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We discuss various properties of a random multifractal process, which are re-
lated to the issue of scale correlations. By design, the process is homogeneous,
non-conservative and has no built-in scale correlations. However, when it comes to
observables like breakdown coefficients, which are based on a coarse-graining of the
multifractal field, scale correlations do appear. In the log-normal limit of the model
process, the conditional distributions and moments of breakdown coefficients repro-
duce the observations made in fully developed small-scale turbulence. These findings
help to understand several puzzling empirical details, which have been extracted from
turbulent data already some time ago.
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I. INTRODUCTION

It is always nice to have a good model. As a theoretical physicist you exactly know what
you put in. Then you can start repeating to do the same things experimentalists do with
their data and begin to understand things which have been empirically described before,
but have remained obscure, or even mystical.

Take fully developed turbulence as an example. Deviations from the pioneering K41
scaling prediction [1] are well described with the multifractal formalism and have lead to
the empirical modeling of the turbulent energy cascade with random multiplicative cascade
processes [2]. By design, the random multiplicative transfer of energy flux from the integral
down to the dissipation scale comes with no scale correlations. However, this model property
has not been confirmed in a first data inspection based on breakdown coefficients of the
energy dissipation [3, 4]. Another, Markovian-based approach [5, 6] supports this finding,
that the turbulent energy cascade appears to come with inherent scale correlations. It is
exactly this conflict which motivates us to look closer into the nature of scale correlations
of random multifractal processes in general.
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Previous work in this direction has focused on binary discrete random multiplicative
cascade processes. Their non-conservative variants were able to explain the observed scale-
independent unconditional distributions of breakdown coefficients [3, 4] as fixed points re-
sulting from small-scale resummation [7, 8], which are also different from the employed
cascade generator. Furthermore, by adopting an experimentalist’s view, who is not aware
of the underlying binary-tree hierarchy of the cascade process and who then homogeneously
samples observables, the correlations observed in the conditional distributions of breakdown
coefficients [3, 4] could be reproduced, especially when the cascade generator is chosen to be
positively skewed [9]. With the same overall approach, also the observed scale-dependence
of Kramers-Moyal coefficients, representing the Markovian route to the turbulent energy
cascade [5, 6], could be qualitatively reproduced [10].

So far the qualitative success to explain the observed scale correlations out of non-scale-
correlated models is tied to the binary discrete random multiplicative cascade processes. Of
course, this is subject to some criticism. First of all, the turbulent energy cascade is neither
binary nor discrete. Second, although plausible from a physics perspective, the employed
small-scale resummation as well as the experimentalist’s homogeneous sampling appear to
be operationally rather ad hoc. In this respect it would be nice to consider more general and
more elegant stochastic processes, which are not in need of ad hoc operations, and which
hopefully not only confirm the previous findings, but also put them on more firm ground
and, maybe, also allow to resolve some more of the empirically observed and quantified
puzzling details.

This is exactly what we are going to demonstrate. In Ref. [11] an elegant stochastic
energy-cascade process has been proposed, which is continuous, homogeneous and causal.
It delivers multifractality by design. This random multifractal process, which will be briefly
presented in Sect. II, does not have built-in scale correlations, but, as we will see in Sects.
III and IV, when it comes to the analysis of breakdown coefficients and Kramers-Moyal
coefficients the scale correlations do appear again. The precision reached within these sim-
ulations allows for several further quantitative statements: (i) the obtained distributions
of breakdown coefficients allow no room for log-stable statistics of the energy dissipation,
except when close to the log-normal limit; (ii) extracted moments of breakdown coefficients
reproduce the puzzling systematics on apparent scaling exponents, observed and discussed
in Refs. [4, 12]; (iii) the two differing outcomes of the extracted Kramers-Moyal coefficients
[5, 6], which trace back to different operational definitions, are reproduced; (iv) the inter-
mittency exponent can be extracted from the first Kramers-Moyal coefficient. A conclusion
and outlook will be given in Sect. V.

II. MODELING OF A CONTINUOUS AND HOMOGENEOUS RANDOM
MULTIFRACTAL PROCESS

In Ref. [11], see Refs. [13-17] for related approaches, a positive-valued multifractal field
e(z,t) on continuous 141 space-time has been designed as the stochastic integral
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By assumption 7(z,t) ~ Sy((dzdt)*  ~'o,—1,0%/ cos(ra/2)) is a Lévy-stable white-noise
field [18] with property (exp{v}) = 1. The causality cone

ﬂw%ﬁzgmm{0+(D””@_AT_“_wv,1} (2)

U (T'— AT)

has the properties g(T — AT) = ¢g(T) = L/2 and ¢(0) = n/2, with L > n representing
the integral and dissipation length, and 7" > AT the integral time and a convenient cutoff.
The explicit shape (2) allows to interpret the field (1) as a product of independently and
identically distributed random weights ¢(l;),

J t—t; z+g(t—t')
e(x,t) ~ Hexp / dt’ / da’ (2, t') Hq (3)
j=1 t—tj—1 r—

g(t—t")

which belong to the hierarchy of scales [; = L/N = 2g(T —t;) confined by n = [; and L = .
This reflects the spirit of random multiplicative cascade processes and demonstrates that no
scale correlations are build into the ansatz (1). Furthermore, with the setting AT /T =n/L
Egs. (1) and (2) directly lead to perfect scaling of the two-point correlation densities

e ()

(em(zy, t))(em2 (w2, 1)) \ |z — 1]

with two-point distance n < |xo — 21| < L. For larger distances the correlations are equal
to one. The multifractal scaling exponents are given by 7,, = 7o(n*—n)/(2*—2) with 7, =
(0] cos =) (22T

Be51des L, T and 7, the only other parameters of the stochastic process (1) are the Lévy-
stable index 0<a<2 and o. In [11] the two latter have been fixed by the observed scaling
exponents 7 and 73 extracted from the lowest-order two-point correlation densities; with no
room left for further adjustments the predicted three-point correlation densities have been
shown to be in excellent agreement with their counterparts from turbulent energy-dissipation
data.

All results presented here are based on model simulations. Parameters are set L/n = 500
and T = L. The resolution Ax = At = 7/6 of the numerical discretization has been
checked to produce sufficient convergence. For given « and o, observables like two-point
correlation densities, breakdown coefficients and Kramers-Moyal coefficients are sampled
from a simulated equal-time trace £(z) of length Liyace = 10"n. The such sampled lowest-
order two-point correlation densities reproduce (4) with high quality.

(4)

III. APPARENT SCALE-CORRELATIONS I: BREAKDOWN COEFFICIENTS

The breakdown coefficients
ap(@+IAN=1)/A)
&)

are defined as the ratio of coarse-grained field amplitudes

b(x;l, N A) = (5)

1 x+1/2

ale) =7 / (')’ (6)

—1/2



at scales [/ and [, separated by the scale parameter A > 1. The parameter A describes the
relative position between parent and offspring interval. A = 0 corresponds to the centered
case and A = £1/2 to right- and left-alignment, respectively.

For turbulent cascades at high Reynolds numbers, scale-independence of unconditional
distributions of breakdown coefficients has been observed in the upper part of the inertial
range [3, 4, 19, 20] and has been thought to describe the cascade generator [20-23], allowing
for an alternative approach to analyze multifractality. However, by construction the break-
down coefficients (5) are different from the log-stable random multiplicative weights ¢(l) of
(3). This is further emphasized in Fig. 1, which illustrates the unconditional distribution of
left /right-sided A\ = 2 breakdown coefficients sampled from simulated model traces. Within
the upper cascade regime 20n < [ < L these distributions are found to be independent of
the scale [; for smaller and larger scales they are more narrow. The shown distributions are
not of log-stable type; see also Fig. 2. They can be nicely parametrized with a symmetric
Beta-distribution p(b) ~ b°~1(2 — b)?~L. For the model parameter setting with o = 2.0 and
7(2) = 0.24 the found distribution nicely matches the distribution reported in the analysis
of a high-Reynolds number atmospheric boundary layer [3].

Upon switching from unconditional to conditional distributions scale correlations do ap-
pear. When conditioned onto a large (small) parent breakdown coefficient, the distribution
with A = 2, A = +1/2 of Fig. 2(top left) results to be broader (more narrow) than its un-
conditional counterpart. This outcome is in full agreement with the experimental findings
reported in [3]. Fig. 2(top center) shows the related centered distributions. In its uncon-
ditional form it is again well described with a symmetric Beta distribution, but now with
increased exponent = 4.9. For a large parent breakdown coefficient the distribution is
broadened and shifted to the right, whereas it is narrowed and shifted to the left once the
parent is small. These findings are in perfect agreement with the experimental observations
presented in [4]. This demonstrates that the scale correlations reported in [3, 4] can be
fully reproduced by the stochastic process (1), which by construction has no built-in scale
correlations. — But where do the scale correlations come from? They trace back to the
coarse-graining (6) of the non-conservative multifractal field. This correlates the breakdown
coefficient to its parent.

So far only the log-normal limit (o = 2) of (1) has been discussed. With the same choice
79 = 0.24 for the intermittency exponent, the second and third rows of Fig. 2 illustrate the
distributions of A = 2 breakdown coefficients for &« = 1.7 and 1.4, respectively. With decreas-
ing « the differences of the conditional to the unconditional A = +1/2 distributions also
decrease, leading to a disappearance of the scale correlations at o &~ 1.4. Note also another
detail for o < 2: all distributions increase again as the breakdown coefficient approaches
zero (two) from above (below). This effect becomes stronger the smaller « is chosen and is
a fingerprint of the excess probability p(¢ = 07) > 0 occurring for log-stable distributions;
see also the third column of Fig. 2. Also the distributions of centered breakdown coefficients
reveal an interesting behavior with a. Whereas for a = 2 the left-shifted conditional dis-
tribution has a larger maximum than the right-shifted one, the two maxima become about
equal for = 1.7 and reverse their order for &« = 1.4. In comparison with the experimental
observations [3, 4] these findings suggest that the stability index « should be two, or at least
very close to two. Except for the log-normal limit, this leaves no room for the log-stable
modeling of the turbulent energy cascade [24, 25]. Put into a more general context, scale
correlations observed in conditional distributions of breakdown coefficients allow for a sensi-
tive parameter estimation of universal multifractals [26]. — For the remainder of this Article



we adopt the limit o = 2, where the Lévy-stable white-noise field of (1) corresponds to a
non-centered Gaussian white-noise field.

Up to now we have only investigated breakdown coefficients with a scale ratio of A = 2,
but there is no reason to restrict the analysis to this scale ratio. Model simulations reveal
that as for A = 2, the distributions of breakdown coefficients for arbitrary 1 < A < 2
turn out to be scale-independent within the upper part 20n < [ < L of the cascade range.
They can be well described with asymmetric Beta distributions supported on [0, A]. Before
addressing the issue of scale-correlations within a new context in Sect. IV, we quantify some
A-dependent properties of the unconditional breakdown coefficients.

Fig. 3 shows the second moment (b*(\, A)) of the breakdown coefficients as a function of
A and A. They have been calculated for a typical length scale within the observed scale-
independent regime 20n <[ < L. If the breakdown coefficients were identical to the random
multiplicative weights ¢(I; A) of Eq. (3), then the modified form

(A, A) = In(b*(\, A))/In A (7)

should reproduce the multifractal exponent 75, which has served as input into the modeling
(1). Evidently this is not the case. The apparent exponent 7, strongly depends on A and
A. In Ref. [4] the empirical expression

Fa(A, A) = 7o(A) + a(A) Inln A (8)

has been found to describe the experimentally observed A-dependence with reasonable pre-
cision. As can be seen in Fig. 3, this expression also fits well to our simulational findings.
Fitted parameters are 72(A = 0) = 0.14, a(A = 0) = 0.034, and 7»(A = +1/2) = 0.196,
a(A = +1/2) = 0.044. Neither for A = 0 nor for A = £1/2 the corrected exponent 7»(A)
is able to reproduce the true 7, = 0.24.

These findings show two things: first, the experimentally observed moment systematics
(8) of breakdown coefficients is again fully reproduced by the stochastic process (1), and,
second, there is no need to argue which combination A, A is best for the moments of break-
down coefficients to reproduce the correct scaling exponents. As to the latter point, Ref. [12]
has conjectured that the best combination is A = 2, A = £1/2. In fact, another quick look
at Fig. 3 reveals that this combination produces an apparent intermittency exponent which
comes closest to the true one. Looking again at the construction (1)-(3) of our stochastic
process, much better suited observables for the extraction of true multifractal exponents are
the two-point correlation densities (4). See also Refs. [27, 28] for related data analysis.

IV. APPARENT SCALE-CORRELATIONS II: KRAMERS-MOYAL
COEFFICIENTS

We return to the issue of scale correlations and discuss the moments
1 n
D,(Ing;l, N\, A) = o 1n)\((lnb(l, A A))  Ing) (9)
of logarithmic breakdown coefficients conditioned on the logarithmic coarse-grained field.
For A = 0 and a typical length scale, the 1 < A\ < 2 dependence of the first two moments is
shown in Fig. 4. A good empirical parametrization of the simulational results is given by
Di(Ing; 1, A, A) = aro(l,A) + ap (LA A) (Ing; — (Ingg)) + - - (10)
Do(lnep I, A, A) = ago(l, A\, A) + ag1 (I, A, A) (Ing; — (Ingy)) + - -+ . (11)




All linear D; curves are found to intersect at lne; = (Ineg;), which makes the coefficient ayq
independent of A\. Already for A = 2 the slope ay; is positive and increases further, the
smaller A\ becomes. This positive correlation between logarithmic breakdown coefficient and
logarithmic coarse-grained field appears to converge for A sufficiently close to one. See also
Fig. ba, which illustrates the [ dependence of aq; for various A. As for the second-order
moment, the slope coefficient as; remains close to zero, being positive (negative) above
(below) A ~ 1.15. This makes Dy more or less independent of Ineg;, but not of \. The
coefficient asy declines rapidly as A becomes smaller; see also Fig. 5b.

For comparison, we give the respective unconditional moments of the log-normal random
multiplicative weights of Eq. (3):

(Ing)/InA = —75/2, (12)
(In*q)/2In A = 75/2 + (72/8) In \ . (13)

These relations follow straightforwardly from the multifractal sum rules [28], which relate the
cumulants of the logarithmic random multiplicative weights to the multifractal exponents.
Except for a negligible 2 > A > 1 dependence of (13), the two moments are constant. The
comparison of (12)-(13) with (10)-(11) demonstrates again that the breakdown coefficients
should not be mixed up with the random multiplicative weights.

However, the comparison of (10) with (12) leaves us with a surprising detail. Fig. 6
illustrates the [ dependence of the coefficient a19. The results for A =0 and A = £1/2 are
almost identical and show only a very weak Inl dependence. More or less the coefficient is
constant and takes on the value a;p ~ —0.12, which coincides with (12). Without having a
deeper explanation at hand, it appears that a9 allows to extract the value of the intermit-
tency exponent with reasonable precision. — Due to (13), a similar extraction might also be
successful from (11). A glimpse at Fig. 5b destroys this hope. The coefficient ayy strongly
depends on A\ and weakly on [. To some degree it also depends on A. Except for A = 2, its
value is always well below 75/2 = 0.12 of (13).

If the moments (9) converge in the limit A — 1, they would become the Kramers-Moyal
coefficients of the Markovian description of the turbulent energy cascade [5, 6]. Since any
data-driven extraction faces difficulties with this limit, two different operational definitions
have been put forward: Ref. [5] uses a relative, [ independent truncation at \; = 1.04,
whereas Ref. [6] employs an absolute, but [ dependent truncation at Ay = /(I — 4.4n). We
have adopted these two operational definitions with the small modifications \; = 16/15
and Ay = [/(l — 4n), adopted to our numerical resolution. Fig. 7 illustrates the model-
based outcome for the drift coefficient v(I) = a11(, A\, A = 0) and the diffusion coefficient
D(l) = a(l,\,A = 0). The curves corresponding to the A\; limit are identical to the
A = 16/15 curves of Fig. 5; see also Fig. 4, where the two bold curves correspond to the two
different limits. In the A; limit, the diffusion coefficient is more or less constant, whereas the
drift coefficient increases to some extend with increasing length scale. Although the model
has not been fitted to the low-temperature helium-jet data used in Ref. [5], the order of
magnitude of the found drift and diffusion coefficient matches well the values v = 0.21 and
D = 0.03 stated in this reference. The Ay limit results in an [ dependence for the drift as
well as the diffusion coefficient, which can be parametrized with (1) = 0.012(1/n)**! and
D(l) = 0.32(1/n)7%52. Also shown in Fig. 7 are the expressions () = 0.32 — 0.051n(L/])
and D(I) = 0.01(L/1)** of Ref. [6], which again have been extracted from low-temperature
helium-jet data. Whereas the functional forms are identical for the diffusion coefficient, the
functional forms for the drift coefficient are a little different. However, orders of magnitude



and trends are close by. — Overall, the model findings for both operational definitions of
the A — 1 limit are in good qualitative agreement with the experimental results stated in
Refs. [5, 6]. This shows that there is no need to argue whether the one definition is more
sensitive than the other [6]. Even more important, this demonstrates that the observed scale
correlations (y # 0) and scale-dependence (v = v(I), D = D(l)) can not be interpreted as
signatures for the turbulent energy cascade to deviate from a scale-independent and scale-
uncorrelated multifractal process.

V. CONCLUSION

The scale correlations, appearing in conditional distributions and moments of coarse-
grained observables like breakdown coefficients, are not in conflict with random multifrac-
tal processes, which have no built-in scale correlations. Given the quantitative agreement
reached between the model findings and the results extracted from turbulent data, we are
now tempted to claim that these apparent scale-correlations go hand in hand with non-
conservative random multifractal processes. The former are a consequence of the latter and
have to be there! In this respect, it would be interesting to check on scale correlations in
other known multifractal processes, like for example Internet traffic engineering [29] and
econophysics [30, 31]. As to fully developed small-scale turbulence, our findings demon-
strate that random multifractal processes appear to contain more truth than previously
anticipated.
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FIG. 1: Unconditional distributions of breakdown coefficients with A = 2, A = £1/2 at scale
[ = 32n within the scale-independent regime 201 < | < L. They have been sampled from model
traces with parameter settings a = 2.0 and 7(2) = 0.18 (solid), 0.24 (dashed), 0.30 (dash-dotted).

For comparison a symmetric Beta distribution p(b) ~ v%71(2 — )%~ with 3 = 3.2 is also shown
(thin solid), which has been reported in the analysis of a high-Reynolds number turbulent flow [3].
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FIG. 2: Unconditional and conditional distributions of breakdown coefficients for A =2, A = £1/2
(first column), 0 (second column), at the typical scale | = 32n. From top to bottom row the stable
index has been set to a = 2, 1.7, 1.4. The intermittency exponent has been fixed to 7o = 0.24. For
comparison, respective log-stable distributions p(q) for the random A = 2 multiplicative weights of
Eq. (3) are shown in the third column.
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FIG. 3: Apparent intermittency exponent 7 = In(b?(\, A))/In X as a function of the scale ratio A
for A = £0.5 (triangle) and 0.0 (bullet). The second moment of the breakdown coefficients has
been calculated for a typical length scale within the scale-independent regime. The solid curves
represent a fit according to the suggestion (8) of Ref. [4]. For comparison, the dashed line shows
the true 7 = 0.24, which has served as model input.
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increasing slope for Dj, and from top to bottom for Ds). Parameters are A = 0 and, as a typical
length scale, [ = 2567. For comparison also the moments (12) and (13) (with A = 1) are shown as
dashed lines.
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represent the parameterizations (1) = 0.012(I/n)%5%" and D(I) = 0.32(1/n)~%52. For comparison,
the A1 result (dashed) of Ref. [5] and the Ay result (dotted) of [6] are shown, which have been
extracted from a low-temperature helium-jet flow.



