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Abstract

A new estimator (approximation) for the Euler-Poincaré characteristic of a planar
set K in the extended convex ring is suggested. As input, it uses only the digital
image of K, which is modeled as the set of all points of a regular lattice falling in K.
The key idea is to estimate the two planar Betti numbers of K (number of connected
components and number of holes) by approximating K and its complement by
polygonal sets derived from the digitization. In contrast to earlier methods, only
certain connected components of these approximations are counted. The estimator
of the Euler characteristic is then defined as the difference of the estimators for the
two Betti numbers. Under rather weak regularity assumptions on K, it is shown
that all three estimators yield the correct result, whenever the resolution of the
image is sufficiently high.
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multigrid convergence, Betti number
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1 Introduction and main result

The Euler-Poincaré characteristic (Euler characteristic for short) describes the con-
nectivity properties of the components of a composite material. It is used in such
disparate applied areas as medicine to characterize cancellous bone (Boyce et al.
[1]), in statistical physics to describe morphological properties of fluids (Mecke [2]),
and in material sciences to analyze foams and other porous media (Levitz [3]). By
means of the Crofton formula, the estimation of the Euler characteristic, applied
to sections of the structure, can be used to estimate the other intrinsic volumes,
like surface area, volume or curvature integrals; see e.g. Schneider & Weil [4]. It
is, however, nontrivial to estimate the Euler characteristic y(K) of a structure K
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from digital images, even if the structure is planar. The purpose of this paper is to
present a new estimator of y(K) and to show that this estimator yields the correct
result, whenever the resolution of the digital image is high enough. The required
regularity assumptions on K are hereby relatively weak. We emphasize in this work,
in contrast to many of the earlier contributions, the interplay between “continuous”
and “digitized” world.

We think of K as being a subset of two-dimensional space R? and make the usual
assumption that K € R, where the conver ring R consists of all finite unions
of convexr bodies (compact convex sets) in R?. In general dimensions, the Euler
characteristic can be written as alternating sum of Betti numbers. In the plane, we
have

X(K):NC(K)_Nh<K)> KER, (1)

where N (K) is the number of connected components of K and Ny (K) is the number
of its holes (bounded connected components of the complement of K). The infor-
mation on K available for the estimation of x(K) is very weak here. It only consists
of a digital 0-1-image (or digitization), which is modeled as the intersection of K
with a reqular lattice

L = {nizq + noxs | n1,ny € Z}, (2)

generated by a basis x1, 7o of R% Often the standard lattice L. = Z? is chosen.
(Klette & Rosenfeld [5] call K N Z? the Gauss digitization, where the lattice points
are the centers of the image pixels.) The set

Co = {0411’1 + g | 0 < ag,00 < 1}

is called a closed unit cell of .. Known approaches to estimate x(K') from a digitiza-
tion of K can be assorted in three groups, which differ in their theoretical foundation,
but turn out to be equivalent in many respects, see Section 2, below.

a) GRAPH THEORETIC APPROACH; see e.g. Serra [6] and Rosenfeld & Kak |7,
Section 9.1]. A neighbourhood relation on K NIl and a neighbourhood graph
G(K) with vertex set K N L and edges connecting all neighbouring vertices
are introduced. The Euler characteristic of K is then estimated by the graph
theoretic Euler characteristic of G(K).

One of the most common neighbourhood relations is the so-called 4-neighbour-
hood. Two lattice points p, g € L are considered 4-neighbours, if they are “hor-
izontal” or “vertical” neighbours (i.e. p — ¢ € {£z1,£x5}). If, in addition,
“diagonal” neighbours (p — ¢ € {£(z1 + z2), £(x; — x2)}) are admitted, the
8-neighbourhood with corresponding neighbourhood graph Gg(K) is obtained.
Other neighbourhoods (Serra [6, p. 174], Heijmans [8, p. 327]) are also in use, we
only mention the common 6-neighbourhood (based on a hexagonal-IT graph),
which differs from the 8-neighbourhood by omitting two diagonal neighbours
aligned with p.

b) POLYHEDRAL APPROACH. A set P of polygons in Cy (“basic bricks”) with

vertices in L and some additional properties is fixed. A polygonal approximation
P of K is obtained as the union of all those translations of sets in P that have



all their vertices in K NIL. The Euler characteristic x(P) of P is then considered
as an estimator for x(K).

Typical choices for P are the family P, containing all faces of the closed
unit cell Cy (4 vertices, 4 edges and Cy itself), and the family Pg of all polygons
with vertices in {o, z1, 22, 1+ x5 }. Detailed definitions, including the important
notion of adjacency system, further examples and properties are discussed by
Ohser et al. [9], [10]. A variant of this approach is the approximation of K by a
set S with smooth boundary and to use x(S) as an estimator. This was made
precise by Lee et al. [11]. Depending on the smoothing procedure, this leads to
the same results as polygonal approximation based on P, or Ps.

¢) INTEGRAL GEOMETRIC APPROACH. This approach, suggested by Ohser &
Nagel [12], discretizes the recursive definition of the Euler characteristic given
by Hadwiger [13]. It uses the fact that there is a natural estimator for y of sets
in R! and derives an estimator for sets in R? by comparing pairs of sections
of K with parallel lines. These lines are close to one another and lie in lattice
directions.

As the only available information on K is the (finite) set K NL, it is not amazing
that no estimator xp(-) can yield the correct Euler characteristic for all sets K € R.
A reasonable requirement is, however, that the estimator converges to x(K) if the
lattice becomes finer and finer, i.e. if K NtL is observed, where the scaling factor
t > 0 converges to 0. Let M C R be some family of planar sets. Let ¢ be some real
valued functional on R. Following Klette & Rosenfeld [5, p. 70], we call an estimator
Qgt]L multigrid convergent to ¢ for M, if

lim b (K NtL) = ¢(K) for all K € M. (3)
—U+

Note, however, that the dependence of Qgt]L on tLL is not made explicit in [5, p. 70],
which is misleading in a general context. Heijmans [8, Definition 8.11] introduces the
notion of a discretization of an operator, which is closely related to the above. More
precisely, if (3) holds, then {(51/%}@1 is a (operator-)discretization of ¢ on M with
respect to the (set-)discretization {1/nl, 0, 0,}. Here o, : K +— KN1/nl, o, is the
identity on 1/nlL and we extended Heijman’s definition allowing subclasses M of
the family of all planar closed subsets. If ¢(K) is always an integer, like in the case
of the Euler characteristic and of the Betti numbers considered before, multigrid
convergence can be reformulated as follows. If ¢y satisfies (3) for some set class M
and z — [z] denotes the nearest integer function (round off), then {)&L()} is an
integer valued multigrid convergent estimator to ¢ for M. Hence there is a constant
t(K) > 0 depending on K, such that

(K NiL)| = 6(K),  0<t<H(K). (4)

Therefore, finding a multigrid convergent estimator of x, N. and N} is equivalent
of finding an estimator, which gives the exact value for sufficiently small lattice
spacing. All the estimators in the present paper are integer valued.



As lower dimensional parts of a set K € R are typically not visible in the digitization,
the estimators in a), b) and c¢) cannot be multigrid convergent for R. But even
if we restrict considerations to sets without lower dimensional parts (topological
regular sets) multigrid convergence does not hold. This is amazing at first glance,
as all the estimators in a), b) and c¢) are geometrically motivated. Mathematically,
however, this is easily explained by the fact that the Euler characteristic is not a
continuous functional on R. For instance, even though the polygonal approximation
in b) converges to K in the Hausdorff-metric under mild assumptions on K, its
Euler characteristic need not converge. Figure 1 shows a simple counterexample,
where K is even convex and has interior points, i.e. K is a element of the family Xy
of full-dimensional convex bodies in R?.

Fig. 1. The digitization of K consists of 4 points. The methods a), b) and c) all treat the
origin as an isolated point and yield x1 (K NL) > 2 as an estimator for x(K) = 1. The
same situation occurs, when L is replaced by 27 *L with k = 1,2,3,..., which shows that
multigrid convergence does not hold for this triangle.

We will introduce a new estimator for the Euler characteristic being multigrid con-
vergent for M = R, where the class R is only slightly smaller than R and contains
in particular Cy.

Definition 1 Let R be the family of all nonempty K C R? with a representation
K =U", K; with convex bodies K1, ..., K,, such that

(1) for all® # 1 C {1,...,m} the set N;c; K; is empty or has interior points,
(11) for alli # j € {1,...,m} the intersection OK; N OK; of the boundaries of K;
and K; 1is finite.

The intersection regularity (i) avoids touching situations of the constituents of K,
which are typically misleading in the interpretation of the digitization. The second
condition is more technical, but together with (i) it guarantees that any set in R
can locally be written as the union of at most two convex bodies; see Lemma 2 in
Section 3, below. This property essentially reduces a multigrid convergence proof for
arbitrary K € R to one for unions of only two convex bodies.

Like in b) we will work with polygonal approximation, but base our estimator of x
on (1). Let [a, b] be the line segment with endpoints a,b € R2. Put

Po={Co}U{[a,b] | a #D, a,b e vert Cy},



where vert P is the set of vertices of a polygon P (and hence vert Cy = {0, 21, o, 1+
x2}). The polygonal approximation, based on Py and K N ¢L is defined by

r=U U @+p) (5)

zetl FetPy
vert(z+F)C KNtL

As polygonal approximation for the complement of K, we use

Qi = U U (z + F). (6)
zetL FetPg
vert(z+F)C (KntL)C
To correct for degenerate cases like in Figure 1, we do not work with the numbers
of connected components of P, and Q, dlrectly Instead, for P € R let N, «(P) be
the number of connected components of P containing interior points. In Figure 2 a
simple example is given. With these notions at hand, we can state our main result.

Fig. 2. An example illustrating the definition of NC(JSt) The set K is light gray. The number
of connected components of its polygonal approximation P; (in dark-gray, including one
isolated lattice point in the lower right) is 3, but N.(P;) = 2.

Theorem 1 Let a reqular lattice L and K € R be given. If P, and Q, are given by
(5) and (6), respectively, then

A A N A A

NC(‘Pt)7 Nc(Qt) -1, and >A(t - Nc(-Pt) - (NC(Qt) - ]-)
are multigrid convergent estimators for N.(K), Ny(K) and x(K), respectively.

In other words, there is a constant tx > 0 such that for all 0 <t < tx we have

Nc(pt) = NC(K)7 Nc(@t) —1= Nh<K)7 and Nc(pt) - (N0<Qt) - 1) = X(K)

Note that Nc(Qt) is an estimator of the number of connected components of K¢,
so we have to subtract 1 (for the one component that is unbounded) to obtain the
number of holes of K. A proof of Theorem 1 with explicit calculation of a possible
tx (in terms of simple geometric characteristics of K') will be given in Section 3. It
is based on elementary convexity arguments. Before we discuss computational issues
in the next section, it is worth to mention an application of Theorem 1 to random
sets. The most common model for a random set is the so-called Boolean model Z
with convex particles. Roughly speaking, it is obtained by attaching independent



identically distributed particles in IC to random points in the plane that have a
homogeneous Poisson property. Molchanov [14] devotes a monograph to the Boolean
model. Estimation of the (specific) Euler characteristic of Boolean models from
digitizations has been a subject of interest since Serra’s results [6] on this matter.
The observation ZNW of Z in a test window W € K is random set with ZNW € R
almost surely. If the particles of Z and W are in addition full dimensional, then
ZNW € R holds almost surely. Theorem 1 can therefore be applied: Almost surely,
there is a constant ¢(Z N W) > 0 such that the Euler characteristic of Z N W
is estimated correctly from Z N tL in W by the new estimator of y, whenever
t <t(ZNW). Extensions and a comparison of this result with earlier results on the
digitization of Boolean models are planned in the follow-up paper [15].

2 Computional issues

The approaches in a), b) and ¢) have the computational advantage that the estima-
tors can be calculated locally. This means that only the occurrence of small pixel
configurations must be counted and the estimator is then obtained as a weighted
sum of these numbers. To describe this in detail, let L. = Z? be the standard lattice
and ¢t = 1. We introduce an intuitive notation for configurations, where lattice points
in K are thought of to be black. For instance, the configuration [f O] indicates that
four fixed points in a 2 x 2-block of the lattice do not hit K in the lower right and
upper left corner, but they hit K in the lower left. The behaviour of the remaining

corner is not specified. Let # [; .} the number of occurrences of this configuration

in the digital image K N Z% Using Euler’s formula for graphs in a) and c¢) and
the additivity of x in b), it follows that the estimator y of the Euler characteristic
satisfies . o
X = # eo| # o0 (7)

for a) with the 4-neighbourhood and b) with 774_, and

o O ® O

X:# e 0 _# o0

for a) with the 6-neighbourhood and for ¢); cf. Ohser & Miicklich [16] and Serra [6].
For a) with the 8-neighbourhood and b) with Pg, we have

w=#[o0]-#[]
Up to a rotation with 180 degrees (which leaves y and x unchanged) we therefore

obtain the dual version of (7): black and white points are interchanged and the sign
is reversed. This is in accordance with the planar consistency relation

X(K) = —x(K°).

Up to now we have interpreted the digital picture of K as the set of lattice points



in K. In applications, this picture is actually an array of black and white points
in a rectangular window W. We may assume that the boundary of W does not hit
K to avoid edge-effects. If N denotes the number of lattice points in W, (7) and
its variants show that all the estimators in a), b) and c) can be calculated in one
scan of the image, hence with O(N) operations. Implementations use evaluation of
the image with varying filter masks, see e.g. Ohser & Miicklich [16, p. 137]. The
recursive algorithm of Bieri & Nef [17], descending in dimension, depends on the
complexity of K, rather than on /. It is in general faster than naive approaches; its
worst case behaviour is also O(N). Dyer [18] developed an algorithm to determine
X using quadtrees. Clearly (7) and its variants only involve boundary lattice points
(lattice points in K with at least one neighbour in K¢). Lee et al. [11] notice that
the complexity can therefore be reduced to O(n), where n is the number of boundary
lattice points. This is relevant, if a list of these points is needed anyway to determine
other characteristics of the image.

To calculate the new estimator, the numbers of connected components of P=r
and Q = Ql with interior points must be determined. This can be done simultane-
ously with common region detecting algorithms. For example, the Rosenfeld-Pfaltz
labeling algorithm [19] can be modified to yield these numbers: In a first scan, this al-
gorithm labels the points of the image in a sequential manner either with an already
existing label of an 8-neighbour, or with a new label, if none of the neighbours is
labeled. At the same time, a table of equivalent labels is recorded. In a second scan,
each label is replaced by a representative in its equivalence class. This algorithm
is modified as follows: During the first scan it is decided whether the current pixel
belongs to a 2 x 2-block of the lattice with all colors equal. As this is a local property,
the test can be included in the algorithm without extra costs. We then introduce an
additional mark in the equivalence table identifying those labels, whose connected
component contains an interior point. The second scan is not necessary any more,
as we are only interested in the number of connected components. This shows that
the complexity of the modified algorithm is one scan of the image plus the costs of a
standard transversal algorithm to find all equivalent labels in the equivalence table.
The costs of the latter can not be larger than the costs of one scan of the original
image.

Summarizing, the new algorithm is not more than twice as time consuming than
the common estimators for y. But besides the fact that it also yields the number of
connected components and the number of holes, it has the advantage that it yields
the correct result for sufficient high resolution of the image, provided that K € R.
The new estimator therefore is geometrically more stable at the cost of a rather
small increase in calculation time.



3 Proofs

For A C R?, we introduce the notations int A, A and cl A for the topological
interior, boundary and closure of A, respectively. Let «A = {aa | a € A} be the
scaling of A with a € R. For negative «, this includes a central reflection at the
origin 0. The Minkowski-sum of two sets A, B C R? is given by

AdB={a+blac Abe B}

and if one is a singleton, we write a + B = {a} & B and A+ b = A® {b} for the
corresponding translations. Their Minkowski-difference is given by

AcB=(A+b)

beB

and the morphological opening of A with B by
AoB=(AeB)® B.

The Euclidean norm of z € R? is denoted by ||z||, the unit disk by B? = {z € R? |
|z|| < 1} and the unit circle by S' = 9B?. The line through the origin with normal
u € S'is denoted by u*. The support cone of a convex body K at z € K is defined
by

S(K,z)=cl | MK — z).

A0

We refer the reader to Schneider [20] for further notions and definitions from convex
geometry. The required basic graph theoretic notions can be found in any introduc-
tory textbook on the matter, e.g. in West’s book [21].

To show that NC(Pt) equals N, (K) for sufficiently small ¢, four preparatory lemmas
are proven. We start with a lemma which shows that any set K € R can locally be
written as union of at most two convex sets.

Lemma 2 For any K € R there is an € > 0 such that for all z € R? there are
Q1,00 € {1,...,m} with

(z4+eBHYNK = (z+eB*) N (K, UKy,). (8)

PROOF. Let K = U, K;, K; € K, be a representation of K satisfying the con-
ditions (i) and (ii) in Definition 1. Let S = {0K; N 0K, | 1 <i < j < m}. We show
(8) first for all z =p € S: there is § > 0 such that for all p € S

there are 41,45 € {1,...,m}: (p+ 0B NK = (p+6B*)N(K;, UK,). (9)

As S is assumed to be finite, we may fix p € S and show (9) for this p. If p € int K for
some i, the claim is obvious and we assume p &€ ;" int K;. Let £ > 1 be the number
of sets in {Kj,..., K,,} whose boundary contains p; without loss of generality let



pe K N...NOKy and p ¢ K; for i > k. The intersection-regularity of K implies
that there is a 7 > 0 and y € R? y # p, such that y + 7B> C K, N...N K.
Let g = {p+ a(y — p) | @ € R} be the line through p and y. The half-open ray
{p+aly —p) | a <0} does not hit any of the sets K; ... K}, as otherwise p would
be an interior point of the corresponding K; by convexity. Let H™ be one of the
open half planes bounded by g. We claim that there is an i € {1,...,k} such that
for sufficiently small § > 0, we have

(p+dB)NKNH"=(p+éB)NK,NH". (10)

Repetition of the same arguments for the other open half plane H~ = R?*\ (HT Ug)
then shows that (9) is true. We prove (10). Without loss of generality assume that
p is the origin, g is the x-axis and y is a point with negative x-value. Without loss
of generality, let K; be the convex body in the set {Kj, ..., K;} whose boundary,
intersected with H*, (a convex curve through p = o) has the smallest slope in o.
As OK;, i # 1, hits 0K, only in finitely many points, H* NOK; N (p+ §'B?), i # 1,
hits 0K only in p for some suitably small 0’ > 0. Hence there is an 6 > 0 such that
conv{y, 0K, N (p+ &' B*) N H} contains all sets H™ N K; N (p + §B?). This shows
(10) with i = 1.

We now use (9) to show (8). Assume that 6 > 0 is chosen such that (9) holds for
all p € S and consider the family of all connected components of the sets 0K \
Upes(int(p + 6/3B%)),j = 1,...,m. The members of this finite family are disjoint
compact convex arcs. Thus there is a 0 < ¢ < §/3 with the property that any disk
z+¢eB? either hits p+4/3B? for some p € S, or it hits at most one of the boundaries
0Ky, ...,0K,,. In the first case we have z + eB? C p + dB? and thus (8) holds. In
the second case we may assume without loss of generality that z + ¢B? does not
hit OK,, ..., 0K,,. If 2 + ¢B? does not hit any of the sets Ko, ..., K,,, then (8)
holds; otherwise z + ¢B? must be completely contained in some K;, j = 2,...,m,
as OK; N (z +eB?) = (. Again this implies (8) and the proof is complete.

We define some constants, which will be useful in the sequel.

Definition 2 Let a nonempty set K € R be gwen and K =~ K; be a represen-
tation satisfying the conditions (i) and (i) in Definition 1.

(1) Let ty = to(Ky, ..., Ky,,) be the supremum of all € such that (8) holds (where
ty = oo is allowed and occurs in particular for m < 2).

(2) Let t; = t1(Ky, ..., K,,) be the largest positive number such that for any () #
Ic{1,...,m} with Ne; K; # 0, there is a ball of radius 2t, contained in this
intersection.

(3) Let ty = to( Ky, ..., Ky,) > 0 be the supremum of all r > 0 such that for any
0£TC{l,...,m} withNie; K; = 0, the set i (K; ®rB?) is empty. (Again,
ty = 0o may occur.)

We discuss some consequences of these definitions. Let I be a regular lattice gener-
ated by the basis 21, 7o of R? and let Cy be the corresponding closed unit cell. Any



lattice translation x + Cy, x € L, of the closed unit cell will be called a cell of L.
Assume ||z;|| < 1 for i = 1,2. Consider Definition 2.(2) and fix an index set I with
Nier Ki # 0. If t < ty, there is a ball z + 2t B? contained in this intersection. As the
union of all scaled cells ¢(z + Cy), z € L, is R?, there is a scaled cell C' containing z.
The diameter of C' is less than 2t, so

C Cz+2tB*C |JK..

i€l

Hence, t < t; implies that every nonempty intersection contains a cell of tIL. If t < t,
and [ is as in Definition 2.(3), then for all z € L and F' € Py, there must be an i € [
with t(x + F)N K; = 0.

The constants tg,t; and t; not only depend on K, but on a representation of K
satisfying the conditions (i) and (ii) in Definition 1. In the following, we will not
make this dependence explicit. Whenever these constants are used, they are meant
with respect to a fixed underlying representation of K € R.

Fix K € R and let P, be given by (5). Recall that the 8-connected graph Gg(K) has
vertex set K N L and its undirected edges are of the form {a,b}, with a,b € K NL
and @ — b € {&xy, +x9, £(x1 + 22), £(x1 — 32)}. If, for instance, I = Z? with closed
unit cell [0, 1], then the family of edges is

{{a,0} | a,b € KNZ? and 0 < ||a — b]| < v2}.

Two points a,b € K NLL belong to the same connected component of B, if and only
if there is an edge path in Gg(K) from a to b. To show connectivity properties of
P, it is therefore sufficient to construct suitable paths in Gs(K). The next lemma
restricts COHSlderatlons to convex bodies K. It implies that N, (Pt) yields the correct
result y(K) = 1, if K contains at least one cell of tL.

Lemma 3 Let K be a conver body, L a lattice with closed unit cell Co and let
C=z2+Cpzel, and C =7+ Cy,z €L, be two cells. If C' C K and al least three
of the vertices of C' are in K, then there is an edge path from a vertex of C to a

vertex of C in Gs(K).

PROOF. Let V be the set of vertices of C in K. By convexity, K contains conv(C'U
V), and we may assume without loss of generality that K = conv(C'UV'). Applying
a suitable affine transform, we may further assume that I = Z<¢, that C = [0,1]?
and that V' is contained in the closed first quadrant @, .

Let T" be the set of all paths v = (zo, ..., 2s) in Gg(K) with the following properties:

(1) v starts in 2o = (1, 1),

(2) for all n = 1,...,s, we have z, € z, 1 + @4, i.e. the n-th edge {z,_1,2,}
increases the x-value or the y-value (or both) when walking from z,_1 to z,.
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Fig. 3. Construction of a longer path from the endpoint z of vy; see text.

(3) the endpoint z = z, of 7 satisfies V' C 24+ @, so x- and y-values of the endpoint
are not larger than x- and y-values of the elements of V.

Let o be a path with maximal length in I'. If there was no path in Gg(K') connecting
a vertex of C' with an element of V', then the endpoint z of 75 would not be an element
of V. By construction, C' C z + (—Q4) and V' C z + Q. Denote the bisecting line
of z+ @+ by g and assume without loss of generality that V' has at least one point
below ¢ (this possibly requires a reflection at g). As z € K = conv(C U V) and
C C z+ (—Q4), the line segment e = [z 4+ (1,0), 2+ (1, 1)] must hit K in a point w,
see Figure 3. V' consists of three or four vertices of a cell and thus, conv V' contains
a vertical line of length 1. This is obviously also true for C. Thus, the intersection
of K = conv(C U V) with the horizontal line through w has length at least 1 and
therefore at least one of the vertices of e is in K. Call this vertex z’; if both vertices
of e are in K, then choose the lower, 2/ = 2+ (1,0). The path -, can prolonged with
the additional edge {z, 2’} contradicting the maximal length of .

We note the following corollary, where the set
Clip(K, t) = (K © t[_xhxl]) N (K © t[_x% xQ])

for K € K is used. It depends on ¢t > 0 and on two vectors z1, 2, € R%. The latter
dependence is not made explicit in the notation; in what follows x1, o are always
given by the context, as they are vectors which generate the lattice L. If (224, 2x5) is
the standard basis, K has a smooth boundary and ¢ is small enough, then clip(K,t)
is obtained from K by cutting off two vertical and two horizontal strips such that
the length of the linear cutting lines are t. Note that a point € K is in clip(K, ) if
and only if for ¢ = 1, 2, the line through x with direction x; hits K in a line segments
of length 2¢ or more.

Corollary 4 Let K be a convex body, L a lattice generated by 1, xs with ||z1]] <
L ||l@e|| < 1. If the cell C' = x4 Co,x € L, is contained in K and

v e LNdip(K, 1),

then there is an edge path from v to a vertex of C' in the graph Gs(K).

PROOF. Let the assumptions be satisfied. As v € LNclip(K, 1), one of the lattice
points v 4+ x1 or v — x; must be in K. Similarly, one of the lattice points v + x5 or
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v — x5 is in K and thus there is a cell C' = & + Cy with three vertices in K, v being
one of them. The claim now follows from Lemma 3.

In the next two lemmas, pairs of convex bodies are considered.

Lemma 5 Let K; and Ky be two convex bodies with int(K; N Ky) # 0 and such
that OK1 N 0K is finite. Let I be a lattice generated by x1,xs with closed unit cell
Co. Then there is an € = (K1, Ky, x1,22) > 0 such that for all 0 < t < &, we have:

If C =t(x+Cy), x €L, is a scaled cell with vertices in K1 U K, then one of the
following holds:

(1) conv (K1 N Ky) UC) C Ky U Ky,
(2) vert C' Nelip(Ky,t) # O or vert C N clip(Ky, t) # 0.

Condition (1) is equivalent to the statement C' C K; U K>, but the formulation in
(1) is more convenient for later use.

PROOF. For p € 0K1NOK;, and i = 1,2 let o;(p) be the shorter length of the line
segments K; N{p+ fz; | B € R}, j =1,2. As 0K, N 0K, is finite, the number

a = minmin {ai(p) | p € OK; N 0K, such that a;(p) > 0}
is positive. We have p € clip(K;, «) for all p with ag(p) > 0 or as(p) > 0. By
convexity of K; there is a §; > 0 with the following property: if v € K, satisfies
|lv — p|| < §; for some p € OK; N OK, with «;(p) > 0, then v € clip(K;, a/2). Put

0= min{(51, (52} and
. (0% 2t1
— min {2 —5} 11
€ mm{27 o[ (11)
where t; = t;(Ky, K») is given by Definition 2.(2) and D is the diameter of K;N K.
Now let 0 < t < ¢ and a scaled cell C' = t(x + Cpy), x € L, with vertices in
K = K; U K5 be given and consider the following cases.

1st Case: All four edges of the cell C' are contained in K. Let e be one of the
edges of C'. Then, by the convexity of K; and K5, any segment [y, z] with y € e and
z € K1 N K, is contained in K or in Ky. Hence [y, z] C K. As K; N K3 and e are

convex, we obtain conv ((K1 N Ky U e) C K. As e was arbitrary among the four
edges of C, and K; N K3 is non-empty, this implies (1).

2nd Case: There is an edge [v1,vs] of C' not contained in K. We may assume
without loss of generality that v; € K; and vy € Ks. From (11), we get

2t
oy — v <t < e < 315.
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Application of Lemma 6, below, yields the existence of a p € 0K; N 0K5 such that

max [lp — | <4 (12)

We will now show that a;(p) > 0 or as(p) > 0. Without loss of generality, we
may assume that the line through v; and vs has direction z;. The parallel line
through p is {p + fz1 | # € R}. By Lemma 6.(3) and int(K; N K3) # (), this line
hits conv((K; N Ky) U{v;}), and hence K;, in a non-degenerate line segment. Now
consider the line h = {p + azy | « € R}. We will show that either K; or K> hits h
in a non-degenerate line segment. Otherwise h N K = {p} and Lemma 6.(2) would
imply that v; and vy are on different sides of h. Therefore, choosing an arbitrary disk
B =2+471B?C K1NK,, 7 > 0, either conv(BU{v;}) C K; or conv(BU{v,}) C K;
hits h in a line segment of positive length. Hence K; or K, has a non-degenerate
intersection with h. Summarizing, we have p € dK; N 0K, and for at least one
i € {1,2} the variable a;(p) is positive. The latter implies p € clip(K;, ). Thus
v; € clip(K;, a/2) due to (12). In view of ¢ < € < «/2, this gives the second case in
the statement of the lemma.

Lemma 6 Let K be the union of the two convex bodies K; and Ky with int(K; N
K3) # 0. Let D be the diameter of KyNKy. Then for alle > 0 and v, € Ky, vy € Ky

with

2t
[vi,v] £ K and ||v; —vq]| < 616’

there is a p € 0K, N 0Ky with the following properties:
(1) [lon —pll <& [loa—pl <, i
(2) any closed ray R emanating from p with RN K = {p} and hitting the line g

through vy and vy, hits [v1, vs].
(8) the parallel of g through p separates K1 N Ky and [vy, vs].

PROOF.

(%1

U
(%

KiNnK,
Fig. 4. The construction of p € dK; N dK5 and the ray R.

Let [v1,v3] ¢ KUK be given with v; € K7, vy € Kj and ||v; —vs|| < 2t1/D. v and
vy cannot be members of the same K;, so v; € K7\ Ky and vy € K3\ Kj. The line ¢
through v; and v, cannot hit the convex set K7 M Ks, so there is a unit vector u such
that g = v + ut and K, N Ky C {(-,u) < (v1,u)}; see Figure 4. Let p be a support
point of K; N K, with outer unit normal u. Clearly, p+u* separates K; N K, and g,
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so (3) holds. For z € int(K; N K3), the relative open ray R = {p —a(z —p) | @ > 0}
cannot contain any points of K and thus p € 0K; N 0K>. In Figure 4, the points v,
and vy lie on different sides of R. This is necessarily so and follows from claim (2),
which will be shown at the end of this proof.

Let
Sp = —S<K1 N Kz,p) +p
be the reflected and translated support cone of K1 N K5 at p. As we have used an
arbitrary z € int(K; N K3) to define R, we may conclude that S, is contained in the
convex cone
p+ U A[vr, 1] — p).
A>0
The opening angle of the latter cone is therefore larger than the one of the support
cone, which is bounded from below by ¢ = 2arcsin(2t;/D). The distance between
v1 and vy is at most 3 = 2t;e/D. For ¢ > 7/2, this implies

max [[p — | < <e,
as 2t;/D < 1/2. For ¢ < /2, elementary geometry implies

g g
g?}énp uill < sing  sing/2

E.

This is gives (1).

It remains to show claim (2). We assume that there is a closed ray R such that (2)
is violated, which means that v; and v, are on the same side of the line spanned by
R. To fix ideas, we again consider the geometry in Figure 4, and assume without
loss of generality that v, is between v, and the intersection of R with g. Consider an
arbitrary z € K1N K, and let A’ be the line through p and v;. If 2 was in the open half
plane bounded by A’ not containing v,, then [z, v;] C K would hit R, and R would
contain a point of K other than p, which contradicts the assumptions. If, however
z was in the other open half space bounded by A’, the intersection of [z,v] C K,
with [p, v9] C K3 would contain a point ¢ with (p,u) < (g, u), which contradicts the
definition of p. As z was arbitrary in K7 N K3, we conclude Ky N Ky C h'. This gives
the final contradiction int(K; N K3) = 0.

Definition 3 Let K € R be given and K = U™, K; be a representation satisfying
the conditions (i) and (ii) in Definition 1. Let, in addition, a basis x1,xs of R? be
given.

(1) For any two different indices iy,is € {1,...,m} there is an ¢ = e(K;, Ky,
x1,22) > 0 such that Lemma 5 holds with K, , K;, replacing K; and K, re-
spectively. Define t3 = t3(Ky, ..., Kpn, x1,22) by

t3 = min e(K;,, K, x1,x2).
in#is€{l,...m} (B, Ky 21,.22)
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(2) For any two different indices iy,iy € {1,...,m} let D(K;,, K;,) be the diameter
of Kiy N K;, and define ty = t4(Kq,..., Ky,) by

; - 2t (K4, Kiy)
= min —_—
1 t1#£12€{1,...,m} D(K K )

119

Note that only t3 depends on the basis. The constant ¢4 is independent of scaling:
ty(tKy, .. K, = (K, ... Ky)

holds for all ¢ > 0. Furthermore

t4 29 (]‘3)
as the diameter of a set contaiping a ball of radius 2t; is at least 4¢;. The multigrid
convergence of the estimator N.(F;) can now be stated.

Theorem 7 Let K € R be given and let L be a lattice generated by a basis x1, xs
of R? with ||z1|| < 1, ||zs|| < 1. Then

Ne(Ft) = Ne(K)

for all 0 < t < min{tg,t1,t2,t3}.

PROOF. Let £ € N be the number of connected components of K. (Apply-
ing possibly a shift of indices) assume that the connected component M, con-
tains the convex body Kj, j = 1,..., k. To simplify notation further, assume that
t < min{ty, t1, s, 3} is equal to 1.

Due to 1 =t < ty, there is a cell C; = z; + Cp, z; € L, in K; C M; for each
7=1,...,k. The cells C1, ..., C} are subsets of Py. Fix C; with 1 < 7 < k and some
other cell C' = x4 Cy C Py, z € L. We show that these two cells belong to the same
connected component of Py if and only if their vertices all are in the same connected
component of K. Applying this with C = Cr,l =1,...,k will yield N, (Pl) >k =
N,(K) and with C being any other cell in P, will give N J(P1) < k = N,(K). The
Theorem thus follows from this new claim.

If C; and C' are in the same connected component of jf’h then there is an edge-path
in Gg(K) of line segments connecting vertices of the two cells. If vert C; U vert C
would not be a subset of one connected component of K, there would be a first edge
in this edge-path with starting point in one connected component and endpoint in
another. But 1 =t < t, states that this is impossible. Thus vert C; and vert C are
in the same connected component of K.

Assume now that vert C; U vert Cc M; for a connected component M; of K. The
cell C; is completely contained in K; C M;. By C C P;, 1 =t < t; and Lemma 2
we have

vert C' = (vert C) N K = (vert C) N (K;, UK,,) € K;, UK, (14)
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for some suitable iy, iy € {1,...,m}. By 1 =t < t;, the set K;, N Kj, contains a cell
Ci2 =2+ Cy, x € L. As C hits the component M;, the sets K;, and K;, must hit
M;, as well, and the cells C;,C and (5 all hit M;. As C; and (5 hit the same
connected component of K, there is a chain of sets

K=K ,Kj,...,K

Jn—17

K;, = K;,

where any two consecutive sets have a nonempty intersection; see Figure 5.

K; =K,

Fig. 5. The chain of sets connecting C}, C1 2 and C.

Any of these intersections contains a cell x + Cy, = € L, and repeated application of
Lemma 3 yields an edge path in Gg(K) starting in a vertex of C}, passing all these
cells and ending in a vertex of C} . In view of (14) and 1 = ¢ < t3, Lemma 5 with
K, K5 replaced by K;,, K;,, respectively, shows that either

conv(Cy, UC) C conv((K;, N K;,)UC) C K;, UK, C K, (15)

or that C has a vertex in clip(Kj;,,t) or in clip(K;,,t). If (15) holds, Lemma 3 can be
applied to the convex body conv(Cy, U C) to find a path in Gg(K) connecting Ci
and C. Otherwise, the existence of such a path follows from Corollary 4. Putting
things together, we have constructed a path in Gg(K') connecting C; and C (passing
C12) and thus, C; and C' are contained in the same connected component of ﬁ’l.
This completes the proof.

We now treat the number of holes N, (-) of aset K € R. Note that the arguments for
N,(-) cannot be used directly, as the class R is not closed under the operation of set-
complements. We first prove two lemmas, the first of which states that the minimal
distance of connected components of K¢ is bounded from below by a constant
already defined.

Lemma 8 Let K € R be given. Then the distance between two different connected
components of K€ is at least 4t;.

PROOF. Let K = U, K;, K; € K, be given and assume that the statement is
wrong. Then there are two points d and d’ in different connected components of K¢

16



such that the line segment [d, d'] has length less than 4¢;. Without loss of generality,
we may assume that [d,d’] N K is a line segment, as otherwise we can choose points
on [d,d’] with the same properties but even smaller distance. Let D and D’ be the
connected components of K¢ containing d and d’, respectively. By suitable indexing,
we may assume that all the convex bodies K7, ..., K} hit [d, d'], whereas none of
Kji1, ..., K, does. The set K, contains a disk z; + 2¢; B? with midpoint z; € R2.
As d,d" € K© and the length of [d,d'] is less than 4t;, z; cannot be an element of
the line g spanned by [d,d']. Let H be the closed half plane bounded by ¢ and not
containing z;. We proceed by proving the following steps:

Step (1): None of the sets K7, ..., Kj contains a disk of radius 2¢; with mid-
point in H.

Step (2): None of the sets Kjy1,..., K,, hits M = HNUL, K.

Step (3): D and D’ are path-connected in K¢,

Clearly Step (3) contradicts the assumption that D and D’ are different connected
components of K¢.

To show Step (1), assume that at least one of the sets in {Kj,..., K} contains
a disk of radius 2¢; with midpoint in H. As UF_, K; is connected (K N [d,d] is a
line-segment), there must be two indices 4, j € {1,...,k} such that K;NK; # 0, K;
contains a disk of radius 2¢; with midpoint in /' and K contains a disk of radius
2t; with midpoint in R? \ H. By the definition of ¢;, the intersection K; N K; must
contain a disk of radius 2t¢;, so at least one of the sets, say K;, contains two disks
By and By with midpoints on different sides of g. By convexity,

e =gNconv(B; UBy) C K;,

where e is a line segment of length at least 4t;. As K; hits [d,d'], this implies
e C [d,d'], a contradiction.

To show Step (2), let ¢ € {1,...,m} be such that K; hits M. This implies that there
is a point

Yij € KZ N Kj NnH
for some j € {1,...,k}. As K; and K overlap, there is a disk z;; +2¢;B* C K;NKj.
By (1), z;; ¢ H. Hence [y;;, ;] hits ¢ in a point z € K; N K;. x € K; implies
x € [d,d] and x € K; now gives i € {1,...,k}.

We show Step (3). Step (2) implies that for all sufficiently small 6 > 0, the set

M;s = (H N (M ®3B?)
does not hit K outside M. The set MsNg is a line-segment [c, '], where the notation
is such that ¢ € D and ¢ € D’; see Figure 6. Mjs is a connected finite union of convex

sets, so the boundary of the unbounded connected component of M{ is a continuous
closed curve containing ¢ and ¢’. Removing [c, ¢/] from this curve (and adding the
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K

d/

Fig. 6. The line g, spanned by [d,d'] together with K7, ..., K} and the path connecting ¢
and ¢’ constructed in Step (3).

endpoints ¢, ), leads to a continuous curve in K¢ with endpoints ¢ and ¢’. This
proves Step (3) and the Lemma is shown.

Lemma 9 Let K € R be given. Then for 0 < 7 < ty any connected component of
K¢ contains ezactly one connected component of (K & 7B*)¢ and in particular

No(K€) = No((K @ 7B%)°).

PROOF. Let D be an arbitrary connected component of K¢. We first show that
D contains at least one connected component of (K @& 7B2)%, i.e. we show that
DN (K & 7B?)¢ is nonempty.

This is clear if D is unbounded, so we may assume that D is a hole of K. Let
B =z+1rB? z¢€ D, r >0, be the largest disk contained in cl D. Without loss of
generality, assume that Ky, ..., K hit 0B, whereas K1, ..., K,, do not. If r < t,
the definition of ¢5 would imply the existence of a common point p € K1 N...N K.
For any point z € (0B) N K C K; U...U K}, the segment [x,p| is contained in
K by convexity of the sets K7,..., K. Hence [z, p] Nint B = (), which implies that
(0B)N K must be contained in the open half plane bounded by the line z + (p — 2)*
and containing p. A small translation of B in the direction z — p therefore results in
a disk in D which does not touch K. This contradicts the maximality of the radius
of B. We conclude that r > ¢, and thus, D N (K @ 7B2) # ().

As any connected component of (K @ 7B%)¢ must be contained in exactly one
connected component of K¢, we have

N.(K®) < N((K @ 1B*)¢)

with equality if and only if each D contains exactly one connected component of
(K @ 7B%)“. The inclusion-exclusion principle states that

X(K)= > (=) x(K)),
0AIC{1,....,m}
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where K := ;e K;. It can be derived directly from the additivity of x; see e.g. [20].
Applying this to K and K & 7B?, we get x(K) = x(K & 7B?). Here we used 7 < t5
and the fact that y(K) of a nonempty convex set is always 1. Also, 7 < t5 implies
N.(K) = N.(K & 7B?) and thus (1) gives N,(K) = N,(K @& 7B?%). We conclude

N.(K®) = N.((K & 1B*)°).

This shows the claim.

The following theorem is only stated for . = Z2. By a suitable linear transformation,
it extends to other regular lattices, where the bound for ¢ in (16) must be adjusted;
see the end of this section for details.

Theorem 10 Let L = Z2 be the standard lattice and let K € R be given. Then

N(Qr) — 1 = Ny(K)

for all
t t
0<t< min{%toﬂﬂtl,f}. (16)

PROOF. By scaling with 1/¢, we may assume ¢ = 1 and hence
1< min{t—4t 2V/2t t—Q} (17)
76 0 1 4 .

This implies that v/2 < 4 < t5 and
Ni(K) = NJ(K) =1 = N,((K & V2B%)°) — 1
by Lemma 9. In the following, we show
N((K @ V2B2)°) = N(Qy). (18)

Let D be a connected component of (K ©+v/2B?)¢ and z € D. Then z++/2B? ¢ K¢
and the cell C' which contains z is completely contained in K¢. By the definition of
Ql, we find z € C' C Q1 This shows that D C Ql, so any connected component of
(K @®+/2B2)C is contained in Q;. We show that different components of (K &+/2B2)°

are not connected in @1. If C and C are two cells in the same connected component
of Ql, then there is an edge-path in Gg(K®) of line segments connecting the two
cells. If vert C' and vert C' would hit different connected components of K€, there
would be an edge with starting point in one connected component and endpoint
in another. But this contradicts Lemma 8, as the length of the edge is at most

V2 < 4t,. We therefore have Nc<(K > \/532)0) < N(Qh).

To prove Nc((K &) \/ﬁBZ)C> > Nc(Ql), it is enough to to show that for any cell C'

in Q; that hits a connected component D of K€ there is an edge path from vert C
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to DN(K @ V2B?)¢. The latter set is connected by Lemma 12. As before, this edge
path cannot leave the component it started in, so we only have to show that it ends
in (K @ +/2B?)°. This is shown in the Lemma 11, below, and completes the proof.

Lemma 11 Let L =72 and K € R be given. If

.ty 752}
1< Ta, b2 19
mm{?@‘ 0 (19)

and C = x + Cy, = €L, is a cell with all its vertices in K€, then there is an edge
path in Gs(K©) from a vertex of C to a point in (K ® /2B%)°.

PROOF. Let a be the midpoint of C. The disk By with radius 76/t, centered at a,
does hit at most two sets in {K7,..., K}, due to (19). Without loss of generality,
we may assume that By N K = By N (K; U K5). The required edge path will be
constructed within By and therefore only has to avoid the two sets Ky and K,. Due
to (13), the radius of By is at least 152, which implies that short edge paths starting
at an edge of C (e.g. of length 2 or 5, as constructed below) will be contained in
By. Let vy, v9,v3,v4 be the vertices of C' in counterclockwise order and let V; be the
closed normal cone of v; translated with v;, 7 = 1,2, 3,4; see Figure 7. By convexity
of K;, two of these cones cannot contain any point of K;, and the same holds true
for K. Re-indexing leads to the following three cases:

Fig. 7. The normal cones of the vertices of C'. The conditions in the first treated case imply
that V} (the dark-gray area) does not hit Kj U Ks.

1st case: K and K, do not hit Vj for at least one j = 1,...,4. We assume j = 1 and
can construct an edge path of Euclidean length 21/2, whose endpoint z has a distance
larger than /2 from K, U K5 and hence from K. It is therefore in (K @ v/2B?)°, as
required; see Figure 7.

2nd case: KNV, = KiNVz =0 and Ko NV, = Ky NV, = ; see Figure 8, left.
As V] is convex and the convex body K; does not hit it, there is a supporting line
g through the vertex vy of Vi, that strictly separates V; and K;. If necessary, we
can reflect at the diagonal of V}, and re-index the sets, to guarantee that the point
v1+(—1,1) and V; are on the same side of g. Let V] be the smallest cone with apex
v1 containing v; + (—1,1) and V;. By construction, V/ N K; = 0 and thus, we can
construct a path outside K7 U Ky whose endpoint x does not hit (K; U K3) @ \/582;

20



see Figure 8, right. As this path is contained in By, we conclude z € (K & v/2B?),
as required.

Fig. 8. On the left, the assumptions of the 2nd case are illustrated: The light-gray cones
do not hit Kj, the medium gray cones do not hit K. On the right, V; is extended to a
cone V/ that does not hit K; thus producing a dark gray area not hitting K1 U Ks. A path
with endpoint x is indicated.

3rd case: K1NV; = K1NV,y = 0 and KoNVy = KyNV, = (). This is the most involved
case. We first construct a point p € K; N K5 close to C' using Lemma 6. In analogy
to the first case, a desired path can be constructed if one of the two disks z; ++v/252,
Ty + /2B? (the points x1, 2, are defined as the endpoints of “diagonal paths” of
Euclidean length 2v/2, see Figure 9, left) is disjoint with /5. We may therefore
assume that both contain a point of Ky and thus there is a point wy € K5 on the
horizontal line through vy with ||ws —vs|| < 24 v/2. An analogue construction in the
lower half plane yields a point w; € K; on the same line with ||w; — vs]| < 2+ V2.
As |lw; — wy|| < 5+ 2v2 < 8, we have

(K, ®4B*) N (Ky @ 4B*) # 0,

which implies K7 N Ky # 0, as t; > 4 by (19). This implies int(K; N Ky) # 0, as
K € R. Lemma 6 can now be applied with vy, vs replaced by wy, ws, respectively,
where we use that [wy,ws] ¢ K7 U Ko, as [wy, ws] contains vs: there is a point
pE Kl N K2 with

D(Ky, K5) < 8

_ — S8~ <
max{||p — w1}, ||p — w2l[} o (K1, Ko)  ty

By (13), this gives

8 21
lp—all <llp —wil + lwy —vs[ +flus —al| S = +5< 5—=p,  (20)
ty 2ty
say. Note that p € V; U ... UV}, so p is an element of the white, cross-shaped area
in Figure 9, left.

For the last step of the proof, we may assume without loss of generality that the
most distant point in vert C' to p is v;. This and (20) imply that p € @, where
@ is the union of two squares whose axis-parallel sides have length 1/2 and p, cf.
Figure 9, right. As v; € Kj, there is a closed half-space containing K, such that
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Fig. 9. On the left, the 3rd case is illustrated: The light gray cones do not hit K, the
medium gray cones do not hit Ks. A point we € K> is constructed whose distance from
C is at most 2 + v/2. On the right, a possible line ¢ and the dark gray set @Q are shown.
The wedge in the lower part of V4 does not hit Ky U Ks.

its bounding line g contains v;. g cannot be vertical, as we have already excluded
KynNVy =0 = K,NV,. For the same reason, K, must be contained in the half plane
above g. In particular, p € @) is above g. Thus the slope of g is at least

2 2 (21)
1/2+p = 43

Define a path starting at v; and walking n steps to the right and subsequently two
steps upward and call its endpoint x. Due to (21), the path cannot hit K; U K,
and we have (K; U K3) N (v + v/2B?) = (), provided that n > 74/t,. The choice of
74/ty <n < T4/ty + 1 yields in addition

\/§+||x—a||:\/§+\/<2+%)2+(n+1>2<7—6

2 ta

so the definition of the radius of By implies that @ + v/2B? and the path both are
subsets of By. This shows that x + V/2B? and the path do not hit K. The conclusion
that € (K @ v/2B?) finishes the considerations for the third case.

We mention how Theorem 10 can be extended to non-standard lattices. Let L be a
lattice generated by a basis 1, xo. Put r = min{||z, ||, ||z2]|}, R = max{||z1]|, ||z=2]|},
and v = | cos S (x1, z2)|, where (x1,z5) is the (smaller) angle between z; and z.
Let @ : R? — R? be the linear mapping that maps the standard basis (e, es) to the
basis (71, z2). The image of B? under @ is an ellipse which satisfies

r\/1—+B* C ®(B*) C R\/1+ B> (22)

In other words, the length of the image of a unit segment under @ is at least 7/1 — v
and at most Ry/1T+~. If K =", K; is a representation of K satisfying the con-
ditions (i) and (ii) in the definition in of R, then U™, ®(K;) is such a represen-
tation for K = ®'(K) This shows that we may assume L = Z2, 21 = ey, 25 = ey,
Co = [0, 1]? and work with K. The constants fy, ; 5, and £, of K with respect to
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the above representation satisfy

t() ~ tl ~ tg ~ T ]_—”y

— 02— th> = >
RYI+ ' R/T *Z RVI+~ Y7 R/TT

due to (22). This can be substituted in the condition for ¢ in Theorem 10 to obtain
a bound in terms of the representation of K.

to > ty

Theorem 1 is now a direct consequence of Theorems 7 and 10.
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