of in≺(I).

We use the term marked Gröbner basis for a Gröbner basis where the initial terms
have been distinguished from the non-initial ones (they have been marked). For
example, {x2 + xy + y2} and {x2 + xy + y2} are marked Gröbner bases for the ideal
〈x2+xy+y2〉 while {x2+xy+y2} is not since xy is not the initial term of x2+xy+y2

with respect to any term order.
For a term order ≺ and an ideal I, Buchberger’s algorithm guarantees the exis-

tence of a unique marked reduced Gröbner basis. We denote it by G≺(I). For two
term orders ≺ and ≺′, if in≺(I) = in≺′(I) then G≺(I) = G≺′(I). Conversely, given a
marked Gröbner basis G≺(I), in≺(I) can be easily read off.

Given an ideal I, a natural equivalence relation on Rn is induced by taking initial
ideals:

u ∼ v ⇐⇒ inu(I) = inv(I). (1)

We introduce the following notation for the closures of the equivalence classes:

C≺(I) = {u ∈ Rn : inu(I) = in≺(I)}

and

Cv(I) = {u ∈ Rn : inu(I) = inv(I)}.

Remark 2.4 It is well known that for a fixed ideal I there are only finitely many
sets C≺(I) and they cover Rn

≥0, see [16]. Secondly, every initial ideal in≺(I) is of
the form inω(I) for some ω ∈ Rn

>0, see [18, Proposition 1.11]. Consequently, every
C≺(I) is of the form Cω(I).

A third observation is that the equivalence classes are not convex in general since
we allow the vectors to be anywhere in Rn:

Example 2.5 Let I = 〈x−1, y−1〉. The ideal I has five initial ideals: 〈x−1, y−1〉,
〈x, y〉, 〈x, y − 1〉, 〈x − 1, y〉 and 〈1〉. In particular, for u = (−1, 3) and v = (3,−1)
we have inu(I) = inv(I) = 〈1〉 but in 1

2
(u+v)(I) = 〈x, y〉.
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(0,0,1)

(1,0,0)

(1,1,−1)

(0,1,0)

(0,−1,0)
(−2,−1,−1)

(1/3,1/3,1/3)
(1/7,3/7,3/7)

Figure 1: The Gröbner fan of the ideal in Example 2.7 has 7 three-dimensional,
14 two-dimensional and 8 one-dimensional cones. The intersections of the two-
dimensional cones with the hyperplane x+y + z = 1 are drawn as lines. The dotted
part of the figure shows the combinatorial structure outside the hyperplane. The
gray triangle indicates the positive orthant.

Proposition 2.6 Let ≺ be a term order and v ∈ C≺(I). For u ∈ Rn

inu(I) = inv(I) ⇐⇒ ∀g ∈ G≺(I), inu(g) = inv(g).

This proposition is a little more general than Proposition 2.3 in [18] as it allows
the vectors u and v to have negative components. A proof is given in the next
section. For fixed ≺ and v as in Proposition 2.6, we get that Cv(I), the closure
of the equivalence class of v, is a polyhedral cone since each g ∈ G≺(I) introduces
the equation inu(g) = inv(g) which is equivalent to having u satisfy a set of linear
equations and strict linear inequalities, see Example 2.7. The closure is obtained by
making the strict inequalities non-strict. Under the assumptions of Proposition 2.6
we may write this in the following way:

u ∈ Cv(I) ⇐⇒ ∀g ∈ G≺(I), inv(inu(g)) = inv(g). (2)

As we saw in Example 2.5, not all equivalence classes are convex. However, for
an arbitrary v, Cv(I) is a convex polyhedral cone if it contains a strictly positive
vector. In this case, there must exist a vector p ∈ Rn

>0 in the interior of Cv(I). Then
inp(I) = inv(I) and, by Lemma 2.15, p ∈ C≺p

(I) for any ≺. Hence the equivalence
class of v is of the form required in Proposition 2.6.

Example 2.7 Let I = 〈x + y + z, x3z + x + y2〉 ⊆ Q[x, y, z] and let ≺ be the
lexicographic term order with x ≺ y ≺ z. Then G≺(I) = {y2+x−x3y−x4, z+y+x}.
If v = (1, 4, 5) then inv(I) = in≺(I) = 〈y2, z〉 and Cv(I) = C≺(I). By Proposition
2.6, inu(I) = inv(I) if and only if the following two equations are satisfied:

inu(z + y + x) = z (⇔ uz > max{ux, uy}),
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and

inu(y
2 + x− x3y − x4) = y2 (⇔ 2uy > max{ux, 3ux + uy, 4ux}).

Introducing non-strict inequalities we obtain a description of C≺(I). This cone is
simplicial and has the cones C(0,0,1)(I), C(1,3,3)(I) and C(−2,−1,−1)(I) as extreme rays
and C(1,3,4)(I), C(−2,−1,0)(I) and C(−1,2,2)(I) as facets. Since (−2,−1, 0) is in C≺(I)
a description of vectors u in C(−2,−1,0)(I) is given by:

in(−2,−1,0)(inu(z + y + x)) = z (⇔ uz ≥ max{ux, uy}),

and

in(−2,−1,0)(inu(y
2 + x− x3y − x4)) = y2 + x (⇔ 2uy = ux ≥ max{3ux + uy, 4ux}).

Definition 2.8 The Gröbner fan of an ideal I ⊆ R is the set of the closures of all
equivalence classes intersecting the positive orthant together with their proper faces.

This is a variation of the definitions appearing in the literature. The advantage
of this variant is that it gives well-defined and nice fans in the homogeneous and
non-homogeneous case simultaneously. By nice we mean that all cones in this fan
are closures of equivalence classes. It is not clear a priori that the Gröbner fan is
a polyhedral complex. A proof is given in the next section (Theorem 2.19). The
support of the Gröbner fan of I is called the Gröbner region of I. Recall that the
common refinement of two fans F1 and F2 in Rn is defined as

F1 ∧ F2 = {C1 ∩ C2}(C1,C2)∈F1×F2
.

The common refinement of two fans is a fan. We define the restricted Gröbner
fan of an ideal to be the common refinement of the Gröbner fan and the faces of
the non-negative orthant. The support of the restricted Gröbner fan is Rn

≥0. The
Newton polytope of a polynomial is the convex hull of its exponent vectors.

Example 2.9 The Gröbner fan of the principal ideal 〈x4 + x4y − x3y + x2y2 + y〉
consists of one 0-dimensional cone, three 1-dimensional cones and two 2-dimensional
cones, see Figure 2. The same is true for the restricted Gröbner fan. Notice, however,
that in the restricted Gröbner fan one of the 1-dimensional cones and one of the
2-dimensional cones are not equivalence classes of the equivalence relation (1).
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Figure 2: The Gröbner fan of the ideal in Example 2.9 is shown on the left. The
restricted Gröbner fan is on the right. In the middle the Newton polytope of the
generator is drawn with the shape of its normal fan indicated.
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2.1 Proof: The Gröbner fan is a fan

In this section we prove that the Gröbner fan is a fan i.e., that it is a polyhedral
complex consisting of cones. Recall, in general the Gröbner fan is not complete and
its support is larger than Rn

≥0. In [16] there is no proof that the Gröbner fan is a fan
in the sense of a polyhedral complex. A proof that the Gröbner fan is a polyhedral
complex under the assumption that the ideal is homogeneous is given in [18]. We
present a complete proof for the general case. Many of the results we need in the
proof are generalizations of known results needed in the proof that the Gröbner fan
of a homogeneous ideal is a polyhedral complex [18]. However, we do not rely on
these references for the sake of being self-contained.

We fix the ideal I ⊆ R in the following theorems. The most important step is the
proof of Proposition 2.6 which tells us that the closure of an equivalence class is a
polyhedral cone. Then we prove that the relative interior of any face in the Gröbner
fan is an equivalence class (Proposition 2.16) and, finally, that the intersection of
two cones in the fan is a face of both (Proposition 2.18).

To prove Proposition 2.6 we start by proving a similar statement for the equiv-
alence classes arising from initial ideals with respect to term orders.

Lemma 2.10 Let ≺ be a term order. For v ∈ Rn,

inv(I) = in≺(I) ⇐⇒ ∀g ∈ G≺(I), inv(g) = in≺(g).

Proof. ⇒: Let g ∈ G≺(I). Since G≺(I) is reduced, only one term from g, in≺(g), can
be in in≺(I) = inv(I). The initial ideal inv(I) is a monomial ideal, implying that all
terms of an element in the ideal must be in the ideal too. Hence, the initial form
inv(g) ∈ inv(I) has to be equal to in≺(g).
⇐: We must show that inv(I) = in≺(I) where in≺(I) = 〈in≺(g)〉g∈G≺(I). The “⊇”
inclusion is clear since in≺(g) = inv(g) ∈ inv(I) for all g ∈ G≺(I).

To prove the “⊆” inclusion, since inv(I) = 〈inv(f), f ∈ I〉, it suffices to show
that inv(f) ∈ in≺(I) for all f ∈ I. Pick f ∈ I and reduce it to zero using the division
algorithm (e.g. [6, Chapter 2]) with G≺(I) and ≺. We may write

f = m1gi1 + · · ·+ mrgir (3)

where mj is a monomial and gij is an element from G≺(I). The division algorithm
guarantees that in≺(f) ≥ mj in≺(gij) with respect to ≺ since monomials are substi-
tuted with monomials less than the original ones with respect to ≺ in the division
process. Exactly the same thing is true for v-degrees since v and ≺ agree on G≺(I).
Thereby, any monomial on the right hand side in (3) has v-degree less than or equal
to the v-degree of the left hand side. Consequently,

inv(f) =
∑

j∈J

mj inv(gij)

with j running through a subset such that mj inv(gij) has the same v-degree as
inv(f). Since inv(g) ∈ in≺(I), the initial form inv(f) ∈ in≺(I). 2
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By Lemma 2.10 the equivalence class of in≺(I) is open. Since in≺(I) is of the
form inv(I) for some v (see Remark 2.4), the equivalence class of in≺(I) is also non-
empty and hence full-dimensional. Thus we have proved that the equivalence class
of a term order is a full dimensional open polyhedral cone.

Corollary 2.11 Let ≺ be a term order and v ∈ Rn. Then

v ∈ C≺(I) ⇔ ∀g ∈ G≺(I) : in≺(inv(g)) = in≺(g).

Proof. Lemma 2.10 tells us that v lies in the interior of C≺(I) if and only if inv(g) =
in≺(g) for all g ∈ G≺(I). Relaxing the resulting strict inequalities to non-strict
inequalities we get a description of C≺(I). This relaxation is exactly the one given
by in≺(inv(g)) = in≺(g) for all g in G≺(I). 2

Lemma 2.12 A polynomial f ∈ inv(I) can be written in the form f =
∑

i inv(ci)
where ci ∈ I and all summands in the sum have different v-degrees.

Proof. The initial ideal inv(I) is generated by v-homogeneous polynomials, implying
that all v-homogeneous components of f are in inv(I). Let h be a maximal v-
homogeneous component of f . We need to show that h is the initial form of an
element in I with respect to v. We may write h as inv(a1) + · · ·+ inv(as) for some
polynomials a1, . . . , as in I. Since h is v-homogeneous we can rewrite h as the sum
∑

j∈J inv(aj) of forms having the same v-degree as h. We pull out the initial form
and get h = inv(

∑

j∈J aj). 2

Lemma 2.13 Let ≺ be a term order. If v ∈ C≺(I) then in≺(inv(I)) = in≺(I).

Proof. Let g ∈ G≺(I). Since v ∈ C≺(I), by Corollary 2.11, in≺(g) = in≺(inv(g)) and
hence in≺(I) = 〈in≺(g)〉g∈G≺(I) ⊆ in≺(inv(I)).

We now prove that in≺(inv(I)) ⊆ in≺(I). Notice that in≺(inv(I)) is generated by
initial terms of elements f ∈ inv(I)\{0} with respect to ≺. Suppose f ∈ inv(I)\{0}.
It suffices to show that in≺(f) ∈ in≺(I). Using Lemma 2.12 we may write f =
∑s

i=1 inv(ci) where c1, . . . , cs ∈ I and inv(c1), . . . , inv(cs) are v-homogeneous each
with distinct degree, so that no cancellations occur. Consequently in≺(f) equals
in≺(inv(cj)) for some j. We wish to prove that in≺(inv(cj)) ∈ in≺(I). We use the
division algorithm with G≺(I) and ≺ to rewrite cj

cj = m1gi1 + · · ·+ mrgir

where m1, . . . , mr are monomials and gi1, . . . , gir belong to G≺(I). Let M be the
v-degree of cj. In the division algorithm we sequentially reduce cj to zero. In each
step, the v-degree of cj will decrease or stay the same since we subtract the product
of a monomial and an element from G≺(I) where the v-degree of the product already
appeared in cj by Corollary 2.11. Equivalently, the product of the monomial and
the element from G≺(I) are “added” to the right hand side of the equation. We are
done when cj = 0 and or equivalently, the original cj is written as the above sum
with every term having v-degree less or equal to M . Consequently, we have

inv(cj) =
∑

j′∈J ′

inv(mj′gij′
)

8



for a suitable J ′. The division algorithm guarantees that the exponent vectors of
in≺(m1gi1), . . . , in≺(mrgir) are distinct. Since v ∈ C≺(I), they equal in≺(inv(m1gi1)),
. . . , in≺(inv(mrgir)). The maximal one of these with respect to ≺ cannot can-
cel in the sum. Hence in≺(inv(cj)) = in≺(mj′gij′

) for some j′ which implies that
in≺(inv(cj)) ∈ in≺(I) as needed. 2

An easy corollary is a method for computing Gröbner bases for initial ideals.

Corollary 2.14 Let ≺ be a term order. If v ∈ C≺(I) then

G≺(inv(I)) = {inv(g)}g∈G≺(I).

Proof. By Corollary 2.11, 〈in≺(inv(g))〉g∈G≺(I) = 〈in≺(g)〉g∈G≺(I) = in≺(I). By Lem-
ma 2.13, in≺(I) equals in≺(inv(I)). Thus in≺(inv(I)) = 〈in≺(inv(g))〉g∈G≺(I). This
proves that {inv(g)}g∈G≺(I) is a Gröbner basis of inv(I) with respect to ≺. It is
reduced since G≺(I) is minimal and reduced. 2

We are now able to give a proof for Proposition 2.6 which claimed that given v ∈
C≺(I) and u ∈ Rn, inu(I) = inv(I) ⇐⇒ ∀g ∈ G≺(I), inu(g) = inv(g).

Proof. ⇐: Since inu(g) = inv(g) for all g ∈ G≺(I), we get that in≺(inu(g)) =
in≺(inv(g)) for all g ∈ G≺(I). Since v ∈ C≺(I), by Corollary 2.11, in≺(g) =
in≺(inv(g)) for all g ∈ G≺(I) and hence in≺(g) = in≺(inu(g)) for all g ∈ G≺(I) and
u ∈ C≺(I) by Corollary 2.11. The Gröbner basis G≺(inu(I)) is then {inu(g)}g∈G≺(I)

by Corollary 2.14. We get the same Gröbner basis for inv(I). Hence, inu(I) = inv(I).
⇒: Let g ∈ G≺(I). We need to show that inu(g) = inv(g). Since the basis is
reduced, only one term of g, namely in≺(g), is in in≺(I). We start by proving
that the term in≺(g) is a term in inv(g) and a term in inu(g). For inv(g) we apply
Corollary 2.11 which says in≺(g) = in≺(inv(g)). For inu(g) we apply Lemma 2.13
and get in≺(inu(g)) ∈ in≺(inu(I)) = in≺(inv(I)) = in≺(I). Only one term of g
is in in≺(I), so in≺(inu(g)) = in≺(g). If the difference inu(g)− inv(g), belonging to
inu(I) = inv(I), is non-zero we immediately reach a contradiction since the difference
contains no terms from in≺(I) = in≺(inv(I)). 2

We have now proved that every equivalence class of a vector v in a C≺(I) is a
relatively open convex polyhedral cone. By the argument following Proposition 2.6
in the previous section all sets in the Gröbner fan are in fact cones. We now argue
that the relative interior of every cone in the Gröbner fan is an equivalence class.

Lemma 2.15 Let ≺ be a term order. If v ∈ Rn
≥0 then v ∈ C≺v

(I).

Proof. This follows from Corollary 2.11 since in≺v
(inv(g)) = in≺v

(g) for all g ∈
G≺v

(I). 2

Proposition 2.16 The relative interior of a cone in the Gröbner fan is an equiva-
lence class (with respect to u ∼ u′ ⇔ inu(I) = inu′(I)).
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Proof. By definition every cone in the fan is the face of the closure of an equivalence
class for a positive vector v ∈ Rn

>0. Let ≺′ be an arbitrary term order and define ≺
as ≺′

v. According to Lemma 2.15 the vector v belongs to C≺(I). Notice that by (2),
Cv(I) ⊆ C≺(I) since for all u ∈ Cv(I) and g ∈ G≺(I), the condition in≺(inu(g)) =
in≺(inv(inu(g))) = in≺(inv(g)) = in≺(g) of Corollary 2.11 is satisfied. By (2) the
closed set Cv(I) is cut out by some equations and non-strict inequalities. The
relative interior of any face of Cv(I) can be formed from this inequality system by
changing a subset of the inequalities to strict inequalities and the remaining ones to
equations. So let u be a vector in the relative interior of some face of Cv(I). The
vector u is in Cv(I) ⊆ C≺(I). We may use Proposition 2.6 to conclude that a vector
u′ ∈ Rn is equivalent to u if and only if it satisfies the inequality system mentioned
above — that is, if and only if it is in the relative interior of the face. 2

It remains to be shown that the intersection of two cones in the Gröbner fan is
a face of both cones (Proposition 2.18). We need a few observations.

Corollary 2.17 Let C be a cone in the Gröbner fan. If v ∈ C then for u ∈ Rn,

inu(I) = inv(I) ⇒ u ∈ C.

Proof. The vector v is in the relative interior of some face of C. This face is also in
the Gröbner fan. By Proposition 2.16 u is in the relative interior of the same face
and, consequently, also in C. 2

By Remark 2.4 there are only finitely many initial ideals given by term orders
and, consequently, only finitely many reduced Gröbner bases of I. It follows that
there can only be finitely many equivalence classes of the type described in Propo-
sition 2.6 and Proposition 2.16.

Proposition 2.18 Let C1 and C2 be two cones in the Gröbner fan of I. Then the
intersection C1 ∩ C2 is a face of C1.

Proof. The intersection C1 ∩C2 is a cone. By Corollary 2.17, C1 and C2 are unions
of equivalence classes. Further, if v ∈ C1 ∩ C2, then again by Corollary 2.17, the
entire equivalence class of v is both in C1 and in C2 and hence in C1 ∩ C2. Hence
C1 ∩ C2 is a union of equivalence classes.

Let u be a vector in such an equivalence class E contained in C1∩C2. Then u is
in the relative interior of one of the faces of C1 which is a cone in the Gröbner fan.
By Proposition 2.16 the set of vectors in the relative interior of this face is exactly
E. Hence every such equivalence class is the relative interior of a face of C1 and its
closure is the face.

Look at the R-span of each equivalence class contained in C1 ∩C2. These spans
must be different for every face of C1. We claim that there can be only one maximal
dimensional cone/span. If there were two cones then their convex hull would be in
C1 ∩ C2 and have dimension at least one higher and thus cannot be covered by the
finitely many lower dimensional equivalence classes — a contradiction.

Let E be the maximal dimensional equivalence class contained in C1 ∩ C2. We
will argue that E = C1 ∩ C2. The inclusion E ⊆ C1 ∩ C2 is already clear since
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C1 ∩ C2 is closed. To prove the other inclusion suppose ω ∈ C1 ∩ C2\E. Then
conv(E, ω)\E is contained in C1 ∩ C2 and has dimension at least the dimension of
E. This is a contradiction since conv(E, ω)\E cannot be covered by finitely many
lower dimensional equivalence classes. This completes the proof. 2

Theorem 2.19 The Gröbner fan is a polyhedral complex of cones and hence a fan.

Proof. We already argued using Proposition 2.6 and Lemma 2.15 that the Gröbner
fan consists of polyhedral cones. The first condition for being a polyhedral complex
is satisfied by definition. The second condition is Proposition 2.18. 2

3 Reverse search property

By the graph of a pure full-dimensional fan we mean the set of maximal cones with
two cones being connected if they share a common facet. In this section we will
prove that the reverse search technique [1] can be used for traversing the graph of
a Gröbner fan. This follows from the main theorem, Theorem 3.6, which says that
the graph of a Gröbner fan can be oriented easily without cycles and with a unique
sink. In Definition 3.4 we define what we mean by this.

We start by explaining how a graph with this special kind of orientation can be
traversed by reverse search. The idea is to define a spanning tree of the graph which
can be easily traversed. The following is a simple proposition which we shall not
prove.

Proposition 3.1 Let G = (V, E) be an oriented graph without cycles and with a
unique sink s. If for every vertex v ∈ V \{s} some outgoing search edge ev = (v, ·)
is chosen then the set of chosen edges is a spanning tree for G.

The spanning tree in Proposition 3.1 is referred to as the search tree. The proposition
implies that the graph is connected.

Notice that we can find the sink by starting at any vertex and walking along a
unique path of search edges until we get stuck, in which case we are at the sink.
Consequently, the sink is the root of the oriented spanning tree. A corollary to the
proposition is the reverse search algorithm for traversing G:

Algorithm 3.2 Let G = (V, E) be the oriented graph of Proposition 3.1 and suppose
the choice of a search edge ev for each vertex v 6= s has been made. Calling the
following recursive procedure with v = s will output all vertices in G.
Output subtree(v)
Input: A vertex v in the graph G.
Output: The set of vertices in the subtree with root v.
{

Output v;
Compute the edges of form (·, v) ∈ E;
For every oriented edge (u, v) ∈ E

If (eu = (u, v)) Output subtree(u);
}
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This algorithm does not have to store a set of “active” vertices as is usually needed
in depth- and breadth-first traversals. It is even possible to formulate the algorithm
completely without recursion avoiding the need for a recursion stack. In that sense
the algorithm is memory-less.

We give an example of how the edge graph of a polytope or, equivalently, the
graph of its normal fan can be oriented.

Example 3.3 Let P ⊂ Rn be a polytope whose vertices have positive integer coor-
dinates and let ≺ be a term order on R. The following is an orientation of the edge
graph of P without cycles and with a unique sink: An edge (p, q) is oriented from p
to q if and only if xp ≺ xq.

This defines an orientation of the graph of the normal fan of a polytope for any
term order. We would like to mimic this orientation for any pure full-dimensional
fan in Rn. For simplicity we shall restrict ourselves to fans whose (n−1)-dimensional
cones allow rational normals. In view of Propositions 2.6 and 2.16 this is no restric-
tion for Gröbner fans.

Definition 3.4 A pure full-dimensional fan in Rn is said to have the reverse search
property if for any term order ≺ the following is an acyclic orientation of its graph
with a unique sink: If (C1, C2) is an edge then C1 and C2 are n-dimensional cones
with a common facet F . Let p, q ∈ Nn such that q − p 6= 0 is a normal for F with
all points in C1\F having negative inner product with q− p and all points in C2\F
having positive inner product with q − p. We orient the edge in direction from C1

to C2 if and only if xp ≺ xq.

Note that the orientation of an edge in Definition 3.4 does not depend on the partic-
ular choice of p and q. Note also that for normal fans of polytopes this orientation
agrees with the orientation of the edge graphs of the polytopes in Example 3.3. Not
every fan has the reverse search property:

Example 3.5 Figure 3 shows a fan with support R3
≥0 intersected with the standard

simplex. The intersection is the non-dotted part of the figure. For every shared 2-
dimensional facet the orientation of its edge with respect to a term order of form
≺(1,1,1) is indicated by an arrow. The graph has a cycle. The reason is that the
vector (1, 1, 1) is in the interior of the cone over the dotted triangle and therefore
induces the shown orientation with any tie-breaking.

Example 3.3 on the other hand shows that any normal fan of a polytope has the
reverse search property. If I is a homogeneous ideal the Gröbner fan of I is known
to be the normal fan of the state polytope of I, see [18] for a proof. (We should
mention that in [15] it was proven that this is only true if we use the state polytope
definition in [18] and not true with the original definition in [2].) As a consequence
the Gröbner fan will have the reverse search property. The reverse search orientation
of a fan with respect to any term order can be carried out on any fan covering Rn

≥0

and being the normal fan of a polyhedron. Since the restricted Gröbner fan of any
0-dimensional or principal ideal satisfies these conditions it is clear that these fans
have the reverse search property.
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Figure 3: A fan not having the reverse search property, see Example 3.5.

It is shown in [13] that this line of reasoning cannot be applied to Gröbner fans
in general. In particular, an ideal is presented whose restricted Gröbner fan is not
the normal fan of a polyhedron. For this reason we need a non-trivial argument to
prove the following theorem:

Theorem 3.6 The Gröbner fan of any ideal I ⊆ R has the reverse search property.

The proof is given in the next section. In Section 4 we will argue that all parts of
Algorithm 3.2 (finding adjacent edges, finding adjacent vertices and finding search
edges) can be implemented efficiently for Gröbner fans.

3.1 Proof: The Gröbner fan has the reverse search property

In this section we prove Theorem 3.6. We start by recalling how the polynomial ring
can be graded by semigroups. This leads to a more general notion of homogeneous
ideals.

Definition 3.7 By a grading on R = k[x1, . . . , xn] we mean a pair (A,A) consisting
of an abelian semigroup A and a semigroup homomorphism:

A : Nn → A

such that A−1(a) is finite for all a ∈ A. The A-degree of a term cxb is A(b). A
polynomial is A-homogeneous if all its terms have the same A-degree. An ideal is
A-homogeneous if it is generated by a set of A-homogeneous polynomials.

For a grading (A,A) on R we get the direct sum of k-vector spaces

R =
⊕

a∈A

Ra

where Ra denotes the k-subspace of R consisting of A-homogeneous polynomials
of degree a. Any reduced Gröbner basis of an A-homogeneous ideal I consists of
A-homogeneous polynomials. In particular, by generalizing the argument of Lemma
2.12 we get the direct sum

I =
⊕

a∈A

Ia
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where Ia denotes the k-subspace of I consisting of A-homogeneous polynomials of
degree a. The A-homogeneous part Ia is a k-subspace of Ra. We define the A-graded
Hilbert function:

HI,A : A → N (4)

a 7→ dimk(Ra/Ia) (5)

Remark 3.8 For a monomial ideal I the standard monomials of degree a form a
basis for Ra/Ia. Hence HI,A(a) counts the number of standard monomials of degree
a.

In general, as the following well-known proposition shows, the Hilbert function can
be found by looking at a monomial initial ideal:

Proposition 3.9 Let I be an A-homogeneous ideal and ≺ a term order then

HI,A = Hin≺(I),A.

Proof. The linear map taking a polynomial to its unique normal form by the division
algorithm on G≺(I) induces an isomorphism of k-vector spaces

Ra/Ia → Ra/in≺(I)a.

2

Consider a shared facet of the cones C1 and C2 in the Gröbner fan with a relative
interior point v. The “edge ideal” inv(I) is homogeneous with respect to any vector
in the relative interior of the facet and consequently also homogeneous with respect
to any vector in the span of the facet. Since C1 and C2 both contain positive vectors,
so does span

R
(Cv(I)). Recall that Cv(I) is the closure of the equivalence class of

v. Pick a basis u1, . . . , un−1 ∈ Nn for span
R
(Cv(I)) with u1 being a positive vector.

The vectors induce a grading Av : Nn → Nn−1 on R by

Av(b) = (〈u1, b〉, . . . , 〈un−1, b〉)

for b ∈ Nn. The initial ideal inv(I) is Av-homogeneous.

Lemma 3.10 Let ≺ be a term order, I an ideal, (C1, C2) a directed edge with respect
to the orientation in Definition 3.4 and M1 and M2 the initial ideals of C1 and C2

respectively. Let v be a relative interior point in the shared facet. Then in≺(inv(I)) =
M2.

Proof. Choose a positive interior point ω2 of C2. We claim that the following iden-
tities hold:

M2 = inω2
(I) = in≺ω2

(inω2
(I)) = in≺ω2

(I) = in≺ω2
(inv(I)) = in≺(inv(I)).

The first one holds by the choice of ω2. The second one is clear since inω2
(I) is

a monomial ideal. The third one holds by Lemma 2.13 and Lemma 2.15. By
Lemma 2.13 the fourth equality holds since v ∈ C≺ω2

(I) = Cω2
(I). To prove the
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last equality we look at the reduced Gröbner basis G≺(inv(I)). If we can show that
in≺ω2

(g) = in≺(g) for all elements g ∈ G≺(inv(I)) then we know that G≺(inv(I))
is also a Gröbner basis with respect to ≺ω2

and the generators for the initial ideal
in≺ω2

(inv(I)) are exactly the same as those for in≺(inv(I)). This would complete the
proof.

The reduced Gröbner basis G≺(inv(I)) is Av-homogeneous. For an element g this
implies that the difference between two of its exponent vectors must be perpendicular
to the shared facet. By Definition 3.4 there exists a normal q − p of the facet with
xp ≺ xq and 〈ω2, q−p〉 > 0. Since ≺ and ≺ω2

agree on one normal vector they must
agree on all exponent differences of elements in G≺(inv(I)). 2

Notice that by Proposition 3.9 any initial ideal in≺(inv(I)) of inv(I) has the same
Av-graded Hilbert function as inv(I).

By a flip we mean a move from one vertex in the graph to a neighbor. For a
degree a ∈ Nn−1 we call A−1

v (a) the fiber over a. The Av-graded Hilbert function
of an initial ideal in≺(inv(I)) counts the number of standard monomials inside each
fiber. A flip preserves the Hilbert function. We may think of this as monomials in
the monomial initial ideal moving around in the fiber. We wish to keep track of how
the monomials move when we walk in the oriented graph. We define exactly what
we mean by “moving around”:

Definition 3.11 Let ≺, M1, M2, u1, . . . , un−1 and v be as above with
in≺(inv(I)) = M2. Let N1 and N2 be the monomials in M1 and M2 respectively.
We define the bijection φ≺M1M2

: N1 → N2 in the following way: For a monomial
xb ∈ N1 look at the monomials B1 ⊆ N1 and B2 ⊆ N2 with the same A-degree as
xb. Since taking initial ideals preserves the A-graded Hilbert function, |B1| = |B2|.
Sort B1 and B2 with respect to ≺. The bijection φ≺M1M2

is now defined by taking
the first element of B1 to the first element of B2, the second element of B1 to the
second element of B2 and so on.

The following lemma is from [14, Lemma 4.1]:

Lemma 3.12 Let ≤1 and ≤2 be two term orders. If f 1
1 , . . . , f 1

s is a vector space
basis for Ia such that in≤1

(f 1
1 ), . . . , in≤1

(f 1
s ) is a basis for in≤1

(I)a, then there exists
a basis f 2

1 , . . . , f 2
s for Ia such that in≤2

(f 2
1 ), . . . , in≤2

(f 2
s ) is a basis for in≤2

(I)a and

in≤2
(f 2

1 ) ≤1 in≤1
(f 1

1 )

...

in≤2
(f 2

s ) ≤1 in≤1
(f 1

s ).

Corollary 3.13 Let the setting be as in Definition 3.11. If xb ∈ M1 then
φ≺M1M2

(xb) 6≺ xb.

Proof. Let a be theA-degree of xb. We apply Lemma 3.12 with I in the lemma being
inv(I). Let ≤1 be ≺ and ≤2 be the refinement of the preorder induced by u1 with
the reversed order of ≺. By the orientation of the graph M1 = in≤2

(inv(I)) and
M2 = in≤1

(inv(I)). By multiplying elements of G≺(inv(I)) by monomials we can
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construct a k-basis f 1
1 , . . . , f 1

s of inv(I)a with in≤1
(f 1

1 ), . . . , in≤1
(f 1

s ) being a basis
of (M2)a. By the lemma there is a basis in≤2

(f 2
1 ), . . . , in≤2

(f 2
s ) of (M1)a. Sort

the list of inequalities in the lemma with in≤2
(f 2

i ) decreasing w.r.t. ≺ (≤1). The
right hand side can now be sorted with respect to the same order without violating
the inequalities. To see this use the bubble sort algorithm — when two adjacent
inequalities are swapped . . .

in≤2
(f 2

i ) ≤1 in≤1
(f 1

i ) in≤2
(f 2

i ) ≤1 in≤1
(f 1

i+1)
∨1 ∧1 7→ ∨1 ∨1

in≤2
(f 2

i+1) ≤1 in≤1
(f 1

i+1) in≤2
(f 2

i+1) ≤1 in≤1
(f 1

i )

. . . the relations on the right hand side of the arrow hold by transitivity of ≤1.
After sorting, xb appears somewhere on the left and φ≺M1M2

(xb) on the right in
the same inequality. This completes the proof. 2

Proof of Theorem 3.6. Suppose C1, C2, . . . , Cm was a path in the oriented graph
with C1 = Cm. Let M1, . . . , Mm denote the initial ideals and N1, . . . , Nm their
monomials. We will prove that the bijection φ := φ≺Mm−1Mm

◦ · · · ◦ φ≺M1M2
is the

identity on M1. Suppose it is not the identity and let xb be the smallest element in
M1 with respect to ≺ that is not fixed by φ. By Corollary 3.13, xb is the image of a
smaller element in M1 with respect to ≺. But this element is fixed by the minimality
of xb — a contradiction. The composition being the identity implies by Corollary
3.13 that φ≺MiMi+1

is the identity for all i. Hence Mi = Mi+1, contradicting that
M1, M2, . . . , Mm is a path.

We claim that C≺(I) is the unique sink. If v is in the relative interior of a facet
of C≺(I) then by Lemma 2.13 in≺(inv(I)) = in≺(I). By Lemma 3.10 this means
that all edges connected to C≺(I) are ingoing. Hence C≺(I) is a sink.

To prove uniqueness let C≺′(I) be some sink in the oriented graph. By [16] ≺
has a matrix representation (τ0, . . . , τn−1) ∈ Rn×n such that τε := τ0 + ετ1 + · · · +
εn−1τn−1 ∈ int C≺(I) for ε > 0 sufficiently small. Furthermore, for any f ∈ R,
inτε

(f) = in≺(f) for ε > 0 sufficiently small. If C≺′(I) is a sink then according to
Definition 3.4 there exists a complete list of inner normals q1 − p1, . . . , qr − pr of
C≺′(I) ∩ Rn

≥0 such that in≺(xqi − xpi) = xqi. Since τε and ≺ pick out the same
initial forms on a finite set of polynomials for ε > 0 sufficiently small we see that
〈τε, qi〉 > 〈τε, pi〉 or, equivalently, τε ∈ int C≺′(I) for ε > 0 sufficiently small. We
conclude that C≺′(I) = C≺(I). 2

4 Implementation issues

We can find a single Gröbner cone by applying Buchberger’s algorithm and Corollary
2.11 for some term order. Since the graph of the Gröbner fan of I is connected
we may choose any graph traversal algorithm for computing the full dimensional
Gröbner cones. To do the local computations we need to be able to find the edges
(connecting facets) of a full dimensional cone and we need to be able to find the
neighbor along an edge. We will see how to do this in the following sections.

Throughout the graph enumeration process we will represent the Gröbner cones
by their marked reduced Gröbner bases, rather than by their defining inequalities,
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their term orders etc. This choice is justified by the following known theorem which
we shall not prove:

Theorem 4.1 Let I ⊆ R = k[x1, . . . , xn] be an ideal. The marked reduced Gröbner
bases of I, the monomial initial ideals of I (w.r.t. a positive vector) and the full-
dimensional Gröbner cones are in bijection.

An important issue when implementing the algorithms is to identify shared
facets. We say that a facet is flippable if its relative interior contains a positive
vector. The flippable facets in a Gröbner fan are always shared. With the right
definition of search edges the search tree will only consist of flippable facets.

At the end of the section we will see how the search edge computation in the
reverse search algorithm can be implemented and we will explain how to take ad-
vantage of symmetry in a Gröbner fan traversal.

4.1 Finding facets

Suppose that we know a marked reduced Gröbner basis G≺(I) with respect to some
unknown term order ≺. Proposition 2.6 (or Corollary 2.11) tells us how to read off
the defining inequality system for C≺(I).

Since C≺(I) is full-dimensional the system contains no equations but only in-
equalities. Some of these inequalities are equivalent in the sense that they are
multiples of each other. Taking just one inequality from each equivalence class the
problem is now to find irredundant facet normals of a cone — or equivalently to
find the extreme rays of the dual cone. Checking if a ray is extreme can be done by
linear programming.

Not all of the remaining inequalities are guaranteed to define flippable facets.
One way to ensure that we only get flippable facets is by adding the constraints
ei · x ≥ 0 for i = 1, . . . , n and ignoring the facets defined by these.

A more efficient method (on some examples) is to find all facets and then remove
the non-flippable irredundant facet normals by explicit checks. In our implementa-
tion this is done by checking if the inequality system with the inequality in question
inverted still has a positive solution.

As mentioned in [11] there is an algebraic test that helps us eliminate redundant
inequalities of C≺(I). Let α ∈ Rn be a coefficient vector of an inequality. If α indeed
is irredundant and defines a facet with a relative interior point v then Corollary 2.14
tells us how to compute G≺(inv(I)). This marked reduced Gröbner basis can be
computed from G≺(I) as {inv(g)}g∈G≺(I) if we just know α and not necessarily v, see
the next section. A necessary condition for α to be irredundant is that the computed
set {inv(g)}g∈G≺(I) indeed is a marked Gröbner basis i.e. all S-polynomials reduce to
zero. This check even works for v outside the positive orthant. A quicker necessary
condition that we can check is that every non-zero S-polynomial should have at least
one of its terms in in≺(I). For huge sets of inequalities the test works extremely
well — 500 inequalities might reduce to 50 of which maybe 10 are irredundant. Our
experience is that having this test as a preprocessing step can be much faster than
solving the full linear programs with exact arithmetic.
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4.2 Local change

Let G≺(I) be a known marked Gröbner basis and let F be a flippable facet of
C≺(I). We let flip(G≺(I), F ) denote the unique reduced Gröbner basis different from
G≺(I) whose Gröbner cone also has F as a facet. We will describe an algorithm for
computing flip(G≺(I), F ) given G≺(I) and an inner normal vector α for F . For a
marked Gröbner basis G and a polynomial g we let gG denote the normal form of g
modulo G and note that this form does not depend on the term order but only on
G.

Algorithm 4.2

Input: A marked reduced Gröbner basis G≺(I) with ≺ being an unknown term order
and an inner normal vector α of a flippable facet F of C≺(I).
Output: G = flip(G≺(I), F ).
{

Let v be a positive vector in the relative interior of F ;
Compute G≺(inv(I)) = {inv(g) : g ∈ G≺(I)};
Compute the marked basis G≺−α

(inv(I)) from G≺(inv(I))
using Buchberger’s algorithm;

G := {g − gG≺(I) : g ∈ G≺−α
(inv(I))};

Mark the term in≺−α
(g) in each element g − gG≺(I) in G;

Turn G into a reduced basis;
}

The algorithm is a special case of the local change procedure for a single step in the
Gröbner walk [5]. See [8, Proposition 3.2] for a new treatment and a proof. Here
we will just add a few comments on our special case — the case where F is a facet
and not a lower dimensional face:

For any vector ω in the relative interior of F , inω(I) = inv(I) is homogeneous with
respect to the ω-grading. Since F is (n−1)-dimensional, inv(I) is homogeneous with
respect to all vectors inside span

R
(α)⊥. All Gröbner bases of inv(I) are homogeneous

in the same way. Consequently, each of them must consist of polynomials of the
form

∑t
s=0 csx

(a+sb) where a ∈ Nn and b ∈ Zn is parallel to α. The same is true
for all polynomials appearing in any run of Buchberger’s algorithm starting from
one of these sets. A consequence is that in order to run Buchberger’s algorithm we
only need to decide if we are in the situation where xγ ≺ xγ+α for γ ∈ Nn or in the
situation where xγ+α ≺ xγ for γ ∈ Nn. Thus specifying α or −α as a term order
suffices — no tie-breaker is needed. The initial ideal inv(I) can have at most two
reduced Gröbner bases. Both term orders are legal since inv(I) is homogeneous with
respect to the strictly positive vector v.

The Gröbner basis G≺(inv(I)) can be read off from the marked Gröbner basis
G≺(I) by taking initial forms of the polynomials with respect to v, see Corollary
2.14. Taking the initial form inv(g) of a polynomial g ∈ G≺(I) without computing
v is done as follows. By Corollary 2.11, in≺(inv(g)) = in≺(g) and thus we already
know one term of inv(g) since in≺(g) is the marked term of g in G≺(I). Since every ω
in the relative interior of F will have G≺(inω(I)) = G≺(inv(I)) the remaining terms
of inv(g) are exactly the terms in g with the same ω-degree as in≺(g) for all ω in
the relative interior of F and consequently for all ω in span

R
(α)⊥. In other words a
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term of g is in inv(g) if and only if its exponent vector minus the exponent of in≺(g)
is parallel to α. The term order ≺ does not have to be known for this step, nor does
it have to be known in the computation of G≺−α

(inv(I)) or in any other subsequent
step. The vector v also remains unknown in the entire process.

4.3 Computing the search edge

Let ≺ be the term order used for orienting the graph of the Gröbner fan. In Al-
gorithm 3.2 the search edge eC

≺′
(I) has to be computed given G≺′(I) where ≺′ is

some unspecified term order. According to Proposition 3.1 the definition of search
edges can be arbitrary. However, efficiently computing a search edge requires a good
definition. Our search edges will always come from flippable facets.

One strategy for locally computing the search edge eC
≺′

(I) is to compute a unique
representation of each flippable facet of the Gröbner cone C≺′(I) and then choose
the smallest of these facets to be eC

≺′
(I) in some lexicographic order. This method

requires all facets to be computed every time we check if “eu = (u, v)” in Algorithm
3.2.

A better strategy is to draw a straight line from a point in the cone C≺′(I) to
the cone of the sink and choose the first facet intersecting this line as eC

≺′
(I). A

point in the cone C≺′(I) can be computed deterministically by linear programming.
Two problems arise. The straight line might not intersect a unique facet and we
may not know a point in the cone of the sink. Both problems can be solved using
formal perturbation of the end points of the line. This was worked out in detail in
[8]. Here we explain how it works for lexicographic term orders and with one end
point perturbed.

Lemma 4.3 Let I ⊆ R be an ideal and ≺ the lexicographic term order with x1 ≻
x2 ≻ · · · ≻ xn. Define τε = (ε0, ε1, . . . , εn−1). There exists a δ > 0 such that
inτε

(I) = in≺(I) for all ε ∈ (0, δ).

Proof. This follows from Lemma 2.10 since ≺ and τε agree on a finite set of poly-
nomials for small ε. 2

Let σ be a deterministically computed interior point of the cone of C≺′(I) and
assume for simplicity that σ ∈ Nn. For sufficiently small ε > 0 the line segment

ω(t) := (1− t)σ + tτε with t ∈ [0, 1]

intersects a facet of C≺′(I) unless C≺′(I) is the sink.

Let {α1, . . . , αm} be the set of potential inner facet normals read off from G≺′(I).
We are only interested in the vectors αi where 〈σ, αi〉 > 0 and 〈τε, αi〉 < 0. Let
ti denote the t-value for the intersection of the line segment and the hyperplane
defined by αi. Then

ti :=
〈σ, αi〉

〈σ, αi〉 − 〈τε, αi〉
.
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We wish to find i such that ti is smallest (for small ε).

ti < tj ⇐⇒ (6)

〈σ, αi〉

〈σ, αi〉 − 〈τε, αi〉
<

〈σ, αj〉

〈σ, αj〉 − 〈τε, αj〉
⇐⇒ (7)

〈σ, αi〉 − 〈τε, αi〉

〈σ, αi〉
>
〈σ, αj〉 − 〈τε, αj〉

〈σ, αj〉
⇐⇒ (8)

〈τε, αi〉

〈σ, αi〉
<
〈τε, αj〉

〈σ, αj〉
⇐⇒ (9)

〈τε, 〈σ, αj〉αi〉 < 〈τε, 〈σ, αi〉αj〉 ⇐⇒ (10)

x〈σ,αj 〉αi ≺ x〈σ,αi〉αj (11)

We see that for ε sufficiently small “ti < tj” does not depend on ε. Furthermore,
there cannot be any ties, unless αi and αj represent the same hyperplane. This
gives an easy method for defining and computing eC

≺′
(I). We simply choose the

facet defined by ai where ti is smallest among {t1, . . . , tm} (for small ε > 0).

4.4 Exploiting symmetry

In this section we explain how to take advantage of symmetry to speed up compu-
tations. The symmetric group Sn acts on polynomials and ideals of R by permuting
variables and on Rn by permuting coordinate entries. Let I ⊆ R be an ideal. We
call a subgroup Γ ≤ Sn a symmetry group for I if π(I) = I for all π ∈ Γ. If we
know a symmetry group for I we can enumerate the reduced Gröbner bases of I up
to symmetry. Let Γ be such a symmetry group for I.

In our description all Gröbner bases will be marked and reduced. Thereby each
one will uniquely represent its initial ideal and Gröbner cone. For a Gröbner basis
G of I we use the notation ΓG = {π(G)}π∈Γ for its orbit.

The idea is to exploit the identity flip(π(G), π(F )) = π(flip(G, F )) for all π ∈ Γ.
In other words Γ is a group of automorphisms of the graph of the Gröbner fan of
I. The quotient graph is defined to be the graph whose vertices are the orbits of
Gröbner bases with two orbits ΓG and ΓG′ being connected if there exists a facet F
of the Gröbner cone of G such that flip(G, F ) ∈ ΓG′. The flip graph may have loops.

The symmetry-exploiting algorithm enumerates the quotient graph by a breadth-
first traversal. Orbits are represented by Gröbner basis representatives. One ques-
tion that arises is how to check if two Gröbner bases G and G′ represent the same
orbit. A solution is to run through all elements π ∈ Γ and check if π(G) equals G′,
or even better to make a similar check for the monomial initial ideals. Although
this does not seem efficient, it is still much faster in practice than redoing sym-
metric Gröbner basis and polyhedral computation as we have done in the usual
reverse search or breadth-first enumeration without symmetry. It is not clear how
to combine symmetry-exploiting with reverse search.
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5 Complexity

In this section we will discuss the complexity of enumerating the maximal cones
of the Gröbner fan of an ideal I by reverse search. We will assume that I is ho-
mogeneous with respect to a positive vector. This guarantees that any facet of a
full-dimensional Gröbner cone is flippable.

We identify the following important sub-algorithms:

• Computation of the facet normals of the Gröbner cone of a marked reduced
Gröbner basis G. We denote the time for this operation by Tfacets(G).

• Computation of a search edge given a marked reduced Gröbner basis G as de-
scribed in Subsection 4.3. We denote the time for this operation by Tshoot(G).

• Conversion of a marked reduced Gröbner basis G1 into a marked reduced
Gröbner basis G2 where the Gröbner cones of G1 and G2 are assumed to share
a facet. We denote the time for this operation by Tflip(G1,G2).

For simplicity we will assume that the time used for solving any of the linear pro-
grams in our algorithms only depends on the dimensions of its matrix form. We
let Tlp(n,r) be the time needed to solve a linear programming problem with n vari-
ables and r constraints. Then Tfacets(G) and Tshoot(G) can be expressed in terms of
Tlp(n,r).

The time Tfacets(G)∈ O(Tlp(n, r)r) where r is the number of non-leading terms
in G. The reason is that each non-leading term in G gives an inequality in the
description of the Gröbner cone. Checking if the inequality defines a facet takes
one linear program. In addition duplicates should be removed from the set of facet
normals and further vectors should be eliminated until no parallel vectors exist. The
time for this step is dominated by the time for solving LPs.

The time Tshoot(G)∈ O(rn2 + Tlp(n, r)) where r is the number of non-leading
terms in G. The first step in the algorithm is to deterministically find a relative
interior point of the Gröbner cone. This is done in time Tlp(n, r). After this the
smallest vector among the r defining vectors for the cone with respect to the ordering
in Subsection 4.3 needs to be found. Comparing two vectors takes O(n2) operations
in the worst case. These are operations in Q. In the above estimate we assume that
each operation takes constant time.

We have no good bound for the complexity of flipping. Now we count the number
of times each of the three sub-algorithms are applied when enumerating the graph
of the Gröbner fan of I using reverse search.

• The facets of each Gröbner cone are computed exactly once in Algorithm 3.2
(right after the Gröbner basis has been output). We remark that since we are
only interested in facets with the correct orientation the number of LPs that
really need to be solved is lower than the r in the discussion above. We will
not take this into account in our analysis.

• Checking if an edge is a search edge is done once for every edge. Every time we
need to recompute a search edge and compare it to the edge. Hence the total
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number of times we need to compute a search edge is equal to the number of
edges in the graph of the Gröbner fan of I.

• When a vertex G is processed by Algorithm 3.2 we must test for every ingoing
edge if the edge is a search edge. To test this we first compute flip(G, F ) where
F is the facet of the cone corresponding to the edge in question. If the edge is
equal to the search edge of flip(G, F ) we do an enumeration of the subtree with
root flip(G, F ). If not, flip(G, F ) is forgotten. Since all vertices are processed
once and every edge is ingoing for exactly one vertex the number of times
flip(G, F ) needs to be computed is equal to the number of edges in the graph.
We remark that the variant of the reverse search where the search path for
the current vertex is not stored on the recursion stack would require twice as
many computations of this kind.

Let E be the edges and V be the vertices of the graph. The total time complexity
of the enumeration of (V, E) is:

O
(

∑

G∈V

Tfacets(G) +
∑

(G1,G2)∈E

Tshoot(G1) +
∑

(G1,G2)∈E

Tflip(G1,G2)
)

Substituting with the time needed for solving the LPs we get the following theorem:

Theorem 5.1 Let (V, E) be the graph of the Gröbner fan of I. The time complexity
for computing this graph given a marked reduced Gröbner basis is in the class of
functions

O
(

∑

G∈V

Tlp(n, r(G))r(G) +
∑

(G1,G2)∈E

r(G1)n
2 + Tlp(n,G1) +

∑

(G2,G1)∈E

Tflip(G1,G2)
)

where r(G) is the number non-leading terms in the marked reduced Gröbner basis
G. In particular, the first two terms are bounded by a polynomial in the size of the
output.

Corollary 5.2 If for a given class of ideals the time Tflip(G1,G2) is bounded by a
polynomial in the size of the binary encoding of G1 and G2 then the enumeration of
the reduced Gröbner bases for an ideal in the class by reverse search is a polynomial
time algorithm in the size of the output.

6 Computational results and examples

The algorithms presented in this paper were implemented in the software package
Gfan [12]. In this section we present examples of Gröbner fans computed using this
package. The first example comes with a picture and gives an idea of the kind of
geometric shape a Gröbner fan might have.

Example 6.1 [18, Example 3.9] Consider the ideal I = 〈a5 − 1 + c2 + b3, b2 − 1 +
c + a2, c3 − 1 + b5 + a6〉 ⊆ Q[a, b, c]. The Gröbner fan of I has 360 full-dimensional
cones and the Gröbner region is R3

≥0. The intersection of the fan with the standard
simplex in R3 is shown in Figure 4.
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Figure 4: The Gröbner fan of the ideal in Example 6.1 intersected with the standard
2-simplex. The a-axis is on the right, the b-axis on the left and the c-axis at the top.

We now list some families of ideals used in our computations. The Gröbner fans
of these ideals have been computed for the parameters listed in the table of Figure 5.
The ambient field is always Q. The columns of the table are to be interpreted as
follows. In each row, the first column contains the name of the ideal (to be explained
below). The second column lists n, the number of variables in the ideal. The third
column lists h, the dimension of the lowest dimensional Gröbner cone C0(I). Note
that h is the dimension of the homogeneity space of the ideal which is the common
subspace contained in every Gröbner cone of the ideal. The quantity “d” is the
lowest total degree of any reduced Gröbner basis of the ideal and “D” is the highest.
The f -vector of the Gröbner fan is an ordered list of the number of h-dimensional
cones, h + 1-dimensional cones etc., up to the number of n-dimensional cones.

Example n h d D f -vector
Det3,3,4 12 6 3 3 (1,12,66,204,342,288,96)
Det3,3,5 15 7 3 3 (1,45,585,3390,10710,19890,21750,12960,3240)
Det3,4,4 16 7 3 5 (1,?,?,?,?,?,?,?,?,163032)
Detsym3,4 10 4 3 8 (1,518,5412,20505,36024,29808,9395)
Grass2,5 10 5 2 3 (1,20,120,300,330,132)
Cyclic5 5 0 8 15 (1,?,?,?,?,55320)
J4 4 1 3 8 (1,200,516,318)

Figure 5: Statistics for the Gröbner fans computed using Gfan.
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Example 6.2 Let Dett,m,n denote the ideal in the polynomial ring in mn variables
generated by the t× t minors of the matrix:











x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn











.

Example 6.3 Let Grassd,n denote the ideal in the polynomial ring in
(

n

d

)

variables
generated by the relations on the d× d minors of a d× n matrix.

Example 6.4 Let Detsymt,n denote the ideal in the polynomial ring in n(n+1)
2

vari-
ables generated by the t× t minors of a symmetric matrix of variables. For example,
Detsym3,4 is generated by the 3× 3 minors of the following matrix:









a b c d
b e f g
c f h i
d g i j









.

Example 6.5 Let Cyclic5 denote the ideal 〈a + b + c + d + e, ab + bc + cd + de +
ae, abc + bcd + cde + dea + eab, abcd + abce + abde + acde + bcde, abcde − 1〉 ⊆
k[a, b, c, d, e]. In general, Cyclicn stands for the generalization of this polynomial
system to n variables [3]. These polynomial systems have become benchmarks for
computer algebra packages and their lexicographic Gröbner bases are notoriously
hard to compute.

Example 6.6 Let Kn denote the complete graph on n vertices and In be the
Stanley-Reisner ideal of this graph. The Stanley-Reisner ideal of a simplicial com-
plex ∆ is the ideal generated by all monomials xi1xi2 · · ·xin such that {i1, . . . , in}
is not a face of ∆. Apply a generic linear change of coordinates to In to obtain
the ideal Jn. The generators of Jn typically have very complicated coefficients. For
example, the first generator in our J4 was

a3 +4980248985
343338664

a2c +2079196217
257503998

abc + 86858380
128751999

b2c −2205648949
42917333

ac2

−359584197
171669332

bc2 −84523033581
1373354656

c3 −11737327991
51500799600

a2d −16299027451
38625599700

abd

+1194144014
9656399925

b2d +394500908221
25750399800

acd −47953955497
25750399800

bcd +195491595943
2985553600

c2d

−4583330213
3862559970

ad2 +181743499
364392450

bd2 −429736138279
25750399800

cd2 + 8566043731
12875199900

d3.

The initial ideals of Jn are known as the generic initial ideals of In. The reverse
lexicographic generic initial ideals of an ideal have played an important role in
commutative algebra and algebraic geometry while other generic initial ideals have
not been explored too much. We computed the Gröbner fan of J4.

Extracting the f-vector from the full-dimensional Gröbner cones produced in the
enumeration process was the most time-consuming part of the computation of these
examples. In example Det3,3,4 this extraction was not possible to complete within
reasonable time with the current software package. For this particular example the
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163032 full-dimensional Gröbner cones were computed up to the action of a sym-
metry group of order 576. The full-dimensional cones come in 289 orbits. The
computation of the full dimensional cones up to symmetry took 7 minutes on a 2.4
GHz Pentium processor. Using reverse search without symmetry the same compu-
tation would take approximately 14 hours. The f-vector extraction routine in Gfan
only works for complete fans. This is why the f-vector for the Cyclic5 example is
not shown.
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