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Abstract

In this paper we provide a systematic study of how the the probability limit and
central limit theorem for realised multipower variation changes when we add finite
activity and infinite activity jump processes to an underlying Brownian semimartin-
gale.
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1 Introduction

Multipower variation is the probability limit of normalised partial sums of powers of lags of
absolute high frequency increments of a semimartingale as the sampling frequency goes to
infinity. It was introduced by Barndorff-Nielsen and Shephard (2003,2004b,2004a,2006)
in a series of papers motivated by some problems in financial econometrics. Realised
multipower variation estimates this limit process and was shown, by Barndorff-Nielsen,
Graversen, Jacod, Podolskij, and Shephard (2005), to reveal integrated volatility powers in
general Brownian semimartingales. These authors also derived the corresponding central
limit theory. Some detailed discussion of the econometric uses of these results are given in
Barndorff-Nielsen, Graversen, Jacod, and Shephard (2006). Such continuous sample path
limit processes are of interest in themselves, however Barndorff-Nielsen and Shephard were
also interested in realised multipower variation as they showed it has some features which
are robust to finite activity jump processes (i.e. jump components with finite numbers of
jumps in finite time). In this paper we return to that issue, sharpening the results in the
finite activity case and giving an analysis of the case where there are an infinite number
of jumps. For a closely related analysis see Woerner (2006).

Specifically, we ask two new questions: (i) do these kinds of robustness results also
hold when the jump process has infinite activity, (ii) is it possible to construct central limit
theorems for realised multipower variation processes when there are jumps? In Section
2 of the paper we establish notation and provide various definitions. This is followed in
Section 3 with an analysis of multipower variation in the case where the processes are
Brownian semimartingales plus jumps. In Section 4 we specialise the discussion to the
case where the jumps are Lévy or OU processes.
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2 Multipower Variation (MPV)

Let X be an arbitrary stochastic process. Then the realised multipower variation (MPV)
of X is based on increments, recorded every δ > 0 time periods,

xj = Xjδ −X(j−1)δ, j = 1, 2, . . . , bt/δc .

It can be defined via the unnormalised version

[Xδ]
[r]
t = [Xδ]

[r1,...,rm]
t = [Xδ, . . . , Xδ]

[r1,...,rm] =

bt/δc∑
j=m

|xj−m+1|r1 · · · |xj|rm ,

or through its normalised version

{Xδ}[r]
t = {Xδ}[r1,...,rm]

t = δ1−r+/2[Xδ]
[r]
t ,

where r is short for r1, . . . , rm and r+ =
∑m

j=1 rj. It will be convenient to write max r =

max{r1, , , , rm}. Similarly, for arbitrary processes X(1), . . . , X(m) we let

[X
(1)
δ , . . . , X

(m)
δ ]

[r]
t =

bt/δc∑
j=m

|x(1)
j−m+1|r1 · · · |x(m)

j |rm ,

while we always assume that rj ≥ 0 and r+ > 0.

3 MPVCiP and MPVCLT for BSM + jump process

Brownian semimartingales (denoted BSM) are defined as the class of continuous semi-
martingales

Yt =

∫ t

0

audu +

∫ t

0

σudWu, (1)

where a is predictable, W is standard Brownian motion and σ is càdlàg.
We say that the Brownian semimartingale Y satisfies CiP (converges in probability)

for MPV (denoted MPVCiP) provided that

{Yδ}[r]
t

p→ drσ
r+∗
t = dr

∫ t

0

σr+
u du,

where dr is a known constant depending only on r.
We say that Y satisfies the central limit theorem (CLT) for MPV (denoted MPVCLT)

provided

δ−1/2
(
{Yδ}[r]

t − drσ
r+∗
t

)
law−−→ cr

∫ t

0

σr+
u dBu

where B is a Brownian motion, Y⊥⊥B (i.e. Y is independent of B), and cr is a known
constant depending only on r. Under some mild additional assumptions on the σ process
such a CLT holds, see Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard
(2005).

We will now study what happens to the limiting distribution when we add jumps to
Y . The only existing results we know of are due to Jacod and Protter (1998) who studied
the case where r = 2, Y ∈ BSM and the jumps come from a purely discontinuous Lévy
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process, and (Woerner 2006) who derives closely related results to ours. Thus we shall
discuss extensions of MPVCiP and MPVCLT for BSM to processes of the form

X = Y + Z

where Y ∈ BSM while Z is a process exhibiting jumps.
We assume that Y satisfies MPVCiP or MPVCLT and consider to which extent this

behaviour remains the same when Z is added to Y , i.e. whether the influence of Z is
negligible (in this respect). When it is negligible we say that MPVCiP or MPVCLT holds
for X. Thus we ask whether:
(i) For the CiP case

δ1−r+/2
(
[Xδ, . . . , , Xδ]

[r1,...,rm] − [Yδ, . . . , , Yδ]
[r1,...,rm]

)
= op(1).

(ii) For the CLT case

δ1−r+/2
(
[Xδ, . . . , , Xδ]

[r1,...,rm] − [Yδ, . . . , , Yδ]
[r1,...,rm]

)
= op(δ

1/2).

We shall use the following fact

Lemma 1. The Brownian semimartingale Y satisfies, uniformly in j,

δ−1/2|Yjδ − Y(j−1)δ| = Op(| log δ|1/2). (2)

Proof. First we split

|Yjδ − Y(j−1)δ| ≤
∣∣∣∣∫ jδ

(j−1)δ

audu

∣∣∣∣+ ∣∣∣∣∫ jδ

(j−1)δ

σudWu

∣∣∣∣
and note that the first part is Op(δ) whereas, by the Dubins-Schwarz theorem,∫ t

0

σudWu = BR t
0 σ2

sds

for a standard Brownian motion B. Lévy’s theorem on the uniform modulus of continuity
of Brownian motion states that

P

(
lim sup

ε↓0

(
sup

0≤t1<t2≤T :t2−t1≤ε

|Bt2 −Bt1|√
2ε| log(ε)|

)
= 1

)
= 1.

Since ∫ t2

t1

σ2
sds ≤ |t2 − t1| sup

0≤s≤T
σ2

s

and the latter supremum is a.s. finite, we deduce that, as required,

P

(
lim sup

ε↓0

(
sup

0≤t1<t2≤T :t2−t1≤ε

|Yt2 − Yt1|√
2ε| log(ε)|

)
< ∞

)
= 1.

Without the sup over t1 and t2, for fixed t, the result holds with log replaced by log log.
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3.1 Finite activity case

We first perturb a suitable Y ∈ BSM for which MPVCiP (and/or MPVCLT) holds by a
finite activity jump process Z, not necessarily independent of Y .

Proposition 1. When Z is a finite activity jump process, (i) MPVCiP holds if max r < 2,
(ii) MPVCLT holds if max r < 1.

Proof. Consider the m-th order MPV process [Xδ]
[r]. Pathwise, the number of jumps of

Z is finite and, for sufficiently small δ, none of the additive terms in [Xδ, . . . , Xδ]
[r1,...,rm]

involves more than one jump. Each of the terms in [Xδ, . . . , Xδ]
[r1,...,rm] that contains no

jumps are of order Op

(
(δ| log δ|)r+/2

)
. Any of the terms that do include a jump is of

order Op

(
(δ| log δ|)(r+−max r)/2

)
. Hence

δ1−r+/2([Xδ]
[r] − [Yδ]

[r]) = δ1−r+/2Op((δ| log δ|)(r+−max r)/2)

= Op(δ
1−max r/2| log δ|(r+−max r)/2).

So CiP is not influenced by Z so long as max r < 2, while CLT continues to hold if
max r < 1.

The bounds max r < 2 and max r < 1 are tight conditions. If the equality was to hold,
we get discontinuous distributional limits. If the inequalities are reversed, limits jump to
infinity at the first jump time of Z, except in trivial cases.

The above CLT result is of some importance. It means that we can use multipower
variation to make mixed Gaussian inference about

∫ t

0
σ2

udu, integrated variance, in the
presence of finite activity jumps processes so long as max r < 1 and r+ = 2. An example
of this is where m = 3 and we take r1 = r2 = r3 = 2/3 (that is using Tripower Variation
(TPV)).

3.2 Infinite activity (IA) case

We start by establishing an inequality for MPV. Let a, b, c etc. denote arbitrary real
numbers with a + b = c. The classical inequality∣∣∣∣∣

n∑
j=1

|aj|r −
n∑

j=1

|bj|r
∣∣∣∣∣ ≤

n∑
j=1

|cj|r, (3)

which holds for 0 < r ≤ 1, implies that if max r ≤ 1 then∣∣[Xδ, . . . , Xδ]
[r1,...,rm] − [Yδ, . . . , Yδ]

[r1,...,rm]
∣∣

≤ [Zδ, . . . , Zδ]
[r1,...,rm] + [Zδ, . . . , Zδ, Yδ]

[r1,...,rm] [
(

m
1

)
]

+ [Zδ, . . . , Zδ, Yδ, Yδ]
[r1,...,rm] [

(
m
2

)
]

+ · · ·+ [Zδ, Yδ, Yδ, . . . , Yδ]
[r1,...,rm] [

(
m

m−1

)
]

(4)

where the binomial coefficients indicate the relevant number of similar terms.
In the following we shall mostly restrict consideration to the case r1 = · · · = rm = r.
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3.2.1 Convergence in probability

For MPVCiP it suffices that the following conditions are met:

δ1−mr/2[Zδ, . . . , Zδ]
[r,...,r] = op(1), (5)

δ1−(m−1)r/2| log δ|r/2[Zδ, . . . , Zδ]
[r,...,r] [

(
m
1

)
] = op(1), . . . (6)

δ1−r/2| log δ|(m−1)r/2[Zδ]
[r] [
(

m
m−1

)
] = op(1). (7)

To show this we need to distinguish between the cases 0 < r ≤ 1 and r > 1.
When 0 < r ≤ 1 we have, by (4),

δ1−mr/2
∣∣[Xδ, . . . , Xδ]

[r,...,r] − [Yδ, . . . , Yδ]
[r,...,r]

∣∣
≤ δ1−mr/2[Zδ, . . . , Zδ]

[r,...,r] + δ1−(m−1)r/2[Zδ, . . . , Zδ, δ
−1/2Yδ]

[r,...,r] [
(

m
1

)
]

+ δ1−(m−2)r/2[Zδ, . . . , Zδ, δ
−1/2Yδ, δ

−1/2Yδ]
[r,...,r] [

(
m
2

)
] + · · ·

+ δ1−r/2[Zδ, δ
−1/2Yδ, . . . , δ

−1/2Yδ]
[r,...,r] [

(
m

m−1

)
].

(8)

and the sufficiency of (5)-(7) follows.
For r > 1 we have∣∣∣(δ1−mr/2[Xδ, . . . , Xδ]

[r,...,r]
)1/r −

(
δ1−mr/2[Yδ, . . . , Yδ]

[r,...,r]
)1/r
∣∣∣ ≤ (δ1−mr/2S

)1/r

where, in a compact notation,

S =

bt/δc∑
j=m

∣∣∣∣∑
ω

∏
yk

∏
zl

∣∣∣∣r
and ∑

ω

∏
yk

∏
zl = (yj−m+1 + zj−m+1) · · · (yj + zj)− yj−m+1 · · · yj,

where ω runs over all selections of one factor from each of the parentheses in the above
equation, except the one leading to yj−m+1 · · · yj.

Now, if
δ1−mr/2S = op(1) (9)

then, on account of the previously established fact that δ1−mr/2[Yδ, . . . , Yδ]
[r,...,r] converges

in probability to a positive random variable, we can conclude from the Minkovsky in-
equality that

(
(
δ1−mr/2

)1/r
((

[Xδ, . . . , Xδ]
[r,...,r]

)1/r −
(
[Yδ, . . . , Yδ]

[r,...,r]
)1/r
)

= op(1).

To determine a sufficient condition for (9), and hence for MPVCiP, we note that in
view of the inequality |b + c|r ≤ 2r−1(|b|r + |c|r) there exists a constant C such that

|
∑
ω

∏
yk

∏
zl|r ≤ C

∑
ω

|
∏

yk

∏
zl|r.

This yields

S ≤ C

bt/δc∑
j=m

∑
ω

|
∏

yk

∏
zl|r = C

∑
ω

∑bt/δc
j=m |

∏
yk

∏
zl|r.

It follows that (9) will hold if, for all ω,

δ1−mr/2

bt/δc∑
j=1

|
∏

yk

∏
zl|r = op(1).

But this is equivalent to the set of conditions (5)-(7).
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3.2.2 Central limit theorem

In the IA setting, for CLT we are assuming that r ≤ 1. It will be seen, from the examples
to be discussed in the next Section, that the restriction to r ≤ 1 is essentially necessary.
From (8) we find:

For MPVCLT it suffices that the following conditions are met for r ≤ 1:

δ(1−mr)/2[Zδ, . . . , Zδ]
[r,...,r] = op(1), (10)

δ(1−(m−1)r)/2| log δ|r/2[Zδ, . . . , Zδ]
[r,...,r] [

(
m
1

)
] = op(1), . . . (11)

δ(1−r)/2| log δ|(m−1)r/2[Zδ]
[r] [
(

m
m−1

)
] = op(1). (12)

For PCLT this reduces to
δ(1−r)/2[Zδ]

[r] = op(1)

which can only be satisfied for r < 1.
For BPCLT the conditions (in the general [r, s] case) are

δ(1−r−s)/2[Zδ, Zδ]
[r,s] = op(1) (13)

δ(1−r)/2[Zδ, δ
−1/2Yδ]

[r,s] = op(1) (14)

δ(1−s)/2[δ−1/2Yδ, Zδ]
[r,s] = op(1). (15)

Due to Lemma 1, sufficient for the relations (14) and (15) are

δ(1−r)/2| log δ|s/2[Zδ]
[r] = op(1) (16)

δ(1−s)/2| log δ|r/2[Zδ]
[s] = op(1). (17)

Sufficient for (16) is 0 < r < 1 and supδ[Zδ]
[r] < ∞. And similarly for (17).

4 Lévy processes with no continuous component

4.1 Preliminaries on Lévy processes and their small-time be-
haviour

Lévy processes (e.g. (Bertoin 1996) and (Sato 1999)) with no continuous component are
a versatile class of jump processes. Whether MPVCiP or MPVCLT hold, depends on the
characteristics of the Lévy process. Notably the number of small jumps is important. We
have seen that finite activity restricts max r < 2 and max r < 1, respectively for MPVCiP
and MPVCLT. We will get further restrictions, in general, when we have IA.

Let Zt denote a Lévy process with no continuous component. It incorporates jumps
(∆Zt)t≥0 whose Lévy measure we will write as Π. Π is a Radon measure on R∗ = R−{0}
with ∫

R∗

(
|x|2 ∧ 1

)
Π(dx) < ∞. (18)

If the stronger condition
∫

R∗
(|x| ∧ 1)Π(dx) < ∞ holds, then we can write

Zt =
∑
s≤t

∆Zs and E(exp{iλZt}) = exp{−tΨ(λ)}, where Ψ(λ) =

∫
R∗

(1− eiλx)Π(dx),
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and Z has paths of locally bounded variation. If
∫

R∗
(|x| ∧ 1)Π(dx) = ∞, we allow an

additional drift parameter a ∈ R so that

E(exp{iλZt}) = exp{−tΨ(λ)}, where Ψ(λ) = −iλa +

∫
R∗

(1− eiλx + iλx1{|x|≤1})Π(dx),

and in this case Z has paths of locally unbounded variation.
We define an index

α = inf

{
γ ≥ 0 :

∫
[−1,1]

|x|γΠ(dx) < ∞
}
∈ [0, 2].

The number α measures how heavily infinite Π is at zero, i.e. how many small jumps Z
has.

If Z has bounded variation, then 0 ≤ α ≤ 1. If Z has unbounded variation, then
1 ≤ α ≤ 2. The boundary α = 1 is attained for both bounded and unbounded variation
processes. Π(dx) = |x|−2| log |x/2||−1−β1[−1,1](x)dx is an example for a bounded variation
process with α = 1.

The index α can be seen to be greater than or equal (usually equal) to the (Blumenthal
and Getoor 1961) upper index

α∗ = inf{γ ≥ 0 : lim sup
λ→∞

|Ψ(λ)|/λγ = 0} ∈ [0, 2].

Without loss of generality we can decompose Z into Zt = Z
(1)
t + Z

(2)
t , where Z(1) and

Z(2) are independent processes and Z(2) is defined as

Z
(2)
t =

∑
s≤t

∆ZsI (|∆Zs| > 1) .

Clearly Z(2) is a compound Poisson process, and hence of finite activity. The effect of
Z(2) on MPVCiP and MPVCLT was studied in the previous Section and so from now
on in this Section we can, without loss of generality, set Z(2) to zero, i.e. assume Π is
concentrated on [−1, 1].

Lemma 2. Let Z be a Lévy process with no continuous component and index α. Then

sup
δ>0

E |Zδ|γ

δ
< ∞,

for all α < γ ≤ 1 if Z has finite mean and bounded variation, and for all 1 ≤ α < γ ≤ 2
if Z is a zero-mean Lévy process with finite variance.

Proof. Let α < 1. From (3) and the compensation formula for Poisson point processes we
get for all α < γ ≤ 1

E |Zδ|γ = E

∣∣∣∣ ∑
0≤s≤δ

∆Zs

∣∣∣∣γ ≤ E
∑

0≤s≤δ

|∆Zs|γ = δ

∫
R∗
|z|γΠZ(dz) < ∞.

If 1 ≤ α < 2, we use Monroe embedding Zt = BTt into a Brownian motion B, for a
subordinator Tt of stopping times for B, with E(Tt) = E (Z2

t ) < ∞. Using the explicit
embedding of (Winkel 2005), we have as Lévy measure of T

ΠT =

∫
R∗

ρ|x|Π(dx) +

∫
R∗

∫ |x|

0

|x|
y2

ρ|x| ∗ ρ|x|dyΠ(dx),
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where ρx is the distribution of the first passage time at x of a three-dimensional Bessel
process starting from zero. In particular, Rx ∼ ρx has first moment E(Rx) = x2/3, so
that for all 2 ≥ γ > α ≥ 1, by Jensen’s inequality,∫

R∗
E(R

γ/2
|x| )Π(dx) ≤

∫
R∗

(
E(R|x|)

)γ/2
Π(dx) =

(
1

3

)γ/2 ∫
R∗
|x|γΠ(dx) < ∞,

and similarly∫
R∗

∫ |x|

0

|x|
y2

E((R|y| + R̃|y|)
γ/2)dyΠ(dx) ≤

(
2

3

)γ/2 ∫
R∗

∫ |x|

0

|x|
y2

yγdyΠ(dx)

=

(
2

3

)γ/2
1

γ − 1

∫
R∗
|x|γΠ(dx) < ∞.

The sum of the left hand sides is
∫

(0,∞)
|z|γ/2ΠT (dz), so that the index of T is (at most)

α/2.
Now we invoke (Revuz and Yor 1999, Exercise V.(1.23)): E |Bτ |2p ≤ CpE (τ p), for

all (bounded, but then all) stopping times τ with E (τ p) < ∞, all p > 0, and universal
constants Cp; see also (Revuz and Yor 1999, Theorem IV.(4.10)). This implies E |Zδ|γ =

E |BTδ
|γ ≤ CpET

γ/2
δ and an application of the bounded variation case to the subordinator

T completes the proof.

4.2 General results on multipower variation for BSM plus Lévy

We recall that we are working with X = Y + Z, where Y ∈ BSM. No assumptions are
made regarding dependence between Y and Z. We can now show the following general
result

Theorem 1. Let Z be a no continuous component Lévy process with index α ∈ [0, 2].
Then (i) 0 < r < 2 ⇒ PCiP is valid, (ii) α < 2 and 0 < max r < 2 ⇒ MPVCiP is valid,
(iii) α < 1 and α/(2−α) < r < 1 ⇒ PCLT is valid, (iv) α < 1 and α/(2−α) < min r ≤
max r < 1 ⇒ MPVCLT is valid.

Proof. For the PCiP, note that Ψ(λ)/λ2 → 0 as λ → ∞ since we have no Gaussian
coefficient (cf. Bertoin (1996, Proposition I.2)). Therefore

E

(
exp

{
iλ

Zδ

δ1/2

})
= exp

{
−δΨ

(
λ

δ1/2

)}
→ 1

i.e. Zδ/δ
1/2 → 0 in probability as δ ↓ 0. Since also E(Z2

δ ) = cδ, we have that (Zδ/δ
1/2)δ>0

is bounded in L2, i.e. convergent in Lr, 1 ≤ r < 2, and it is easily seen that this extends
to 0 < r < 2 (e.g. by raising Zδ/δ

1/2 to a small power and applying the argument again).
Therefore

E
(
δ1−r/2[Zδ]

[r]
t

)
= δ bt/δc E|Zδ|r

δr/2
→ 0.

By (5) PCiP follows. For MPVCiP the argument works for (5) holds by independent
increments as

E
(
δ1−r+/2[Zδ, . . . , Zδ]

[r]
t

)
= δ b1−m + t/δc

m∏
j=1

E|Zδ|rj

δrj/2
→ 0,
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but fails for (6)-(7) because of the log-terms e.g. in (7). However, if α < 2, we can
adapt the argument as follows. By Lemma 2, we have supδ>0 (δ−1E|Zδ|γ) < ∞ for all
α∗ ≤ α < γ ≤ 2. As above, we have Zδ/δ

1/γ → 0 in probability, and hence in Lr for
r < γ. This allows us to check (7) for 0 < rj < γ:

E

(
δ1−rj/2

(
log

(
1

δ

))r+−rj

[Zδ]
[rj ]
t

)
= δ bt/δc E|Zδ|rj

δrj/2
(
log
(

1
δ

))rj−r+

≤ δ bt/δc E|Zδ|rj

δrj/γ
→ 0,

and similarly all (5)-(7).
For the MPVCLT note that α < 1 implies that Z has bounded variation. Furthermore,

we can assume that Z has no drift, as this can be placed in the Y process. Now, Lemma
2 gives the basis for the above MPVCiP argument to apply here, for α < γ < 1, and we
can check (12):

E

(
δ1/2−rj/2

(
log

(
1

δ

))r+−rj

[Zδ]
[rj ]
t

)
= δ bt/δc E|Zδ|rj

δrj/2+1/2
(
log
(

1
δ

))rj−r+

≤ δ bt/δc E|Zδ|rj

δrj/γ
→ 0

if and only if rj/2 + 1/2 < rj/γ, i.e. rj > γ/(2 − γ) ↓ α/(2 − α) as γ ↓ α. It is now
easy to repeat the argument and check that then also the remaining equations in (10-12)
hold.

Apart from a finer distinction on the boundaries such as α = 2 or r = α/(2 − α) in
terms of powers of logs or integral criteria, we believe that the ranges for α and r cannot
be extended.

4.3 Examples

In the examples we shall discuss Z is a Lévy jump process and r1 = · · · = rm = r.
However, as will be noted at the end of this Section, quite similar results hold for Z being
a process of OU type.

Example 1. Suppose Z is the Γ(ν, λ) subordinator, i.e. Z is the Lévy process for which
the probability density of Z1 is λνxν−1e−λx/Γ(ν). This has IA and α = 0 as its index.
Consequently: (i) MPVCiP is valid for all m = 1, 2, . . . and 0 < r < 2. (ii) MPVCLT is
valid for all m = 1, 2, . . . and 0 < r < 1. However, BPVCLT does not hold if r = 1 and
Y ⊥⊥ Z.

Example 2. Let Z be the IG(φ, γ) subordinator, i.e. Z is the Lévy process for which

the probability density Z1 is δ (2π)−1/2 eδγx−3/2e−
1
2
(φ2x−1+γ2x). Again, this has IA, with

α = 1/2. Consequently: (i) MPVCiP is valid for all m = 1, 2, . . . and 0 < r < 2. (ii)
MPVCLT is valid for all m if 1

3
= α

2−α
< r < 1. In particular, MPVCLT holds for tripower

variation with r = 2/3.

Example 3. Let Z be a Variance Gamma Lévy process with parameters ν and λ. This
means it can be written as Zt = BTt , where B is Brownian motion and T is a Γ(ν, λ)
subordinator, while B ⊥⊥ T . Here α = 0 and consequently we have the same conclusion
as in Example 1.
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Example 4. Let Z be the NIG(γ, 0, 0, φ) Lévy process. This is representable as the
subordination of a Brownian motion B by the IG(φ, γ) subordinator. Hence, α = 2× 1

2
=

1. Consequently: (i) MPVCiP is valid for all m = 1, 2, . . . and 0 < r < 2. (ii) MPVCLT
does not hold for any value of r.

Remark 1. Suppose Z is an OU process V with a background driving Lévy process
(BDLP) L. Letting V ∗

t =
∫ t

0
Vsds we have, since V is the solution of dVt = −λVt + dLλt,

that Vt = V0 − λV ∗
t + Lλt. Hence, letting Y ′ = Y + V0 − λV ∗ we see that Y ′ satisfies the

condition (2). Therefore the asymptotics are the same whether Z = V or Z = L. In the
latter case we are back in the setting of the above examples, where we now apply Theorem
1 to the dependent processes Y ′ and L.

5 Acknowledgments

We thank Jeannette Woerner for useful discussions and for providing us with an early
version of her notes on CiP for bipower variation, and to the Editor and the referee whose
comments improved the paper. Barndorff-Nielsen’s work is supported by the Danish
Social Science Research Council, Shephard’s by the UK’s ESRC and Winkel’s by the
Institute of Actuaries and Aon Limited.

References

Barndorff-Nielsen, O. E., S. E. Graversen, J. Jacod, M. Podolskij, and N. Shephard (2005). A
central limit theorem for realised power and bipower variations of continuous semimartin-
gales. In Y. Kabanov, R. Lipster, and J. Stoyanov (Eds.), From Stochastic Analysis to
Mathematical Finance, Festschrift for Albert Shiryaev. Springer. Forthcoming.

Barndorff-Nielsen, O. E., S. E. Graversen, J. Jacod, and N. Shephard (2006). Limit theorems
for realised bipower variation in econometrics. Econometric Theory 22. Forthcoming.

Barndorff-Nielsen, O. E. and N. Shephard (2003). Realised power variation and stochastic volatil-
ity. Bernoulli 9, 243–265. Correction published in pages 1109–1111.

Barndorff-Nielsen, O. E. and N. Shephard (2004a). Econometric analysis of realised covaria-
tion: high frequency covariance, regression and correlation in financial economics. Econo-
metrica 72, 885–925.

Barndorff-Nielsen, O. E. and N. Shephard (2004b). Power and bipower variation with stochastic
volatility and jumps (with discussion). Journal of Financial Econometrics 2, 1–48.

Barndorff-Nielsen, O. E. and N. Shephard (2006). Econometrics of testing for jumps in financial
economics using bipower variation. Journal of Financial Econometrics 4, 1–30.
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