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Preface

This dissertation presents the outcome of the research I have done during my PhD
program at the Department of Operations Research at the University of Aarhus.
The objective of my work has been to develop solution methods integrating in-
teger programming (IP) and constraint programming (CP) and to find practical
applications for which such methods can be successfully applied.

At the beginning of my PhD programme a Danish net-operator Sonofon pre-
sented a job scheduling problem. Since hybrid IP/CP methods have previously
performed very well on similar applications, I started working on the problem
together with Christian Roed Pedersen and Kim Allan Andersen. Unfortunately,
we discovered that the size of the problem prevented the use of an exact solution
method and instead a tabu search was developed. A paper [67] describing the
solution method has subsequently been accepted for publication in Computers &
Operations Research.

During the work for Sonofon I discovered the field of sports scheduling, which
is a research area containing numerous small, highly constrained and very hard
optimization problems. These problems turn out to be well suited for hybrid
IP/CP methods since they often contain a very hard feasibility aspect and at the
same time have an objective function. For this reason solution methods for sports
scheduling problems became the main focus in the rest of my work.

In Denmark, soccer is the number one sport and developing a solution method
for scheduling the best Danish soccer league quickly became a natural goal. How-
ever, before this goal could be achieved a number of preliminary steps had to be
taken.

During a three months visit to Carnegie Mellon University at the beginning
of 2005 I worked together with Michael A. Trick. At first we developed a hybrid
IP/CP method for mirrored double round robin tournaments taking advantage of
a known decomposition approach. Compared to previous methods our approach
decreases computation time by following an iteration scheme instead of solving one
step at a time. The solution method gave a lot of insight into how the strengths
of IP and CP can be utilized, however, the real breakthrough came when we
combined the solution method with a pattern generating approach. This second
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ii Preface

approach is now known as the pattern generating Benders approach and a paper
[72] describing this approach has been accepted for publication in the European
Journal of Operational Research.

In the fall of 2005 the approach was further developed in order to handle the
numerous constraints present for the best Danish soccer league. This research
has led to a solution method capable of finding high quality solutions for the
tournament and the Danish Football Association has used it for scheduling the
2006/2007 season. A paper [70] presenting the application and the solution method
has been submitted to an international journal of operations research.

In addition to the work relating to the Danish soccer league, I have also consid-
ered sports scheduling problems in which the travel distance must be minimized.
This problem applies for many leagues in the USA, since the teams travel from
one away game to the next without returning home. In a paper [73] presented
at the CP-AI-OR 2006 conference and published in Lecture Notes of Computer
Science, Michael A. Trick and I define a new problem called the timetable con-
strained distance minimization problem (TCDMP) and we evaluate a number of
solution methods for this problem. Furthermore, an extended version of the paper
has been submitted to Annals or Operations Research in which we present a new
solution method denoted the circular traveling salesman approach for a problem
called the traveling tournament problem.

Finally, I have used the knowledge on sports scheduling obtained during my
PhD programme to write a survey paper on round robin tournament schedul-
ing. Again this is a joint work with Michael A. Trick and the paper [74] will be
submitted to an international journal of operations research.
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Chapter 1

Introduction

The field of sports scheduling comprises a challenging research area with a great
variety of problems and applications. Most of the problems are very hard com-
binatorial optimization problems providing a perfect platform for developing and
testing all kinds of solution methods. During the last 30 years, these problems
have encouraged a great amount of research on building effective solution methods
leading to a huge repertoire of approaches including column generation, Benders
decomposition, constraint programming methods, hybrid methods combining inte-
ger programming and constraint programming, and meta heuristic methods such
as tabu search, genetic algorithms and simulated annealing. The individual meth-
ods have become more and more effective but still problems with just eight teams
remain unsolvable.

Furthermore, the area provides lots of practical applications since individual
sports leagues face different constraints and have different objectives. The appli-
cations are normally characterized by a huge amount of conflicting requirements
coming from teams, fans, etc. To solve these problems, specialized solution meth-
ods capable of integrating the application specific requirements into state-of-the-
art algorithms are required. In the literature various approaches are presented,
but as the algorithms improve, the number of constraints grow. The ability to
obtain high quality solutions for sports leagues does not only provide schedules
satisfying team requests but can result in huge earnings to the sports leagues. The
schedule of a given sports league may constitute a significant factor when the price
of TV rights are negotiated with TV networks.

In Chapter 2 we give a short introduction to the standard solution methods
for combinatorial optimization problems. The basic concepts of IP, CP, and meta-
heuristic algorithms are explained and we discuss hybrid algorithms combining IP
and CP. All the solution methods have been used within the sports scheduling
society and the solution methods presented later in this dissertation rely on the
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2 Introduction

standard approaches.
Chapter 3 is based on Rasmussen and Trick [74] and gives a comprehensive

survey of the sports scheduling literature. It introduces the sports scheduling ter-
minology and presents the main results obtained in the literature. The papers
on sports scheduling are partitioned into two categories: papers on break mini-
mization and papers on distance minimization. Within each category an almost
chronological review of the current papers are presented.

After the survey, the following three chapters focus on the constrained mini-
mum break problem which is a classical sports scheduling problem. We must find a
schedule for a round robin tournament facing some application specific constraints
and at the same time minimize the total number of breaks. Various solution meth-
ods have been proposed to solve the problem and a general decomposition scheme
has been adopted in the literature.

Chapter 4 presents the first approach using Benders decomposition to solve the
constrained minimum break problem. The algorithm is capable of outperforming
traditional IP and CP models and it demonstrates how Benders decomposition
can be applied to sports scheduling problems.

The technique from Chapter 4 is further developed in Chapter 5 which is based
on Rasmussen and Trick [72]. The solution method presented here is known as
the pattern generating Benders approach and it employs a decomposition scheme
widely used in the sports scheduling literature. The enhanced algorithm leads to
significant reductions in computation times compared to previously known meth-
ods and it is capable of solving previously unsolved problem instances.

The pattern generating Benders approach is applied to the Danish soccer league
in Chapter 6 which is based on Rasmussen [70]. This is a triple round robin tour-
nament facing a large number of conflicting constraints. The pattern generating
Benders approach presented in Chapter 5 is developed for a double round robin
tournament with place constraints but in this chapter we show how to modify the
algorithm to deal with the additional constraint types present in the application
and to solve a triple round robin tournament instead of a double. The modified
algorithm is capable of producing high quality schedules and it has been used to
find the schedule for the 2006/2007 season.

In Chapter 7 based on Rasmussen and Trick [73] we shift attention towards
tournaments concerning distance minimization. Such tournaments are normal in
American sports leagues since teams often travel from one away game to the next
without returning home as they often do in European leagues. We define a new
problem called the timetable constrained distance minimization problem (TCDMP)
and compare four solution methods for solving the problem. Furthermore, we
present a new heuristic solution method called the circular traveling salesman
approach (CTSA) for a well known sports scheduling problem named the traveling
tournament problem (TTP). The CTSA are able to find good solutions quickly
and the TCDMP can be used to obtain further improvements.
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Finally, in Chapter 8 we consider a practical job scheduling problem faced
by Sonofon, a Danish net operator. This is a large-scale precedence constrained
scheduling problem with time windows in which the makespan must be minimized.
Furthermore, the jobs are elastic such that the capacity and time consumption
are elastic. We present a tabu search algorithm for solving the problem and the
computational results show a significant reduction in makespan compared to the
strategy implemented by Sonofon. This chapter is based on Pedersen et al. [67].





Chapter 2

Solution Methods

Before turning towards the sports scheduling literature, let us give a brief introduc-
tion to the solution methods used in the succeeding chapters. Sports scheduling
problems and scheduling problems in general are combinatorial optimization or
feasibility problems and the common solution methods include integer program-
ming (IP), constraint programming (CP), hybrid IP/CP algorithms and meta-
heuristic algorithms. These four general frameworks solve combinatorial problems
in different ways but they all provide powerful tools for finding optimal or near
optimal solutions. We discuss the basic concepts of each method and outline the
algorithms used in this dissertation.

2.1 Integer Programming

Within the operations research community, discrete problems have been modelled
as IP problems or mixed integer linear programming (MILP) problems. Both
types of problems are formulated as linear programming (LP) problems containing
a linear objective function which must be minimized or maximized and a number
of linear inequality or equality constraints which must be satisfied. The difference
between LP problems and IP/MILP problems are the integrality requirements
enforced on the variables in an IP problem and on a subset of the variables in a
MILP problem. Although they reduce the feasible region, these constraints make
the problems substantially harder to solve and specialized solution techniques are
necessary.

In the following sections we will give a short introduction to some of the solution
methods which have proven effective at solving IP problems and which have been
relevant to this research.
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6 Solution Methods

2.1.1 Branch and Bound

Branch and bound algorithms constitute the backbone of integer programming
and to date the most effective solution methods are built on a branch and bound
framework. It is a tree search algorithm which uses variable branching to obtain
integrality and bounds to avoid total enumeration.

Initially, the branching tree consists of a single node called the root node but
additional nodes are added as the search proceeds. Each of the nodes has an
associated LP problem and the problem associated with the root node is the LP
relaxation of the IP or MILP problem considered.

During the search, the algorithm keeps track of the nodes which have not been
considered previously and nodes are chosen from this set according to some node
selection strategy , see Nemhauser and Wolsey [65]. When a node has been chosen,
the associated LP problem is solved and one of the following four situations will
occur: i) the problem is infeasible, ii) the problem is feasible with an integer
solution, iii) the problem is feasible with a fractional solution and a solution value
worse than the current best integer solution value or iv) the problem is feasible
with a fractional solution and a solution value better than the current best integer
solution value. If situation i) or iii) occurs, the node can be pruned without
further notice. If situation ii) occurs, the node can also be pruned, however,
in case the solution value is better than the current best integer solution value,
the new solution is stored as the current best. Finally, if situation iv) occurs,
the algorithm chooses an integer variable with a fractional value according to a
branching strategy , see [65], and it branches on the value of this variable.

Branching takes place by creating two child nodes of the current node. Both
of these nodes are associated with an LP problem similar to the problem from
the parent node. The first node contains an additional constraint saying that the
value of the branching variable must be no greater than the current value rounded
down, while the second node contains a similar constraint saying that the value
must be no less than the current value rounded up.

The algorithm continues from node to node until all nodes have been visited.
When this happens, we have either found the optimal solution or proven that the
problem is infeasible.

2.1.2 Branch and Cut

Branch and cut is a generalization of branch and bound which was developed in
the 1980’s. It combines the divide and conquer philosophy used in branch and
bound with the idea of improving the LP relaxation by adding cuts which cuts off
infeasible solutions.

Originally, such cuts were used in cutting plane algorithms proposed by Gomory
[38] in the beginning of the 1960’s. However, although finite convergence of the
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cutting plane algorithms has been proven, the algorithms often perform poorly.
This led to a lack of confidence in the gains from using cutting planes until the
method was combined with branch and bound. The merger of cutting plane
algorithms and branch and bound algorithms took place in the 1980’s and the
results have moved focus back to cutting planes.

A branch and cut algorithm uses the branch and bound framework but it
does not automatically branch when a fractional solution is obtained. Instead,
valid cuts violated by the current solution are added to the LP relaxation and the
problem is solved again. New cuts are generated for a number of iterations and
then the algorithm branches and continues to the next node.

The cuts help the LP relaxation by letting the feasible region approximate
the convex hull of the feasible integer solutions. The main problem of cutting
plane algorithms is slow convergence towards this convex hull but branch and cut
algorithms are able to branch when the convergence slows down. The combination
has proven to be very effective since the improved LP relaxations result in smaller
search trees.

In addition, polyhedral theory has provided strong cutting planes for a variety
of problems such as the traveling salesman problem and knapsack problems. The
use of these cutting planes in branch and cut has lead to huge improvements for
the particular problems. Furthermore, branch and cut algorithms are also very
effective at solving IP problems in general. For the general problems, families
of general inequalities based on knapsack problems [24], Gomory cutting planes
[3, 38] and lift and project cutting planes [2] have proven efficient.

We refer to Nemhauser and Wolsey [65] for a thorough description of cutting
plane methods and Mitchell [60] for a survey on branch and cut algorithms.

2.1.3 Branch and Price

Branch and Price algorithms are another generalization of branch and bound.
In this kind of algorithm additional columns are added to the LP relaxation, in
contrast, to the rows added in branch and cut.

At the root node of the branching tree we solve a restricted master problem
where most of the columns are omitted. This means that the solution may not
be optimal but a pricing problem is used to find improving columns if any exist.
The pricing problem uses the dual variables of the master problem to calculate
the reduced costs of the omitted columns. If improving columns exist, they are
added to the restricted master problem and the restricted master problem is re-
optimized. The algorithm keeps iterating between the restricted master problem
and the pricing problem until no profitable columns are found in the pricing prob-
lem. When this happens the algorithm proceeds to a new node as described in
the branch and bound algorithm. The iterations between the restricted master
problem and the pricing problem are repeated in each node of the search tree.
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Branch and price algorithms are applicable to problems with a huge number of
constraints or problems where a reformulation with a huge number of constraints
may present some advantages. These advantages could for instance be a tighter
LP relaxation or a formulation where the columns implicitly satisfy some of the
constraints. The underlying idea is that, since most of the variables will be zero in
an optimal solution and the entire problem cannot be solved efficiently, the extra
time used to find improving columns will be offset by the time reduction obtained
by solving the reduced master problem instead of the original LP relaxation.

The branch and price technique has successfully been applied to a number of
practical applications including sports scheduling problems which we will get back
to. However, the technique is perhaps best known from the results obtained for the
airline crew scheduling problem. The problem consists of assigning crews to flights
such that costs are minimized and a large number of regulations are satisfied. Due
to the regulations and a complex cost structure, it is undesirable to formulate the
problem using 0-1 variables assigning a single crew to a single flight. Instead, all
feasible flight sequences are enumerated and the problem is formulated by using
variables which assign a crew to a flight sequence. The obvious problem in this
formulation is the number of feasible flight sequences which is extremely large for
practical applications but branch and price algorithms have been used to overcome
this problem. We refer to Savelsbergh [80] and Barnhart, Johnson, Nemhauser,
Savelsbergh, and Vance [8] for further description of branch and price.

2.1.4 Benders Decomposition

Benders [12] proposed a decomposition method for solving mixed integer linear
programming (MILP) problems. It partitions the problem into a master problem
containing all the integer variables and a subproblem containing the rest of the
variables. When the master problem is solved it corresponds to finding trial values
for the integer variables and the subproblem is afterwards used to obtain the best
solution consistent with the trial values. From this solution a Benders cut is
derived which gives a valid bound on the solution value. The cut is added to the
master problem and the master problem is re-solved.

The solution method is best explained by looking at an example and therefore
we introduce the following MILP problem

min cx + dy

s.t. A1x ≥ b1

A2x + By ≥ b2

x ∈ Zn1
+

y ∈ Rn2
+
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where c ∈ Rn1 , d ∈ Rn2 , A1 ∈ Rm1 × Rn1 , A2 ∈ Rm2 × Rn1 , B ∈ Rm2 × Rn2 ,
b1 ∈ Rm1 and b2 ∈ Rm2 . This problem is decomposed into the following master
problem and subproblem.

Master problem: Subproblem:
min z min dy + cx̄

s.t. z ≥ cx s.t. By ≥ b2 −A2x̄

A1x ≥ b1 y ∈ Rn2
+

x ∈ Zn1
+

where x̄ in the subproblem refers to the values assigned to x in the master problem.
The use of z in the master problem will become clear when we derive the Benders
cut.

The Benders cut is obtained by using the dual problem of the subproblem

max cx̄ + (b2 −A2x̄)u
s.t. uB ≤ d

u ∈ Rm2
+

Since x̄ does not occur in the constraints of the dual problem, any x̄ will be
feasible and the value of the subproblem will be greater than cx̄ + (b2−A2x̄)u for
any x̄. When we let ū denote the optimal solution to the dual problem, we obtain
the cut

z ≥ cx + (b2 −A2x)ū

which can be added to the master problem. The algorithm continues until the
solution value of the master problem is no less than the solution value of the
subproblem. In this case an optimal solution has been found.

The essential part of Benders decomposition is the Benders cuts which make
it capable of learning from mistakes. When a Benders cut is added, it does not
only give information about the current solution to the master problem, but it
gives information about all the feasible solutions. In this way the algorithm is
able to avoid enumerating through all the solutions like the branch and bound
algorithm is able to avoid searching through the entire search tree because of the
bounds which are obtained during the search. Benders decomposition is discussed
by Hooker and Ottosson [50], Nemhauser and Wolsey [65] and Schrijver [84].

2.2 Constraint Programming

CP is an alternative technique for solving combinatorial optimization problems,
which has evolved from research done in the artificial intelligence community back
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in the 1960’s and 1970’s. The technique has been developed in parallel to IP but
although the two techniques are both used to solve combinatorial problems, almost
no interaction has taken place before the 1990’s.

In CP, a problem is modelled by using a finite set of variables, a finite domain
for each variable and a finite set of constraints. The task is to find an instantiation
(assignment) of each variable to a value from the corresponding domain such that
all constraints are satisfied. This sounds very similar to the description of an IP
problem, however, in IP all constraints must be formulated using linear functions,
since the LP relaxation should be available. CP, on the other hand, offers a much
richer modelling language which allows a huge variety of constraint types. In this
way it is easier to formulate a problem using an intuitive model and the solution
technique becomes easier to use for people without a deeper understanding of the
underlying mechanisms.

In the following sections, we give a brief introduction to some of the solution
methods used to solve CP problems but first we will discuss the constraints used
in later chapters. For a detailed description of CP we refer to Hooker [48] and
Marriott and Stuckey [57]. Wallace [92] gives a survey of applications and Barták
[9] gives an introduction to CP in general.

2.2.1 Constraints

In addition to linear equality and inequality constraints known from IP, CP also
allows logic constraints and global constraints.

Logic constraints consist of a logic statement such as

(x = 0) ⇒ (y = 0) or
∑

i

(xi = 0) = 10.

and they are satisfied if the statements are true. For the first example, this means
that the constraint is satisfied if both x and y equal 0 but it is also satisfied if
x 6= 0 no matter which value y takes. In the second example, the constraint is
satisfied if exactly 10 of the x variables equal 0, since the expression (xi = 0)
corresponds to 1 if it is true and 0 otherwise.

Global constraints are constraints representing a set of constraints with a spe-
cial structure. Often they are used to gather a group of similar constraints to help
the solution methods. We outline the syntax of the following global constraints,
since they are applied in subsequent chapters

• alldifferent(x1, . . . , xn).
As the name suggests the constraint is satisfied when all the variables x1, . . . ,
xn are instantiated to different values.

• sequence(nbMin, nbMax,width, vars, values, card)
In this constraint nbMin, nbMax and width are integers, vars is an array of
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variables and values and card are arrays of integers having the same index
set I. The constraint is satisfied when the following holds true. For each
index i ∈ I the value valuei occurs exactly cardi times in the vector vars
and in any subsequence of length width of vars the value valuei occurs at
least nbMin and at most nbMax times.

• atmost(card, values, vars)
The syntax of this constraint is like the syntax of sequence and it is satisfied
if the value valuei occurs at most cardi times in the array vars for all i ∈ I.

• one-factor(x1, . . . , xn)
The one-factor constraint is satisfied when the variables x1, . . . , xn are paired
two and two such that xi 6= i and xi = j if and only if xj = i.

The following example shows how a combinatorial problem can be formulated
as a CP problem by using logic and global constraints.

Example 1 Consider a tournament with 6 teams. The tournament is played over
a period of 5 days, all teams must play one game each day and all teams must meet
all other teams once. This problem can be formulated using the global constraints
alldifferent and one-factor leading to the following CP model

alldifferent(xi1, . . . , xi5) ∀i ∈ T (2.2.1)
one-factor(x1s, . . . , x6s) ∀s ∈ S (2.2.2)
xis ∈ T \ {i} ∀i ∈ T, ∀s ∈ S (2.2.3)

where T is the set of teams, S is the set of days and the variable xis gives the
opponent of team i at day s. ¤

2.2.2 Backtracking

CP problems can be solved by a systematic search algorithm known as backtrack-
ing. This is a tree search algorithm like the branch and bound algorithm but in
this setup the nodes are referred to as choice points. At each choice point, a vari-
able is instantiated to a value consistent with the values of the already instantiated
variables. In this way, the algorithm keeps extending a partial solution towards
a complete solution until an inconsistency is detected or a feasible solution has
been obtained. In the first case, the algorithm backtracks in the search tree until
it reaches the most recent instantiated variable with alternative values. From this
choice point it once again starts instantiating variables.

The backtracking algorithm performs better than total enumeration but it
suffers from the following drawbacks:
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1. Trashing
Trashing is when the algorithm repeatedly instantiates variables to values
which are infeasible for the same reason. This happens because the algorithm
does not identify conflicting values.

2. Redundant work
The backtracking algorithm does not remember conflicting instantiations
and this means that the same variables can be assigned to the same conflict-
ing values in different branches of the search tree.

3. Late conflict detection
Conflicts are not detected before an inconsistency occurs.

The first and second of these drawbacks can be handled by backjumping and
backmarking described by Barták [9]. The third drawback can be handled by
consistency checks discussed in the following section. In Example 1 we show why
late conflict detection is a problem.

Example 1 (Continued) The variables xis can naturally be represented in ma-
trix form where each row represents a team and each column represents a day.
Now, imagine that we use backtracking to solve the problem, we instantiate vari-
ables from the upper left corner of the matrix and we try to assign as high values
as possible to the variables. In this case we would reach the partial solution dis-
played in Figure 2.1. Already at this point we can see that the partial solution is
inconsistent since the four instantiations imply that team 3 and team 4 meet each
other in day 1 and day 2. However, this is not detected by the backtracking algo-
rithm since it is able to continue much deeper in the search tree before constraints
are violated. Obviously, this leads to a lot of work which could have been avoided
if the inconsistency had been detected immediately. ¤

Day: 1 2 3 4 5

Team 1: 6 5 - - -
Team 2: 5 6 - - -
Team 3: - - - - -
Team 4: - - - - -
Team 5: - - - - -
Team 6: - - - - -

Figure 2.1: Partial solution.
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2.2.3 Consistency

A set of constraints is said to be consistent when all assignments which cannot be
part of a feasible solution are explicitly ruled out. This means that the variables
can be instantiated one by one without backtracking. Unfortunately, such a degree
of consistency is hard to obtain and instead a lesser degree is used in practice.

Before discussing the alternative degrees of consistency, let us introduce the
constraint graph also known as the dependency graph. The constraint graph con-
tains a node for each variable in the problem and two nodes are connected by an
edge if the corresponding variables occur in the same constraint. The constraint
graph leads to the notions of node consistency , arc consistency and k-consistency .

Node consistency is the simplest form of consistency and is obtained when
all values which violate unary constraints are removed from the domains of the
variables.

Arc consistency is obtained when all values which are inconsistent with binary
constraints are removed. This means that any consistent instantiation of one
variable can be extended to a consistent instantiation of an arbitrary additional
variable.

Finally, k-consistency is obtained when any consistent instantiation of k − 1
variables can be extended to a consistent instantiation of an arbitrary additional
variable. We say that a constraint set is strongly k-consistent when it is l-consistent
for all l ≤ k. Node consistency corresponds to strong 1-consistency while arc
consistency corresponds to strong 2-consistency.

Example 1 (Continued) Since the constraints (2.2.3) are unary constraints node
consistency removes the value i from the domain of variable xis for all i ∈ T and
all s ∈ S. The constraints (2.2.1) and (2.2.2) enforce binary constraints but arc
consistency is not able to obtain further reductions in the domains. ¤

Consistency techniques can be used to solve CP problems but the task of
obtaining n-consistency for a problem with n variables is often greater than solving
the problem using backtrack. Instead, the consistency techniques are combined
with backtracking.

2.2.4 Constraint Propagation

The combination of backtracking and consistency techniques are known as con-
straint propagation and constitutes to date the most effective method for solving
CP problems. Constraint propagation uses the strengths of both techniques and
avoids some of the drawbacks, since the search tree can be reduced and we can
limit the consistency techniques to obtain k-consistency for a small k. Often arc
consistency is used but the trade-off between the reduction in the search tree and
the reduction in the time used to obtain consistency is problem specific.
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At each choice point in the search tree, consistency techniques are used to
reduce the domains of the variables. Each time we move to a new choice point, a
variable has been instantiated to a fixed value and the consistency techniques may
be able to reduce the domains of variables occurring in the same constraints as the
fixed variables. This may lead to reductions in the domains of other variables and
in this way inconsistencies can be detected long before the backtracking algorithm
reaches an inconsistency.

Since the domain of one variable may affect the domain of other variables, it is
not enough to use the consistency techniques once at each node. The techniques
have to be used repeatedly until no further domain reductions are possible.

Example 1 (Continued) Consider once again the instantiation x11 = 6, x21 = 5,
x12 = 5 and x22 = 6. When using arc consistency we can reduce the domains of
x31, x41, x51, x61, x32, x42, x52 and x62 to:

Dx31 = {4, 5, 6}, Dx41 = {3, 5, 6}, Dx51 = {2}, Dx61 = {1},
Dx32 = {4, 5, 6}, Dx42 = {3, 5, 6}, Dx52 = {1}, Dx62 = {2},

by using constraints (2.2.2). The variables with a domain reduced to a singleton
can be instantiated immediately and arc consistency can be applied again. This
leads to the domains:

Dx31 = {4}, Dx41 = {3}, Dx32 = {4}, Dx42 = {3},
and the variables x31, x41, x32 and x42 can be instantiated. Applying arc con-
sistency once more detects an inconsistency since x31 = x32 and x41 = x42. In
this way the inconsistency is observed without using additional choice points and
redundant branching is avoided. ¤

2.3 Combining IP and CP

Hooker [49] notes that, although both CP and IP are very effective methods for
solving combinatorial problems, they use different strategies to obtain solutions.
IP uses the linear relaxation to find a good but often infeasible solution while the
branching tree is used to obtain feasibility. CP maintains feasibility along the
search by starting with a partial feasible solution which is extended to a complete
feasible solution during the search.

The differences in the solution methods lead to complementary strengths. IP
is in general very good at solving optimization problems since the LP relaxation
automatically optimizes the objective value and gives a lower bound. The CP
framework does not provide such a bound but the propagation techniques have
proven to be successful at solving highly constrained feasibility problems such as
planning and scheduling problems.
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A natural question arises: Can CP and IP successfully be combined into a
hybrid method which outperforms the state of the art versions of CP and IP? The
answer is yes for some problem classes.

Sellmann, Zervoudakis, Stamatopoulos, and Fahle [85] and Fahle, Junker,
Karisch, Kohl, Sellmann, and Vaaben [29] present hybrid methods for solving
the airline crew assignment problem. As discussed in Section 2.1.3, branch and
price is well suited for this type of problems but hybrid approaches are able to
exploit the strengths of both CP and IP. Some very strict regulations for Eu-
ropean airlines make CP advantageous for finding feasible flight sequences while
IP provides the best framework for solving the master problem. In this way the
techniques are combined and leads to a superior algorithm.

Another application where hybrid methods have proven efficient is machine
scheduling on parallel machines. This setup has been used to show considerable
reductions in CPU time obtained by a general framework for combining IP and
CP known as logic-based Benders decomposition. Since this decomposition tech-
nique plays an important role in the following chapters, we will give a general
introduction to the concept.

2.3.1 Logic-Based Benders Decomposition

Logic-based Benders decomposition was introduced by Hooker and Yan [51] who
used it for logic circuit verification. Later Hooker and Ottosson [50] formally de-
veloped the idea and illustrated the technique by applying it to propositional sat-
isfiability and to 0-1 programming problems. Jain and Grossmann [53] used it for
solving a minimum-cost scheduling problem on dissimilar parallel machines where
release and due dates must be satisfied and they showed significant reductions
in computation times when compared to CP and IP models. In the scheduling
problem used by Jain and Grossmann, the subproblems split into one-machine
disjunctive feasibility problems but Hooker [47] shows how logic-based Benders
decomposition can be applied to scheduling problems where the subproblems split
into one-machine cumulative optimization problems.

To explain logic-based Benders decomposition we use the problem

min f(x, y)
s.t. C1(x)

C2(x, y)
x ∈ Dx, y ∈ Dy

where x and y are vectors of variables and Dx and Dy are the associated domains.
C1 and C2 are sets of constraints but in contrast to traditional Benders decompo-
sition, we do not restrict these constraints to be equality or inequality constraints.
The constraints discussed in Section 2.2.1 are also applicable.
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The partitioning of the problem is similar to the partitioning used in tradi-
tional Benders decomposition and we obtain the following master problem and
subproblem:

Master problem: Subproblem:
min z min f(x̄, y)
s.t. C1(x) s.t. C2(x̄, y)

x ∈ Dx y ∈ Dy

z ∈ R+

where x̄ denotes a solution to the master problem.
The next step is to obtain a cut which can be added to the master problem

when the subproblem has been solved. This cut should be able to prevent the
master problem from choosing the same solution again if it leads to an infeasible
subproblem and it should impose a lower bound on the objective value, if the
master problem finds a feasible solution which has been found before.

The traditional Benders cut obtained from the dual solution to the subproblem
satisfies both of these criteria and constitutes a very elegant way of transferring
information from the subproblem to the master problem. However, the broader
framework of logic-based Benders decomposition does not provide an LP subprob-
lem and a new kind of cut must be derived. To obtain such a cut we use an
inference dual which is the problem of obtaining the strongest bound for a prob-
lem. In this case we use the inference dual for the subproblem which can be stated
as

max β

s.t. (C2(x̄, y) ∧ y ∈ Dy) ⇒ (f(x̄, y) ≥ β).

The optimal value of the inference dual β∗ gives a valid lower bound on the optimal
value of the subproblem and this lower bound can be used to derive a cut for the
master problem. The cut

(x = x̄) ⇒ (z ≥ β∗)

forces the value of the master problem to be greater than β∗ when x̄ is chosen.
Unfortunately, this cut is not very strong since it only applies when x equals x̄.
Instead, we need to extend the lower bound to a function βx̄(x) which gives a
valid lower bound on the master problem for all x ∈ Dx and is equal to β∗ when
x equals x̄. Such a function leads to the cut

z ≥ βx̄(x)

which can be added to the master problem. This cut is known as a logic-based
Benders cut and, as the name suggests, it is the counterpart of the Benders cut
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from traditional Benders decomposition. This cut is formulated as an optimization
cut but feasibility cuts can also be added. In case the subproblem is infeasible, we
need to find a valid cut which cuts of the current solution or even better which
cuts of a set of infeasible solutions.

How the logic-based Benders cuts are derived depends on the given application.
In [50] cuts for propositional satisfiability and 0-1 programming problems are
derived and in [47] cuts for a disjunctive machine scheduling problem are derived.
In the Chapters 4 - 6 we show how cuts can be derived for sports scheduling
problems.

2.4 Metaheuristic Solution Methods

The solution methods discussed so far have all been exact methods certain to
obtain an optimal solution in a finite amount of time. However, for many com-
binatorial problems and especially for many scheduling problems, the amount of
time needed to find an optimal solution exceeds the time available since an expo-
nential number of solutions exists. When this is the case heuristic methods can
be used instead of exact methods since the ability to find near optimal solutions
in reasonable time is more important than proving optimality.

The heuristic solution methods can be divided into two broad classes of al-
gorithms: constructive algorithms and local search algorithms. The constructive
algorithms build the solution by extending a partial solution until a complete so-
lution has been obtained. This kind of algorithm is often very fast but they may
be of varying quality. The local search algorithms, on the other hand, start from
an initial solution and try to find improving solutions by using some iteration
scheme. They are often very efficient at finding improving solutions but the basic
algorithms face the problem of getting stuck in a local optimum.

During the last 20 years the metaheuristic solution methods have evolved from
the basic local search algorithms and they provide a higher level framework capable
of searching the solution space in an efficient way. There is no exact definition
of a metaheuristic but Blum and Roli [16] outline the fundamental properties
characterizing a metaheuristic algorithm:

• Metaheuristics are strategies that ”guide” the search process.

• The goal is to efficiently explore the search space in order to find (near-)
optimal solutions.

• Techniques which constitute metaheuristic algorithms range from simple lo-
cal search procedures to complex learning processes.

• Metaheuristic algorithms are approximate and usually non-deterministic.
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• They may incorporate mechanisms to avoid getting trapped in confined areas
of the search space.

• The basic concepts of metaheuristics permit an abstract level description.

• Metaheuristics are not problem-specific.

• Metaheuristics may make use of domain-specific knowledge in the form of
heuristics that are controlled by the upper level strategy.

• Today’s more advanced metaheuristics use search experience (embodied in
some form of memory) to guide the search.

Within the class of metaheuristic algorithms, we distinguish between trajec-
tory algorithms and population based algorithms. The trajectory algorithms start
from a single initial solution and travers through the search space by iteratively
replacing the current solution. This group of algorithms include tabu search, sim-
ulated annealing, iterated local search and variable neighbourhood search. The
population based algorithms are based on a learning process which identifies at-
tractive areas of the search space by learning from the solutions obtained earlier.
Instead of focusing on a single solution in each iteration, they focus on a popula-
tion of solutions and new solutions can be obtained by mutating and combining
solutions from this population. This kind of metaheuristics include evolutionary
computation and ant colony optimization.

We will not discuss all the metaheuristic methods but concentrate on tabu
search since this method is used in Chapter 8. For a thorough discussion of
metaheuristic methods we refer to Blum and Roli [16].

2.4.1 Tabu Search

Tabu search introduced by Glover [34] is a trajectory metaheuristic with the ability
to guide the search of a descent heuristic using intelligent strategies. It benefits
from combining long- and short-term memory which helps the algorithm to re-
member good solutions and avoid cycling.

Before going into details, some basic definitions are needed. Given a minimiza-
tion problem: min {f(x)|x ∈ X} and a feasible solution, x̄, a move is defined to
be some modification of x̄ which turns it into a new solution. The exact definition
of a move is problem specific but it is usually restricted to minor modifications
such that the new solution resembles the original solution. From the definition
of a move, we can define the neighbourhood N(x̄) of solution x̄ to be the set of
solutions which can be obtained by performing a single move from x̄. A local
optima is defined to be a solution x̄ for which f(x̄) ≤ f(x) for all x ∈ N(x̄).

In this setup a simple descent algorithm can be used to solve the minimiza-
tion problem by starting from an initial feasible solution and keep moving to an
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improving solution in the neighbourhood until no improving solutions exist. The
descent algorithm may lead to good solutions but it obviously faces a problem
when it encounters a local minima.

Tabu search overcomes this problem by allowing the descent algorithm to per-
form a non-improving move. This makes the descent algorithm capable of escaping
a local minima but it also opens for the possibility of cycling. In order to prevent
cycling, a tabu list is introduced to represent the short-term memory of a tabu
search. The tabu list contains a number of forbidden moves which may result in
cycling and the moves stay in the tabu list for a specified number of iterations. In
this way the tabu search is able to guide the search away from a local optimum
and hopefully find better solutions in the long term.

During the search the algorithm may encounter a tabu move leading to a
desirable solution and in this case the algorithm is allowed to make an exception
and perform the tabu move. To evaluate when a solution is good enough to violate
the tabu restriction, an aspiration criterion is used and in case this criterion is
satisfied a tabu move is allowed.

The long-term memory of a tabu search algorithm is implemented using an
intensification and a diversification strategy . An intensification strategy keeps
track of promising moves or solutions such as moves leading to great reductions
in the objective value. The algorithm then makes sure that solutions or moves
with similar characteristics are considered to see if further improvements can be
obtained. By doing this, the algorithm is able to explore some regions of the
solution space very thoroughly in case they seem attractive.

The diversification strategy complements the intensification strategy by guid-
ing the search away from explored regions in the solution space. This is achieved
by for instance an escape function performing a number of random moves in case
the search gets stuck in some region. Alternatively, the objective function can
be modified during the search to make new regions more attractive compared to
regions explored earlier.

In addition to the standard features described above specialized features can be
adopted to enhance computational results for some problems. For a general intro-
duction to tabu search, we refer to Glover [34, 35] and for a thorough description
Glover and Laguna [36].





Chapter 3

Round Robin Scheduling

As long as there has been competitive sports, there has been a need for sports
schedules. During the last 30 years, sports scheduling has turned into a research
area of its own within the operations research and computer science communities.
While it may seem trivial to schedule a tournament, and combinatorial mathemat-
ics has methods for scheduling simple tournaments, when additional requirements
are added the problem becomes a very hard combinatorial optimization problem.
In fact, for many types of problems, instances with more than 20 teams are con-
sidered large-scale and heuristic solution methods are often necessary in order to
find good schedules.

The challenging problems and the practical applications provide a perfect area
for developing and testing solution methods. In the literature we find meth-
ods ranging from pure combinatorial approaches to every aspect of discrete opti-
mization, including IP, CP, metaheuristic approaches, and various combinations
thereof. The solution methods have evolved over time and today methods exist
capable of finding optimal or near-optimal solutions for hard practical instances.

In addition to the theoretical gains from developing efficient solution methods,
sports scheduling has an economic aspect. Professional sports are big business
and the revenue of a sports league may be affected by the quality of the schedule
since a substantial part of the revenue often comes from TV networks. The TV
networks buy the rights to broadcast the games but in return they want the most
attractive games to be scheduled at certain dates.

In this chapter we give a comprehensive survey of the sports scheduling lit-
erature concerned with scheduling round robin tournaments. The literature is
partitioned into papers on break minimization and papers on distance minimiza-
tion and, for both parts, we present the main contributions and outline the de-
velopment. In order to keep the paper within reasonable size we have restricted
ourselves to papers on round robin tournaments in which teams are associated

21
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with a particular venue. This means that the problem of finding balanced tourna-
ment designs is not considered but for readers interested in this subject we refer
to [15, 17, 40, 41, 54, 58, 79, 89, 98].

3.1 Terminology

In this section we will explain the sports scheduling terminology. It is important
to stress that the terminology is far from consistent in the literature since notions
have multiple meanings. However, to avoid misunderstandings, we will use the
definitions from this section throughout the paper although it may conflict with
papers to which we refer.

A round robin tournament is a tournament where all teams meet all other
teams a fixed number of times. Most sports leagues play a double round robin
tournament where teams meet twice but single, triple and quadruple round robin
tournaments do also occur.

When scheduling a tournament, the games must be allocated to a number of
time slots (slots) in such a way that each team plays at most one game in each
slot. When the number of teams n is even at least (n − 1) slots are required
and when n is uneven at least n slots are required to schedule a single round
robin tournament. In case the number of available slots equals the lower bound,
we say that the tournament is compact while it is relaxed when more slots are
available. Note that these terms correspond to the terms temporally constrained
and temporally relaxed defined in [66].

The allocation of games to slots can be presented as a timetable. Each row
of the timetable corresponds to a team while the columns correspond to slots.
The entry of row i and column s is the opponent of team i in slot s. Figure 3.1
shows a timetable for a compact single round robin tournament with 6 teams and
a timetable for a corresponding tournament with 7 teams.

Slots 1 2 3 4 5

Team 1 6 3 5 2 4
Team 2 5 6 4 1 3
Team 3 4 1 6 5 2
Team 4 3 5 2 6 1
Team 5 2 4 1 3 6
Team 6 1 2 3 4 5

Slots 1 2 3 4 5 6 7

Team 1 7 5 2 4 6 3
Team 2 5 6 1 3 7 4
Team 3 4 7 6 2 5 1
Team 4 3 5 7 6 1 2
Team 5 2 4 1 7 6 3
Team 6 2 3 4 5 1 7
Team 7 1 3 4 5 2 6

Figure 3.1: Examples of timetables for tournaments with 6 and 7 teams.
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In the literature teams often have an associated venue and when they play at
their own venue, they play home games while they play away games at all other
venues. It is assumed that each time two teams meet one of the teams plays home
while the other plays away. If a team does not play in a slot it is said to have
a bye. The sequence of home games, away games and byes according to which a
team plays during the tournament is known as a home away pattern (pattern).
If byes occur in the tournament, a pattern is normally represented by a vector
with an entry for each slot containing either an H, an A, or a B. In compact
tournaments with an even number of teams, all teams play in each slot and the
B is omitted. In this case H and A are often replaced by 1 and 0, respectively.
In many tournaments it is considered attractive to have an alternating pattern
of home and away games and a pattern is said to have a break in slots differing
from such an alternating sequence. This means that a break corresponds to two
consecutive home games or two consecutive away games. Two patterns are said to
be complementary if the first pattern has an away game when the second pattern
has a home game and vice versa. Figure 3.2 (a) shows 2 complementary patterns
for a compact single round robin tournament with 6 teams. Notice that both
patterns have a break in slot 3.

1 0 0 1 0

0 1 1 0 1

(a)

Slots 1 2 3 4 5

Team 1 1 0 1 0 1
Team 2 1 0 0 1 0
Team 3 0 1 1 0 1
Team 4 1 0 1 0 0
Team 5 0 1 0 1 1
Team 6 0 1 0 1 0

(b)

Figure 3.2: (a) Two complementary patterns, (b) Example of a pattern set for a
tournament with 6 teams.

To represent the assignments of home and away games for a tournament with
n teams we use a home away pattern set (pattern set). This is a set of exactly
n patterns and each pattern is associated with one of the teams. Figure 3.2 (b)
shows an example of a pattern set for a tournament with 6 teams. Notice that this
pattern set exclusively consists of pairs of complementary patterns. When this is
the case, the pattern set satisfies the complementary property and it is said to be
complementary . If all teams have the same number of breaks it is an equitable
pattern set and we say that a pattern set for a single round robin tournament is
equilibrated when the number of home games for each team varies with no more
than one.
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Furthermore, the pattern set can be associated with the timetable for 6 teams
displayed in Figure 3.1 since, in every game, one of the opponents plays home
while the other plays away. A pattern set for which a corresponding timetable
exists is said to be feasible. Figure 3.3 gives an example of three patterns which
would make a pattern set infeasible since the three mutual games can only be
played in slots 1 and 2.

1 0 0 1 0

1 1 0 1 0

0 1 0 1 0

Figure 3.3: Example of an infeasible subset of patterns.

The combination of a pattern set and a corresponding timetable constitutes a
schedule for a tournament. A schedule is mirrored when the first and the second
half are identical except the home games and away games are exchanged. Fur-
thermore, we say that a schedule is irreducible when at most one opponent in
each game has a break. A schedule can be represented as in Figure 3.4 showing
a mirrored double round robin schedule. In the figure, a + denotes a home game
while a − denotes an away game. A sequence of consecutive away games is called
a trip while a sequence of consecutive home games is called a home stand . An
entire row of the schedule defines a tour for the corresponding team.

Slots 1 2 3 4 5 6 7 8 9 10

Team 1 +6 −3 +5 −2 +4 −6 +3 −5 +2 −4
Team 2 +5 −6 −4 +1 −3 −5 +6 +4 −1 +3
Team 3 −4 +1 +6 −5 +2 +4 −1 −6 +5 −2
Team 4 +3 −5 +2 −6 −1 −3 +5 −2 +6 +1
Team 5 −2 +4 −1 +3 +6 +2 −4 +1 −3 −6
Team 6 −1 +2 −3 +4 −5 +1 −2 +3 −4 +5

Figure 3.4: Example of a mirrored double round robin schedule.

When solving a sports scheduling problem it may be advantageous to postpone
the assignment of games until a schedule has been obtained. In that case place-
holders are used to represent the teams in the pattern set and in the timetable
until a schedule has been found.

Since round robin tournaments have a correspondence to graphs, we also in-
troduce a few graph theoretical concepts. Consider a graph G = (V,E) where
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V is a finite set of nodes and E is the set of edges in G. A matching in G is a
set of independent edges (non-adjacent edges) and a matching in which all the
nodes in V are incident to an edge is called a complete matching . The graph in-
duced by a complete matching is a 1-regular graph (the degree is 1 for all nodes).
This is called a 1-factor and a partitioning of the graph G into factors is called a
1-factorization.

In the rest of the paper, we let n denote the number of teams, T the set of
teams and S the set of slots. Since most of the sports scheduling literature focuses
on compact tournaments with an even number of teams this is assumed to be the
case unless otherwise stated.

3.2 Constraints

Practical sports scheduling applications are very often characterized by a large
number of conflicting constraints arising from teams, TV networks, sports associ-
ations, fans and local communities. Consequently, a section discussing the various
constraints applicable to a particular sports league has become a standard part
of papers considering practical applications since each league has their own spe-
cial requirements. In this section we will give a short outline of the most typical
constraints and we give references to papers facing these constraints.

Place constraints ([10, 11, 18, 22, 23, 25, 30, 45, 70, 72, 75, 81, 83, 87,
91, 96, 100])
Constraints ensuring that a team plays home or away in a certain slot. This
kind of constraint is normally imposed when a venue is unavailable due to
other events.

Top team and bottom team constraints ([10, 23, 25, 43, 45, 66, 70, 81,
83])
In some leagues special considerations are taken for teams which have just
qualified for the league and teams which are known to be strong.

Break constraints ([10, 25, 43, 45, 66, 70, 97])
Often leagues want to avoid a schedule where teams have a break in slot 2
or a break in the last slot.

Game constraints ([10, 18, 25, 28, 43, 46, 62–64, 66, 69, 70, 86, 100])
These are constraints fixing a certain game to a particular time slot. The
constraints are normally imposed by TV networks who want ”big” games at
certain dates.

Complementary constraints ([10, 18, 23, 25, 70, 81, 97])
When two teams share a venue, a complementary constraint is used to make
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sure that the two teams play home at different slots. Of course both teams
play home in some sense when they meet but playing the official home game
may be important since revenue is often earned by the home team.

Geographical constraints ([10, 23, 25, 70, 83, 93])
To avoid slots in which many home games are gathered in a small area,
games should be scattered throughout the region in which the tournament
is played.

Pattern constraints ([4, 10, 11, 18, 19, 22, 23, 25, 30, 43, 45, 62, 66, 70,
75, 78, 81, 87, 91, 100])
Some applications have special requirements on the patterns such as restric-
tions on the number of consecutive breaks or certain sequences of home
games, away games and byes which should be avoided. They also include
requests for equitable pattern sets saying that all teams must have the same
number of breaks.

Separation constraints ([10, 22, 30, 43, 66, 70, 72, 100])
When we consider tournaments where teams meet more than once and the
schedule is non-mirrored, most leagues have a lower bound on the number
of slots between two games with the same opponents. This constraint is not
relevant to mirrored schedules since such schedules always have at least n−2
slots between such games.

In many applications the constraints are separated into hard constraints and
soft constraints. All the hard constraints must be satisfied in a feasible solution,
while the soft constraints are penalized such that penalties are incurred if the
constraints are violated. In addition to minimizing the number of violated soft
constraints the objective of a sports scheduling problem is normally to minimize
either the number of breaks or the travel distance. In the following two sections
we will discuss the papers on minimizing breaks and minimizing travel distance,
respectively.

3.3 Minimizing Breaks

When teams return home after each away game instead of travelling from one away
game to the next, an alternating pattern of home and away games are usually
preferred. Such patterns consider the fans by avoiding long periods without home
games and they ensure regular earnings from home games. Furthermore, the
strength of a team is better reflected by its position throughout the tournament
when all teams alternate between home and away games since a team starting with
a long sequence of home games might do relatively better than a team starting
with many away games.
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The need for alternating patterns has led to a large amount of research orig-
inating from graph theoretical approaches for minimizing the number of breaks
in a pattern set and leading to highly sophisticated solution methods for practi-
cal applications facing numerous constraints. During the last 30 years, focus has
moved from constructive methods applicable for general tournaments without spe-
cific constraints to decomposition methods capable of handling all the constraints
applicable for a certain sports league.

3.3.1 Constructive Methods

In the 1980’s, Rosa and Wallis [77], de Werra [93, 94, 95, 96], de Werra et al.
[97] and Schreuder [82] published a number of papers on the relationship between
graphs and tournaments and used the relationship to obtain results for schedules.
De Werra [94] presents the relationship between a tournament and a graph in the
following way.

Consider a compact single round robin tournament with an even number of
teams n - in case the number of teams is uneven a dummy team can be added.
This tournament can be associated with the complete graph Kn by letting each
node correspond to a team and letting each edge correspond to the game between
the teams associated with the end nodes. A factorization F = (F1, . . . , Fn−1)
of Kn where F1, . . . , Fn−1 are 1-factors then corresponds to a partitioning of the
games into n− 1 slots since each node will be incident to exactly one edge in each
1-factor.

The home away assignments can be represented by orienting the edges and
letting an edge from node i to node j correspond to a game where team i vis-
its team j. An oriented 1-factorization ~F = (~F1, . . . , ~Fn−1) or equivalently an
oriented (n − 1)-coloring then characterizes a schedule for the single round robin
tournament. Figure 3.5 shows an oriented 1-factorization of K6 and Figure 3.6
shows the associated schedule. We refer to Mendelsohn and Rosa [59] for a survey
on 1-factorizations.

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

~F1
~F2

~F3
~F4

~F5

Figure 3.5: Oriented 1-factorization of K6.
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Slots 1 2 3 4 5

Team 1 −6 +3 −5 +2 −4
Team 2 −5 +6 +4 −1 +3
Team 3 +4 −1 −6 +5 −2
Team 4 −3 +5 −2 +6 +1
Team 5 +2 −4 +1 −3 −6
Team 6 +1 −2 +3 −4 +5

Figure 3.6: Schedule corresponding to the 1-factorization from Figure 3.5.

We present some of the most important results obtained from the relationship
between graphs and schedules. The first and most basic result is the following.

Proposition 1 (De Werra [94]) In any oriented coloring of Kn, there are at
least n− 2 breaks.

The proof is straightforward when observing that at most two teams can have
a pattern without breaks. However, the result is very important since it gives a
lower bound on the number of breaks in a single round robin tournament. Fur-
thermore, de Werra was also able to show that the lower bound was obtainable
by constructing a 1-factorization with exactly n− 2 breaks. The 1-factorization is
called the canonical 1-factorization and it is defined as follows.

Definition 1 (De Werra [94]) The canonical 1-factorization satisfies that for
i = 1, . . . , n− 1

Fi = {(n, i)} ∪ {(i + k, i− k) : k = 1, . . . , n/2− 1}
where i+k and i−k are expressed as one of the numbers 1, . . . , n−1 (mod n−1).

To obtain a schedule with exactly n− 2 breaks, the canonical factorization is
oriented such that the edge (i, n) is oriented from i to n if i is odd and from n to
i if i is even and the edge (i + k, i− k) in Fi is oriented from i + k to i− k if k is
odd and the other way if k is even.

Proposition 2 (De Werra [94]) There exists an oriented coloring of Kn with
exactly n− 2 breaks.

The canonical 1-factorization has subsequently been widely used in the litera-
ture and the associated schedule is referred to as the canonical schedule. The
factorization and schedule shown in Figure 3.5 and Figure 3.6 are the canonical
factorization and the canonical schedule for a tournament with 6 teams.

The canonical schedule can also be used for tournaments with an uneven num-
ber of teams by using a dummy node and in this way de Werra was able to
construct a tournament without breaks.
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Corollary 1 (De Werra [94]) Kn+1 has an oriented coloring without breaks.

Notice, that the removal of team 6 in Figure 3.6 produces a schedule for 5 teams
without breaks.

Multi-period schedules were also considered and the following two results were
obtained.

Proposition 3 (De Werra [94]) A mirrored double round robin tournament has
at least 3n− 6 breaks.

This can be proved by noting that teams with 1 break in the first half have a
corresponding break in the second half and a third break at the beginning of the
second half.

Proposition 4 (De Werra [94]) A mirrored double round robin tournament
with exactly 3n− 6 breaks exists and if n 6= 4 no team has two consecutive breaks.

Again the canonical schedule was used for constructing a mirrored double round
robin tournament with exactly 3n − 6 breaks although small modifications were
necessary to avoid consecutive breaks. The resulting schedule is known as the
modified canonical schedule.

In [93] de Werra gives a characterization of canonically feasible break sequences
and he considers tournaments facing geographical constraints. The geographical
constraints require that, when teams are located close to each other, they should
have complementary patterns if possible. De Werra [93] treats a number of specific
problems occurring when geographical constraints are considered and presents
constructive methods for obtaining schedules.

Schreuder [82] formulates necessary and sufficient conditions for a tournament
by using 0-1 variables xi1i2s which is 1 if team i1 plays home against team i2 in
slot s. The conditions look as follows:

∑

i1∈T

(xi1i2s + xi2i1s) = 1 ∀i2 ∈ T, ∀s ∈ S

∑

s∈S

(xi1i2s + xi2i1s) = 1 ∀i1, i2 ∈ T, i1 6= i2

Rosa and Wallis [77] raise an interesting problem regarding the timetable.
They define a premature set to be a partial timetable (only the first k slots are
determined) which cannot be extended to a full timetable and asks the question:
How much can go wrong if we assign games one slot at a time without looking
ahead? In other words do premature sets exist? Indeed, they do exist and Rosa
and Wallis prove the following corollary.

Corollary 2 (Rosa and Wallis [77]) For n even, there is a premature set of k
one-factors in Kn whenever n

2 ≤ k ≤ n− 3 and n
2 is odd, and whenever n

2 < k ≤
n− 3 and n

2 is even.
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They also show that when the tournament is big enough nothing can go wrong in
the first slots.

Corollary 3 (Rosa and Wallis [77]) If n ≥ 8 and even, there exists no prema-
ture set of three 1-factors in Kn.

This corollary is followed by a conjecture which is still an open question.

Conjecture 1 (Rosa and Wallis [77]) For any positive integer k, there exists
n(k) such that if n > n(k), then any premature set of 1-factors of Kn contains
more than k one-factors.

In [95] de Werra concentrates on irregularities in schedules. He notices that
when no breaks occur between two time slots s1 and s2 the edges of the oriented
graph Kn, corresponding to the games played in the slots s1, . . . , s2, will form a
regular bipartite graph. This property is used to obtain schedules minimizing the
number of irregular slots (slots containing a break) and to distribute the irregular
slots evenly.

De Werra summarizes most of the previous results in [96] where, for the first
time, place constraints are considered. In order to solve the scheduling problem
with place constraints, schedules with placeholders are generated and, for each
schedule, teams are assigned to placeholders by constructing a factor in a bipar-
tite graph. The bipartite graph contains a node for each team, a node for each
placeholder, and an edge between a team i and a placeholder j if the pattern of
placeholder j satisfies the place constraints of team i. If a factor can be con-
structed in the bipartite graph we have a feasible solution and otherwise we move
on to the next schedule. This is the first step towards the decomposition methods
presented in the following section.

However, before moving to the decomposition methods, let us mention de Werra
et al. [97] facing a problem with 2 leagues A and B. League A plays a double round
robin while league B plays a single round robin before it is partitioned into two
leagues C and C ′ which both play an additional single round robin. The partition-
ing of league B is not known in advance since it depends on the outcome of the
games. The objective is to spread breaks evenly and minimize the total number of
breaks. The problem is constrained by teams from different leagues using the same
venue, and breaks in the last slot is not allowed. Since team specific requirements
are not considered, it is possible to construct an optimal solution for the problem.

3.3.2 The Constrained Minimum Break Problem

In the beginning of the 1990’s focus moved from the graph theoretical results
to practical applications. This change meant that the constraints outlined in
Section 3.2 were taken into account and solution methods capable of handling these
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constraints had to be developed. The problem of finding a schedule minimizing the
number of breaks and at the same time take additional constraints into account
is known as the constrained minimum break problem. However, the problem may
change significantly from one application to another since different constraints are
considered.

To solve the problem two metaheuristic approaches were applied by Willis and
Terrill [99] who use simulated annealing and Wright [101] who uses tabu search
for scheduling cricket tournaments. However, the majority of the papers use a
decomposition approach. A sports scheduling problem naturally decomposes into
four steps and, although the order of the steps vary and some steps are combined,
these four steps are used in almost all solution methods for solving variations of
the constrained minimum break problem. The four steps are:

Step 1 Generate patterns.

Step 2 Find a pattern set for placeholders.

Step 3 Find a timetable for placeholders.

Step 4 Allocate teams to placeholders.

Schreuder [83] solves a mirrored double round robin problem for the Dutch pro-
fessional football league and uses a 2-phase approach which resembles the method
used by de Werra [96]. In this method Phase 1 combines Steps 1 to 3 by construct-
ing the canonical schedule for placeholders and Phase 2 corresponds to Step 4 and
allocates teams to placeholders. The problem of assigning teams to placeholders
is formulated as a quadratic assignment problem and a heuristic solution method
is presented for solving the problem.

In 1998 Nemhauser and Trick [66] schedules the basketball tournament for the
Atlantic Coast Conference consisting of nine university teams from the United
States. In their approach all four steps are used but instead of using a com-
binatorial design, as seen in the earlier approaches, they use IP combined with
enumeration techniques to obtain pattern sets. In Step 1 they generate mirrored
patterns having a reasonable chance of being used in a feasible pattern set and in
order to satisfy a specific constraint, slots 8 and 10 are interchanged. After the
patterns have been generated, an IP model is used in Step 2 to generate pattern
sets. The IP model chooses 9 patterns which minimize the number of breaks and
it requires that in each slot, 4 patterns have a home game, 4 patterns have an away
game and 1 pattern has a bye. All feasible solutions to the model are generated
and it leads to 17 pattern sets. For each pattern set all feasible timetables are
generated using another IP model and this leads to 826 timetables. Finally, teams
are allocated to placeholders by enumerating through the 9! possible allocations.
Almost 300 million schedules had to be considered but only 17 were feasible and
from these schedules a final schedule was chosen.
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After the IP/enumeration approach by Nemhauser and Trick, Schaerf [81],
Henz [43, 45], and Régin [75] introduced CP approaches for solving sports schedul-
ing problems.

Schaerf [81] considers the problem of scheduling a mirrored double round robin
tournament with complementary constraints, place constraints, geographic con-
straints and top team constraints. The constraints are split into hard constraints
which must be satisfied and soft constraints enforcing a penalty when violated. To
solve the problem, he uses the 2-phase approach known from de Werra [96] and
Schreuder [83] in which Phase 1 combines Steps 1, 2 and 3 while Phase 2 corre-
sponds to Step 4. Phase 1 is handled by using the modified canonical schedule
since this schedule minimizes the number of breaks and avoids consecutive breaks
but it is noted that Phase 2 is independent of the schedule chosen in Phase 1.
The assignment problem considered in Phase 2 is solved using CP. The variables
and constraints used to formulate the problem is outlined and computational re-
sults are presented. The CP model takes longer time than the heuristic method
presented by Schreuder [83] but in return it gives the optimal solution.

In contrast to Schaerf [81], Henz [45] uses CP to solve all four steps. The
individual steps are solved in the order 1, 2, 3, 4 and in the order 1, 2, 4, 3. Henz
reports that, in most cases, the best performances are obtained by solving Step 4
before Step 3. CP models are presented for each of the four steps and a generic
constraint-based round robin planning tool known as Friar Tuck is presented. Friar
Tuck uses the finite domain constraint programming system Mozart 1.0 and allows
the user to fine-tune the solution process and the constraints. In [43] Henz uses
the CP approach explained in [45] to solve the Basketball league considered by
Nemhauser and Trick and shows that the CP approach clearly outperforms the
combined IP and enumeration technique used previously. Henz is able to find all
solutions to the problem in less than one minute while Nemhauser and Trick used
more than 24 hours.

Régin [75] also presents CP approaches for solving sports scheduling problems.
At first he gives a general discussion of symmetry breaking constraints, the use of
implicit constraints, global constraints and pertinent and redundant constraints.
This discussion is followed by a CP model for generating a single round robin
schedule with a minimal number of breaks when no additional constraints are
present. Régin shows how symmetry breaking is able to enhance performance
significantly and the problem size solvable in approximately 1 minute increases
from 6 to 60 teams. Next Régin considers a problem which is later known as the
break minimization problem.

Definition 2 Given a timetable, the break minimization problem consists of find-
ing a feasible pattern set which minimizes the number of breaks.

For this problem most of the symmetry breaking constraints added to the first
model becomes invalid but Régin is able to derive new constraints and again
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significant improvements can be obtained. In this case a problem with 16 teams
can be solved in approximately 1 minute.

Subsequently, Trick [86] motivates the use of the break minimization problem
by discussing the order of the four solution steps. He argues that the steps should
be ordered such that the most critical aspects of the schedule are considered early
in the solution process. Solving Steps 1 and 2 before Steps 3 and 4 makes sense
when for instance many place constraints are considered. On the other hand, when
game constraints or other constraints associated with the timetable become more
important, Steps 3 and 4 should be solved before Steps 1 and 2. Trick presents
a 2-phase solution method which solves Steps 3 and 4 in Phase 1 and solves the
break minimization problem corresponding to Steps 1 and 2 in Phase 2. The
method combines CP and IP by using CP for Phase 1 and IP for Phase 2. Two
CP models for solving Phase 1 are discussed and both models are able to find a
20-team schedule in less than 1 second and able to find 500 20-team schedules in
around one minute. In Phase 2 the symmetry breaking constraints presented by
Régin [75] are used in an IP model and the computation times show improvements
for large instances (more than 16 teams) compared to the CP model presented by
Régin.

The papers by Régin [75] and Trick [86] were followed by a number of papers
focusing on the break minimization problem alone. Elf et al. [28] show that solving
the break minimization problem is equivalent to a maximum cut problem in an
undirected graph G. Given a timetable, the graph G is constructed by adding a
node vis for each team i and each slot s such that vis corresponds to entry (i, s)
in the timetable. An example is shown in Figure 3.7. For each team i and each

Slots 1 2 3 4 5

Team 1 6 3 5 2 4
Team 2 5 6 4 1 3
Team 3 4 1 6 5 2
Team 4 3 5 2 6 1
Team 5 2 4 1 3 6
Team 6 1 2 3 4 5 1 2 3 4 52 4 1 3 63 5 2 6 14 1 6 5 25 6 4 1 36 3 5 2 4

Figure 3.7: Timetable and corresponding maximum cut graph.

slot s in 2, . . . , |S| the nodes vis−1 and vis are connected by an edge corresponding
to the horizontal edges in Figure 3.7. The vertical edges combine nodes vi1s and
vi2s when team i1 plays against team i2 in slot s. By assigning a weight of 1
to all the horizontal edges and a weight M to the vertical edges, Elf et al. are
able to show that a maximum cut in G corresponds to an optimal solution to the
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break minimization problem when M ≥ n(n − 2) + 1. The reasoning behind the
argument is that a cut separates the vertices into two sets. One of the sets will
correspond to home games and the other to away games. In order to obtain a
feasible home-away assignment we must ensure that, when two nodes play against
each other, one belongs to the set of home games while the other belongs to the
set of away games. This is handled by assigning big weights to all the vertical
edges in G. Maximizing the number of horizontal edges in the cut, corresponds to
minimizing the number of breaks since an edge which is not part of the cut leads
to a break.

After the graph G has been constructed, Elf et al. show how to transform this
graph into a smaller graph by contracting the vertical edges one by one and chang-
ing the signs of some of the horizontal edges. This leads to a graph with n(n−1)

2
nodes and n(n−1) edges. The modified graph speeds up the solution process since
a maximum cut for the modified graph can be directly transformed to a maximum
cut for the original graph G. A maximum cut is found by applying a branch and
cut algorithm described by Barahona, Grötschel, Jünger, and Reinelt [7]. The
computational tests show great reductions in computation times compared to the
CP and IP approaches presented by Régin and Trick, respectively, and instances
with up to 26 teams can be solved within reasonable time (1215.9 seconds).

A similar idea is used by Miyashiro and Matsui [63] who also consider the
break minimization problem. They use two graphs G1 and G2 both having a node
set equal to the node set of G. The edges of G1 correspond to the horizontal
edges of G while the edges of G2 correspond to the vertical edges of G. Instead of
using weights equal to M , they notice that the problem is a special case of MAX
RES CUT discussed by Goemans and Williamson [37] and therefore solvable by
an approximation algorithm based on positive semidefinite programming proposed
by Goemans and Williamson [37]. The problem can also be stated as a special
case of MAX 2SAT but solving the MAX 2SAT problem is equivalent to solving
the MAX RES CUT problem when the algorithm of Goemans and Williamson is
applied. In contrast to the previous methods on the break minimization problem,
this is an approximative method and this makes it capable of finding solutions for
problems with up to 40 teams compared to the 26 teams considered by Elf et al.
[28].

At the end of the paper by Elf et al. [28], it is conjectured that instances with
only n−2 breaks are solvable in polynomial time and that the break minimization
problem in general is NP-hard.

The first conjecture was proved affirmatively in [61] where Miyashiro and Mat-
sui consider the problem of finding a pattern set with exactly n − 2 breaks for a
given timetable or showing that such a pattern set does not exist. The problem is
reduced into n decision problems P1k for k = 1, . . . , n where P1k is similar to the
original problem except for an extra constraint requiring that team k has a pattern
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without breaks and starts with a home game. If a pattern set exists for one of
the problems P11, . . . ,P1n, we have a solution and otherwise no feasible pattern
set exists with n − 2 breaks. Since 2SAT problems can be solved in polynomial
time, Miyashiro and Matsui are now able to show that the original problem can be
solved in polynomial time by transforming each of the problems P11, . . . P1n into
a 2SAT problem. The transformation is accomplished by constructing a pattern
set and using boolean variables xis which are true when team i plays according to
the constructed pattern set in slot s and false otherwise. The conclusion is that,
for a given timetable, it is possible to find a feasible pattern set with n− 2 breaks
in polynomial time or show that such a pattern set does not exist.

Corollary 4 (Miyashiro and Matsui [61]) The following problem is solvable
in polynomial time.

Instance: A timetable with n teams where n is even.

Task: Find a pattern set with at most n − 2 breaks that is consistent with the
given timetable if it exists and return ”infeasible” otherwise.

Furthermore, Miyashiro and Matsui [62] show that the result is also valid for
pattern sets with n breaks.

Corollary 5 (Miyashiro and Matsui [62]) The following problem is solvable
in polynomial time.

Instance: A timetable with n teams where n is even.

Task: Find a pattern set with at most n breaks that is consistent with the given
timetable if it exists and return ”infeasible” otherwise.

The procedure is very similar to the procedure used in [61]. Again the problem
is transformed to a number of 2SAT problems and since they can be solved in
polynomial time, it is possible to solve the original problem in polynomial time.
In addition to the corollary an interesting property combining break minimization
and break maximization is presented. Given a pattern set H represented by a his

for each team i and each slot s, the pattern set H̃ is defined such that h̃is = his

if s is uneven and h̃is 6= his if s is even. Due to the construction, each team has
a break in each slot s, s ≥ 2, in exactly one of the pattern sets and this leads to
the following lemma.

Lemma 1 (Miyashiro and Matsui [62]) Let H be a pattern set for a tourna-
ment with n teams where n is even. Then the number of breaks in H plus the
number of breaks in H̃ equals n(n− 2).

Lemma 1 implies the following theorem.
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Theorem 1 (Miyashiro and Matsui [62]) Given a timetable, then a feasible
pattern set minimizes the number of breaks if and only if H̃ maximizes the number
of breaks.

This implies that minimizing and maximizing the number of breaks for a given
timetable is equivalent.

The second conjecture by Elf et al. [28] regarding NP-hardness of the break
minimization problem is considered by Post and Woeginger [69]. They consider
partial timetables for single round robin tournaments. The partial timetables only
contain a subset of the normal n− 1 slots and they satisfy that two teams do not
meet more than once. By using a polynomial time reduction from an NP-hard
version of the Max-Cut problem Post and Woeginger are able to show the following
theorem.

Theorem 2 (Post and Woeginger [69]) Break minimization in partial timeta-
bles with n teams and three slots is NP-hard.

The theorem leads to the following corollary.

Corollary 6 (Post and Woeginger [69]) Break minimization in partial timeta-
bles with n teams and a fixed number r ≥ 4 of slots is NP-hard.

Post and Woeginger also consider lower and upper bounds on the solution
values for the break minimization problem. Let Bmin(TTn) be the optimal solution
value to the break minimization problem given the timetable TTn with n teams.
They are able to obtain a lower bound on maxTTn Bmin(TTn) when n = 4k for
some k ≥ 1.

Theorem 3 (Post and Woeginger [69]) For n = 4k teams with k ≥ 1, there
exists a timetable TT ∗n with Bmin(TT ∗n) ≥ 1

6n(n− 1).

An upper bound on Bmin(TTn) for an arbitrary timetable TTn is also derived.

Theorem 4 (Post and Woeginger [69]) Each timetable TTn for n teams sat-
isfies

Bmin(TTn) ≤
{

1
4n(n− 2), if n is of the form 4k;
1
4 (n− 2)2, if n is of the form 4k + 2.

Furthermore, a corresponding pattern set can be computed in polynomial time.

In Table 3.1 the lower bounds obtained by Elf et al. [28] are denoted LB-EJR,
the lower bounds for schedules with n = 4k are denoted LB-PW and the upper
bounds are stated UB-PW according to the table from [69].

Finally, Post and Woeginger conjecture that the upper bound on Bmin(TTn)
for any even n and any timetable TTn can be improved to 1

6n(n − 1). However,
we are able to obtain a counterexample with n = 8 to this conjecture by using
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Table 3.1: Upper and lower bounds for maxTTn Bmin(TTn) with n ≤ 26.

n 4 6 8 10 12 14 16 18 20 22 24 26

LB-EJR 2 4 8 12 18 26 32 44 54 64 74 90
LB-PW 2 − − − − − 40 − − − − −
UB-PW 2 4 12 16 30 36 56 64 90 100 132 144

a simple 2 phase approach. Phase 1 consists of a basic CP model for generating
timetables [46] and in Phase 2 we solve the break minimization problem by using
the IP model presented in [86]. The procedure iterates between the two phases
and, for each number of teams n, we are able to obtain the lower bounds displayed
in Table 3.2 within 15 minutes of computation time. Table 3.2 also displays the
upper bounds conjectured by Post and Woeginger and we see that, for n = 8, our
lower bound exceeds the conjectured upper bound.

Table 3.2: Lower bound for maxTTn Bmin(TTn) and conjectured upper bound.

n 4 6 8 10 12 14 16 18 20 22 24 26

LB-RT 2 4 12 14 20 26 32 40 − − − −
UB-Conj 2 5 9 15 22 30 40 51 63 77 92 108

The minimum break problem was motivated by the scheduling approach used
by Régin [75] and Trick [86] but it only solves half the problem since it requires a
given timetable. The first part of this approach regarding the timetabling problem
has been considered by Henz et al. [46]. They use variables ois to represent the
opponent of team i in slot s and they formulate the problem using the global CP
constraints alldifferent and one-factor .

alldifferent(oi1, . . . , oin−1) ∀i ∈ 1, . . . , n,

one-factor(o1s, . . . , ons) ∀s ∈ 1, . . . , n− 1.

The two constraints make sure that any feasible solution constitutes a timetable
for a single round robin tournament. However, since this is CP constraints they
can be implemented in more than one way and the choice of propagation technique
used for each of the constraints may have a great impact on the size of the search
tree and the computation time used to solve the problem. Henz et al. provide an
extensive analysis of propagation techniques to obtain guidelines for choosing the
most effective solution method. In the analysis it is concluded that the propaga-
tion techniques used for the alldifferent constraint should obtain arc-consistency
since this will reduce both the search tree and the runtime when compared to
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weaker consistency techniques. For the one-factor constraint, three propagation
techniques are considered.

1. Arc-consistent propagation with respect to the constraints:

ois 6= i i = 1, . . . , n

ooiss = i i = 1, . . . , n

2. Arc-consistent propagation with respect to the constraints:

ois 6= i i = 1, . . . , n, s = 1, . . . , n− 1
ooiss = i i = 1, . . . , n, s = 1, . . . , n− 1
alldifferent(o1s, . . . , ons) s = 1, . . . , n− 1

3. Arc-consistent propagation with respect to the constraints:

one-factor(o1s, . . . , ons) ∀s ∈ 1, . . . , n− 1.

The first of the three propagation techniques leads to poor performances but, by
adding the redundant alldifferent constraint in the second technique, much better
results are obtained. The computational tests show that, when a pattern set is
given, the second technique obtains the best results. The additional time used to
obtain arc consistency for the one-factor constraint in the third technique out-
weights the time reduction achieved by the reduction in the search tree. However,
when no pattern set is given, the third propagation technique obtains the best
results.

Trick [87] is able to show why the second propagation technique works better
than the third when the pattern set is given. Let Di be the set of feasible opponents
for team i in a given slot s. Then Di is said to be bipartite if the set of teams can
be divided into two sets X and Y such that

|X| = |Y | = n

2
i ∈ X ⇒ Di ⊆ Y

i ∈ Y ⇒ Di ⊆ X

Theorem 5 (Trick [87]) If the Di are bipartite, then arc-consistency for the
constraints

ois 6= i i = 1, . . . , n

ooiss = i i = 1, . . . , n

alldifferent(o1s, . . . , ons)

implies arc-consistency for the constraint

one-factor(o1s, . . . , ons)
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This result means that, when the pattern set is determined before we find a
timetable, there is no point in using the third propagation technique since arc-
consistency for the one-factor constraint is obtained by the second technique and
it requires less computation time. In the paper Trick provides numerous compar-
isons of CP and IP models for solving sports scheduling problems. These include
tightly constrained timetables, schedules with home-away restrictions and sched-
ules for more than one division. The conclusion is that IP in general performs best
when an objective value is considered, while CP is best at handling the feasibility
problems. However, at a few feasibility problems, IP outperforms the CP model
since the propagation techniques were unable to recognize infeasibility.

Although much work has concentrated on the break minimization problem,
some of the recent papers on practical sports scheduling applications find pattern
sets before timetables. This approach relies on good pattern sets in the first phase
but finding a characterization of feasible pattern sets is still an open problem.
However, Miyashiro et al. [64] present a necessary condition for feasible pattern sets
and show that the condition characterizes feasible pattern sets with a minimum
number of breaks for schedules with up to 26 teams. For a subset of teams T̂ ⊆ T
they let the functions A(T̂ , s) and H(T̂ , s) return the number of away games and
home games T̂ plays in slot s. The necessary condition can then be stated as
follows.

∑

s∈S

min{A(T̂ , s),H(T̂ , s)} ≥ |T̂ |(|T̂ | − 1)
2

∀T̂ ⊆ T (3.3.1)

The reasoning behind the condition is that any subset of teams T̂ must play
|T̂ |(|T̂ |−1)

2 games in a single round robin tournament and, in any slot s, they cannot
play more than min{A(T̂ , s),H(T̂ , s)} mutual games. Miyashiro et al. also show
that, for pattern sets with a minimum number of breaks and no more than 26
teams the condition is both necessary and sufficient. Furthermore, whether a
given pattern set with a minimum number of breaks satisfies the condition can be
checked in polynomial time. and it can be checked in polynomial time.

Croce and Oliveri [23] schedules the Italian soccer league and again this is
a problem with a lot of additional constraints. Each team is assigned to one of
two concurrent TV networks and the chosen TV network holds the rights to all
the home games of the particular team. This means that the schedule should
be balanced with respect to TV coverage such that both TV networks have a
proportional part of the home games in each slot. Furthermore, the league contains
teams sharing stadium and therefore complementary constraints must be imposed.
The problem is solved by a 3-phase approach but all four decomposition steps are
actually used since all patterns with no more than 4 breaks are generated before
solving Phase 1. Phase 1 corresponds to Step 2, Phase 2 corresponds to Step 3
and Phase 3 corresponds to Step 4. All phases are solved by IP models and to
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obtain a good solution, the phases are solved iteratively according to the following
scheme.

1. 200 pattern sets are generated.

2. For each generated pattern set a feasible timetable is found if possible.

3. For each generated feasible timetable, teams are allocated to placeholders.

The solution method is able to generate a number of high quality schedules and the
authors note that preliminary contacts with the Italian Football (soccer) League
is ongoing.

Rasmussen and Trick [72] propose another iterative approach using logic-based
Benders decomposition called a pattern generating Benders approach (PGBA).
This is a 4-phase approach in which Phase 1 generates patterns, Phase 2 uses an IP
model to find a pattern set from the generated patterns, Phase 3 checks feasibility
of the pattern set and assigns teams to placeholders and, finally, Phase 4 generates
a timetable using a CP model. The resemblance to Benders decomposition comes
from a number of feasibility checks in Phase 3. In case one of these checks prove
the pattern set to be infeasible, a logic-based Benders cut is added to the IP
model from Phase 2 and the algorithm returns to Phase 2. This iterative process
continues until a feasible pattern set has been found or the IP model from Phase
2 becomes infeasible. In the first case, a corresponding timetable is found in
Phase 4 and the algorithm stops. In the second case, we return to Phase 1 and
generate additional patterns since Phase 1 only generates a subset of the feasible
patterns initially. The algorithm continues until an optimal solution has been
found or infeasibility has been proved. The computational results show that the
PGBA leads to significant reductions in computation times for hard instances.
The details of the PGBA will be outlined in Chapter 5.

Subsequently, Rasmussen [70] has used the PGBA to schedule a triple round
robin tournament for the best Danish soccer league. In the original presentation
of the PGBA, only place constraints were considered but numerous constraints
are present in the practical application. These include constraints relating to
the timetable, which makes the problem harder to solve since the subproblem
becomes an optimization problem instead of a feasibility problem. Therefore not
only feasibility cuts but also optimality cuts must be added to the master problem.
However, the modified PGBA is able to obtain very good solutions in short time
and it has been used for scheduling the 2006/2007 season of the Danish soccer
league. Chapter 6 gives a detailed description of this solution method.

Recently, Bartsch et al. [10] have presented a new approach based on renewable
resources for solving sports scheduling problems. They consider the problems of
scheduling the German and the Austrian soccer leagues. Again various constraints
must be taken into account but in contrast to previous methods this is done by
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using partially renewable resources. Bartsch et al. present models based on this
technique for both the German and the Austrian leagues and they develop a
specialized heuristic 3-phase approach for solving the problem. In this approach,
Phase 1 generates both a pattern set and a timetable with placeholders, Phase
2 assigns teams to placeholders and Phase 3 determines the exact date for each
team since each slot covers more than one day. The approach has been used in
practice in both Germany and Austria.

A general approach for using resource-based models are presented by Drexl
and Knust [25]. In their paper they show how various constraints can be modelled
using resources and they are working on corresponding solution methods.

3.4 Minimizing Travel Distance

The minimization of travel distance becomes relevant when teams travel from one
away game to the next without returning home. In this setup huge savings can be
obtained when long trips are applied and teams located close together are visited
on the same trip.

The interest in minimizing travel distances arose from the increasing travel
costs due to the oil crises in the 1970’s. This led to a request for efficient solution
methods capable of finding good solutions for practical applications and a number
of papers on distance minimization has appeared since 1976. However, in 2001
Easton, Nemhauser, and Trick [26] proposed the traveling tournament problem
and this problem has received most of the attention concerned with minimizing
travel distances since then. In the following two sections we will give an outline
of the papers applied for practical applications and the papers focusing on the
traveling tournament problem, respectively.

3.4.1 Practical Applications

Campbell and Chen [19] presented the first paper considering the problem of
scheduling a basketball conference of ten teams. This is a relaxed double round
robin tournament and the teams are allowed to play at most two consecutive
away games without returning home. To solve the problem, a 2-phase approach
is applied. In Phase 1, the optimal trips for each team are found and the authors
show that, for a tournament with an even number of teams, it is equivalent to
pairing the teams two and two such that the distances between the paired teams
are minimized. Figure 3.8 shows why this holds true. Each node in the graph
corresponds to a team and we want to minimize the total travel distance for team
i. Team i travels at least once from or to all other teams (the dotted edges)
and hence these edges can be discarded. Furthermore, the number of trips of
length 2 must be maximized when minimizing the travel distance. This means
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that the optimal solution corresponds to a pairing of the teams (the remaining
edges) which minimizes the total distance between the paired teams. This pairing
is independent of the team for which we minimize the travel distance.

i

Figure 3.8: Graph showing the optimal trips for team i [19].

In Phase 2, the optimal pairing is translated into a number of feasible sequences
using a constructive approach. This approach takes all the constraints into account
and the result is a feasible schedule which minimizes the total travel distance.

Ball and Webster [4] solve a similar scheduling problem for a basketball con-
ference in their paper from 1977. They first model the problem using an IP
formulation but the problem is too large to solve and, instead, a heuristic solution
method very similar to the method by Campbell and Chen is developed.

The same year Cain, Jr. [18] presents a heuristic approach for scheduling major
league baseball. The league consists of 12 teams partitioned into two divisions and
each team plays 162 games making this problem one of the largest in the literature.
Furthermore, a very large number of constraints and considerations are described
which makes the problem even harder. The solution method is a constructive
approach decomposing the season into three phases. For each phase, a pattern
set is generated and, given the pattern set, an optimal timetable is subsequently
found by using a computer.

In 1980, Bean and Birge [11] return to a basketball instance since they sched-
ule the tournament for the national basketball association (NBA). As Ball and
Webster, they first formulate the problem using IP but again the problem be-
comes too large to solve in reasonable time. Instead, they use a heuristic 2-phase
approach resembling the approaches used by Campbell and Chen and Ball and
Webster. However, in this problem the teams are allowed to play five consecutive
away games and this relaxation makes the problem substantially harder. Further-
more, a large number of place constraints are present since the venues are used
for other purposes. In Phase 1, a heuristic method is used to minimize the travel
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distance for each team individually. Due to the longer trips, it is no longer possi-
ble to use the ”pairing approach” from the earlier methods. In Phase 2, the trips
are scheduled one by one starting with the longest travel distance. The trips are
scheduled in order to cover most of the home game requests and, in case a trip
cannot be scheduled, it is divided into partial trips. After a feasible solution has
been obtained, a switching algorithm is applied to improve the solution.

In 1991, Ferland and Fleurent [30] present a support system to help scheduling
the National Hockey League (NHL). This is a relaxed tournament with 21 teams,
it is divided into 2 conferences and each conference is divided into 2 divisions. The
problem contains a number of constraints such as place constraints, restrictions on
how often teams can play, restrictions on the minimum time between two games
with the same opponents and restrictions on the traveling distances. The problem
is modelled mathematically but the size of the problem makes it impossible to
solve. Instead, a number of procedures are presented which can be used while the
schedule is created manually. After this paper, the NHL decided to expand the
league from 21 teams to 24 teams and Fleurent and Ferland [32] presented an IP
model for deciding the number of games played between the four divisions.

Russell and Leung [78] considered a baseball league in 1994 with eight teams
divided into two divisions. The problem is a compact scheduling problem consist-
ing of three segments: first a double round robin tournament for each division,
then a double round robin tournament for the entire league and, finally, another
double round robin tournament for each division. They apply a 2-Phase approach
generating schedules for placeholders in Phase 1 and assigning teams to place-
holders in Phase 2. Due to the structure of the tournament, it is possible to solve
Phase 2 using total enumeration within reasonable time and Phase 1 is solved us-
ing an exchange heuristic. A feasible schedule is obtained and from this schedule
new schedules are obtained by exchanging the slots. Furthermore, the number of
consecutive away slots is limited to two, which means that the pairing technique
from [4, 19] can be applied. They use this method to obtain a new kind of schedule
with more variation compared to the traditional schedule format. However, the
new schedule is rejected since it allows byes and it increases travel distance.

In the paper, they note that minimizing travel distance is correlated to maxi-
mizing the number of breaks and they prove the following theorem.

Theorem 6 (Russell and Leung [78]) For a round robin tournament with an
even number of teams n ≥ 6 where each team can play no more than two con-
secutive home or two consecutive away games, the maximum number of breaks is
strictly less than n(n

2 − 1).

The first metaheuristic solution method is applied by Costa [22] in 1995. It
is an evolutionary tabu search algorithm combining the mechanisms of genetic
algorithms and tabu search and it is used to schedule the NHL also considered
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by Ferland and Fleurent [30]. The algorithm consists of three phases which are
used repeatedly after initial schedules have been obtained. The initial population
of schedules is generated by an algorithm similar to the one used in [30] and the
road trips are built sequentially. The reproduction phase assigns a probability for
each schedule to be reproduced. The probability is monotonically decreasing with
respect to the number of violated constraints. The crossover phase contains the
evolutionary part of the algorithm since it generates new schedules from existing
schedules and the tabu search face contains a traditional tabu. The neighbourhood
of the tabu search consists of all the schedules that can be obtained by moving a
single game from one day to another.

Recently, two papers have appeared on minimizing travel distance for a prac-
tical application. The first is by Voorhis [91] and once more college basketball is
considered. The application is a double round robin tournament with 10 teams
allowing trips of length 2 (called travel swings). The problem is formulated as an
IP model assigning games to slots and it is solved using a depth first branching
algorithm. The algorithm starts with assigning trips of length two to slots and
afterwards the remaining games are scheduled. For comparison the IP model is
also solved using CPLEX but no feasible solutions were obtained within 15 hours
of CPU time. In contrast, the developed algorithm found 9 schedules in 1.33 hours
of CPU time.

The second paper, by Wright [100], considers the national basketball league of
New Zealand. This is a relaxed double round robin tournament with 10 teams and
trips of length two are allowed. To solve the problem, a subcost-guided simulated
annealing algorithm and the objective function reflects the number of violated
requests. The paper gives a thorough comparison of variations of the algorithm
and concludes that it is advantageous to keep a certain structure at the beginning
of the search but relaxing the structural constraints during the search.

3.4.2 The Traveling Tournament Problem

Easton et al. [26] presented the traveling tournament problem (TTP) in 2001.
The problem is motivated by the problem of scheduling major league baseball
and it is formulated to capture the fundamental difficulties of minimizing the
travel distance for a sports league. By using the TTP as benchmark problems,
it is possible to develop and compare solution methods which, afterwards, can be
specialized for the various constraints present in practical applications. The TTP
can be formulated as follows.

Definition 3 (Easton et al. [26]) The traveling tournament problem is as fol-
lows:

Input: n, the number of teams; D an n by n integer distance matrix; L, U integer
parameters.
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Output: A double round robin tournament on the n teams such that
- The number of consecutive home games and consecutive away games are
between L and U inclusive, and
- The total distance travelled by the teams is minimized.

Furthermore, two additional requirements are mentioned. The first is a mirroring
constraint requiring that the schedule is mirrored and the second is a no-repeater
constraint requiring that two teams cannot play two games against each other in
two consecutive slots. Notice that at most one of the two requirements is relevant
since the no-repeater constraint is always satisfied in a mirrored schedule.

In the paper two instance classes are presented:

Circle instances (circular distance):
An instance of the circular distance TTP with n teams is obtained by gen-
erating an n-node circle graph with unit distances (distance of 1 between all
adjacent nodes). The distance between two teams i and j with i > j is then
equal to the length of the shortest path between i and j and it equals the
minimum of i− j and j − i + n.

National league instances (NL):
The MLB consists of two leagues called the National League and the Ameri-
can League. In order to create small instances reflecting the actual structure
of the MLB the teams of the National League was used to obtain benchmark
problems with 4 to 16 teams called NL4, NL6,. . . ,NL16.

Later Ribeiro and Urrutia [76] have presented a third instance class:

Constant distance (CTTP):
The constant distance instances are characterized by a distance of 1 between
all teams and Ribeiro and Urrutia [76] show that, for this instance class,
minimizing travel distance is equivalent to maximizing the number of breaks.

All the instance classes are presented at [88] together with the current best upper
and lower bounds.

Various solution methods have been presented for solving the TTP. Easton
et al. [26] present a method based on the independent lower bound (IB), which
they define to be the sum of the minimum travel distances for each team when
they are considered independently. The solution method generates pattern sets
with as many trips as possible and a corresponding timetable minimizing the travel
distance is found afterwards. In this setup, a strengthening of the IB can be used
to check optimality and, as long as this bound is below the best solution, the
algorithm continues. This method is able to solve the NL4 and NL6 to optimality.

Benoist, Laburthe, and Rottembourg [13] apply a hybrid algorithm combining
Lagrange relaxation and CP. The algorithm has a hierarchical architecture con-
sisting of three components. The main component is a CP model capturing the
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entire problem and capable of solving the problem by itself. However, a global
constraint is introduced in order to improve the bounds during the search. This
global constraint corresponds to the second component and it contains a Lagrange
controller using either sub-gradient or modified gradient techniques to adjust the
lagrange multipliers for the third component consisting of a perturbated subprob-
lem for each team. The subproblem for a given team i schedules all the games
associated with team i such that team i’s travel distance is minimized.

Subsequently, Easton, Nemhauser, and Trick [27] present another hybrid IP/CP
solution method. This is a branch and price (column generation) algorithm in
which the columns correspond to tours for the teams. The master problem is a
linear programming problem assigning teams to tours, while the pricing problem
for generating tours is a CP problem. A parallel version of the algorithm is imple-
mented and it is to date the only solution method which has been able to prove
optimality of an instance of NL8. However, the no-repeater constraint was not
imposed which means that the solution value can only be used as a lower bound
for the instance found at [88].

The next approach for the TTP was a simulated annealing algorithm by Anag-
nostopoulos, Michel, Van Hentenryck, and Vergados [1] called TTSA. From an
initial schedule found by a simple backtrack search TTSA searches for improving
solutions using five kinds of moves: SwapHomes, SwapRounds, SwapTeams, Par-
tialSwapRounds and PartialSwapTeams. By applying these moves, the structure
of the schedule is destroyed but for each move a corresponding ejection chain is
able to restore the structure. In this way the algorithm is able to satisfy all hard
constraints during the search, whereas the soft constraints may be violated. The
hard constraints include the round robin constraints while the no-repeater is con-
sidered a soft constraint. The number of violated soft constraints is incorporated
in the objective function to force the algorithm towards feasible solutions. TTSA
randomly selects a move and it is performed with probability 1 if it leads to an
improving solution and otherwise the probability depends on the resulting increase
in travel distance plus the current ”temperature”. The TTSA were able to im-
prove all the current best known upper bounds for the NL instances with more
than 10 teams and, in a recent paper by Hentenryck and Vergados [42], the TTSA
are further refined to handle mirrored tournaments. In this paper they also use a
randomized version of a hill climbing algorithm to obtain better initial schedules.

The first paper focussing solely on mirrored TTP instances is by Urrutia and
Ribeiro [90] and they present a heuristic 3-phase approach for generating mirrored
schedules quickly. In Phase 1 they first use the canonical schedule to obtain a
timetable with placeholders and afterwards they construct a matrix of consecutive
opponents. Each entry (i, j) of the matrix gives the number of times another
team meets i and j consecutively and this is used in Phase 2 when teams are
assigned to placeholders. A simple heuristic assigns teams located close together to
placeholders who are met consecutively by many teams. Finally, Phase 3 uses two
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steps to obtain a pattern set. In Step 1 a constructive method generates an initial
pattern set and afterwards Step 2 performs local search to improve the pattern
set. Urrutia and Ribeiro also presents a heuristic method combining GRASP and
iterated local search (ILS) which they call GRILS-mTTP . The GRILS-mTTP
performs a number of iterations all starting with the algorithm explained above
for generating an initial schedule. Afterwards, a local search is applied to obtain a
locally optimal solution and then GRILS-mTTP iterates between a perturbation
procedure and a local search until some re-initialization criterion is satisfied.

Henz [44] proposes to combine large neighbourhood search and CP to overcome
the problem of getting away from local optima. He uses five types of moves
which all relax a substantial part of the given schedule. For instance the move
called Relax rounds does not only exchange two slots but it relaxes all variables
associated with a number of slots. CP is then applied to obtain a new schedule
given the partial schedule which has not been relaxed. In the paper it is noted
that only preliminary results have been obtained and they are not competitive to
the conventional local search techniques applied earlier.

As mentioned above Ribeiro and Urrutia [76] present the instance class with
constant distances and show that minimizing travel distance for these instances
is equivalent to maximizing the number of breaks. In the paper they also de-
rive upper bounds on the number of breaks for unconstrained single round robin
tournaments, equilibrated single round robin tournaments, unconstrained double
round robin tournaments and double round robin tournaments with a maximum
of three consecutive home games and three consecutive away games. The limit on
consecutive home games and away games in the last kind resembles the bounds
from the benchmark TTP instances. By separating these instances into three
classes ((n − 1) mod 3 = 0, (n − 1) mod 3 = 1 and (n − 1) mod 3 = 2) the
following bounds were obtained.

UBMTTP =





14, if n = 4,
4(n2 − n)/3− 4n + 20, if ((n− 1) mod 3 = 0 and n 6= 4,
4(n2 − 2n)/3, if ((n− 1) mod 3 = 1,
4(n2/3− n), if ((n− 1) mod 3 = 2.

The corresponding mirrored constant distance TTP is solved by the GRILS-mTTP
presented in [90] and the algorithm is able to solve the instances with 4, 6, 8, 10,
12 and 16 teams to optimality by obtaining solutions which reach the upper bound
stated above.

The constant distance TTP were also considered by Rasmussen and Trick [72]
who used the PGBA discussed in Section 3.3.2 to solve the problem. They were
able to prove optimality for all the mirrored instances with 18 teams or less and
all the non-mirrored instances with 16 teams or less by using the algorithm for
maximizing breaks instead of minimizing breaks. Hentenryck and Vergados [42]
have also used their TTSA approach and improved the best solution for mirrored
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instance with 20 teams and the best solutions for the non-mirrored instances with
18-24 teams.

Lim et al. [54] apply a hybrid metaheuristic algorithm combining simulated
annealing and hill-climbing for the TTP. After having found an initial schedule
using beam search the algorithm iterates between two components for improving
the current schedule. The first component searches for improving schedules by
using simulated annealing. The moves in this component, called conditional local
jumps, exchange sets of matches in such a way that all the constraints are satisfied.
The second component applies hill-climbing for finding a better team assignment.
This is done by means of local exchanges and the algorithm moves in the direction
of decreasing travel distance. The fundamental idea of the overall approach is
to improve the schedule when a good team assignment has been obtained and
to search for a better team assignment when the schedule seems promising. The
algorithm continues until no improvements have been obtained for a fixed number
of iterations or until a time limit is reached. The computational results show that
the algorithm is able to improve the best solutions for all the non-mirrored circular
TTP instances with 10 teams or more.

As a generalization of the break minimization problem when distances are con-
sidered instead of breaks Rasmussen and Trick [73] define the timetable constrained
distance minimization problem (TCDMP). The problem is defined as follows:

Definition 4 (Rasmussen and Trick [73]) Given a timetable for a double ro-
und robin tournament with n teams, a distance matrix specifying the distances
between the venues and an upper bound UB on the number of consecutive home
and consecutive away games, find a feasible pattern set which minimizes the total
distance traveled by all teams.

In the paper four solution methods for the problem are presented and evaluated.
The method showing the best performances is a 2-phase hybrid IP/CP approach
which generates all feasible patterns in Phase 1 using CP and assigns teams to
patterns in Phase 2 using IP. In an extended version of the paper Rasmussen and
Trick also present a new heuristic approach called the circular traveling salesman
approach (CTSA) to solve the TTP. The CTSA first solves the traveling salesman
problem containing all the teams in a given tournament. Afterwards an instance
of the circular distance TTP is then formulated with the teams ordered according
to the TSP solution. To solve the circular distance TTP the solutions obtained
by Lim et al. [54] are used and this gives a solution to the original TTP instance.
In spite of the simpleness the CTSA is capable of obtaining solutions comparable
to the beam search used in [54] for obtaining initial solutions. The four solution
methods used to solve the TCDMP are presented in Chapter 7 together with
computational results and a more detailed description of the CTSA. In this chapter
we also discuss how the TCDMP can be used to enhance the solutions obtained
by the CTSA.



Chapter 4

A Benders Approach for Sports
Scheduling

In this chapter we consider the constrained minimum break problem for a mirrored
double round robin tournament with an even number of teams n. As explained in
the previous chapter, this is the problem of finding a schedule which minimizes the
number of breaks and at the same time satisfies some additional constraints. We
consider tournaments facing place constraints and in order to guarantee acceptable
patterns for all teams, we do not allow consecutive breaks.

To solve the problem, we present a hybrid IP/CP algorithm using Benders
decomposition. The algorithm uses logic-based Benders cuts to enhance perfor-
mance, and since the subproblem is discrete, it has been necessary to make some
modifications compared to traditional Benders decomposition.

To show the effectiveness of the algorithm, we compare the computation times
with two CP models and an IP model. The computational tests show that the
hybrid method performs much better than the three basic models and it is capable
of solving problems in few seconds, which cannot be solved by any of the other
models in 30 minutes.

4.1 The Algorithm

In this chapter we only consider the first half of the tournament, since the second
half of the schedule is determined implicitly from the first half in mirrored double
round robin tournaments. Furthermore, the problem is decomposed into finding
a pattern set and finding a timetable.

The algorithm has a structure like a traditional Benders decomposition with a
master problem and a subproblem. The master problem is associated with the pat-
tern set and minimizes the number of breaks while satisfying the place constraints.

49
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The subproblem, on the other hand, searches for a timetable corresponding to the
pattern set found in the master problem. In case a feasible solution to the sub-
problem is found, we have an optimal solution to the problem and the algorithm
stops.

Unfortunately, the subproblem cannot be modelled as an LP problem and,
without an LP formulation, we are unable to obtain the dual variables needed
for generating a traditional Benders cut. Instead, the subproblem is modelled
as an IP problem (called (IPS)) and the linear relaxation of this problem (called
(LPS)) is then used to obtain Benders cuts. However, when (LPS) is used as the
subproblem instead of (IPS), we face the risk of finding a pattern set which makes
(LPS) feasible although (IPS) would have been infeasible.

In order to take this scenario into account, we introduce an additional feasibil-
ity check. In case the pattern set found by the master problem results in a feasible
solution to (LPS), we solve a CP subproblem (called (CPS)). (CPS) is also re-
laxed compared to (IPS), since the relaxation makes it possible to add logic-based
Benders cuts to the master problem in case the pattern set is infeasible.

Finally, we have added a separation procedure capable of generating additional
feasibility cuts for the master problem. This procedure checks some basic require-
ments of the pattern set before (LPS) is solved and it adds cuts to the master
problem if the pattern set turns out to be infeasible.

The solution method will be referred to as CPBD and it iterates as follows.
When a pattern set is found by the master problem, the problem of checking
feasibility and finding a feasible game assignment is divided into three levels. At
first the separation procedure checks for infeasibility, and logic-based Benders cuts
may be added to the master problem. Next (LPS) is solved and in case the pattern
set is proved infeasible, a traditional Benders cut is added to the master problem.
After (LPS) has been solved, the master problem is re-solved if cuts have been
added. Otherwise, (CPS) is solved and the algorithm either stops with a feasible
solution or a logic-based Benders cut is added to the master problem. Figure 4.1
illustrates the iteration scheme of CPBD.

Master
problem

Separation

procedure

LP subproblem

CP subproblem

Add cuts found by separation procedure

Add cut from LPS or CPS Stop

Figure 4.1: Iteration scheme of CPBD.
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4.1.1 Master Problem

The master problem is an IP minimization problem finding a pattern set for the
first half of the tournament. The objective is to minimize the number of breaks and
the solution must satisfy a number of constraints which will be explained beneath
the model. In the following we let T = {1, . . . , n} and S = {1, . . . , n − 1} denote
the sets of teams and slots, respectively. The place constraints are represented by
the sets I1

i and I0
i , holding the slots in which team i must play home and away.

The binary variable his is 1 (0) if team i plays home (away) in slot s and the
binary variable bis is 1 if team i has a break in slot s. A team cannot have a break
in slot 1 but bi1 is 1 if team i has a break in the first slot of the second half. LB is
a lower bound on the objective value, which helps to reduce the computation time.
Initially LB is set to the lower bound 3(n− 2) stated by de Werra [94] and in the
following iterations it is equal to the solution value of the preceding iteration.

min
n∑

i=1

bi1 +
n∑

i=1

n−1∑
s=2

2bis (4.1.1)

s.t.
n∑

i=1

bi1 +
n∑

i=1

n−1∑
s=2

2bis ≥ LB (4.1.2)

s∑
s1=s−2

his1 ≤ 2 ∀i ∈ T, ∀s ∈ S s ≥ 3 (4.1.3)

s∑
s1=s−2

his1 ≥ 1 ∀i ∈ T, ∀s ∈ S s ≥ 3 (4.1.4)

hi1 + hi2 − hin−1 ≤ 1 ∀i ∈ T (4.1.5)
hi1 + hi2 − hin−1 ≥ 0 ∀i ∈ T (4.1.6)
hi1 − hin−2 − hin−1 ≤ 0 ∀i ∈ T (4.1.7)
hi1 − hin−2 − hin−1 ≥ −1 ∀i ∈ T (4.1.8)
1− his − his−1 ≤ bis ∀i ∈ T, ∀s ∈ S, s ≥ 2 (4.1.9)
his + his−1 − 1 ≤ bis ∀i ∈ T, ∀s ∈ S, s ≥ 2 (4.1.10)
hi1 − hin−1 ≤ bi1 ∀i ∈ T (4.1.11)
− hi1 + hin−1 ≤ bi1 ∀i ∈ T (4.1.12)
n∑

i=1

his = n ∀s ∈ S (4.1.13)

n−1∑
s=1

his ≤ n− 1−
⌊

n− 1
3

⌋
∀i ∈ T (4.1.14)
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n−1∑
s=1

his ≥
⌊

n− 1
3

⌋
∀i ∈ T (4.1.15)

his = 1 ∀i ∈ T, ∀s ∈ I1
i (4.1.16)

his = 0 ∀i ∈ T, ∀s ∈ I0
i (4.1.17)

his, bis ∈ {0, 1} ∀i ∈ T, ∀s ∈ S (4.1.18)

The objective function (4.1.1) minimizes the total number of breaks for both halves
of the double round robin schedule and constraint (4.1.2) gives a lower bound on
the objective value. The constraints (4.1.3) - (4.1.8) limit the number of consecu-
tive home and away games to be no more than two. Notice that constraints (4.1.5)
- (4.1.8) are used to limit the number of consecutive home and away games in the
transition from the first half to the second half of the tournament. A break vari-
able bis is forced to 1 by the constraints (4.1.9)-(4.1.12) whenever his−1 = his, and
again special constraints are used in the transition from the first to the second half
of the tournament. The constraints (4.1.13) ensure that half the teams play home
in each slot. Since the number of consecutive home and away games are limited to
two, we can obtain upper and lower bounds on the number of home games for each
team. These limits are presented in constraints (4.1.14) and (4.1.15). Constraints
(4.1.16) and (4.1.17) state the place constraints.

The master problem is solved in each iteration and the current solution will
be denoted h̄ in the following. Furthermore, we update the two index sets J1 =
{(i, s) ∈ T × S|h̄is = 1} and J0 = {(i, s) ∈ T × S|h̄is = 0} in each iteration.

4.1.2 Separation Procedure

In order to check the feasibility of a given pattern set h̄, we use the necessary
condition (3.3.1) stated by Miyashiro et al. [64]. Since each subset of teams T̂

must play exactly |T̂ |(|T̂ |−1)
2 mutual games, it must also satisfy the condition

n−1∑
s=1


min





∑

i∈T̂

h̄is,
∑

i∈T̂

(1− h̄is)






 ≥ |T̂ |(|T̂ | − 1)

2
(4.1.19)

where
∑

i∈T̂ h̄is and
∑

i∈T̂ (1−h̄is) give the number of home games and the number
of away games played by teams from T̂ in slot s.

In case a subset of teams T̂ violates (4.1.19) by a value v, the following two
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logic-based Benders cuts can be added to the master problem.
∑

(i,s)∈J T̂
1

(1− his) +
∑

(i,s)∈J T̂
0

his ≥ v (4.1.20)

∑

(i,s)∈J T̂
1

his +
∑

(i,s)∈J T̂
0

(1− his) ≥ v (4.1.21)

where J T̂
1 = {(i, s) ∈ T̂ × S|h̄is = 1} and J T̂

0 = {(i, s) ∈ T̂ × S|h̄is = 0}.
The cut (4.1.20) makes sure that, if (4.1.19) is violated by v, then at least v

changes are made in the patterns corresponding to T̂ in the following pattern sets.
Due to symmetry, (4.1.21) gives a valid upper bound on the number of changes.

However, since the number of subsets is exponential, it is not practical to check
all subsets. Instead, the separation procedure checks all subsets with cardinality
two and adds cuts for all subsets violating (4.1.19). If cuts have been found, the
procedure stops. Otherwise, subsets with cardinality three are checked but now
the procedure stops when the first cut is found. As long as no cuts are found, the
procedure continues to increase the cardinality of the subsets until it exceeds a
parameter subsetLimit. When this happens the procedure stops.

4.1.3 Benders Cuts

The problem of finding a feasible timetable (IPS) can be formulated as the follow-
ing IP problem where the binary variable xi1i2s is 1 if team i1 plays home against
team i2 in slot s and 0 otherwise.

min 0 (4.1.22)
s.t. xiis = 0 ∀i ∈ T, ∀s ∈ S (4.1.23)

n∑

i2=1

(xi1i2s + xi2i1s) = 1 ∀i1 ∈ T, ∀s ∈ S (4.1.24)

n−1∑
s=1

(xi1i2s + xi2i1s) = 1 ∀i1, i2 ∈ T, i1 < i2 (4.1.25)

n∑

i2=1

xi1i2s = h̄i1s ∀(i1, s) ∈ J1 (4.1.26)

n∑

i2=1

xi1i2s = h̄i1s ∀(i1, s) ∈ J0 (4.1.27)

xi1i2s ∈ {0, 1} ∀i1, i2 ∈ T, ∀s ∈ S (4.1.28)

This is a feasibility problem and hence we minimize a constant objective. Con-
straints (4.1.23) restrict teams from playing against themselves and constraints
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(4.1.24) and (4.1.25) require that each team plays against exactly one opponent
in each slot and meets all other teams once. The two constraints (4.1.26) and
(4.1.27) link the timetable to the given pattern set h̄ by restricting the teams to
play according to the pattern set.

To obtain a Benders cut in case no feasible timetable exists, we use the linear
relaxation of (IPS). Furthermore, we relax the problem by adding an artificial
0-1 variable ais to the sum in constraint (4.1.26) and subtracting an artificial 0-1
variable ais from the sum in constraint (4.1.27). These variables make sure that
the problem is feasible. When ais is set to 1, it corresponds to changing the home-
away assignment of team i in slot s. In this way the entire pattern set can be
changed but a penalty is incurred every time a change is made. This gives the
following LP problem (LPS) where the u’s to the right denote the dual variables.

min
n∑

i=1

n−1∑
s=1

ais (4.1.29)

s.t. xiis = 0 ∀i ∈ T, ∀s ∈ S u1
is (4.1.30)

n∑

i2=1

(xi1i2s + xi2i1s) = 1 ∀i1 ∈ T, ∀s ∈ S u2
i1s (4.1.31)

n−1∑
s=1

(xi1i2s + xi2i1s) = 1 ∀i1, i2 ∈ T, i1 < i2 u3
i1i2 (4.1.32)

n∑

i2=1

xi1i2s + ai1s = h̄i1s ∀(i1, s) ∈ J1 u4
i1s (4.1.33)

n∑

i2=1

xi1i2s − ai1s = h̄i1s ∀(i1, s) ∈ J0 u5
i1s (4.1.34)

xi1i2s, ai1s ∈ R+ ∀i1, i2 ∈ T, ∀s ∈ S (4.1.35)

The optimal objective value of the dual problem to (LPS) is:

n∑

i=1

n−1∑
s=1

u2∗
is +

n−1∑

i1=1

n∑

i2=i1+1

u3∗
i1i2 +

∑

(i,s)∈J1

h̄isu
4∗
is +

∑

(i,s)∈J0

h̄isu
5∗
is

where u1∗, u2∗, u3∗, u4∗ and u5∗ denote the optimal dual variables.
(LPS) is always feasible and the optimal solution value of (LPS) is therefore

equal to the optimal solution value of the dual problem. This means that the
optimal value of the dual problem must be zero whenever a game assignment
exists. However, since the pattern set h̄ does not appear in the constraints of the
dual problem, u1∗, u2∗, u3∗, u4∗ and u5∗ are always feasible in the dual problem no
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matter which pattern set is chosen. A pattern set h for which a game assignment
exists must therefore satisfy the Benders cut:

n∑

i=1

n−1∑
s=1

u2∗
is +

n−1∑

i1=1

n∑

i2=i1+1

u3∗
i1i2 +

∑

(i,s)∈J1

hisu
4∗
is +

∑

(i,s)∈J0

hisu
5∗
is ≤ 0

This cut is added to the master problem whenever the optimal solution value of
(LPS) is greater than zero.

4.1.4 CP Subproblem

When a pattern set satisfies all the constraints from the separation procedure and
leads to an optimal solution value of zero in (LPS), we use a CP problem (CPS)
to find a game assignment if one exists. Otherwise, a cut is added to the master
problem.

(CPS) could be formulated as a feasibility problem which was feasible when a
game assignment existed and infeasible otherwise. However, this approach would
lead to a cut, which would only cut off the current pattern set from the master
problem and we are searching for a stronger cut. Instead a relaxation is used
which minimizes the number of violations. If the optimal solution value is equal
to zero, a feasible game assignment has been found and otherwise a cut is added
to the master problem.

To formulate the problem we use the opponent variables ois which give the
opponent of team i in slot s, and to relax the problem the artificial variables ais

are used. The basic constraints of (CPS) are from Henz et al. [46].

min
n∑

i=1

n−1∑
s=1

ais (4.1.36)

s.t. ois 6= i ∀i ∈ T, ∀s ∈ S (4.1.37)
alldifferent(oi1, . . . , oin−1) ∀i ∈ T (4.1.38)
alldifferent(o1s, . . . , ons) ∀s ∈ S (4.1.39)
(oi1s = i2) ⇔ (oi2s = i1) ∀i1, i2 ∈ T, i1 < i2, ∀s ∈ S (4.1.40)
(h̄i1s = h̄i2s) ∧ (oi1s = i2) ⇒
(ai1s = 1) ∨ (ai2s = 1) ∀i1, i2 ∈ T, i1 < i2, ∀s ∈ S (4.1.41)

∑

i:(i,s)∈J1

ais −
∑

i:(i,s)∈J0

ais = 0 ∀s ∈ S (4.1.42)

ois ∈ T, ais ∈ {0, 1} ∀i ∈ T, ∀s ∈ S (4.1.43)

In this model the objective function (4.1.36) minimizes the sum of the artificial
variables. The constraints (4.1.37) state that a team cannot meet itself and con-
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straints (4.1.38) make sure that each team meets all other teams. Constraints
(4.1.39) require that all teams meet different opponents in each slot and con-
straints (4.1.40) make sure that teams meet pairwise. The last two constraints
involve the artificial constraints. Constraints (4.1.41) force an artificial variable to
one if two opponents both play home or both play away and constraints (4.1.42)
state that the number of positive artificial variables in a given slot corresponding
to home games must equal the number of variables corresponding to away games.

Since the objective function minimizes the sum of the artificial variables, the
optimal objective value can be used as a lower bound on the number of changes
needed in the pattern set to make it feasible.

Lemma 2 Given a pattern set h̄, then the optimal objective value of (CPS) is
a lower bound on the number of h̄is variables which need to change to obtain a
feasible game assignment.

Proof. Let (o∗, a∗) be an optimal solution to (CPS) corresponding to pattern set
h̄ and assume that a pattern set ĥ with a feasible game assignment ô exists for
which

n∑

i=1

n−1∑
s=1

|h̄is − ĥis| <
n∑

i=1

n−1∑
s=1

a∗is

We show that this leads to a contradiction. Let âis = |h̄is − ĥis| ∀i ∈ T, ∀s ∈ S
and notice that

ĥis =

{
h̄is − âis if (i, j) ∈ J1

h̄is + âis if (i, j) ∈ J0

This means that (ô, â) is a solution to (CPS) corresponding to the pattern set
h̄ since â transforms h̄ to ĥ for which ô is a solution. However, this leads to a
contradiction since (o∗, a∗) was assumed to be an optimal solution and

n∑

i=1

n−1∑
s=1

âis <

n∑

i=1

n−1∑
s=1

a∗is ¤

The following theorem gives two cuts which can be added to the master problem
in case (CPS) has an optimal solution greater than zero.

Theorem 7 Let (o∗, a∗) be an optimal solution to (CPS) corresponding to the
pattern set h̄. Then the following constraints can be added to the master problem

∑

(i,s)∈J1

his −
∑

(i,s)∈J0

his ≤ n(n− 1)−
n∑

i=1

n−1∑
s=1

a∗is (4.1.44)

∑

(i,s)∈J0

his −
∑

(i,s)∈J1

his ≤ n(n− 1)−
n∑

i=1

n−1∑
s=1

a∗is (4.1.45)
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where J0 = {(i, s)|h̄is = 0}, J1 = {(i, s)|h̄is = 1}.
Proof. From Lemma 2 we know that at least

∑
is a∗is of the h variables must be

changed compared to h̄ in order to obtain a feasible game assignment. This gives
the constraint

∑

(i,s)∈J1

(1− his) +
∑

(i,s)∈J0

his ≥
n∑

i=1

n−1∑
s=1

a∗is

which leads to (4.1.44). The constraint (4.1.45) is valid due to the symmetry of
the problem. ¤

4.1.5 Cut Pool

To avoid redundant cuts in the master problem, we use a cut pool. A cut is moved
from the master problem to the cut pool if the number of consecutive non-binding
iterations exceed a parameter iterBeforePool. On the other hand, if a solution
obtained in the master problem violates a cut from the cut pool, then the cut is
added to the master problem again and it is re-solved.

4.2 Computational Results

In order to examine the efficiency of the solution method, we compare the perfor-
mance of CPBD with the performance of two CP models and one IP model.

• The first CP model (CP1) corresponds to a combination of the master prob-
lem and (CPS) apart from minor modifications implemented to use the extra
options available in CP.

• The second CP model (CP2) has variables for all 2(2n−1) time slots. Again
the home-away patterns and breaks of each team are determined by the vari-
ables his and bis but the game assignment is determined by venue variables
vis. These variables determine the venue at which team i plays in slot s.

• The IP model (IP) corresponds to a combination of the master problem and
(IPS).

All tests have been performed on an Intel Xeon 2.67 GHz processor with 4
GB RAM. All models are implemented in OPL Studio by ILOG [52] using default
settings and all computation times are reported in seconds. We use a time limit
of 1800 seconds.

The solution method has been tested on several instances with and without
place constraints and with varying number of teams. To get a general idea of
the efficiency when place constraints are present, 10 random instances have been
generated for each number of teams and the average solution time is reported.
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Table 4.1: Computation times for instances without place constraints.

Solution time (s)

2n CP1 CP2 IP CPBD

4 0.01 0.01 0.04 0.10
6 0.01 0.32 0.35 0.72
8 1.46 – 13.29 2.76

10 – – – 26.55
12 – – – 24.79
14 – – – –

Table 4.2: Average computation times for instances with 5 place constraints.

Problems solved Average solution time (s)

2n CP1 CP2 IP CPBD CP1 CP2 IP CPBD

4 10 10 10 10 0.00 0.00 0.00 0.00
6 10 10 10 10 0.11 0.28 0.31 0.06
8 10 8 10 10 219.12 127.87 11.29 0.83

10 0 0 6 9 – – 244.06 34.26
12 0 0 0 3 – – – 508.69

Table 4.1 gives the solution times for instances without place constraints and
the number of teams ranging from 4 to 14. Instances which cannot be solved within
the time limit are marked with –. Since consecutive breaks are not allowed, all of
the instances with only 4 teams are infeasible. In the table we see that CPBD is
much faster than the CP and IP models when 10 and 12 teams are considered but
the instance with 14 teams is intractable to all 4 methods.

Tables 4.2 and 4.3 present the results for instances with 5 and 15 place con-
straints respectively. Since 10 instances are solved for each row, we report the
number of instances solved (or proved infeasible) and the average time used for
these instances. Instances which could not be solved or proved infeasible within
the time limit are not included in the average. Again we see that the computa-
tion times are quite similar for the small instances but CPBD is much faster at
instances with 10 and 12 teams and it is able to solve instances unsolvable for any
of the other methods.

Notice that proving infeasibility is often faster than solving the feasible in-
stances. An example of this is seen in Table 4.3 where the two CP models seem to
be very fast at solving instances with 10 teams. However, all they do is proving
infeasibility of a single instance.
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Table 4.3: Average computation times for instances with 15 place constraints.

Problems solved Average solution time (s)

2n CP1 CP2 IP CPBD CP1 CP2 IP CPBD

4 10 10 10 10 0.00 0.01 0.00 0.00
6 10 10 10 10 0.00 0.01 0.01 0.01
8 8 8 10 10 133.06 125.58 1.30 0.18

10 1 1 8 10 0.01 0.02 444.57 31.73
12 0 0 0 4 – – – 479.86





Chapter 5

The Pattern Generating Benders
Approach

Although the CPBD algorithm from Chapter 4 performs significantly better than
basic CP and IP models, stronger methods are needed to handle practical appli-
cations. In this chapter we show how the underlying idea of the CPBD algorithm
combined with pattern generation can lead to a much faster solution method.

Inspired by the work of Hooker and Ottosson [50], we present a hybrid IP/CP
approach using logic-based Benders decomposition. The method adopts the de-
composition steps used in earlier papers (see Section 3.3.2) but it contains two
essential differences compared to the previous approaches. It obtains speedups by
limiting the number of patterns generated initially and it reduces the number of
infeasible pattern sets found in the master problem by using logic-based Benders
cuts. The approach will be referred to as the pattern generating Benders approach
(PGBA).

Computational tests show that the PGBA leads to substantial speedups for
most instances when compared to the three-phase approach used by Henz [45].
The speedups are small for small instances but increase with the number of teams.
These speedups make it possible to consider non-mirrored tournaments of realistic
size.

We extend this work to the circular distance TTP (CTTP) discussed in Sec-
tion 3.4.2. Urrutia and Ribeiro [90] show that, for the CTTP, the problem of
minimizing the total travel distance is equivalent to maximizing the number of
breaks. With some modifications of the PGBA, it is possible to solve a number of
previously unsolved benchmark problems for CTTP to optimality.

61
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5.1 Problem Formulation

As in Chapter 4 we consider the constrained minimum break problem for a double
round robin tournament with an even number of teams n. Again, the tourna-
ment must satisfy place constraints and consecutive breaks are not allowed but,
in contrast to Chapter 4, we extend the problem to include non-mirrored sched-
ules. Non-mirrored schedules are sometimes preferred for highly constrained prac-
tical applications since their flexibility makes them capable of satisfying more
constraints than mirrored schedules. However, when non-mirrored schedules are
considered, we need to add an additional constraint saying that two games with
the same opponents must be separated by at least k time slots for some given
value of k.

The sets of teams and time slots are denoted T and S respectively and I1
i

and I0
i hold the slots in which team i must play home and away due to place

constraints. To formulate the problem we introduce the following variables.

his =

{
1 if team i plays home in slot s

0 else

bis =

{
1 if team i has a break in slot s: his−1 = his

0 else

xi1i2 ∈ S gives the slot in which team i2 visits team i1.

Since we consider non-mirrored tournaments, we have to schedule both halves
of the tournament and this problem can be modelled as the following CP problem
referred to as (CPP).

min
∑

i∈T

∑

s∈S

bis (5.1.1)

s.t. sequence(1, 2, 3, all(s ∈ S) his, 1, n− 1) i ∈ T (5.1.2)
(bis = 1) ⇔ (his−1 = his) i ∈ T, s ∈ S \ {1} (5.1.3)
bi1 = 0 i ∈ T (5.1.4)
∑

i∈T

his =
n

2
s ∈ S (5.1.5)

his = 1 i ∈ T, s ∈ I1
i (5.1.6)

his = 0 i ∈ T, s ∈ I0
i (5.1.7)

(his = 0) ∨ (hjs = 1) ⇒ (xij 6= s) i, j ∈ T, i 6= j (5.1.8)
alldifferent(all(j ∈ T \ i) xij ,

all(j ∈ T \ i) xji) i ∈ T (5.1.9)
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(xij − xji < −k) ∨ (xij − xji > k) i, j ∈ T, i < j (5.1.10)
his, bis ∈ (0, 1) i ∈ T, s ∈ S (5.1.11)
xij ∈ S i, j ∈ T, i 6= j (5.1.12)

The sequence constraints (5.1.2) require that each team plays exactly n− 1 home
games and has a pattern without consecutive breaks since 3 consecutive slots must
contain at least 1 and at most 2 home games. Constraints (5.1.3) define a break
and since breaks are impossible in the first slot, constraints (5.1.4) set all break
variables for slot 1 to zero. Constraints (5.1.5) state that in each time slot, exactly
n teams play home and constraints (5.1.6) and (5.1.7) make sure that the place
requirements are satisfied. Constraints (5.1.8) make sure that team j does not visit
team i in a slot where team i plays away or team j plays home. The alldifferent
constraints (5.1.9) make sure that a team does not play more than a single game
in each time slot. Finally, constraints (5.1.10) separate two games played by the
same teams with at least k time slots.

Notice, that the constraints (5.1.2)-(5.1.4) are all constraints for individual
patterns, (5.1.5) is a constraint for the set of patterns and (5.1.8)-(5.1.10) consider
assignments of games to the pattern set. This partitioning will be used in the
solution method.

5.2 Methodology

To solve the problem defined in Section 5.1, we present a pattern generating Ben-
ders approach. The approach decomposes the problem into the following four
components: generate feasible patterns, find pattern sets from the patterns gen-
erated, check feasibility of the pattern sets, and find a timetable with a feasible
team allocation. However, instead of solving these components one by one, the
algorithm iterates between the four components.

Contrary to previous approaches, the PGBA only generates patterns with a
small number of breaks at first. Then, from among these patterns, a minimization
problem (the master problem) finds a pattern set with a minimal number of breaks.
This pattern set is a good candidate for an optimal solution if a corresponding
timetable and a corresponding team allocation exist. The check for optimality is
discussed in Section 5.6.

Furthermore, the PGBA introduces the third component for checking feasibil-
ity of the pattern sets. The component heuristically determines infeasibility and,
when successful, adds logic-based Benders cuts to the master problem. A number
of models are used to perform this check and they are presented in Section 5.5.

The fourth component is used to find a timetable and a team allocation for
pattern sets which have not been proved infeasible. If the pattern set turns out to
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be infeasible anyway, a Benders cut is added to the master problem. Otherwise,
a feasible solution is found and optimality must be proved.

In case the master problem is infeasible the algorithm tries to generate ad-
ditional patterns. If extra patterns exist the algorithm continues. Otherwise an
optimal solution has been found or infeasibility of the problem has been proved
and the algorithm stops. The chart in Figure 5.1 gives an overview of how the
algorithm works.

Generate
patterns

Find a
pattern set

Check
feasibility

Assign games &
allocate teams

Stop Stop

Add cut

Patterns found Set found Set not proven
infeasible

Set not found
Set infeasible

Set feasible but not proven optimal

Patterns
not found

Set feasible
and optimal

Figure 5.1: Overview of the algorithm.

The algorithm is applicable for both mirrored and non-mirrored schedules but
some of the models are modified according to the given problem. Both IP and
CP models are used in the algorithm since the decomposition makes it possible to
use IP for the optimization problems and CP for feasibility problems. The models
are outlined in the following three sections and a discussion of each of the four
components from Figure 5.1 is given in Section 5.6.

5.3 Generating Patterns

A CP model is used for generating patterns. The model generates all patterns
which begin with an away game, satisfy the constraint (5.1.2) and have exactly c
breaks, where c is a parameter given to the model. Notice that, for each pattern
found by the model, the complementary pattern, where home and away games are
reversed, is available as well.

By using the variables hs for all s ∈ S, where hs equals 1 (0) if the pattern has
a home (away) game in slot s, the CP model referred to as (PM) looks as follows:

sequence(1, 2, 3, all(s ∈ S) hs, 1, n− 1) (5.3.1)
h1 = 0 (5.3.2)
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|S|−1∑
s=1

(hs = hs+1) = c (5.3.3)

hs + hs+n−1 = 1 s = 1, . . . , n− 1 (5.3.4)
hs ∈ (0, 1) s ∈ S (5.3.5)

Constraint (5.3.1) corresponds to (5.1.2) from (CPP) presented in Section 5.1.
Constraint (5.3.2) restricts the search to patterns which begin with an away game
and constraint (5.3.3) limits the search to patterns with c breaks. Constraints
(5.3.4) require that the pattern is mirrored and is only used when a mirrored
tournament is considered.

5.4 Pattern Sets

Given a set of patterns found by (PM) we want to find a subset of n patterns with
a minimal number of breaks. Since all the patterns satisfy the constraint (5.1.2),
and the game assignment and team allocation are postponed, the only constraint
from (CPP) which should be considered is (5.1.5). However, restricting the model
to find pattern sets for which all teams can be allocated to at least one pattern
based on the place constraints helps to avoid obviously infeasible sets. Finally a
lower and an upper bound (LB & UB) on the number of breaks are added. The
lower bound is used to reduce computation time while the upper bound is used
to prove optimality when a feasible schedule has been found. The adjustments of
these bounds will be described in Section 5.6.

The set of generated patterns is denoted P and a binary variable p for all j in
P is used to determine whether pattern j is included in the subset (pj = 1) or not
(pj = 0). cj denotes the number of breaks for pattern j and hjs is a parameter
telling whether pattern j plays home (hjs = 1) or away (hjs = 0) in slot s. The
set Pi = {j ∈ P |hjs = 1 ∀s ∈ I1

i ∧ hjs = 0 ∀s ∈ I0
i } is used to store the patterns

which satisfy all place constraints of team i.
Since the problem of finding pattern sets is a minimization problem, the fol-

lowing IP model called (PSM) is used.

min
∑

j∈P

cjpj (5.4.1)

s.t.
∑

j∈P

pj = n (5.4.2)

∑

j∈P

hjspj =
n

2
s ∈ S (5.4.3)

∑

j∈Pi

pj ≥ 1 i ∈ T (5.4.4)
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∑

j∈P

cjpj ≥ LB (5.4.5)

∑

j∈P

cjpj ≤ UB (5.4.6)

pj ∈ (0, 1) j ∈ P (5.4.7)

Constraint (5.4.2) makes sure that exactly n patterns are chosen, constraints
(5.4.3) correspond to (5.1.5), constraints (5.4.4) require that all teams can be al-
located to at least one pattern and constraints (5.4.5) and (5.4.6) enforce a lower
and an upper bound on the number of breaks.

5.5 Feasibility Check and Benders Cuts

A pattern set found by (PSM) is feasible if all games can be assigned to slots and
teams can be allocated to patterns. If this is not the case, a Benders cut is added
to (PSM) to cut off the current and similar solutions. However, the Benders cuts
used in this method are not obtained from a linear subproblem as in traditional
Benders decomposition. Instead a logic-based Benders decomposition is used, as
defined by Hooker and Ottosson [50], where the Benders cuts are obtained from
inference duals. When the subproblem is a feasibility problem, the inference dual
is a condition which, when satisfied, implies that the master problem is infeasible.
This condition can then be used to obtain a Benders cut for cutting off infeasible
solutions.

In this section we give a necessary and sufficient condition for a team allocation
to exist and necessary conditions for a game assignment to exist. Furthermore,
we present a logic-based Benders cut for each of the conditions. The pattern set
which is currently checked is denoted PC .

5.5.1 Team Allocation

Let G = (A,B) be a bipartite graph where the node sets A and B correspond to
the set of teams and the set of patterns respectively. Furthermore, connect node
i ∈ A and node j ∈ B by an edge if j ∈ Pi ∩ PC . The allocation of teams to
patterns corresponds to a matching between the two node sets A and B from G.
Figure 5.2 gives an example of such a bipartite graph. This means that Hall’s
theorem gives a necessary and sufficient condition for a team allocation to exist.

Theorem 8 (Hall’s theorem [55]) Let G = (A, B) be a bipartite graph. Then
G has a matching of A into B if and only if |Γ(X)| ≥ |X| for all X ⊆ A.

Γ(X) is the set of nodes from B incident to a node in X and in our case this
means that Γ(X) = ∪i∈X(Pi ∩ PC). We can use the Hungarian method to find a
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Figure 5.2: Example of bipartite graph used to find a team allocation.

set of teams X which violates the condition from Hall’s theorem if any such set
exists. Otherwise the Hungarian method finds a feasible team allocation.

If a violating set of teams X is found the following Benders cut can be used.

∑

j∈∪i∈XPi

pj ≥ |X| (5.5.1)

5.5.2 Diversity of Patterns

In case a subset of patterns from the current pattern set PC is very similar it
might be difficult or even impossible to schedule the mutual games between these
patterns. In this case we use the necessary condition by Miyashiro et al. [64]
stating that all subsets of patterns P̄ must satisfy

∑

s∈S


min





∑

j∈P̄

hjs,
∑

j∈P̄

(1− hjs)






 ≥ |P̄ |(|P̄ | − 1) (5.5.2)

where parameter hjs tells whether pattern j plays home or away in slot s. Notice
that this condition is modified to be valid for a double round robin tournament.

Instead of checking each subset, we formulate an IP model called (UBM) which,
for a given subset size Z, finds the subset of teams with the smallest left hand side
in (5.5.2). To formulate this problem a variable αj for each j in PC is used to
determine whether pattern j is in the subset (αj = 1) or not (αj = 0). A variable
δs for each s in S is set to one (zero) if the home (away) games are counted in slot
s and a variable βs for each s in S counts the number of home (away) games from
slot s.

min
∑

s∈S

βs (5.5.3)

s.t.
∑

j∈P C

αj = Z (5.5.4)
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βs −
∑

j∈P C

hjsαj + Z(1− δs) ≥ 0 s ∈ S (5.5.5)

βs −
∑

j∈P C

(1− hjs)αj + Zδs ≥ 0 s ∈ S (5.5.6)

αj , δs ∈ (0, 1) j ∈ PC , s ∈ S (5.5.7)
βs ∈ R+ s ∈ S (5.5.8)

In this problem constraint (5.5.4) ensures that exactly Z patterns are chosen and
constraints (5.5.5) and (5.5.6) make sure that the number of home games are
counted in slot s if δs = 1 and away games are counted if δs = 0.

(UBM) can be used to formulate a necessary condition for PC to be feasible
since (5.5.2) is satisfied for all subsets of size Z if and only if the optimal solution
of (UBM) is no less than Z(Z − 1).
The pattern diversity condition: Given a pattern set PC and a subset size
Z then the pattern set is feasible only if the optimal solution of (UBM) is no less
than Z(Z − 1).

If this condition is violated the Benders cut
∑
j∈P :
αj=1

pj ≤ Z − 1 (5.5.9)

can be added to (PSM).
When the tournament is mirrored, (UBM) can be modified to only consider the

first half of the slots. In that case (5.5.9) can be added to (PSM) if the objective
of (UBM) is strictly less than Z(Z−1)

2 .

5.5.3 Game Separation

When a non-mirrored tournament with k > 0 is considered two additional neces-
sary conditions can be stated. One for subsets of patterns with cardinality two
and one for subsets with cardinality greater than two.

Subsets of Two Patterns.

Since k > 0 the pattern set might contain two patterns without possibility for
playing the two required games. See Figure 5.3 for an example when k ≥ 2.

By letting the parameters sf
j1j2

and sl
j1j2

denote the first respectively last slot
in which j2 can visit j1 the following lemma can be established.

Lemma 3 The two games between patterns j1 and j2 can be assigned to two slots
in S separated by k slots if and only if

(sl
j1j2 − sf

j2j1
> k) ∨ (sl

j2j1 − sf
j1j2

> k). (5.5.10)
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Slots: 1 2 3 4 5 6 7 8 9 10

Pattern 1: 1 1 0 0 1 0 1 0 1 0
Pattern 2: 1 0 1 1 0 0 1 0 1 0

sf
12 sf

21 sl
21 sl

12

Figure 5.3: Example of two patterns which cannot meet when k ≥ 2.

In Figure 5.3 we see that sf
12 = 2, sf

21 = 3, sl
12 = 5 and sl

21 = 4. This means that
(5.5.10) is violated when k ≥ 2.

Lemma 3 implies the necessary condition.
The pair separation condition: Given a pattern set PC and two patterns j1,
j2 from this set, then the pattern set is feasible only if j1, j2 satisfy 5.5.10.

All pairs j1, j2 violating this condition lead to the Benders cut:

pj1 + pj2 ≤ 1 (5.5.11)

Subsets of More Than Two Patterns.

Let P̄ be a subset of PC containing more than two patterns. To check if this
subset can play the required number of mutual games, a CP model is used. The
constraints are similar to the constraints (5.1.8) - (5.1.10) but they only consider
the patterns from P̄ . This gives the following CP model referred to as (GAM).

(hj1s = 0) ∨ (hj2s = 1) ⇒ (xj1j2 6= s) j1, j2 ∈ P̄ , j1 6= j2, s ∈ S (5.5.12)
alldifferent(all(j2 ∈ P̄ \ j1) xj1j2 ,

all(j2 ∈ P̄ \ j1) xj2j1) j1 ∈ P̄ (5.5.13)
(xj1j2 − xj2j1 < −k) ∨ (xj1j2 − xj2j1 > k) j1, j2 ∈ P̄ , j1 < j2 (5.5.14)
xj1j2 ∈ S j1, j2 ∈ P̄ , j1 6= j2 (5.5.15)

The fact that the mutual games between patterns in P̄ can be assigned to time
slots if and only if (GAM) is feasible leads to the second condition.
The multiple pattern separation condition: Given a pattern set PC and a
subset of patterns P̄ from this set, then the pattern set is feasible only if P̄ is a
feasible solution to (GAM).

For all subsets P̄ which are infeasible to (GAM) the following Benders cut can
be added to (PSM)

∑

j∈P̄

pj ≤ |P̄ | − 1 (5.5.16)

Since the number of subsets is exponential the algorithm only checks subsets
with cardinality less than a bound maxCardGAM .



70 The Pattern Generating Benders Approach

5.5.4 Game Assignment

When the pattern set PC satisfies all the necessary conditions outlined above, a
team allocation has already been found by the Hungarian method but a feasible
game assignment is not guaranteed.

To find a game assignment if any exists, the CP model (GAM) from Section
5.5.3 is used. If a non-mirrored tournament with k > 0 is considered the model can
be used as it is on the entire pattern set PC . Otherwise, the separation constraint
(5.5.14) is redundant and can be removed.

In case (GAM) is feasible a feasible game assignment is found and otherwise
the Benders cut (5.5.16) is added to (PSM).

5.6 The Algorithm

This section presents pseudo code for each of the four components illustrated in
Figure 5.1 and discusses how the components work.

Initialization.

Before the first patterns are generated a number of parameters must be initialized.
The parameter c used in (PM) is initialized to zero, LB and UB used in (PSM)
are initialized to 2n−2 and 2n(2n−2) respectively and the parameters nbPatterns
and cutAdded are initialized to zero. Furthermore, the parameters maxCardGAM

and maxCardUBM are used to limit the size of the subsets for which (GAM) and
(UBM) are used. These parameters must be initialized to numbers between three
and 2n.

Generating Patterns.

The procedure Generate Patterns is shown in Figure 5.4. Since the maximum
number of breaks for a single pattern is 2n − 1 the algorithm stops if c > 2n − 1
when the procedure is called. Otherwise it generates all patterns with exactly c
breaks, increments c by one and calls the procedure Find Pattern Set. However,
if the number of patterns is less than the number of teams, the procedure repeats
itself.

Finding Pattern Sets.

Figure 5.5 outlines the procedure Find Pattern Set which solves (PSM). In case
of a feasible solution, the lower bound is set equal to the objective value and the
procedure Check Feasibility is called. Otherwise, Generate Patterns is called to
generate additional patterns.
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1 procedure Generate Patterns
2 if (c > 2n− 1) then
3 Stop
4 end if
5 else
6 Find all solutions to (PM)
7 Update nbPatterns
8 Let c = c + 1
9 if (nbPatterns < 2n) then

10 Generate Patterns
11 end if
12 else
13 Find Pattern Set
14 end else
15 end else
16 end procedure

Figure 5.4: Procedure for generating patterns.

1 procedure Find Pattern Set
2 Solve (PSM)
3 if ((PSM) is feasible) then
4 Update P C

5 Update LB
6 Check Feasibility
7 end if
8 else
9 Generate Patterns

10 end else
11 end procedure

Figure 5.5: Procedure for finding pattern sets.

Feasibility.

The procedure Check Feasibility, is used to check if any of the necessary con-
ditions from Section 5.5 is violated. Computational tests have shown that the
algorithm performs best when the pattern diversity condition is omitted in case
of non-mirrored tournaments and the pair separation condition and the multiple
pattern separation condition is omitted in case of mirrored tournaments. Figure
5.6 displays the procedure for the non-mirrored case.
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1 procedure Check Feasibility
2 cutAdded = 0, card = 2
3 Use the Hungarian method
4 if (∃X ⊆ T : Γ(X) < X) then
5 Add (5.5.1) to (PSM), cutAdded = 1
6 end if
7 if (cutAdded = 0) then
8 for all (i, j ∈ P C : i < j) do
9 if ((5.5.10) is violated) then

10 Add (5.5.11) to (PSM), cutAdded = 1
11 end if
12 end for all
13 end if
14 while ((card < maxCardGAM ) ∧ (cutAdded = 0)) do
15 card = card + 1
16 for all (P̄ ⊆ P C : |P̄ | = card) do
17 if (cutAdded = 0) then
18 Solve (GAM) for P̄
19 if ((GAM) is infeasible) then
20 Add (5.5.16) to (PSM), cutAdded = 1
21 end if
22 end if
23 end for all
24 end while
25 if (cutAdded = 0) then
26 Find Timetable
27 end if
28 else
29 Find Pattern Set
30 end else
31 end procedure

Figure 5.6: Procedure for checking feasibility.

The procedure starts by using the Hungarian method to find a team allocation.
In case no allocation exists the method finds a subset of teams which violates the
necessary and sufficient condition stated in Hall’s theorem and the cut (5.5.1) is
added to (PSM). If a team allocation is found the algorithm adds the cut (5.5.11)
to (PSM) for all pairs of patterns which violate (5.5.10). In case all pairs satisfy
(5.5.10) it solves (GAM), starting with subsets of size three, and continues until
a subset is found for which (GAM) is infeasible, or all subsets with cardinality
less than or equal to maxCardGAM have been checked. In the first case the cut
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(5.5.16) is added to (PSM). Finally, if no cut has been added, Find Timetable is
called and otherwise Find Pattern Set is called.

1 procedure Find Timetable
2 Solve (GAM) for P C

3 if ((GAM) is infeasible) then
4 Add (5.5.16) to (PSM)
5 Find Pattern Set
6 end if
7 else
8 Let UB = LB − 2
9 Let LB = 2n− 3 + c

10 if (c ≤ UB − 2n + 3) then
11 for all (i ∈ {c, . . . , max{2n− 1, UB − 2n + 3}}) do
12 Generate Patterns
13 end for all
14 Let c = 2n
15 Find Pattern Set
16 end if
17 else
18 Stop, optimal solution found
19 end else
20 end else
21 end procedure

Figure 5.7: Procedure for finding a timetable.

Timetable.

The procedure for finding a timetable is shown in Figure 5.7. In this procedure
(GAM) is solved for PC and in case of infeasibility (5.5.16) is added to (PSM)
and Find Pattern Set is called. Otherwise a timetable has been found. This
gives us a feasible solution to the problem with value LB and to prove optimality
the algorithm starts searching for a better solution. This is done by generating
new patterns and updating the upper and lower bounds used in (PSM). We let
UB = LB − 2 since we are only searching for improving solutions. Furthermore,
an improving solution must contain at least one pattern with no less than c breaks
(otherwise we would have found it all ready) which means that we can let LB =
2n− 3 + c (at most 2 patterns without breaks, 1 with at least c breaks and 2n− 3
with 1 break). When generating extra patterns UB can be used to limit the
number of patterns which is necessary to prove optimality. Since no pattern can
have more than UB − (2n − 3) breaks in a solution with value UB we generate
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all patterns with at most UB − (2n− 3) breaks. Afterwards, Find Pattern Set is
called and in case of a new feasible solution this is the optimal, otherwise the first
solution is optimal.

5.7 Computational results

In order to examine the performances of the PGBA, we have tested the algo-
rithm on numerous instances of mirrored and non-mirrored tournaments with and
without place constraints.

For comparison we use an algorithm denoted TPA which corresponds to the
three phase approach used by Nemhauser and Trick [66] and Henz [43]. However,
since our problem consists of finding only one schedule, TPA stops when the first
feasible schedule has been generated. This is implemented by checking feasibility
of each pattern set before the next is generated.

Computation times reported in the following tables are in seconds and all tests
have been performed on a 2.53 GHz pentium 4 processor with 512 MB RAM.
The algorithms are implemented by using a script in ILOG OPL studio [52] and
CPLEX and SOLVER are called for solving IP and CP problems respectively.
A time limit of 1800 seconds are enforced and ”–” is used when this limit is
violated. The instances are named using the following abbreviations: np/pl (no
place constraints/place constraints), mi/nm (mirrored tournament/non-mirrored),
ki (k = i), pi (i is total number of place constraints), ni (i teams).

Table 5.1 shows the computation times for mirrored instances without place
constraints. The instance with 4 teams is infeasible since consecutive breaks are
forbidden.

In Table 5.2 the computation times for non-mirrored instances without place
constraints are shown. For each number of teams the problem is solved with k
equal to 0, 1, 2 and 3.

Table 5.2: Non-mirrored instances without place constraints.

Instance Breaks TPA PGBA

np-nm-k0-n4 2 0.02 0.02
np-nm-k0-n6 4 0.03 0.09
np-nm-k0-n8 6 0.28 0.17
np-nm-k0-n10 8 1.45 0.36
np-nm-k0-n12 10 29.78 1.41
np-nm-k0-n14 12 885.80 3.95
np-nm-k0-n16 14 – 1.70
np-nm-k0-n18 16 – 4.36

* Problem is infeasible.
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Table 5.2: (Continued).

Instance Breaks TPA PGBA

np-nm-k0-n20 18 – 7.16
np-nm-k0-n22 20 – 6.17
np-nm-k0-n24 22 – 9.31
np-nm-k0-n26 24 – 17.27
np-nm-k0-n28 26 – 129.00
np-nm-k0-n30 ? – –
np-nm-k1-n4 6 0.06 0.09
np-nm-k1-n6 10 546.88 20.70
np-nm-k1-n8 8 19.48 0.56
np-nm-k1-n10 10 90.03 0.94
np-nm-k1-n12 12 – 0.91
np-nm-k1-n14 14 – 1.92
np-nm-k1-n16 16 – 3.99
np-nm-k1-n18 18 – 5.00
np-nm-k1-n20 20 – 14.70
np-nm-k1-n22 ? – –
np-nm-k2-n4 * – 0.16 0.14
np-nm-k2-n6 10 555.11 15.14
np-nm-k2-n8 8 19.61 0.55
np-nm-k2-n10 10 91.03 0.89
np-nm-k2-n12 12 – 0.92
np-nm-k2-n14 14 – 2.14
np-nm-k2-n16 16 – 3.48
np-nm-k2-n18 18 – 4.97
np-nm-k2-n20 20 – 14.75
np-nm-k2-n22 ? – –
np-nm-k3-n4 * – 0.16 0.13
np-nm-k3-n6 12 – 70.02
np-nm-k3-n8 12 – 137.00
np-nm-k3-n10 ? – –
np-nm-k3-n12 16 – 8.55
np-nm-k3-n14 18 – 8.86
np-nm-k3-n16 20 – 17.55
np-nm-k3-n18 ? – –

* Problem is infeasible.

Since different place constraints affect the complexity of an instance differently
we have tested the algorithms on 10 sets of randomly generated place constraints
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Table 5.1: Mirrored instances without place constraints.

Instance Breaks TPA PGBA

np-mi-n4 * – 0.00 0.02
np-mi-n6 12 0.02 0.02
np-mi-n8 18 0.02 0.03
np-mi-n10 24 0.13 0.09
np-mi-n12 30 0.09 0.08
np-mi-n14 36 0.94 0.19
np-mi-n16 42 3.27 0.31
np-mi-n18 48 9.44 0.63
np-mi-n20 54 88.14 1.34
np-mi-n30 84 – 2.33
np-mi-n38 108 – 4.83
np-mi-n40 114 – –

* Problem is infeasible

for each instance. The place constraints include both home and away requirements
and they may result in infeasible problems. The constraints can be found at [71].

Tables 5.3 and 5.4 show the results for the mirrored and the non-mirrored
instances respectively. The second column tells how many of the instances that
are feasible, the third and fourth tell how many instances the two algorithms were
able to solve within the time limit and the rest of the columns give the minimum,
the maximum and the average computation time for the two algorithms. Notice,
that the average time only includes instances which were solved within the time
limit.

The computational tests for both the mirrored and non-mirrored instances,
with and without place constraints show that PGBA is superior to TPA and it
is able to solve problems in few seconds which cannot be solved by TPA in half
an hour. In the easy instances the time is almost the same, but PGBA performs
significantly better than TPA when hard instances are considered. PGBA also
proves to be extremely stable when random place constraints are considered. In
Table 5.4 the maximum time used by PGBA is 8.19 seconds while TPA is unable
to solve several of the instances in less than half an hour.

5.7.1 The Constant Distance Traveling Tournament Problem

Urrutia and Ribeiro [90] denote the special version of the TTP where all distances
are equal to 1 the Constant Distance Traveling Tournament Problem (CTTP)
and they show that maximizing the number of breaks is equivalent to solving the
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Table 5.3: Mirrored instances with place constraints.

Instance # Feas. # Solved Min. Time Max. Time Avg. Time

TPA PGBA TPA PGBA TPA PGBA TPA PGBA

pl-mi-n12-p5 10 10 10 0.17 0.11 0.67 0.33 0.31 0.19
pl-mi-n12-p10 10 10 10 0.13 0.19 1.02 0.47 0.49 0.29
pl-mi-n12-p15 9 10 10 0.03 0.20 3.36 0.73 0.65 0.32
pl-mi-n12-p20 9 10 10 0.03 0.25 0.81 0.59 0.40 0.38
pl-mi-n12-p25 7 10 10 0.03 0.23 7.58 3.44 0.86 0.69
pl-mi-n12-p30 5 9 10 0.03 0.38 31.20 1.34 3.63 0.71

pl-mi-n16-p5 10 10 10 2.49 0.11 21.24 0.69 6.83 0.37
pl-mi-n16-p10 10 10 10 1.11 0.14 13.16 28.47 6.46 3.17
pl-mi-n16-p15 9 10 10 0.42 0.11 1306.03 14.48 137.51 2.15
pl-mi-n16-p20 9 10 10 0.72 0.11 233.03 204.38 33.72 24.96
pl-mi-n16-p25 9 8 10 0.72 0.20 57.86 29.20 12.98 6.52
pl-mi-n16-p30 9 9 10 0.42 0.11 1793.05 21.24 215.67 8.11

Table 5.4: Non-mirrored instances with place constraints.

Instance # Feas. # Solved Min. Time Max. Time Avg. Time

TPA PGBA TPA PGBA TPA PGBA TPA PGBA

pl-nm-k0-n8-p5 10 10 10 0.08 0.08 0.33 0.27 0.14 0.20
pl-nm-k0-n8-p10 10 10 10 0.08 0.06 0.25 0.61 0.15 0.21
pl-nm-k0-n8-p15 8 10 10 0.06 0.08 398.58 1.64 40.75 0.50
pl-nm-k0-n8-p20 5 8 10 0.08 0.28 38.27 1.91 5.34 0.83
pl-nm-k0-n8-p25 7 7 10 0.06 0.25 195.64 4.38 32.39 1.38
pl-nm-k0-n8-p30 3 10 10 0.06 0.63 76.58 0.99 8.65 0.77

pl-nm-k1-n8-p5 10 10 10 2.95 0.17 8.78 0.47 7.01 0.28
pl-nm-k1-n8-p10 10 10 10 1.11 0.17 258.76 0.94 33.17 0.50
pl-nm-k1-n8-p15 8 9 10 0.06 0.16 531.89 3.08 66.85 0.93
pl-nm-k1-n8-p20 5 8 10 0.06 0.38 424.81 5.66 69.83 1.75
pl-nm-k1-n8-p25 7 5 10 0.06 0.64 79.48 8.19 16.19 2.68
pl-nm-k1-n8-p30 3 10 10 0.06 0.61 619.63 4.00 69.75 1.16

pl-nm-k2-n8-p5 10 10 10 2.98 0.17 8.80 0.50 7.03 0.29
pl-nm-k2-n8-p10 10 10 10 1.09 0.17 258.64 0.67 33.14 0.46
pl-nm-k2-n8-p15 8 9 10 0.06 0.16 529.65 2.59 66.59 0.86
pl-nm-k2-n8-p20 5 8 10 0.06 0.38 429.67 5.75 70.40 2.06
pl-nm-k2-n8-p25 7 5 10 0.06 0.69 79.34 5.67 16.16 2.19
pl-nm-k2-n8-p30 3 10 10 0.06 0.61 619.58 3.06 69.79 1.07

CTTP. Miyashiro and Matsui [62] have shown that maximizing breaks is equivalent
to minimizing breaks and the result means that the CTTP can be solved by
minimizing breaks. However, we have used the PGBA to solve the CTTP by
changing (PSM) to maximizing the number of breaks instead of minimizing it and
allowing up to three consecutive home and away games. This means that the
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Table 5.5: Solution values for Mirrored CTTP.

# Teams Distance # Breaks Time

UB LB PGBA

4 17 17 17 14 0.02
6 48 48 48 24 0.03
8 80 80 80 64 0.13

10 130 130 130 100 0.28
12 192 192 192 144 0.23
14 256 252 253 222 35.50
16 342 342 342 276 3.02
18 434 432 432 360 2.53
20 526 520 – – –

PGBA finds feasible pattern sets for the TTP with a maximal number of breaks
and as shown in the following two tables it is able to solve benchmark problems
previously unsolved. The Benchmark problems plus bounds can be seen at [88].

Table 5.5 shows the results for the mirrored CTTP. The first column gives the
number of teams, columns two and three give the upper and lower bounds reported
by Urrutia and Ribeiro [90] while column four gives the distances obtained by
PGBA. Columns five and six give the number of breaks and the solution time
used by PGBA respectively. Notice, that since PGBA is an exact solution method
it provides both lower and upper bounds.

In Table 5.6 the corresponding columns are presented for the non-mirrored
CTTP. No lower bounds have been obtained prior to this work and the upper
bounds are reported by Schaerf and Di Gaspero at [88].

Table 5.6: Solution values to Non-mirrored CTTP.

# Teams Distance # Breaks Time

UB LB PGBA

4 17 – 17 14 0.02
6 43 – 43 34 0.14
8 80 – 80 64 0.94

10 124 – 124 112 6.91
12 182 – 181 166 327.94
14 253 – 252 224 23.63
16 331 – 327 306 43.42
18 423 – – – –
20 525 – – – –



Chapter 6

Scheduling SAS Ligaen

In this chapter we use the methodology of the PGBA to find a seasonal schedule
for the best Danish soccer league called SAS Ligaen. This is a triple round robin
tournament with 12 teams, it is partitioned into 33 slots and each team plays one
game in each slot.

As always the major challenge, when creating the schedule for a sports league,
is to satisfy the constraints arising from teams, spectators, TV stations, other tour-
naments, etc. The constraints are often conflicting and call for a solution method
capable of ranking schedules with respect to the number of broken constraints
instead of methods searching for schedules which satisfy all constraints.

Due to the promising computational results of the previous chapter, we want
to use the strength of the PGBA to schedule SAS Ligaen. However, a number of
modifications is necessary to deal with the additional constraints and the triple
round robin structure. One of the main difficulties when scheduling SAS Ligaen
compared to scheduling tournaments facing only place constraints is constraints
concerning the timetable. In the previous chapter all constraints concerned the
pattern set and the timetabling problem could be modelled as a feasibility prob-
lem. When the additional constraints are added, the timetabling problem becomes
an optimization problem and we have to use optimality cuts in addition to the
feasibility cuts used before. The algorithm will be outlined in Section 6.2 and
the details are discussed in Section 6.3 but, before going deeper into the solution
method, let us present the constraints.

6.1 Constraints for SAS Ligaen

The constraints of the tournament are partitioned into hard constraints which must
be satisfied and soft constraints which incur a penalty in case they are violated.
Below is an outline of the constraints for SAS Ligaen 2005/2006.

79
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The structure of SAS Ligaen gives rise to a triple round robin tournament
with 33 slots and 6 games in each slot. Furthermore, the tournament consists of
three single round robin tournaments such that the slots from 1 to 11, the slots
from 12 to 22 and the slots from 23 to 33 all form a single round robin tournament.
In the rest of the chapter the single round robin tournament in the slots 1 - 11
will be referred to as Part 1 and the double round robin tournament in slots 12
- 33 will be referred to as Part 2. In Part 2 all teams must meet all other teams
once at home and once at the opponent’s venue.

Consecutive constraints limit the number of consecutive home games and
consecutive away games to be less than or equal to 2. This is a hard constraint.

Separation constraints give a lower limit k on the number of slots between
two games with the same opponents. If k = 0 it means that repeater games are
allowed. But when k = 1 there must be at least one slot between slots where the
two teams meet. This is a hard constraint.

Best half constraints are hard constraints stating that the 6 teams which
finished in the best half of the tournament the preceding year get an extra home
game in Part 1. This means that these teams play 6 home games in Part 1, while
the other teams play 5 home games.

Ending constraints are hard constraints saying that teams cannot have a
break at the last slot.

Place constraints are constraints saying that a specific team wants to play
home in a certain slot or away in a certain slot. These constraints are hard or soft
depending on the reason. If for instance a stadium is unavailable due to recon-
struction or a concert it would be a hard constraint but in case the requirement
is imposed due to nearby arrangements it would be a soft constraint.

Game constraints state that at least one game between a specific pair of
teams (i1, i2) must be played in a certain set of slots. The game constraints are
soft constraints and the set of constraints are denoted CGa. For a game constraint
l, the set TGa

l denotes the pair of teams (i1, i2) and SGa
l denotes the set of slots

in which a game between i1 and i2 must be played.
Top team constraints make sure that all non-top teams play at least one

home game against one of the top teams in Part 1. In SAS Ligaen two teams
are categorized as top teams. This is partly due to good results but also due to
a large number of fans which means that revenue from spectators increase when
a top team is visiting. Since the revenue goes to the home team, all teams want
to play top teams home in Part 1. This is only a concern in Part 1 since all
teams meet all other teams once home and once away in Part 2. The top team
constraints are soft constraints and the set of non-top teams is denoted TTo.

Home constraints are used when a team i1 has played many away games
against another team i2 in Part 1 in the preceding years. In this case a soft
constraint can be added to make sure that team i1 plays home against i2 in Part
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1. The set of home constraints are denoted CHo and for each l ∈ CHo we use THo
l

to denote the set of teams (i1, i2) where i1 must play home.

Beginning constraints are soft constraints which state that all teams must
have a home game and an away game in the first two slots.

Geographic constraints require that at least one team from a certain area
plays home in each slot or at least one team plays away in each slot. These
constraints are used to avoid slots where some areas experience a large number
of games while others are without games. We let CGe

H and CGe
A denote the set

of constraints where at least one team must play home and the set of constraints
where at least one team must play away while CGe = CGe

H ∪CGe
A denotes the total

set of geographic constraints. For each l ∈ CGe the set TGe
l denotes the set of

teams from the given area.

Break constraints say that the teams must alternate between home and away
games. These are soft constraints and they are broken each time a team has a
break.

The objective is to minimize the total penalty imposed by the violated con-
straints. For each of the soft constraints a coefficient represents the penalty which
is added to the objective value if the constraint is violated. The coefficients can be
seen in Table 6.1, which gives an overview of the constraints. For each constraint
it shows whether the constraint is hard, soft, has influence on Part 1, Part 2, the
pattern set or the timetable.

Table 6.1: Constraints for SAS Ligaen 2005/2006

Constraint Hard Soft Part 1 Part 2 Patt. Set TT. Coef. Con. Set

Structure × × × × × – –
Consecutive × × × × – –
Separation × × × × – –
Best Half × × × × – –
Ending × × × – –
Place × × × × × cPl CPl

Game × × × × cGa CGa

Top Team × × × cTo TTo

Home × × × cHo CHo

Beginning × × × cBe –
Geographic × × × × cGe CGe

Break × × × × cBr –
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6.2 Methodology

To solve the problem we use a logic-based Benders decomposition strategy similar
to the PGBA. The master problem consists of finding a pattern set and allo-
cate teams to patterns while the subproblem finds a timetable if any exists. If a
timetable is found, an optimality cut is added to the master problem and, oth-
erwise, a feasibility cut is added. Since the subproblem is an IP problem we use
logic-based Benders cuts instead of traditional Benders cuts. Furthermore, in or-
der to limit the number of feasible solutions to the master problem, we use a
column generation strategy to solve the master problem.

This leads to a solution method which decomposes the problem into four steps.
In Step 1, we generate patterns, in Step 2, we find a pattern set and allocate teams
to patterns, in Step 3, we check feasibility of the pattern set found in Step 2 and
finally, in Step 4, we find a timetable. The four steps are visited iteratively during
the process.

The algorithm uses a set containing all patterns which have been generated.
Initially this set is empty but each time the algorithm goes to Step 1, additional
patterns are added unless all feasible patterns have been generated already. In
that case, the algorithm stops. The first time Step 1 is used, it generates all
patterns with 0 breaks and each time the algorithm returns to Step 1, the number
of breaks is increased by one. In this way the best patterns, with respect to the
number of breaks, are considered first.

When patterns have been generated in Step 1, we solve an IP problem in Step
2 to find a pattern set and allocate the teams to the patterns. This IP problem
is referred to as the master problem, since it resembles the master problem from
Benders decomposition. In case the master problem is infeasible, we return to
Step 1 where additional patterns are generated and otherwise we go to Step 3.

Step 3 is used to detect infeasible pattern sets and generate logic-based Benders
cuts which can be added to the master problem. The strength of a logic-based
Benders cut depends on the number of infeasible pattern sets it is able to cut
off, and in order to find strong cuts, we need to know why the pattern sets are
infeasible. If we have an infeasible pattern set but no knowledge of why it is
infeasible we can only prevent the master problem from finding the same solution
again. On the other hand, if we know that a pattern set is infeasible because
it contains two patterns which cannot be in the same pattern set, we can add a
cut which prevents the master problem from finding any pattern set containing
both of these two patterns. Therefore, Step 3 contains a number of feasibility
checks which are used to determine why a pattern set if infeasible. If infeasibility
is detected, we return to Step 2 and otherwise, we proceed to Step 4. However,
the feasibility checks in Step 3 are not exhaustive meaning that the pattern set
might be infeasible anyway.

The problem of finding an optimal timetable for the pattern set found in Step 2
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is formulated as an IP model and is referred to as the subproblem. In case the
problem is infeasible, it means that the pattern set is infeasible and a logic-based
Benders cut is added to the master problem. Otherwise we have found a feasible
schedule and an optimality cut can be added to the master problem. In both cases
we return to Step 2 after the cut has been added.

The algorithm keeps iterating until the master problem eventually becomes
infeasible and all feasible patterns have been generated. When this happens we
have either found an optimal solution or proved that the problem is infeasible.
Figure 6.1 displays a flowchart showing how the algorithm iterates between the
four steps.

Step 1:

Generating

patterns

Step 2:

Finding a

pattern set

Step 3:

Checking

feasibility

Step 4:

Finding a

timetable

Stop

Patterns found Set found Set not proven
infeasible

Set not found Set infeasible

No additional

patterns found

Figure 6.1: Flowchart for the algorithm.

6.3 The Algorithm

In this section we give a more detailed description of the four steps discussed in
Section 6.2 but before we do that we need some notation. In the rest of the paper
we let n denote the number of teams while T denotes the set of teams. The set
P = {1, 2} represents the two parts discussed in Section 6.1 and S, S1 and S2

denote the set of all slots, the set of slots in Part 1 and the set of slots in Part 2,
respectively.

6.3.1 Generating Patterns

The partitioning of the tournament into Part 1 and Part 2 is used to reduce the
total number of patterns which must be generated. Instead of generating patterns
covering all slots, we generate patterns for Part 1 and Part 2 separately.

In addition to reducing the number of patterns, the partitioning also makes
the algorithm more flexible. If one part is infeasible, we can generate additional
patterns for this part alone without generating extra patterns for the other part.
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We let P 1 and P 2 denote the sets of patterns which have been generated for Part
1 and Part 2 respectively while B1 and B2 denote the current upper bounds on
the number of breaks. When additional patterns are generated for Part p, the
associated bound Bp is increased by one and all feasible patterns for Part p with
exactly Bp breaks are generated. In order to limit the number of breaks per team,
B1 and B2 cannot exceed 3 but still this allows up to seven breaks per team.

The generation of patterns has been implemented in OPL Script but the feasi-
ble patterns for Part 1 with B1 breaks correspond to the feasible solutions of the
following CP model where the variable hs is 1 if the pattern has a home game in
slot s and 0 if it has an away game.

n−1∑
s=1

hs ≤ n/2 (6.3.1)

n−1∑
s=1

hs ≥ n/2− 1 (6.3.2)

ŝ+2∑

s=ŝ

hs ≤ 2 ∀ŝ ∈ {1, . . . , n− 3} (6.3.3)

ŝ+2∑

s=ŝ

hs ≥ 1 ∀ŝ ∈ {1, . . . , n− 3} (6.3.4)

n−2∑
s=1

(hs = hs+1) = B1 (6.3.5)

hs ∈ {0, 1} ∀s ∈ {1, . . . , n− 1} (6.3.6)

The constraints (6.3.1) and (6.3.2) make sure that the pattern has at most n/2
home games and at most n/2 away games. Constraints (6.3.3) and (6.3.4) limit
the number of consecutive home and consecutive away games to be less than or
equal to 2, and constraint (6.3.5) makes sure that the number of breaks equals
B1.

Similarly, the feasible patterns for Part 2 with B2 breaks correspond to the
feasible solutions of the CP model below.

sequence(1, 2, 3, [hn, . . . , h3n−3], [0, 1], [n− 1, n− 1]) (6.3.7)
3n−4∑
s=n

(hs = hs+1) = B2 (6.3.8)

h3n−4 6= h3n−3 (6.3.9)
hs ∈ {0, 1} ∀s ∈ {n, . . . , 3n− 3} (6.3.10)
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Here constraint (6.3.7) makes sure that the pattern has n− 1 home games, n− 1
away games and no more than two consecutive home games or two consecutive
away games. Constraint (6.3.8) determines the number of breaks, and constraint
(6.3.9) avoids a break in the last slot.

In addition to the two sets P 1 and P 2, we let P p
i denote the set of patterns

which satisfy the hard place constraints of team i for each part p ∈ P and each
team i ∈ T . We also need some coefficients to evaluate the patterns in the master
problem. For each pattern j ∈ P p, p ∈ P, the coefficient cBr

j denotes the break
penalty and is equal to the number of breaks Bp times the break coefficient cBr.
The coefficient cPl

ij denotes the place penalty incurred if team i uses pattern j

and is equal to the sum of place coefficients cPl associated with the violated place
constraints. Furthermore, for each pattern j ∈ P 1 the coefficient cBe

j denotes the
beginning penalty which is equal to the beginning coefficient cBe, if j has a break
in the second slot and 0 otherwise. By letting c1

ij = cBr
j + cPl

ij + cBe
j for each i ∈ T

and j ∈ P 1 and c2
ij = cBr

j + cPl
ij for each i ∈ T and j ∈ P 2, we can let cp

ij denote
the coefficient of assigning team i to pattern j in Part p. These coefficients are
used in the objective function of the master problem.

6.3.2 Pattern Set

When patterns have been generated for both parts we use an IP model to find a
pattern set and assign teams to patterns. In the model, the parameters hjs for all
j ∈ P p, s ∈ Sp and p ∈ P represent the patterns and hjs is 1 if pattern j has a
home game in slot s and 0 if it has an away game. We use a binary variable xp

ij

for each team i ∈ T , each pattern j ∈ P p and each part p ∈ P to assign teams
to patterns. The variable xp

ij is 1 if team i uses pattern j in Part p, and it is 0
otherwise.

In addition to the assignment variables we use two kinds of penalty variables
πBr

i and πGe
ls . The first variable πBr

i is 1 if team i has a break in the first slot
in Part 2, and it is 0 otherwise. The second variable πGe

ls is 1 if the geographic
constraint l is violated in slot s, and 0 otherwise.

Finally, we need a variable v which is used for optimality cuts to be explained
in Section 6.3.4. This gives the following IP model.

min
∑

p∈P

∑

i∈T

∑

j∈P p
i

cp
ijx

p
ij +

∑

i∈T

cBrπBr
i +

∑

l∈CGe

∑

s∈S

cGeπGe
ls + v (6.3.11)

s.t.
∑

p∈P

∑

i∈T

∑

j∈P p
i

cp
ijx

p
ij +

∑

i∈T

cBrπBr
i +

∑

l∈CGe

∑

s∈S

cGeπGe
ls + v ≥ LB (6.3.12)

∑

p∈P

∑

i∈T

∑

j∈P p
i

cp
ijx

p
ij +

∑

i∈T

cBrπBr
i +

∑

l∈CGe

∑

s∈S

cGeπGe
ls + v ≤ UB (6.3.13)
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∑

j∈P p
i

xp
ij = 1 ∀i ∈ T, ∀p ∈ P (6.3.14)

∑

i∈T

xp
ij ≤ 1 ∀j ∈ P p, ∀p ∈ P (6.3.15)

∑

i∈T

∑

j∈P p
i

hjsx
p
ij = n/2 ∀s ∈ Sp, ∀p ∈ P (6.3.16)

∑

i∈T Ge
l

∑

j∈P p
i

hjsx
p
ij + πGe

ls ≥ 1 ∀l ∈ CGe
H , ∀s ∈ Sp, ∀p ∈ P (6.3.17)

∑

i∈T Ge
l

∑

j∈P p
i

(1− hjs)x
p
ij + πGe

ls ≥ 1 ∀l ∈ CGe
A , ∀s ∈ Sp, ∀p ∈ P (6.3.18)

∑

j∈P 1
i

hjn−1x
1
ij +

∑

j∈P 2
i

hjnx2
ij + πBr

i ≥ 1 ∀i ∈ T (6.3.19)

∑

j∈P 1
i

(1− hjn−1)x1
ij +

∑

j∈P 2
i

(1− hjn)x2
ij + πBr

i ≥ 1 ∀i ∈ T (6.3.20)

∑

j∈P 1
i

(hjn−2 + hjn−1)x1
ij +

∑

j∈P 2
i

hjnx2
ij ≤ 2 ∀i ∈ T (6.3.21)

∑

j∈P 1
i

(hjn−2 + hjn−1)x1
ij +

∑

j∈P 2
i

hjnx2
ij ≥ 1 ∀i ∈ T (6.3.22)

∑

j∈P 1
i

hjn−1x
1
ij +

∑

j∈P 2
i

(hjn + hjn+1)x2
ij ≤ 2 ∀i ∈ T (6.3.23)

∑

j∈P 1
i

hjn−1x
1
ij +

∑

j∈P 2
i

(hjn + hjn+1)x2
ij ≥ 1 ∀i ∈ T (6.3.24)

xp
ij ∈ {0, 1} ∀i ∈ T, ∀j ∈ P p, ∀p ∈ P (6.3.25)

πBr
i ∈ {0, 1} ∀i ∈ T (6.3.26)

πGe
ls ∈ {0, 1} ∀l ∈ CGe, ∀s ∈ S (6.3.27)

v ∈ R+ (6.3.28)

The objective function (6.3.11) includes break penalties, beginning penalties, place
penalties, geographic penalties and the coefficient v used for optimality cuts. v
gives a lower bound on the objective value of the subproblem but it has no effect
before feasibility cuts have been added. The feasibility cut will be explained in
Section 6.3.4 Constraints (6.3.12) and (6.3.13) give upper and lower bounds on
the objective value. Constraints (6.3.14) make sure that all teams are assigned
to a pattern in each part, and constraints (6.3.15) say that a pattern cannot be
assigned to more than one team. Constraints (6.3.16) require that exactly half
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the teams play home in each slot and constraints (6.3.17) and (6.3.18) state the
geographic constraints. Constraints (6.3.19) and (6.3.20) make sure that πBr

i is
1 if team i has a break in slot n, and the constraints (6.3.21) – (6.3.24) are used
to avoid more than 2 consecutive home games or more than 2 consecutive away
games in the transition between Part 1 and Part 2.

In case the problem is infeasible, we return to Step 1 and generate additional
patterns. Otherwise, we let (x̄, π̄Br, π̄Ge) denote an optimal solution to the prob-
lem, we let P̄ p denote the set of patterns used in Part p, and in case LB < v̄, we
update LB to be equal to v̄. Finally, we let the parameters h̄1

is for each s ∈ S1

represent the pattern team i uses in Part 1 and h̄2
is for each s ∈ S2 represent the

pattern team i uses in Part 2.

6.3.3 Feasibility Checks

After having found a pattern set, we need to check feasibility. We start by check-
ing feasibility of Part 1 and Part 2 separately. In case one or both of these are
infeasible, cuts are added to the master problem and we return to Step 2. Other-
wise we continue with examining feasibility of the combined pattern set for both
parts.

Feasibility of Part 1

Once again we use the necessary condition by Miyashiro et al. [64] stating that
any subset of patterns P̂ 1 ⊆ P̄ 1 with cardinality Z must satisfy the condition

∑

s∈S1

(
min

{ ∑

j∈P̂ 1

hjs,
∑

j∈P̂ 1

(1− hjs)
})

≥ Z(Z − 1)
2

if the pattern set P̄ should be feasible.
In Chapter 5 we presented a MILP model to check if the condition is satisfied

for all subsets of cardinality Z. The model finds the subset of patterns with fewest
possible mutual games. The binary variable αj is 1 if pattern j is included in the
subset, and 0 otherwise. The binary variable δs is 1 if home games are counted
in slot s, and 0 if away games are counted. Finally, the variable βs counts the
number of home or away games in slot s. The model is known as (UBM) and
looks as follows:

min
∑

s∈S1

βs (6.3.29)

s.t.
∑

j∈P̄ 1

αj = Z (6.3.30)



88 Scheduling SAS Ligaen

βs −
∑

j∈P̄ 1

hjsαj + Z(1− δs) ≥ 0 s ∈ S1 (6.3.31)

βs −
∑

j∈P̄ 1

(1− hjs)αj + Zδs ≥ 0 s ∈ S1 (6.3.32)

αj , δs ∈ {0, 1} j ∈ P̄ 1, s ∈ S1 (6.3.33)

βs ∈ R+ s ∈ S1 (6.3.34)

The objective function (6.3.29) minimizes the number of possible mutual games.
The constraint (6.3.30) makes sure that Z teams are included in the subset and
constraints (6.3.31) and (6.3.32) require that βs is equal to the number of home
games if δs = 1 and equal to the number of away games if δs = 0.

We can now use the pattern diversity condition to perform the first feasibility
check.

The pattern diversity condition: Given a pattern set P̄ 1 and a
subset size Z, then the pattern set is feasible only if the optimal solution
of (UBM) is no less than Z(Z−1)

2 .

Notice that the condition was stated for a double round robin tournament in
Chapter 5 but we have changed the threshold value Z(Z − 1) to Z(Z−1)

2 . If the
condition is violated, we add the following logic-based Benders cut to the master
problem:

∑

i∈T

∑

j∈P̂ 1

x1
ij ≤ Z − 1 (6.3.35)

where P̂ 1 = {j ∈ P̄ 1|αj = 1}.

Feasibility of Part 2

To check feasibility of Part 2, we use both the pattern diversity condition and
the multiple pattern separation condition presented in Chapter 5. However, both
feasibility checks can be strengthened compared to the original presentation due
to the additional constraints considered in this application.

Since all teams must meet once in both halves of Part 2 we can apply the
pattern diversity condition on both halves of Part 2 in the same way we applied
it on Part 1. This would lead to cuts similar to (6.3.35). However, we can apply a
much stronger cut when we use the fact that multiple patterns in Part 2 can have
identical first halves or identical second halves.

Assume that a set of patterns P̂ 2 cannot meet in the first half of Part 2. This
gives us the cut

∑

i∈T

∑

j∈P̂ 2

x2
ij ≤ Z − 1 (6.3.36)
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but instead we add the cut
∑

i∈T

∑

j∈P̂ 2
E

x2
ij ≤ Z − 1 (6.3.37)

where P̂ 2
E is the extended set of patterns consisting of all patterns which have a

first half identical to one of the patterns in P̂ 2. A cut for the last half can be
strengthened similarly.

The multiple pattern separation condition checks if the mutual games between
the teams using a subset of patterns P̂ 2 ⊆ P̄ 2 can be assigned to slots. The
following CP model is used to find a feasible assignment of games to slots if any
exists, and otherwise we know that P̂ 2 is an infeasible subset. The model uses the
variable σj1j2 and sets it equal to the slot where the team using pattern j1 plays
home against the team using pattern j2.

(hj1s = 0) ∨ (hj2s = 1) ⇒
(σj1j2 6= s) ∀j1, j2 ∈ P̂ , j1 6= j2, ∀s ∈ S2 (6.3.38)

alldifferent
(
all(j2 ∈ P̂ 2 \ j1)σj1j2 ,

all(j2 ∈ P̂ 2 \ j1)σj2j1

) ∀j1 ∈ P̂ 2 (6.3.39)

(σj1j2 − σj2j1 < −k) ∨ (σj1j2 − σj2j1 > k) ∀j1, j2 ∈ P̂ 2, j1 < j2 (6.3.40)

(σj1j2 ≤ 2n− 2) ⇔ (σj2j1 ≥ 2n− 1) ∀j1, j2 ∈ P̂ 2, j1 < j2 (6.3.41)

σj1j2 ∈ S2 ∀j1, j2 ∈ P̂ 2, j1 6= j2 (6.3.42)

The constraints (6.3.38) make sure that the team using pattern j1 has a home
game and the team using pattern j2 has an away game when the latter team visits
the first. Constraints (6.3.39) require that all games involving the same pattern are
scheduled in different slots and constraints (6.3.40) state the separation constraints
between games with the same two opponents. Finally, the constraints (6.3.41)
state that all pairs of teams must play a game in both halves of Part 2.

The multiple pattern separation condition: Given a pattern set
P̄ 2 and a subset of patterns P̂ 2 from this set, then the pattern set is
feasible only if the above CP model has a feasible solution.

If a subset of patterns P̂ 2 with cardinality Z makes the CP model infeasible, we
add the logic-based Benders cut

∑

i∈T

∑

j∈P̂ 2

x2
ij ≤ Z − 1 (6.3.43)

to the master problem.
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In Chapter 5 all subsets of patterns with cardinality less than a lower bound
were checked in order to find infeasible subsets. Instead, we use a heuristic ap-
proach for finding candidate subsets in this approach since it is faster and it allows
us to check subsets with larger cardinality. The price we pay is the risk of missing
an infeasible subset with small cardinality.

The idea is to find the subset of teams which are most likely to make the CP
model infeasible. We do that by finding a subset of patterns P̂ 2 which can only
play a small number of mutual games and where the games must be played close
to the middle of Part 2 since this will conflict with the separation constraints.

For a given cardinality Z, we let P̂ 2 be equal to the subset of P̄ 2 which has
cardinality Z and minimizes

∑

j1∈P̂ 2

∑

j2∈P̂ 2

vj1j2

where

vj1j2 =
2n−2−k∑

s=n

|ĥ2
j1s − ĥ2

j2s|+
2n−2+k∑

s=2n−1−k

1
2
|ĥ2

j1s − ĥ2
j2s|+

3(n−1)∑

s=2n−1+k

|ĥ2
j1s − ĥ2

j2s|

The parameter vj1j2 increases with the number of slots in which j1 and j2 can
meet, and games close to the middle of Part 2 contribute less than games in the
beginning or in the end of Part 2.

The multiple pattern separation condition is used for increasing cardinalities
until we find an infeasible subset or until we have checked all cardinalities.

Feasibility of the Combined Pattern Set

We use two kinds of feasibility checks for the combined pattern set. First all pairs
of patterns are checked to see if the required number of games can be scheduled
without violating the separation constraints. If this is not the case, we add a cut
for each pair of teams which violates the constraints.

Assume that we have two patterns which violate the separation constraints and
the first pattern consists of patterns j1

1 and j2
1 while the second pattern consists

of patterns j1
2 and j2

2 . If the first pattern is assigned to team i1 and the second to
team i2, we add the following logic-based Benders cut to the master problem.

x1
i1j1

1
+ x2

i1j2
1

+ x1
i2j1

2
+ x2

i2j2
2
≤ 3.

If all pairs of patterns satisfy the separation constraints, we use the multiple
pattern separation condition on the combined pattern set. Again we need a CP
model to check feasibility but this time we consider a subset of teams T̂ , and for
each team i, we let j1

i and j2
i be the patterns assigned to team i in Part 1 and
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Part 2, respectively. In order to ease notation let h̄is = h̄1
j1
i s

for all s ∈ S1 and
h̄is = h̄2

j2
i s

for all s ∈ S2 in the following CP model. We can then formulate the
CP model by letting the variable σ1

i1i2
denote the slot where the teams i1 and i2

meet in Part 1 and by letting σ2
i1i2

denote the slot where team i2 visits team i1 in
Part 2.

(h̄i1s = h̄i2s) ⇒ (σ1
i1i2 6= s) ∀i1, i2 ∈ T̂ , i1 < i2, ∀s ∈ S1 (6.3.44)

σ1
i1i2 = σ1

i2i1 ∀i1, i2 ∈ T̂ , i1 < i2 (6.3.45)

alldifferent
(
all(i2 ∈ T̂ \ i1)σ1

i1i2

)
∀i1 ∈ T̂ (6.3.46)

σ1
i1i2 < σ2

i1i2 − k ∀i1, i2 ∈ T̂ , i1 6= i2 (6.3.47)

(h̄i1s = 0) ∨ (h̄i2s = 1) ⇒ (σ2
i1i2 6= s) ∀i1, i2 ∈ T̂ , i1 6= i2, ∀s ∈ S2 (6.3.48)

alldifferent
(
all(i2 ∈ T̂ \ i1) σ2

i1i2 , all(i2 ∈ T̂ \ i1)σ2
i2i1

)
∀i1 ∈ T̂ (6.3.49)

(σ2
i1i2 < σ2

i2i1 − k) ∨ (σ2
i2i1 < σ2

i1i2 − k) ∀i1, i2 ∈ T̂ , i1 < i2 (6.3.50)

(σ2
i1i2 ≤ 2n− 2) ⇔ (σ2

i2i1 ≥ 2n− 1) ∀i1, i2 ∈ T̂ , i1 < i2 (6.3.51)

σ1
i1i2 ∈ S1 ∀i1, i2 ∈ T̂ , i1 6= i2 (6.3.52)

σ2
i1i2 ∈ S2 ∀i1, i2 ∈ T̂ , i1 6= i2 (6.3.53)

In this model constraints (6.3.44) make sure that, in Part 1, two teams can only
meet in a slot where one of the teams plays home and the other plays away.
Constraints (6.3.45) say that the model does not distinguish between home and
away games in Part 1 and constraints (6.3.46) require that a team does not play
more than one game in the same slot in Part 1. Constraints (6.3.47) make sure
that the required separation between games with the same opponents is satisfied
between games from Part 1 and Part 2. The constraints (6.3.48) - (6.3.51) are
similar to the constraints (6.3.38) - (6.3.41).

In case a subset of teams T̂ makes this CP model infeasible, we add the fol-
lowing logic-based Benders cut to the master problem.

∑

i∈T̂

(x1
ij1

i
+ x2

ij2
i
) ≤ 2|P̂ | − 1 (6.3.54)

We check subsets of teams with cardinality less than or equal to 4 and return to
Step 2 when we find an infeasible subset.

6.3.4 Timetable

If no cuts have been generated in Step 3, we use an IP model to find an optimal
timetable for the given pattern set or to prove that the pattern set is infeasible.
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In this model we use a binary variable yi1i2s for all i1, i2 ∈ T and for all s ∈ S.
For a slot s in Part 1 the variable yi1i2s is 1, if the teams i1 and i2 meet in slot s,
and for slots in Part 2 it is 1, if team i1 plays home against team i2 in slot s.

In the model we consider the game, home and top team constraints and for
each of these constraints we associate a penalty variable which becomes 1 if the
constraint is violated. The penalty variables are denoted πGa, πHo and πTo,
respectively.

Before we state the model, recall that TGa
l is the pair of teams involved in

game constraint l and SGa
l is the set of slots at which the game must be played.

THo
l is the pair of teams (i1, i2) involved in home constraint l and the team i1

must play home to satisfy the constraint. To ease notation we use a parameter
h̄is for all s ∈ S to represent the pattern assigned to team i, we let S1

i1i2
denote

the slots in Part 1 where teams i1 and i2 can meet and we let S2
i1i2

denote the set
of slots where team i2 can visit team i1. Furthermore, we let Sp

k denote the set
of slots {p(n− 1) + 1− k, . . . , p(n− 1)} for all p ∈ P, since this set is used in the
separation constraints.

min
∑

i∈T T o

cToπTo
i +

∑

l∈CGa

cGaπGa
l +

∑

l∈CHo

cHoπHo
l (6.3.55)

s.t. yi1i2s = 0 ∀i1, i2 ∈ T, i1 > i2 s ∈ S1 (6.3.56)
∑

i2∈T\i1
(yi1i2s + yi2i1s) = 1 ∀i1 ∈ T, ∀s ∈ Sp, p ∈ P (6.3.57)

∑

s∈S1
i1i2

yi1i2s = 1 ∀i1, i2 ∈ T, i1 < i2 (6.3.58)

∑

s∈S2
i1i2

yi1i2s = 1 ∀i1, i2 ∈ T, i1 6= i2 (6.3.59)

(l+1)(n−1)∑

s=l(n−1)+1

(yi1i2s + yi2i1s) = 1 ∀i1, i2 ∈ T, i1 < i2, ∀l ∈ {1, 2} (6.3.60)

s̄+k∑
s=s̄

(yi1i2s + yi2i1s) ≤ 1 ∀i1, i2 ∈ T, i1 < i2, ∀s̄ ∈ Sp
k , ∀p ∈ P

(6.3.61)
∑

s∈SGa
l

(yi1i2s + yi2i1s) + πGa
l ≥ 1 (i1, i2) = TGa

l , ∀l ∈ CGa (6.3.62)

∑

s∈S1

h̄i1s(yi1i2s + yi2i1s) + πHo
l ≥ 1 (i1, i2) = THo

l , ∀l ∈ CHo (6.3.63)
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∑

i2∈T\CT o
i1

∑

s∈S1

h̄i1s(yi1i2s + yi2i1s) + πTo
i1 ≥ 1 ∀i1 ∈ TTo (6.3.64)

yi1i2s ∈ {0, 1} ∀i1, i2 ∈ T, s ∈ S (6.3.65)

πTo
i ∈ {0, 1} ∀i ∈ TTo (6.3.66)

πGa
l ∈ {0, 1} ∀l ∈ CGa (6.3.67)

πHo
l ∈ {0, 1} ∀l ∈ CHo (6.3.68)

The objective function (6.3.55) minimizes the penalties associated with the
timetable. The constraints (6.3.56) require that yi1i2s is zero if i1 > i2 for all
s ∈ S1, and constraints (6.3.57) make sure that all teams play exactly one game
in each slot. Constraints (6.3.58) and (6.3.59) make sure that all pairs of teams
meet once in Part 1 and both teams play a home game against the other team
in Part 2. Constraints (6.3.60) make sure that both halves of Part 2 constitute a
single round robin tournament, since they require that all pairs of teams meet in
both halves. The separation constraints are satisfied due to constraints (6.3.61)
which require that only one game with the same opponents can be played within
k + 1 consecutive slots. The constraints (6.3.62), (6.3.63) and (6.3.64) require
that the penalty variables for the game, home and top constraints are 1 if the
corresponding constraints are violated.

In case the model is infeasible, we add the following logic-based Benders cut
to the master problem. ∑

i∈T

(x1
ij1

i
+ x2

ij2
i
) < 2n− 1.

Otherwise, the optimal solution of the model gives an optimal timetable for
the pattern set found in the master problem. This means that we have a feasible
schedule and the value of the schedule is the value of the pattern set plus the value
of the timetable.

After a feasible schedule has been found, we start searching for a better schedule
by setting UB equal to the value of the current best schedule and by adding the
following optimality cut to the master problem.

v ≥ vTT

(∑

i∈T

(x1
ij1

i
+ x2

ij2
i
)− 2n

)

where vTT is the value of the timetable which has just been found.

6.4 Computational Results

The performance of the algorithm and the quality of the schedules it obtains have
been tested by comparing with the real schedule for the 2005/2006 season and
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Table 6.2: Results for SAS Ligaen 2005/2006.

Instance Feasible sol. Optimality Time to find Time to prove Best
found proven best solution optimality value

k0-nComp yes no 707.94 – 41
k0-Comp yes no 188.11 – 42
k1-nComp yes no 544.09 – 41
k1-Comp yes yes 604.67 634.32 41
k2-nComp yes no 419.05 – 41
k2-Comp yes no 361.34 – 42
k3-nComp yes no 458.20 – 42
k3-Comp yes no 167.55 – 42
k4-nComp yes no 882.48 – 42
k4-Comp yes no 1310.81 – 42

by solving a number of randomly generated instances. The algorithm has been
implemented as an OPL Script in Ilog OPL Studio [52] which uses Ilog CPLEX to
solve IP problems and Ilog SOLVER to solve CP problems. All the computational
tests presented in this section have been performed on a 2.53 GHz Pentium 4
processor with 512 MB RAM and we have used a time limit of 1800 seconds.

The Danish Football Association prefers a k value (separation) of at least 3
but in the schedule for the 2005/2006 season they had to let k equal 0 in order to
satisfy team requirements. We have solved the problem with k ranging from 0 to 4
and the algorithm is able to satisfy more team requirements than the real schedule
in all instances. We have also tested a complementary constraint requiring that
the pattern set is complementary, since this constraint may be able to help the
algorithm in some cases.

The results for the instances with k ranging from 0 to 4 (k0 − k4) with and
without the complementary constraint (Comp/nComp) are reported in Table 6.2.
It states whether a feasible solution has been obtained, whether optimality has
been proven, the time used to find the best feasible solution, the time used to
prove optimality and the value of the best schedule when all penalty coefficients
equal 1.

Although the algorithm has problems with proving optimality we see that
it generates very good solutions within a short amount of time and, in practical
applications, optimal solutions may not even be the goal. In fact a number of good
feasible schedules may be just as good or even better than one optimal schedule
since it can be very hard to determine the right values for the penalty coefficients.

The exact constraints for the 2005/2006 season are confidential but in Table
6.3 we show the number of constraints, the number of violated constraints for the
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Table 6.3: Number of violated constraints for the 2005/2006 season.

Instance Place Game Top Home Beg. Geo. Break Total
(29) (1) (10) (1) (10) (3) (372) (426)

Real schedule 3 0 2 0 2 8 46 61
k0-nComp 0 0 1 1 2 1 36 41
k0-Comp 0 1 1 0 2 0 38 42
k1-nComp 0 0 1 1 2 1 36 41
k1-Comp 0 0 1 0 2 0 38 41
k2-nComp 0 1 1 0 2 1 36 41
k2-Comp 0 0 1 1 2 0 38 42
k3-nComp 0 0 1 0 2 1 38 42
k3-Comp 0 0 1 1 2 0 38 42
k4-nComp 0 0 1 0 2 1 38 42
k4-Comp 0 1 1 0 2 0 38 42

real schedule and the number of violated constraints for each of the 10 instances
we have solved.

In all instances we are able to reduce the number of violated constraints with
more than 30 percent and at the same time we can increase the separation from
0 to 4. Both top teams have only 5 home games in Part 1 and this means we
will always violate at least 1 top team constraint. We also violate 2 beginning
constraints in each instance but this is because one of the teams wants to begin
with 2 away games. When k is less than 3, the price of using the complementary
constraint is 2 additional breaks but, for greater k, there is no difference in the
solution values.

In addition to the tests for the 2005/2006 season, we have tested the solution
method on 10 randomly generated instances which resembles the real problem.
Each of the instances have 30 randomly distributed place constraints, they have 2
top teams, 1 geographic home constraint with three teams, beginning constraints
and best half constraints besides the break minimization constraint. Again we
have tested the instances with k ranging from 0 to 4, with and without the com-
plementary constraint.

The computational results are displayed in Table 6.4 and show the number of
instances in which a feasible schedule has been found, the number of instances
in which optimality has been proven, the average time to find the best schedule,
the average time to prove optimality and the average value of the best schedule
obtained.

The algorithm is very efficient at solving the problems with k less than three
but, with k equal to three and four, the problems are getting harder and without
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Table 6.4: Results for randomly generated instances.

Instance Feasible Proven Avg. time to find Avg. time to prove Avg.
solution optimal best solution optimality value

k0-nComp 10 10 119.41 185.26 33.50
k0-Comp 10 10 62.56 115.34 33.70
k1-nComp 10 10 136.13 196.47 33.50
k1-Comp 10 10 74.19 139.03 33.70
k2-nComp 10 10 147.70 215.17 33.50
k2-Comp 10 10 98.42 172.70 33.70
k3-nComp 5 3 637.03 859.08 34.20
k3-Comp 10 10 264.37 400.21 33.70
k4-nComp 2 2 995.43 1141.81 33.00
k4-Comp 9 8 561.05 672.84 33.77

the complementary constraint we are only able to solve 5 of the instances with k
equal to 3 and 2 of the instances with k equal to 2 within the time limit. On the
other hand when the complementary constraint is used, we can solve all instances
but 1 and the objective value does not increase significantly. This makes the
complementary constraint a good option when hard instances are considered.

The solution method were applied for finding a schedule for the 2006/2007
season and Table 6.5 displays the number of constraints and the number of violated
constraints for the chosen k4-Comp instance.

Table 6.5: Number of violated constraints for the 2006/2007 season.

Instance Place Game Top Home Beg. Geo. Break Total
(38) (3) (10) (9) (10) (8) (372) (426)

k4-Comp 0 0 1 0 4 2 44 51

In the schedule the four violated beginning constraints and the relatively high
number of breaks are due to place constraints. One of the top team constraints
will always be violated and the two violated geographic constraints are of second
priority. The schedule is displayed in Figure 6.2.

In the schedule FCK has three consecutive home games in slots 9, 10 and 11,
however, this is a consequence of their own place constraints and therefore it has
been accepted.
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Slot: 1 2 3 4 5 6 7 8 9 10 11

BIF: +VB +FCN -FCM +ACH -RFC +VIB +SIF -AAB +EFB -OB -FCK
FCK: -ACH -SIF +RFC -VIB +OB -VB +AAB -EFB +FCN +FCM +BIF
FCN: +RFC -BIF +SIF -EFB +VB -OB -FCM +ACH -FCK +VIB -AAB
VB: -BIF +OB -AAB +FCM -FCN +FCK -VIB -RFC +SIF -EFB +ACH
ACH: +FCK -RFC +VIB -BIF +EFB -SIF +OB -FCN -FCM +AAB -VB
FCM: -OB -VIB +BIF -VB +AAB -EFB +FCN -SIF +ACH -FCK +RFC
RFC: -FCN +ACH -FCK -OB +BIF -AAB +EFB +VB -VIB +SIF -FCM
SIF: -EFB +FCK -FCN +AAB -VIB +ACH -BIF +FCM -VB -RFC +OB
VIB: -AAB +FCM -ACH +FCK +SIF -BIF +VB -OB +RFC -FCN +EFB
AAB: +VIB -EFB +VB -SIF -FCM +RFC -FCK +BIF +OB -ACH +FCN
EFB: +SIF +AAB -OB +FCN -ACH +FCM -RFC +FCK -BIF +VB -VIB
OB: +FCM -VB +EFB +RFC -FCK +FCN -ACH +VIB -AAB +BIF -SIF

Slot: 12 13 14 15 16 17 18 19 20 21 22

BIF: +FCM -ACH +AAB -OB -FCK +SIF -RFC +FCN -VIB +VB -EFB
FCK: -RFC +VIB -OB +VB +BIF -AAB +FCM -EFB +FCN -ACH +SIF
FCN: +SIF -VB +FCM -EFB +AAB -OB +ACH -BIF -FCK +VIB -RFC
VB: -VIB +FCN -RFC -FCK +OB -EFB +AAB -FCM +SIF -BIF +ACH
ACH: -OB +BIF +EFB -FCM -VIB +RFC -FCN +SIF -AAB +FCK -VB
FCM: -BIF +OB -FCN +ACH -SIF +VIB -FCK +VB -RFC +EFB -AAB
RFC: +FCK -AAB +VB -VIB +EFB -ACH +BIF -OB +FCM -SIF +FCN
SIF: -FCN +EFB +VIB -AAB +FCM -BIF +OB -ACH -VB +RFC -FCK
VIB: +VB -FCK -SIF +RFC +ACH -FCM +EFB -AAB +BIF -FCN +OB
AAB: -EFB +RFC -BIF +SIF -FCN +FCK -VB +VIB +ACH -OB +FCM
EFB: +AAB -SIF -ACH +FCN -RFC +VB -VIB +FCK +OB -FCM +BIF
OB: +ACH -FCM +FCK +BIF -VB +FCN -SIF +RFC -EFB +AAB -VIB

Slot: 23 24 25 26 27 28 29 30 31 32 33

BIF: +RFC -AAB +VIB -VB +EFB -FCN +FCK -FCM +OB -SIF +ACH
FCK: -FCM +OB -FCN +ACH -SIF +AAB -BIF +RFC -VIB +EFB -VB
FCN: +EFB -FCM +FCK +OB -ACH +BIF -AAB +VB -SIF +RFC -VIB
VB: -OB +RFC -SIF +BIF -AAB +VIB +EFB -FCN +FCM -ACH +FCK
ACH: +VIB -EFB +FCM -FCK +FCN +OB -SIF +AAB -RFC +VB -BIF
FCM: +FCK +FCN -ACH +RFC -OB +SIF -VIB +BIF -VB +AAB -EFB
RFC: -BIF -VB +AAB -FCM +VIB -EFB +OB -FCK +ACH -FCN +SIF
SIF: +AAB -VIB +VB -EFB +FCK -FCM +ACH -OB +FCN +BIF -RFC
VIB: -ACH +SIF -BIF +AAB -RFC -VB +FCM -EFB +FCK -OB +FCN
AAB: -SIF +BIF -RFC -VIB +VB -FCK +FCN -ACH +EFB -FCM +OB
EFB: -FCN +ACH -OB +SIF -BIF +RFC -VB +VIB -AAB -FCK +FCM
OB: +VB -FCK +EFB -FCN +FCM -ACH -RFC +SIF -BIF +VIB -AAB

Figure 6.2: Schedule for SAS Ligaen 2006/2007.





Chapter 7

Minimizing Travel Distance

In this chapter we shift attention from break minimization towards minimization
of travel distance. We consider a generalization to the break minimization prob-
lem when distances are considered instead of breaks. The problem is denoted the
timetable constrained distance minimization problem (TCDMP) and it applies for
example when leagues face many requests from TV networks. In order to increase
the revenue earned from TV networks the sports leagues must be able to accom-
modate this kind of requests. Typically, these requests concern high-quality games
since, the TV networks want to maximize the number of viewers. When many of
these requests are present it may be necessary to determine all the opponents
before finding a home-away assignment and in this case a good solution for the
TCDMP becomes important.

To solve the TCDMP, we present and compare four solution methods. The
problem is formulated as an IP model and a CP model which are solved using
CPlex and Solver, respectively. Furthermore, we present a hybrid IP/CP solution
method utilizing the strengths of both techniques by using CP for solving feasibility
problems and IP for solving an optimization problem. Finally, the problem is
solved by using a branch and price algorithm. It would be appealing to try to
formulate this problem as a weighted maximum cut problem, mimicking the work
of Elf et al. [28] and Miyashiro and Matsui [63], but it is not possible to accurately
model the distance travelled through just the cut values.

In addition to the TCDMP we also present a new heuristic solution method for
the TTP. This method called the circular traveling salesman approach (CTSA)
takes advantage of already obtained solutions for one instance class of the TTP
to obtain solutions for the general TTP problem. In this way, it is able to obtain
solutions almost instantaneously since it only needs to solve a traveling salesman
problem with up to 16 nodes. The solutions obtained are close to the known
upper bounds and besides, being used as final schedules, they can be used as

99
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initial solutions for some of the metaheuristic solution methods for the TTP.

7.1 The Timetable Constrained Distance Minimization
Problem

First let us give a formal definition of the TCDMP.

Definition 5 (TCDMP) Given a timetable for a double round robin tournament
with n teams, a distance matrix specifying the distances between the venues and an
upper bound UB on the number of consecutive home and consecutive away games,
find a feasible pattern set which minimizes the total distance travelled by all teams.

We have modelled the TCDMP using both an IP formulation and a CP for-
mulation and the models are presented in the following two subsections. In the
rest of the chapter, we let n denote the number of teams, while T denotes the set
of teams. The set of slots is denoted S, and we let S0 = S ∪ {0}. The distance
matrix is represented by D, and entrance Di1i2 contains the distance between the
venue of team i1 and the venue of team i2. TT denotes the timetable and entrance
TTis gives the opponent of team i in slot s. Notice that DTTisTTis+1 is the travel
distance of team i between slots s and s + 1 if team i plays away in both slots.

7.1.1 Integer Programming Formulation

To formulate the problem as an IP model, we use a binary variable his for each
i ∈ T and each s ∈ S. his equals 1 if team i plays home in slot s and it equals 0
if it plays away. To calculate the total travel distance, we use an integer variable,
dis for each i ∈ T and each s ∈ S0, which is equal to the distance team i travels
between slot s and slot s + 1. We use the dummy slots 0 and 2n− 1 to make sure
that all teams start and end at home. This gives the following IP model.

min
∑

i∈T

∑

s∈S0

dis (7.1.1)

s.t. dis ≥ (1− his − his+1)DTTisTTis+1 ∀i ∈ T, ∀s ∈ S0 (7.1.2)

dis ≥ (his − his+1)DiTTis+1 ∀i ∈ T, ∀s ∈ S0 (7.1.3)

dis ≥ (−his + his+1)DTTisi ∀i ∈ T, ∀s ∈ S0 (7.1.4)
hi0 = 1 ∀i ∈ T (7.1.5)
hi2n−1 = 1 ∀i ∈ T (7.1.6)
∑

s∈S

his = n− 1 ∀i ∈ T (7.1.7)

hi1s + hi2s = 1 ∀i1, i2 ∈ T, i1 < i2, ∀s ∈ S, TTi1s = i2 (7.1.8)
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his1 + his2 = 1 ∀i ∈ T, ∀s1, s2 ∈ S, s1 < s2, TTis1 = TTis2 (7.1.9)
ŝ+UB∑

s=ŝ

his ≤ UB ∀i ∈ T, ∀ŝ ∈ {1, . . . , 2(n− 1)− UB} (7.1.10)

ŝ+UB∑

s=ŝ

his ≥ 1 ∀i ∈ T, ∀ŝ ∈ {1, . . . , 2(n− 1)− UB} (7.1.11)

his ∈ {0, 1} ∀i ∈ T, ∀s ∈ {0, . . . , 2n− 1} (7.1.12)

dis ∈ Z+ ∀i ∈ T, ∀s ∈ S0 (7.1.13)

Constraints (7.1.2) - (7.1.4) give lower bounds on the distance team i travels
between slots s and s + 1 when i plays away in the two slots, when it plays home
and away and when it plays away and home, respectively. Constraints (7.1.5) and
(7.1.6) ensure that all teams start and end at home and constraints (7.1.7) make
sure that all teams have exactly n − 1 home games. Constraints (7.1.8) require
that, when teams i1 and i2 meet in slot s, one of the teams must play home and the
other must play away, while constraints (7.1.9) make sure that team i plays one
home game and one away game in two slots with the same opponent. Finally, the
constraints (7.1.10) and (7.1.11) give upper bounds on the number of consecutive
home games and the number of consecutive away games.

7.1.2 Constraint Programming Formulation

When formulating the problem as a CP model, we use variables similar to the
variables used in the IP model, but the CP model allows us to reformulate the
constraints. In particular, we are able to formulate the constraints (7.1.7), (7.1.10)
and (7.1.11) as a single constraint called sequence and we can use logical expres-
sions to determine the travel distance. This gives the following CP model.

min
∑

i∈T

∑

s∈S0

dis (7.1.14)

s.t. (his = 1) ∧ (his+1 = 1) ⇒ (dis = 0) ∀i ∈ T, ∀s ∈ S0 (7.1.15)

(his = 0) ∧ (his+1 = 1) ⇒ (dis = DTTisi) ∀i ∈ T, ∀s ∈ S0 (7.1.16)

(his = 1) ∧ (his+1 = 0) ⇒ (dis = DiTTis+1) ∀i ∈ T, ∀s ∈ S0 (7.1.17)

(his = 0) ∧ (his+1 = 0) ⇒ (dis = DTTisTTis+1) ∀i ∈ T, ∀s ∈ S0 (7.1.18)
sequence(1, UB, UB + 1, [hi1, . . . , hi2n−2], [1], [n− 1]) ∀i ∈ T (7.1.19)
his1 6= his2 ∀i ∈ T, ∀s1, s2 ∈ S, s1 < s2, TTis1 = TTis2 (7.1.20)
his 6= hTTiss ∀i ∈ T, ∀s ∈ S (7.1.21)
hi0 = 1 ∀i ∈ T (7.1.22)
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hi2n−1 = 1 ∀i ∈ T (7.1.23)
his ∈ {0, 1} ∀i ∈ T, ∀s ∈ {0, . . . , 2n− 1} (7.1.24)

dis ∈ Z+ ∀i ∈ T, ∀s ∈ S0 (7.1.25)

The constraints (7.1.15) - (7.1.18) determine the travel distance of team i between
slots s and s + 1, depending on whether team i plays home or away in the two
slots. The sequence constraints (7.1.19) say that team i must play exactly n − 1
home games and in UB + 1 consecutive slots it cannot play less than one home
game or more than UB home games. Constraints (7.1.20) state that team i must
play one home game and one away game in two slots where it meets the same
opponent and constraints (7.1.21) require that the opponent of team i plays home
(away) if team i plays away (home). Constraints (7.1.22) and (7.1.23) make sure
that all teams start and end home.

In the following sections, we present a hybrid IP/CP approach and a branch
and price algorithm for solving the TCDMP. A Benders decomposition approach
similar to the method presented in previous chapter has also been implemented
but the reduction in time used to solve the master problem could not offset the
additional iterations which are required compared to the hybrid IP/CP approach.

7.2 Hybrid IP/CP Approach

The first of the specialized solution methods is a hybrid IP/CP approach which
decomposes the problem into two phases. Phase 1 generates all feasible patterns for
each team in the tournament and Phase 2 finds the optimal pattern set by assigning
each team to one of the patterns found in Phase 1. Due to the complementary
strengths of CP and IP we use a CP model for finding feasible patterns in Phase
1 while IP is used to solve the optimization problem in Phase 2. The details of
the two phases are explained below.

7.2.1 Phase 1

In order to generate all feasible patterns, we use a CP model for each team and
find all feasible solutions to each of the models. Each pattern must contain exactly
n−1 home games and satisfy the upper bound on the number of consecutive home
games and consecutive away games. Furthermore, a pattern for a specific team i
must satisfy that, for all pairs of slots s1 and s2 where TTis1 = TTis2 , the pattern
has both a home game and an away game.

To formulate a CP model for finding all feasible patterns of team i, we use a
binary variable hs for each s ∈ S. As in the earlier sections, hs = 1 implies a home
game in slot s and hs = 0 implies an away game. The CP model for team i looks
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as follows.

sequence(1, UB, UB + 1, [h1, . . . , h2(n−1)], [1], [n− 1]) (7.2.1)
hs1 6= hs2 ∀s1, s2 ∈ S, s1 < s2, TTis1 = TTis2 (7.2.2)
hs ∈ {0, 1} ∀s ∈ S (7.2.3)

Constraint (7.2.1) corresponds to constraint (7.1.19) in the CP formulation and
makes sure that the number of home games is correct and the upper bound on
consecutive home games and consecutive away games is satisfied. Constraints
(7.2.2) correspond to the constraints (7.1.20) and make sure that the patterns are
feasible with respect to the timetable.

For each team i ∈ T , we let Pi denote the set of feasible patterns and for
each j ∈ Pi, we let hjs represent the entry hs of pattern j. We also calculate the
distance team i must travel, if it uses pattern j, and denote it dij . The distance
can be calculated since the timetable gives us the opponent of each slot and the
pattern tells if team i plays home or away.

7.2.2 Phase 2

In Phase 2, we must find an optimal allocation of each team i to a pattern j ∈ Pi,
such that the total travel distance is minimized and the pattern set is feasible with
respect to the timetable.

To formulate an IP model for this problem, we use a binary variable xij for
each i ∈ T and each j ∈ Pi. The variable is 1 if team i is assigned to pattern
j and 0 otherwise. We also use the home-away parameter hjs for each pattern j
and each slot s and the distance parameter dij for each team i and each pattern
j ∈ Pi.

min
∑

i∈T

∑

j∈Pi

dijxij (7.2.4)

s.t.
∑

j∈Pi

xij = 1 ∀i ∈ T (7.2.5)

∑

i∈{i1,i2}

∑

j∈Pi

hjsxij = 1 ∀i1, i2 ∈ T, i1 < i2, ∀s ∈ S, TTi1s = i2 (7.2.6)

xij ∈ {0, 1} ∀i ∈ T, ∀j ∈ Pi (7.2.7)

Constraints (7.2.5) are the assignment constraints saying that all teams must be
assigned to a feasible pattern and constraints (7.2.6) make sure that when 2 teams
meet, one of the teams play home and the other plays away. These two constraints
are enough to ensure a feasible pattern set with respect to the timetable since we
know from Phase 1 that all the teams play one home game and one away game in
two slots where they meet the same opponent.
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7.3 Branch and Price

In addition to the hybrid IP/CP approach, we present a branch and price algorithm
(see Barnhart et al. [8] for a detailed description of branch and price) to solve the
TCDMP. This method has successfully been applied to the TTP and it is to date
the best exact solution method for the TTP.

The branch and price algorithm assigns teams to patterns by solving a linear
programming (LP) problem which is restricted to only contain a subset of the
feasible patterns instead of all the feasible patterns. This problem is known as the
master problem.

The solution of the master problem may be fractional since we use an LP prob-
lem and it might not be optimal since we consider only a subset of the patterns.
The optimality issue is handled by solving a pricing problem which finds patterns
to the master problem with negative reduced costs. These patterns are added to
the master problem and it is re-solved. If no patterns with negative reduced costs
exist and the solution is fractional, the algorithm uses branch and bound to obtain
an integer solution.

Before describing the details of the algorithm, let us present an outline with
references to the relevant sections. UBM denotes an upper bound on the master
problem and N is the node set of the branch and bound tree.

Branch and price algorithm

Initialization Find a feasible pattern set (Section 7.3.1).

Initialize UBM to the solution value of the initial feasible solution.

Initialize N to a single node.

Step 1 If N 6= ∅, choose η̂ from N and let N = N \ η̂ (Section 7.3.2).

Otherwise, stop.

Step 2 Solve the master problem and go to Step 3 (Section 7.3.3).

Step 3 Solve the pricing problem for each team (Section 7.3.4). If no patterns
with negative reduced costs exist, go to Step 4.
Otherwise, add patterns to the master problem and go to Step 2.

Step 4 If the solution value is greater than UBM , go to Step 1.
Otherwise, if the solution is fractional, go to Step 5.
Otherwise, update UBM to the solution value and go to Step 1.

Step 5 branch, add the new nodes to N and go to Step 1 (Section 7.3.5).
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7.3.1 Initial Feasible Pattern Set

In order to find an initial feasible pattern set, we use a CP model. The model
corresponds to the CP model presented in Section 7.1.2 but, in this model, we
ignore the travel distance, since we are only looking for a feasible solution. This
gives the following CP model where the variable his, for each i ∈ T and each
s ∈ S, is 1 if team i plays home in slots s and 0 if it plays away.

solve:
sequence(1, UB, UB + 1, [hi1, · · · , hi2(n−1)], [1], [n− 1]) ∀i ∈ T (7.3.1)
his1 6= his2 ∀i ∈ T, ∀s1, s2 ∈ S, s1 < s2, TTis1 = TTis2 (7.3.2)
his 6= hTTiss ∀i ∈ T, ∀s ∈ S (7.3.3)
his ∈ {0, 1} ∀i ∈ T, ∀s ∈ S (7.3.4)

The constraints (7.3.1) - (7.3.3) are similar to the constraints (7.1.19) - (7.1.21)
from the CP model in Section 7.1.2. The rest of the constraints from the CP model
in Section 7.1.2 can be ignored, since they are all related to the travel distance.

If the model is infeasible, it means that no feasible pattern set exists and we
are done. Otherwise, we store the patterns used by each team and calculate the
travel distances. As in Section 7.2 we let Pi denote patterns which are feasible for
team i but in this context Pi does not necessarily contain all the feasible patterns
for team i. When an initial feasible solution has been found, Pi is initialized to
contain the pattern team i uses and the travel distance is calculated.

We have tested the effect of generating an additional number of good patterns
initially. In this way fewer patterns have to be generated during the search and less
time is spend on solving the pricing problem. However, the overall computation
time increased when this approach were used since the computation time of the
master problem increased and additional branching took place before the optimal
solution were found.

In the rest of the section, we use the notation that, for each team i ∈ T , the
parameter hjs for each pattern j ∈ Pi and each slot s ∈ S is 1 if pattern j has
a home game in slot s and 0 if it has an away game. We also let dij denote the
travel distance of team i if it uses pattern j from Pi.

7.3.2 Node Selection Strategy

We have implemented two node selection strategies which are used to choose nodes
from the branch and bound tree. The first strategy is the well-known depth first
strategy. This strategy chooses one of the child nodes of the current strategy if
any exists and otherwise it backtracks. The strategy corresponds to a last in, first
out (LIFO) strategy since it always chooses the last node which has been added.
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The second strategy is a best lower bound strategy which chooses the node
with the lowest lower bound. In our case, we use the objective value of the parent
node as lower bound and therefore the strategy chooses the node with the smallest
parent value. Ties are broken arbitrarily.

7.3.3 Master Problem

The master problem of the branch and price algorithm is almost identical to the
linear relaxation of the problem solved in Phase 2 of the hybrid IP/CP approach.
The only differences are that the problem is restricted since Pi does not contain
all the feasible patterns of team i, and that a number of branching constraints
are added. The number of branching constraints corresponds to the level of the
current node in the branch and bound tree.

The branching strategy and the branching constraints will be further discussed
in Section 7.3.5 but we need some notation to formulate the master problem. We
let Bη denote the set of branching constraints present in node η and we let ib, sb

and vb denote the team, the slot and the value of branching constraint b ∈ Bη.
If vb equals 1, it means that team ib must play home in slot sb and it must play
away if vb equals 0.

Since we use the linear relaxation, the variable xij gives the fraction of team
i which is assigned to pattern j from Pi. Now, we can state the master problem
corresponding to node η ∈ N as follows.

min
∑

i∈T

∑

j∈Pi

dijxij (7.3.5)

s.t.
∑

j∈Pi

xij = 1 ∀i ∈ T (7.3.6)

∑

i∈{i1,i2}

∑

j∈Pi

hjsxij = 1 ∀i1, i2 ∈ T, i1 < i2, ∀s ∈ S, TTi1s = i2 (7.3.7)

∑

j∈Pib

hjsb
xibj = vb ∀b ∈ Bη (7.3.8)

xij ∈ R+ ∀i ∈ T, ∀j ∈ Pi (7.3.9)

The constraints (7.3.6) - (7.3.7) are similar to constraints (7.2.5) - (7.2.6) from
Section 7.2.2 and constraints (7.3.8) are the branching constraints.

In the following, we refer to the optimal solution of the master problem as x̄
and we let P̄i = {j ∈ Pi : x̄ij > 0} denote the set of patterns to which a fraction
of team i is assigned.

In case the master problem is infeasible, we need to check if this is because of
missing patterns or because the branching constraints make the problem infeasible.
To do this, we solve a CP model similar to the model for finding an initial feasible
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solution presented in Section 7.3.1 - but with the branching constraints added. If
this model has a feasible solution, we add the patterns used by each of the teams
and re-solve the master problem. Otherwise, we return to Step 1 of the algorithm
and choose a new node in the search tree.

7.3.4 Pricing Problem

When the master problem has been solved we use a pricing problem for finding
patterns with negative reduced costs. For a general optimization problem

min cx

s.t. Ax = b

x ≥ 0

where c and x are n-vectors, A is an m × n matrix and b is an m-vector, the
reduced cost of a variable xi is ci − ūAi when ū is an optimal dual solution.

We let ū1
i for all i ∈ T , ū2

i1i2s for all i1, i2 ∈ T , i1 < i2 and s ∈ S where
TTi1s = i2 and ū3

b for all b ∈ Bη denote optimal dual variables corresponding
to constraints (7.3.6), (7.3.7) and (7.3.8) from the master problem, respectively.
Furthermore, we let ū2

i2i1s = ū2
i1i2s for all i1, i2 ∈ T with i1 < i2 and s ∈ S where

TTi1s = i2. Then the reduced cost of a pattern ĵ used by team î in node η can be
written as follows.

dîĵ − ū1
î
−

∑

i∈T

∑
s∈S

T T
îs

=i

ū2
îis

hĵs −
∑

b∈Bη

ū3
bhjsb

In order to find patterns with negative reduced costs, we use a pricing problem for
each team. The pricing problem finds the pattern with the smallest reduced cost
and the pattern is added to the master problem if the reduced cost is negative.

To solve the pricing problem, we use an IP model since we want to minimize the
reduced cost. Alternatively, a CP model could be used to generated patterns with
negative reduced costs but we have obtained the best results when the reduced
cost is minimized.

To formulate the IP model for a team î, we use a binary variable hs for each
s ∈ {0, . . . , 2n− 1} and an integer variable ds for each s ∈ S0. The variable hs is
1 if the pattern has a home game in slot s and 0 if it has an away game, while ds

is the travel distance of team î between slot s and s + 1. The IP model for team
î is presented below.

min
∑

s∈S0

ds − ū1
î
−

∑

i∈T

∑
s∈S

T T
îs

=i

ū2
îis

hs −
∑

b∈Bη

ū3
bhsb

(7.3.10)
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s.t. ds ≥ (1− hs − hs+1)DTTîsTTîs+1
∀s ∈ S0 (7.3.11)

ds ≥ (hs − hs+1)DîTTîs+1
∀s ∈ S0 (7.3.12)

ds ≥ (−hs + hs+1)DTTîs î ∀s ∈ S0 (7.3.13)

h0 = 1 (7.3.14)
h2n−1 = 1 (7.3.15)
∑

s∈S

hs = n− 1 (7.3.16)

hs1 + hs2 = 1 ∀s1, s2 ∈ S, s1 < s2, TTîs1
= TTîs2

(7.3.17)
ŝ+UB∑

s=ŝ

hs ≤ UB ∀ŝ ∈ {1, . . . , 2(n− 1)− UB} (7.3.18)

ŝ+UB∑

s=ŝ

his ≥ 1 ∀ŝ ∈ {1, . . . , 2(n− 1)− UB} (7.3.19)

hs ∈ {0, 1} ∀s ∈ {0, . . . , 2n− 1} (7.3.20)

ds ∈ Z+ ∀s ∈ S0 (7.3.21)

The objective function calculates the reduced cost of the pattern given by the
hs variables. Constraints (7.3.11) - (7.3.13) are used to calculate the distance,
constraints (7.3.14) and (7.3.15) make sure that î starts and ends home and con-
straints (7.3.16) - (7.3.19) state the general constraints for a pattern. We refer to
the IP model presented in Section 7.1.1 for further explanation of the constraints.

The pricing problem is solved for each team î ∈ T and in case the solution
value is less than zero, we add the pattern given by the hs variables to Pî. When
the pricing problem has been solved for all teams, we re-solve the master problem
if patterns have been added and otherwise, we go to Step 4 of the algorithm.

Instead of using the optimization problem outlined above we have also tested
the effect of using a CP feasibility model to find patterns. In this approach we were
able to find a number of patterns with negative reduced costs instead of a single
pattern. However, the CP model were not able to ensure that the pattern with
the lowest reduced cost were found and this lead to a higher number of iterations.
In addition the extra patterns made the master problem larger and the overall
performance of the algorithm decreased.

7.3.5 Branching Strategy

In case the optimal solution of the master problem is fractional and no patterns
with negative reduced costs exist, the algorithm branches to obtain an integer
solution. Instead of branching on one of the fractional x values from the master
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problem, we use higher order branching. We choose a team î and a slot ŝ and
create two new nodes by letting team î play home in slot ŝ in one of the nodes
and away in the other.

In order to find î and ŝ, we have implemented two strategies. The first strategy
starts by finding the team î and pattern ĵ1 which result in the highest fractional
x̄îĵ1

value such that

x̄îĵ1
= max{x̄ij |i ∈ T, j ∈ P̄i : 0 < x̄ij < 1}.

Then it finds the pattern ĵ2 which results in the second highest fractional value
for team î such that

x̄îĵ2
= max{x̄îj |j ∈ P̄î : 0 < x̄îj < 1 ∧ j 6= ĵ1}.

Finally, it finds a slot ŝ where the two patterns ĵ1 and ĵ2 have a difference such
that hĵ1ŝ 6= hĵ2ŝ.

The second strategy starts by finding the team î and pattern ĵ1 such that
the variable x̄îĵ1

is as close to 0.5 as possible. It then finds a second pattern ĵ2

different from ĵ1 such that x̄îĵ2
is as close to 0.5 and finally it finds a slot ŝ such

that hĵ1ŝ 6= hĵ2ŝ.
When we have found the branching team î and the branching slot ŝ we can

formulate the two branching cuts
∑

j∈Pib

hjsb
xibj = 0

∑

j∈Pib

hjsb
xibj = 1

where ib = î and sb = ŝ.
Now, we are ready to add two nodes η1 and η2 to the search tree. Assuming

that the current node is node η, we let Bη1 and Bη2 be equal to Bη and add the
first of the two branching constraints to Bη1 and the second to Bη2 .

7.4 Computational Results for the TCDMP

In order to explore the computational complexity of the TCDMP and to compare
the proposed solution methods, we have tested all 4 methods on 60 instances
ranging from 6 to 16 teams.

At the homepage http://mat.gsia.cmu.edu/TOURN/, Michael Trick’s bench-
mark problems for the TTP can be found. These problems have been studied
intensively and a number of solutions are presented at the web page. By letting
UB = 3, using the presented distance matrices and permuting the slots of the
presented TTP solutions, we have generated instances of the TCDMP.
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For each even number of teams from 6 to 16 we have generated 10 instances by
permuting slots of the following solutions. For 6 teams we have used the solution
of Easton May 7, 1999; for 8 teams, the solution of Easton January 27, 2000; for
10 teams, the solution of Langford, June 13, 2005 and for 12, 14 and 16 teams, the
solution of Zhang Xingwen August 28, 2002. All the tests have been performed
on an Intel Xeon 2.67 GHz processor with 6 GB RAM. The IP and CP models
have been solved by using OPL Studio [52] with the callable libraries CPLEX and
Solver. The hybrid IP/CP approach and the branch and price algorithm have
been implemented in OPL script.

The computational results are presented in Table 7.1. For each number of
teams and each solution method, the table shows the number of instances solved
and the minimum, average and maximum time used on the solved instances. We
have used a time limit of 1800 seconds and instances which have not been solved
within this time limit are not included in the average. Since we have 2 node selec-
tion strategies and two branching strategies for the branch and price algorithm,
we present four versions of this solution method: BP-df-1, BP-df-2, BP-bv-1 and
BP-bv-2. The terms df and bv refer to depth first and best value node selection,
respectively, while 1 and 2 refer to the first and the second branching strategy.

Table 7.1 shows that, even though CP is better than IP at solving instances
with 6 teams, it is not able to solve any of the instances with 8 teams. IP is doing
a little better and is able to solve all the instances with less than 10 teams and a
single instance with 10 teams. The fact that IP is able to handle larger instances
than CP is no surprise, since IP models often excel compared to CP models when
optimization problems are considered.

Both the hybrid IP/CP approach and the branch and price algorithm clearly
outperform the IP and CP models. We see that the hybrid IP/CP approach shows
the best results and, in addition to being the fastest on average, it is also the most
stable of the solution methods. The only drawback of this method is a rather large
memory consumption since all patterns are generated initially. For instances with
16 teams, it generates up to 85000 patterns and uses approximately 200 MB of
memory.

The computation times of the branch and price algorithm are highly dependent
on the size of the branching tree and we see that there is an order of magnitude
in difference between the minimum and maximum time. This means that the
algorithm is only competitive with the hybrid IP/CP approach when an integer
solution is found relatively fast in the branching tree.

In addition to the tests presented here, we have tested the solution methods on
instances with 18 teams but none of the methods were able to solve these instances
within the given time limit. In this case the hybrid IP/CP approach generated up
to 246000 patterns. Still, the tests have shown that the hybrid IP/CP approach is
capable of solving the problem for practical applications like the National League
Baseball which consists of 14 teams.
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Table 7.1: Computational Results for the TCDMP.

n Solution Number Time (s)

method solved Min. Avg. Max.

6 IP 10 0.42 22.51 217.18
6 CP 10 8.03 17.00 24.94
6 IP/CP 10 0.06 0.07 0.08
6 BP-df-1 10 0.83 1.59 3.34
6 BP-bv-1 10 0.82 1.27 2.29
6 BP-df-2 10 0.84 1.74 3.43
6 BP-bv-2 10 0.83 1.25 2.19

8 IP 10 60.72 397.35 954.56
8 CP 0 – – –
8 IP/CP 10 0.41 0.44 0.47
8 BP-df-1 10 2.87 11.74 21.65
8 BP-bv-1 10 2.88 6.99 11.90
8 BP-df-2 10 2.83 10.05 22.94
8 BP-bv-2 10 2.82 6.15 8.19

10 IP 1 1273.74 1273.74 1273.74
10 CP 0 – – –
10 IP/CP 10 1.79 2.02 2.34
10 BP-df-1 10 7.23 27.01 157.56
10 BP-bv-1 10 7.05 16.55 46.50
10 BP-df-2 10 6.98 24.66 64.49
10 BP-bv-2 10 7.03 15.51 44.34

12 IP 0 – – –
12 CP 0 – – –
12 IP/CP 10 10.16 12.19 18.19
12 BP-df-1 10 24.29 281.60 1386.09
12 BP-bv-1 10 23.77 130.31 434.97
12 BP-df-2 10 23.80 243.23 1038.98
12 BP-bv-2 10 23.56 151.74 650.79

14 IP 0 – – –
14 CP 0 – – –
14 IP/CP 10 35.52 38.07 42.83
14 BP-df-1 10 49.62 95.00 248.32
14 BP-bv-1 10 48.61 91.71 240.47
14 BP-df-2 10 48.69 165.40 750.18
14 BP-bv-2 10 48.74 72.78 164.82

16 IP 0 – – –
16 CP 0 – – –
16 IP/CP 10 153.80 197.16 260.47
16 BP-df-1 9 122.47 866.13 1770.94
16 BP-bv-1 9 119.37 827.90 1645.91
16 BP-df-2 8 121.42 662.81 1377.21
16 BP-bv-2 9 119.38 631.30 1382.13
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7.5 The Circular Traveling Salesman Approach

In this section we present a new heuristic solution method for solving the TTP.
This method, called the circular traveling salesman approach (CTSA), obtains so-
lutions by combining solutions for the traveling salesman problem with solutions
for the circular distance TTP. Furthermore, we show how the CTSA can be ex-
tended by solving the TCDMP afterwards in which case we will refer to it as the
extended circular traveling salesman approach (ECTSA).

One of the main problems when solving the TTP is the fact that the travel
distance is heavily affected by both the timetable and the pattern set. This makes
it very hard to find a good decomposition of the problem and without a decom-
position approach, the problem is too hard to solve using exact solution methods
even for instances with only eight teams. This has led to a number of highly
specialized metaheuristic solution methods capable of finding very good solutions
for all the instance classes of the TTP outlined at [88]. However, such algorithms
are often cumbersome to implement and it may take a lot of fine tuning to obtain
the best schedules.

The strength of the CTSA presented here is the fact that it is very simple
to implement, solutions are found almost instantaneously and the solutions are
not far from the best solutions currently found for the benchmark instances of
the TTP. The basic idea is to use a two step approach. Step 1 approximates an
instance of the TTP by an instance of the circular distance TTP, while Step 2
uses a solution for the circular distance TTP to obtain a solution for the TTP.
The approximation is performed by finding the optimal traveling salesman tour
through all the venues and then distributing the teams evenly on a circle with
circumference n according to the order of the traveling salesman tour. This forms
an instance of the circular distance TTP and by using a solution for this instance
we have a schedule for the original TTP. The approach can be outlined as follows.

The circular traveling salesman approach.

Step 1 Solve the traveling salesman problem for the teams in the tournament.

Step 2 Solve the circular distance TTP with teams ordered according to the
solution from Step 1 and use the resulting schedule to calculate the travel
distance when the real distance matrix is used.

The TSP from Step 1 is solved using a standard solution method. The problem
is solved without the subtour elimination constraints and, in case the solution
contains subtours, cuts are added and the problem is solved again. This process
continues until a feasible solution has been obtained.

In Step 2, we do not actually solve the circular distance TTP since the currently
best solutions for the problem, presented at [88], can be used. In this step, the
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team ordering 1,2,. . . ,n and the ordering n,1,2,. . . ,n-1 leads to the same objective
value of the circular distance TTP - but they result in different schedules and
hence different travel distances for the original TTP. This means that we are able
to obtain 2n solutions from the TSP solution by rotating the original ordering and
reversing the ordering. For example, the ordering 1,2,3, also leads to the orderings:
2,3,1; 3,1,2 and the reverse orderings 3,2,1; 2,1,3 and 1,3,2.

The CTSA has been tested on the benchmark instances: NL6, NL8,. . . , NL16
which can be found at [88] together with corresponding solutions. In Step 2 we
need solutions for the circular distance TTP with 6 to 16 teams. For the instance
with 10 teams, we use the solution by Langford found at [88] and for all other
instances, we use the solutions obtained by Lim et al. [54]. In order to examine
the effect of the 2n orderings, we have solved the problem for each ordering. The
results are displayed in Table 7.2 which gives the best known upper and lower
bound on the optimal travel distance, together with the maximum, minimum and
average travel distance found by the CTSA for the 2n orderings. The solution
method has been implemented in OPL script and it took less than 0.5 second to
solve the TSP in all instances.

Table 7.2: Computational results of the CTSA

Travel distance

Instance LB UB Minimum Maximum Average

NL6 23916 23916 24467 26472 25559.8
NL8 39479 39721 41754 44028 42822.5
NL10 57500 59436 63844 67943 66106.7
NL12 107483 111248 116598 124975 121339.8
NL14 182797 189759 216659 230463 223925.1
NL16 248852 267194 288674 307925 295858.3

Keeping the simpleness of the CTSA in mind, the solutions are surprisingly
close to the current upper bound. In addition, to be used as final schedules, the
solutions can also be used as initial starting points in some of the metaheuristic
approaches for the TTP. Lim et al. [54] use a beam search algorithm for obtaining
initial solutions in their simulated annealing algorithm. But although the solu-
tions obtained by the CTSA can be found almost instantaneously, the quality is
comparable to the beam search. For comparison, Table 7.3 displays the computa-
tional results of the beam search algorithm reported in [54] found on a 2.53 GHz
Pentium 4 PC with 512 MB of RAM.

In order to improve the solutions of the CTSA, it is possible to add a Step
3 in which the pattern set is improved if possible. This is done by solving the
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Table 7.3: Computational results of the beam search algorithm reported in [54].

Travel distance Time (s)

Instance Minimum Maximum Average Minimum Maximum Average

NL6 24579 25146 24802.8 576 669 628.5
NL8 41265 42334 41852.6 3211 3443 3345.0
NL10 63337 65856 64544.2 5801 6299 6179.6
NL12 118047 123770 120528.8 8009 8730 8594.0
NL14 202916 208797 205929.3 10332 10947 10806.4
NL16 283795 295864 289235.2 12855 13889 13631.2

TCDMP, given the original distance matrix and the timetable found in Step 2, to
obtain the optimal pattern set given the timetable. The results for this extended
version ECTSA are reported in Table 7.4 together with the computation times.
Notice that the computation times are mainly due to the time needed to solve the
TCDMP.

Table 7.4: Computational results of the ECTSA.

Travel distance Time (s)

Instance Minimum Maximum Average Minimum Maximum Average

NL6 24467 26255 25401 0.05 0.19 0.07
NL8 41754 44028 42822 0.36 0.39 0.37
NL10 63277 66080 64635 2.47 2.74 2.55
NL12 116421 124588 120838 11.39 20.66 12.60
NL14 215665 230463 223586 48.71 58.07 50.43
NL16 288674 307925 295628 239.90 294.30 246.44

Since the pattern set and the timetable are already optimized in the solution
of the circular distance, only marginal reductions can be obtained by solving the
TCDMP. However, in case the obtained solutions will be used as final schedules, it
might be worth spending the additional computation time required by the ECTSA.
Although the ECTSA uses much more computation time than the CTSA it is still
substantially faster than the beam search.



Chapter 8

Job Scheduling

In this chapter we move from sports scheduling to a job scheduling problem pro-
vided by the Danish telecommunications net operator, Sonofon. By the end of
each day a large number of jobs (End-of-Day jobs) have to be processed on three
available servers. Each job is preassigned to one of the three servers and the objec-
tive is to schedule the jobs on the machines in order to minimize makespan. This
task is complicated by the facts that a large number of precedence constraints
among the jobs must be fulfilled, time windows must be obeyed and capacity lim-
itations must be respected. In addition, the jobs are elastic which means that the
duration of a particular job depends on the capacity assigned to the job. Elasticity
of jobs complicates the problem considerably and we believe that this is the first
work considering elastic jobs in large-scale scheduling.

The applications of scheduling problems are wide spread, and hence a con-
siderable amount of promising research has been devoted to such problems both
within the operations research literature and the computer science literature. As
already mentioned in Section 2.3.1, Jain and Grossmann [53] and Hooker [47]
have applied logic-based Benders decomposition for solving job scheduling prob-
lems. In addition we also want to mention the work of Baptiste and Le Pape [5]
and Baptiste, Le Pape, and Nuijten [6]. These methods work very well for small
and medium-scale scheduling problems but the complexity often prevents the use
of exact solution methods when large-scale problems are considered. Furthermore,
the precedence constraints in this application also constitute an obstacle to using
logic-based Benders decomposition since the logic-based Benders cuts applied in
the previous work become infeasible when precedence constraints are present. As
a consequence we have decided to use a heuristic solution method instead of an
exact method in order to solve the problem.

Metaheuristic solution methods are a good alternative to the exact solution
methods and they have proved to be very well suited for solving scheduling prob-
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lems. Often they are able to find good solutions within a reasonable amount of
time even for hard instances. We have chosen to use tabu search, outlined in
Section 2.4.1 since it has previously been successfully applied to scheduling prob-
lems. The papers on tabu search applied to scheduling problems are numerous,
but let us for brevity only mention a few which all appeared recently. Grabowski
and Wodecki [39] consider large-scale flow shop problems with makespan crite-
rion and develop a very fast tabu search heuristic focusing on a lower bound for
the makespan instead of the exact makespan value. Ferland, Ichoua, Lavoie, and
Gagné [31] consider a practical problem of scheduling internships for physician
students and propose several variants of tabu search procedures. The last three
papers all consider the problem of scheduling a number of jobs to a set of hetero-
geneous machines under precedence constraints with the objective of minimizing
makespan. In Porto, Kitajima, and Ribeiro [68] a parallel Tabu Search heuristic
is developed and proved superior to a widely used greedy heuristic for the prob-
lem. In Chekuri and Bender [20] a new approximation algorithm is presented but,
unfortunately, no computational results are reported. Finally, in Mansini, Sper-
anza, and Tuza [56] jobs with up to three predecessors each are considered among
groups of jobs requiring the same set of machines. The problem is formulated as
a graph-theoretical problem. In the paper a number of approximation results are
provided, but no computational experience is reported.

8.1 Problem Formulation

The Danish telecommunications net operator, Sonofon, faces a three-machine
scheduling problem, with 346 End-of-Day jobs (EOD). Each job is dedicated to a
particular server in advance and all the jobs must be processed without preemp-
tion. Preemption means that jobs can be interrupted during processing.

The scheduling time horizon runs from 7.00 pm to 8.00 am, and each job re-
ceives a time window in which it should be processed. The time windows are wide,
leaving numerous feasible starting times for each job. Since most scheduling tools
applying CP rely heavily on propagation techniques, the wide time windows have
a negative influence on the performance of such scheduling packages. The time
windows will be explored further in Section 8.2.1. Since the servers immediately
after completing the EOD-jobs are assigned to other operations, the objective will
be to minimize makespan.

Because of interrelations between jobs, a number of precedence constraints
must be fulfilled. It might occur that a job needs information from a database to
which another job (a predecessor) has written earlier.

In a real-world application each job can execute with varying capacity con-
sumption during its runtime, as illustrated by job 1 in Figure 8.1(b). However,
due to limitations of server exploitation, we can assume that each job has an upper
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bound of capacity consumption. In Figure 8.1(a) we have illustrated a situation
in which three jobs are placed at a machine to start processing at time 0. Each
of the three jobs is assumed to have a maximal capacity consumption of 15 units,
and the machine has capacity 30. Since all the jobs are scheduled to start at time
0, they must share the available capacity, as shown in Figure 8.1(b). Observe that
in Figures 8.1(a) and (b) the two corresponding boxes for a job have the same
area. This would be an incorrect representation of a real-world application, since
in general (duration × capacity) increases with decreasing capacity, due to lost
server efficiency from swapping . Swapping means time being spent for reading
jobs into and out of the temporary memory, not processing any jobs. This fact is
represented by the inclusion of the shaded area in Figure 8.1(c).
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Figure 8.1: (duration × capacity) increases with decreasing capacity.

In our setup we shall assume that the capacity consumption for a job remains
constant during its runtime but we do not restrict time and capacity consumption
to be given beforehand. Instead we assume that jobs are elastic, and hence allow
the time and capacity consumption to be found during the optimization process.
This problem has a number of similarities with the problem of scheduling malleable
tasks on parallel processors in which a number of processors can be assigned to
each job, see Blażewicz, Machowiak, Wȩglarz, Kovalyov, and Trystram [14]. We
deal with the non-linear functionality between time and capacity consumption by
a rough approximation representing each job as a choice between three boxes, (see
Figure 8.2).

The dimensions of the boxes for a given job j are explained in Table 8.1, where
capj (timej) corresponds to the capacity (duration) for the job-box having the
least capacity consumption and hence the longest duration. The times we use
constitute an average longest runtime provided by Sonofon from historical data.
The second and third column gives the capacity and time consumption for a given
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Figure 8.2: Three representations of a job.

box, and the last column gives (capacity consumption × duration). Notice that,
by a 50% decrease in capacity, (capacity consumption × duration) increases by
10%. This trade-off between capacity assigned to a particular job and its duration
was determined in correspondence with Sonofon and reflects the specific problem
rather closely.

Table 8.1: Dimensions of boxes representing job j.

l capjl timejl (capjl × timejl)

1 4 · capj 25/121 · timej 100/121 · capj · timej

2 2 · capj 5/11 · timej 10/11 · capj · timej

3 capj timej capj · timej

Since the representation of scheduling problems is greatly simplified using the
terminology from CP, we adapt this notation and present the problem as a CP
model. However, to do that we need the following notation.

M = {1, 2, 3} - Machines.
J = {1, . . . , n} - Jobs.
P = {(j, k)| job j shall precede job k} - Precedence constraints.
Jm = {j| job j shall be processed on machine m} - Job-machine constraints.
L = {1, 2, 3} - Boxes for each job.

Notice ∪m∈MJm = J since all jobs are allocated to a particular server in advance.
For each job j, we introduce the four variables

j.start - Starting time,
j.duration - Duration,
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j.end - Completion time,
j.capacity - Capacity consumption,

connected by the implicit constraint j.start + j.duration = j.end. In addition, we
have the parameters

Rm - Capacity available on machine m, ∀m ∈ M,

[aj , bj ] - Time window for job j, ∀j ∈ J,

timejl - Duration of the l’th box for job j, ∀j ∈ J, ∀l ∈ L,

capjl - Capacity consumption of the l’th box for job j, ∀j ∈ J, ∀l ∈ L.

By introducing the artificial job makespan with zero duration, and letting xjl

denote a binary variable which is 1 if box l is chosen for job j and 0 otherwise, we
can now formulate the problem as the following CP model.

min makespan.end

s.t.
∑

l∈L

xjl = 1 ∀j ∈ J (8.1.1)

j.duration =
∑

l∈L

(xjl · timejl) ∀j ∈ J (8.1.2)

j.capacity =
∑

l∈L

(xjl · capjl) ∀j ∈ J (8.1.3)

aj ≤ j.start ∀j ∈ J (8.1.4)
j.end ≤ bj ∀j ∈ J (8.1.5)
j precedes makespan ∀j ∈ J (8.1.6)
j precedes k ∀ (j, k) ∈ P (8.1.7)

cumulative




{j.start}j∈Jm

{j.duration}j∈Jm

{j.capacity}j∈Jm

Rm


 ∀m ∈ M (8.1.8)

xjl ∈ {0, 1} ∀j ∈ J, ∀l ∈ L (8.1.9)

where cumulative is a global constraint in CP, stating that, at all times, the
total capacity is not exceeded by the capacity consumption of running jobs. The
constraint can be rewritten as

cumulative ((t1, . . . , tn) , (d1, . . . , dn) , (r1, . . . , rn) , R)
m

∑

{j|tj≤t≤tj+dj}
rj ≤ R ∀t
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where the vector (t1, . . . , tn) represents starting times of jobs 1, . . . , n, with du-
ration (d1, . . . , dn) and capacity consumption (r1, . . . , rn). Available capacity is
R.

The above constraints (8.1.1) choose a box for each job, yielding a specific time
and capacity consumption in cooperation with (8.1.2) and (8.1.3). Constraints
(8.1.4) and (8.1.5) consider time windows. Constraints (8.1.6) together with the
objective function minimize the completion time of the last job. Constraints (8.1.7)
handle precedence constraints (j precedes k means j.end ≤ k.start), whereas
constraints (8.1.8) handle resource consumption for each machine.

8.2 Tabu Search

We use tabu search for solving the problem since the problem size prevent us
from using an exact solution method like IP or CP. As described in Section 2.4.1
tabu search is a trajectory metaheuristic exploring the search space in order to
find good solutions. In this problem a solution consist of a starting time and
a box choice for each job since then the completion times, the durations and
the capacity consumptions are implicitly determined. However, due to wide time
windows numerous possible starting times exist for each job. This results in a
huge search space and the tabu search face the risk of moving a few jobs without
changing the job sequence. Instead we define a solution to be a box size for each
job and a job sequence which specifies the order of the starting times. Given a
sequence we let jp denote the number of the job at position p and we impose
constraints saying that job jp1 must start no later than job jp2 whenever p1 < p2.
A solution to a problem with 9 jobs is shown in Figure 8.3 where the sequence is
defined by j1 . . . j9 and the box choices by the box numbers ljp stated below.

1 2 3 4 5 6 7 8 9

4 2 6 5 9 3 7 1 8
2 1 1 3 1 2 2 3 1

jp

ljp

p

Figure 8.3: Sequence and box choices for example with 9 jobs.

The tabu search moves from one solution to the next by either changing the
sequence or changing one of the box sizes. This is discussed in Section 8.2.4 which
outlines the neighbourhood structure. Since the solutions considered in the tabu
search does not include the starting times explicitly we need to be able to extend
such a partial solution to a solution which explicitly states all the starting times.
In Section 8.2.3 we show how to find to optimally extend a partial solution.

A solution is feasible, if it is possible to schedule all jobs according to the
sequence and the box sizes and still satisfy all time windows, capacity constraints
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and precedence constraints. It turns out that the problem of finding an initial
solution is very hard, but a heuristic method for solving this problem is presented
in Section 8.2.2.

Elements and features of the tabu search such as the neighbourhood, tabu lists,
intensification strategies and diversification strategies are discussed in Sections
8.2.4, 8.2.5, 8.2.6 and 8.2.7, respectively. Part of the notation is inhereted from
Chiang and Russell [21].

8.2.1 Preprocessing

In order to detect infeasible solutions quickly we tighten the time windows by
considering precedence constraints. If a job j, has a time window (0, t), but at the
same time is a successor of another job ĵ, then the time window can be adjusted
to start at the earliest completion time for job ĵ. To do this, a precedence graph
G is constructed where all jobs are represented by a node, and all precedence
constraints by a directed arc between the two nodes involved, pointing away from
the predecessor.

For all connected components in the graph the following procedure adjusts the
beginning of the time windows. Let C ⊆ G be a connected component, and let
j ∈ C be a job in C. Then aj denotes the earliest starting time, and timej1

denotes the minimal duration for job j. We let Pj denote all predecessors of job
j, note Pj ⊂ C. The earliest starting times for the jobs in C are now adjusted
by setting aj = max{aj , ai + timei1 ∀i ∈ Pj} for all j ∈ C, but in an order
such that all predecessors of j have been adjusted before j. Such an order exists,
since otherwise a directed cycle would exist, and the jobs would be impossible to
schedule. The latest completion times can be adjusted in a similar manner by
starting with the jobs in C having no successors.

8.2.2 Initial Solution

Garey and Johnson [33] have shown that, for a similar setup, the decision problem
on determining the existence of a feasible schedule with a makespan less than a
given deadline (in our case 8.00 am) is NP-complete. In this section we shall
describe a heuristical procedure to generate an initial feasible solution for this
particular instance. The procedure is divided into five steps where Steps 1,2 and
3 use the precedence graph to generate a sequence. In Step 4, box sizes are chosen
and in case the resulting solution is feasible the procedure stops. Otherwise, Step
5 relaxes the problem and uses the tabu search to find a feasible solution.

Procedure for finding initial solution.

Step 1:
Notice, to obtain a feasible solution, three groups of constraints must be fulfilled
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simultaneously, namely precedence constraints, time window constraints and ca-
pacity constraints. To ensure fulfilment of the precedence constraints, we use the
precedence graph described in Section 8.2.1 to divide the jobs into layers. The
successor of a job will always be in a higher layer than the job itself, and the jobs
in one layer cannot start before all jobs in preceding layers have started.

job 1

job 2

job 3

job 4

job 5 job 6

job 7

timet1 t2 t3 t4

layer 1: job 1, job 2, job 3

layer 2: job 4

layer 3: job 5

layer 4: job 6, job 7

(a) (b)

Figure 8.4: How jobs are divided into layers.

Figure 8.4(a) illustrates an example with seven jobs which must be divided into
layers. In the figure the jobs are placed at their earliest starting time indicated by
dotted lines and precedence constraints between jobs are indicated by arrows. In
this situation job 4 must be in a higher layer than job 1 since it is a successor of
job 1. However, if jobs are only divided according to the precedence constraints
the process faces the risk of assigning jobs with late time windows to an early
processing layer. This could happen if an entire component of the precedence
graph has to be processed after a certain time, but the first job is assigned to
layer 1. Jobs from other components, which could be processed early, would then
be stalled if they were in layer 2, and the entire schedule would be delayed. This
corresponds to assigning job 5 from Figure 8.4(a) to layer 1. If that happens job
4 must be scheduled after time t3 since it would be allocated to a higher layer
than job 5. Hence in our derivation of layers, we introduce a variable start and
initialize it to 0. Then we assign jobs which are without predecessors and capable
of starting before or at time start to layer 1. In Figure 8.4(a) job 1, job 2 and job
3 would hence be assigned to layer 1 as seen in Figure 8.4(b). All their successors,
having no other predecessors and being able to start before or at time start, are
then scheduled in the next layer etc. When no more jobs can be assigned due
to either time window constraints or precedence constraints, the variable start is
increased by one time unit, and a new level of layers can be derived with jobs
being able to start before the new limit.

The jobs are numbered consecutively, starting with the jobs at the lowest
layer. The difference between the width of the time window and the duration of
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the smallest box expresses a degree of freedom for a given job. The higher this
difference is, the higher degree of freedom the job possesses. Within each layer the
jobs are numbered in an increasing order of this degree of freedom. This continues
in an iterative fashion, until all jobs have been numbered, and we have a sequence
containing all jobs. After the first three jobs from Figure 8.4(a) has been assigned
to layer 1, the variable start is increased until it is equal to t2 at which point job
4 can be assigned to layer 2. As the algorithm continues the remaining jobs will
be assigned as shown in Figure 8.4(b).

Step 2:
This step is similar to Step 1 except the layers are generated backwards. This
means that the layer containing the last jobs are generated first, and then the
preceding layers are generated one by one. Again the successor of a job will
always be in a higher layer than the job itself, and the job in one layer cannot
start before all jobs in the preceding layer have started.

Step 3:
The sequence from Step 1 has the disadvantage that all jobs without precedence
constraints and time windows are scheduled in the first layer, e.g. job 2 and
job 3 in Figure 8.4(a). This means that jobs which could have been scheduled
later might delay some of the large components of the dependency graph. The
sequence developed in Step 2 has the opposite problem since in this case the jobs
with few constraints are scheduled in the last layer and might cause jobs to break
their time windows. Hence in this step we obtain a new sequence by taking a
convex combination of the two sequences from Steps 1 and 2. This is done by
calculating the convex combination of the positions in the two sequences for each
job and then generating a sequence according to these numbers. Ties are broken
arbitrarily. Notice that the new sequence still satisfies all precedence constraints.

Step 4:
First we choose a box size for each job j on machine m according to the following
scheme:

xj1 = 1 if 0 < capj3 ≤ Rm

10

xj2 = 1 if Rm

10 < capj3 ≤ Rm

4

xj3 = 1 if Rm

4 < capj3

These choices have proven efficient in the particular problem. After the boxes
have been chosen a check is made to see if the sequence obtained in Step 3 together
with the box choices constitute a feasible solution. This check is performed during
the process of completing the solution as described in Section 8.2.3.

Step 5:
If the solution from Step 4 is infeasible we use the tabu search to find a feasible
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solution. The problem is relaxed by setting bj = ∞ for all j, i.e. the time windows
have no upper limit. Notice that this problem always has a feasible solution when
the capacity requirement for each job is less than the capacity on the corresponding
machine. The objective in this part of the tabu search is to minimize the number
of jobs which violate their original time windows, and the search stops when a
solution with value 0 has been found.

The implemented idea corresponds to running a tabu search procedure in two
phases – one phase ensuring feasibility and one phase minimizing makespan. These
phases could alternatively be merged by using weights to yield an objective func-
tion combined of the makespan criterion and a penalty for the broken time win-
dows, see Chiang and Russell [21]. However, since an implementation of this idea
showed poor performance compared to the two phase tabu search, we chose to
focus on the two phase approach.

8.2.3 Completing a Solution

As mentioned the solutions used in the tabu search only consist of box choices
and a job sequence in order to reduce the search space. However, to be able to
check feasibility of a solution we need to check whether the time windows and the
capacity constraints are satisfied. Hence, we need to be able to extend a solution
from the tabu search to a complete solution including starting times, completion
times and capacity consumption for all jobs. In this section we outline a proce-
dure capable of completing a partial solution in such a way that the makespan is
minimized. This procedure is used for all considered moves in the tabu search and
hence the efficiency of the procedure has great influence on the overall performance
of the tabu search.

The procedure exploits the fact that an optimal schedule with respect to the
given sequence and box choices can be generated by scheduling one job at a time in
the order of the job sequence without backtracking. Notice that, the job sequence
always satisfy the precedence constraints. Since jp is the job at position p in the
sequence we know that when jp is about to be scheduled all jobs jp̄ with p̄ < p
have been scheduled and jp−1.start ≤ jp.start due to the sequence. Furthermore,
all the jobs that have been scheduled so far, start before or at jp−1.start and
therefore the capacity consumption on each machine must be decreasing in time
after jp−1.start. The optimal starting time for jp will hence be the first time
after max{ajp , jp−1.start} and max{jp̄.end|(jp̄, jp) ∈ P} for which the capacity
consumption, on the machine m used to process jp, is less than or equal to Rm −
jp.cap. This means that a job is started the first time the four conditions shown
in Figure 8.5 are fulfilled.

When the starting time of jp has been determined the procedure checks if
jp.end ≤ bjp to see if the time window constraint is satisfied. If so, jp+1 is scheduled
and otherwise the solution is infeasible and the procedure stops. If all jobs are
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Figure 8.5: Scheduling the job jp. The limiting constraints are: (a) The sequence,
(b) time window, (c) capacity, (d) precedence constraint.

scheduled we have a feasible solution since all constraints are satisfied, and the
makespan is equal to max{j.end|j ∈ J}.

8.2.4 Neighbourhood

To characterize the neighbourhood of a given solution x̄ we define two kinds of
moves. A position move moves a job to a new position while the box sizes are
kept constant, whereas a box move maintains the job sequence of x̄ but changes
the box choice for a single job. Figure 8.6 illustrates both kinds of moves. Notice
in Figure 8.6(a) that, when job 9 at position 5 in the job sequence is moved to
position 2, not only does job 9 get a new position, but the jobs at position 2, 3
and 4 are moved to the subsequent position.

1 2 3 4 5 6

4 2 6 5 9 3
2 1 1 3 1 2

1 2 3 4 5 6

4 2 6 5 9 3
2 1 1 3 1 2

3(a) (b)

Figure 8.6: (a) Position move, (b) Box move.

The position move described above has been chosen instead of alternatives,
such as exchanging two jobs, since the precedence constraints does not limit the
flexibility of this move. Consider the move from Figure 8.6(a) and imagine that job
2 must precede job 6 and job 6 must precede job 5. In that case three ”exchanges”
of jobs are needed to perform the single position move shown in the figure.

The neighbourhood for solution x̄ can be characterized as the union of solutions
obtained by a single box move and solutions obtained by a single position move
which fulfils the precedence constraints. The cardinality of the neighbourhood is
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O(n2) due to the large number of position moves, and in the present implemen-
tation we must consider approximately 120,000 moves (some are ignored due to
violation of the precedence constraints) for each solution. The ability to select
only part of the neighbourhood for examination is therefore crucial. We use two
methods for limiting the number of possible moves.

Restricting Position Moves

By introducing a limit movelimit on how far a job can move, the number of
considered position moves are reduced. This leads to faster iterations but might
restrict the search from choosing some very good solutions. To avoid the search
from stalling due to the restriction, the entire neighbourhood is examined every
time the algorithm has performed non-improving moves for a predefined number
of iterations. This makes the search capable of performing a single time consuming
move and then a number of fast iterations to exploit the new conditions.

Candidate Lists

The Elite Candidate List approach (see Glover and Laguna [36]), is used to limit
the number of position moves by only evaluating moves belonging to candidate
lists. In this setup two lists are used, and they are constructed by evaluating
the neighbourhood of the initial solution. All moves which lead to an improving
makespan are stored in list 1, and all moves leading to the same makespan are
stored in list 2. In the following iterations only moves from the two candidate
lists are considered. First the moves in list 1 are evaluated, and if one of these
moves leads to an improving makespan the best move is chosen. If list 1 does not
contain an improving move the moves in list 2 are evaluated, and the best move
considering both list 1 and list 2 is chosen.

When a move has been chosen from one of the candidate lists both lists are
updated by deleting all moves conflicting with the chosen one. This means that, if a
position move for job j is chosen, then all other position moves for job j are deleted
from the candidate lists and correspondingly for box moves. The candidate lists
are used until no improving move has been found in the lists. When this happens
both lists are deleted, and two new lists are generated by examining the possible
moves of the current solution. Notice that, this might not be an evaluation of
all possible moves, since the position moves might be restricted as explained in
Section 8.2.4. The underlying assumption of the strategy is that a move which
performs well in the current solution will probably also lead to improvements in
the following iterations.
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8.2.5 Tabu List

The corner stone in tabu search is the use of short-term memory by generating
a tabu list. The tabu list stores the move from an iteration and keeps it for
TimeInTL iterations. This is done by keeping the iteration number î from the
iteration in which the move is made tabu and deleting the move from the tabu list
when the iteration number exceeds î + TimeInTL. The tabu list differentiates
between the two kinds of moves, but the number of the job involved is always
stored. If a box move is performed for job j the tabu list restricts job j from
performing a new box move in the following TimeInTL iterations, unless the
aspiration criterion is satisfied. If a position move is moving job j from position
p the tabu list restricts the search from performing a new position move taking
job j to a position p̄ where |p − p̄| ≤ tabuPosLimit in the following TimeInTL
iterations, unless the aspiration criterion is satisfied.

The aspiration criterion implemented checks if an improved makespan can be
obtained by performing a forbidden move. If this is the case the tabu restriction
is suspended, and the search is allowed to perform the move.

The tabu search implemented here has the ability to dynamically adjust the
variable TimeInTL which determines the number of iterations for which a move
is tabu. TimeInTL is decreased by the parameter zdecrease = 0.9 every time
the search is trapped in a solution without a non-tabu or feasible neighbour and
increased by zincrease = 1.1, when the same makespan has been found in many
successive iterations.

In addition a variable steps is counting the number of moves without a change
in TimeInTL, and TimeInTL is decreased by zdecrease if steps exceeds a fixed
threshold movingaverage. This adjustment helps the search to avoid a lot of bad
moves which could be the result of a long tabu list.

8.2.6 Intensification Strategy

A list IntenArray holds moves which have led to improvements of the makespan.
The moves are kept for Intensize iterations, and corresponding moves for the
same job are not allowed while the move is in the IntenArray. For example, if a
position move is performed for job j in iteration î, a new position move cannot be
performed for j before iteration î+ Intensize. However, the intensification status
is not considered if a job satisfies the aspiration criterion. In this case the job can
be chosen even though the move is in the intensification array.

8.2.7 Diversification Strategies

The algorithm contains two kinds of diversification strategies. The first strategy
is active throughout the search and helps the algorithm to perform a thorough
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search in the current region of the solution space, while the other strategy forces
the search to change the region.

Penalized Move Value

The quality of a move is measured by movevalue, which gives the difference be-
tween the current makespan and the makespan obtained by performing the move,
movevalue = newTime − curT ime. This movevalue could be used to guide the
search, but in order to implement the first diversification strategy a penalized move
value pmv is introduced. The pmv takes into account how many times the job
has been moved before:

pmv =
{

movevalue + α ·Move[j], if movevalue ≥ 0
movevalue, if movevalue < 0

where Move[j] counts the number of moves performed by job j and α is a pa-
rameter to adjust the penalty. By choosing moves according to lowest pmv, the
algorithm automatically follows the diversification strategy.

Escape Procedure

In order to move the search from one region of the solution space to another, an
escape procedure is invoked when too many successive iterations have resulted in
the same makespan. The procedure makes a number of random moves which lead
the algorithm away from the current region. During the escape procedure only
feasible moves are allowed, since a feasible solution must be available when all the
moves are performed. The general tabu search procedure adjusted according to
the strategies above can be seen in Figure 8.7.

8.3 Computational Results

In this section we present the computational results of the tabu search. In addition
to solving the problem faced by Sonofon we have performed extensive testings on
random large-scale scheduling instances. The results for the practical application
show that significant improvements can be gained within a short amount of time
while the additional tests show the robustness and speed of the algorithm to
instances with varying structure.

The results obtained by the tabu search are compared to a lower bound which
is found by disregarding the precedence constraints. This allows us to schedule the
three machines independently. Then for each job we let total capacity consumption
be (capacity consumption × duration) for the smallest possible box (box 1). Now,
for a particular machine we are able to construct a sequence by ordering the jobs
according to the starting time of their time windows, ties are broken arbitrarily.



8.3. Computational Results 129

1 procedure tabu search
2 time = 0
3 adjust time windows (8.2.1)
4 find initial solution (8.2.2)
5 iteration = 0
6 while ((iteration < maxiteration) ∧ (time < timelimit)) do
7 curmove = ∅
8 update TabuList
9 update IntenArray

10 if (candlist1 ∪ candlist2 = ∅) then
11 create new candlist with respect to restrictions (8.2.4)
12 end if
13 for all (moves in candlist1) do
14 complete the resulting solution (8.2.3)
15 check the TabuList and IntenArray (8.2.5 & 8.2.6)
16 end for all
17 if no improving move has been found check candlist2
18 choose curmove according to pmv (8.2.7)
19 if (curmove = ∅) then
20 decrease TimeInTL and let steps = 0 (8.2.5)
21 end if
22 else
23 update curSol by performing curmove
24 add the move to tabulist (8.2.5)
25 add the move to IntenArray if it leads to an improvement (8.2.6)
26 end else
27 update candlist (8.2.4)
28 if (iterations with same makespan = escaperepetion) then
29 use escapeprocedure (8.2.7)
30 end if
31 iteration++
32 end while
33 end procedure

Figure 8.7: Pseudo code for the tabu search algorithm. Numbers in parentheses
refer to the corresponding sections.

When the jobs are scheduled according to this sequence and treated as totally
elastic without variation of the total capacity we obtain a lower bound on the
makespan.

All computational results reported in this section have been found using an
Intel Xeon 2.67 GHz processor with 4 GB RAM.
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8.3.1 The Practical Application

The problem faced by Sonofon consists of 346 jobs and 587 precedence constraints.
The average makespan reported by Sonofon is 821 minutes and the lower bound
on the makespan is 591 minutes.

The algorithm presented in this paper yields a makespan of 615 minutes, which
is only 4.06 percent above the lower bound while the makespan obtained by Sono-
fon is 38.92 percent above the lower bound. By a direct comparison of the two
makespans it can be seen that our schedule saves 25.09 percent of scheduling time
compared to the strategy implemented by Sonofon.

The best solution was found in 56 min, 31 sec, and hence the algorithm can
be used on a daily basis to schedule the jobs which have to be processed during
the night. Furthermore, Figure 8.8 shows that the significant improvements are
obtained in a rather short amount of computation time, and afterwards only small
improvements are made. This means that the algorithm is still applicable even
though the job specifications are unknown until just prior to the actual scheduling
process. The jumps for the current solution reported in Figure 8.8 are due to the
escape procedure used in the diversification strategy.

makespan

time (sec.)

Lower bound

(4.00 am) 540

(5.00 am) 600

(6.00 am) 660

(7.00 am) 720

(8.00 am) 780

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000

current sol.
best sol.

Figure 8.8: Makespan obtained by the tabu search for every 50 iterations.

In addition, the solution of the algorithm can be used to examine how the
available capacity is used. Figure 8.9 shows a very uneven server exploitage during
the night, and in particular if jobs were moved from machines 1 and 3 to machine
2 the makespan could be reduced.

For additional testing we have implemented the problem in OPL Studio (by
ILOG [52]) and provided it with the search strategy to start with box choices
according to the scheme in Step 4 of Section 8.2.2. OPL Studio with default
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Figure 8.9: Capacity consumption on the three servers.

setting was unable to solve the problem in 24 hours. In fact, within 24 hours OPL
Studio was unable even to find a feasible solution to the problem, whereas our
algorithm provided a feasible solution in 1 min, 1 sec. The efficiency of the tabu
search is in particular due to the speed of the procedure explained in Section 8.2.3
which schedules the jobs when a job sequence and box sizes are given. The order
of magnitude for the average time used to run this procedure is 10−4 seconds.

We have also tested the benefits of scheduling all jobs on one large server
instead of three separate ones. Within 3 hours of computation time our algorithm
yields a makespan of 526 minutes and therefore supports such an implementation.
This scenario has been considered by Sonofon but is not implementable with their
current hardware.

8.3.2 General Large-scale Scheduling Instances

In order to test the robustness of the tabu search we have generated numerous
random instances. The first half of these instances has a structure which resembles
the structure seen in the data from Sonofon while the structure in the rest of the
instances are random.

We have tested the tabu search on instances with 150, 300 and 400 jobs. For
each number of jobs we have instances where the number of precedence constraints
is equal to half the number of jobs, the number of jobs and twice the number of jobs,
respectively. Furthermore, since the jobs are randomly generated, 10 instances
have been solved for each specific number of jobs and precedence constraints to
give a general idea of the performance of the tabu search. The tabu search have
been running in 30 minutes on all instances.

We report the CPU time in seconds used to find an initial feasible solution and
the time used to find the best solution within the 30 minutes time limit. To give
an idea of the size of the makespan we give the minimum and maximum makespan
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Table 8.2: Results for data resembling Sonofon data.

CPU (avg.) Makespan Deviation (%)

|J | |P | Initial Best min max min avg. max

150 75 0.00 68.26 335 355 0.00 0.06 0.30
150 150 0.00 17.64 334 433 0.00 0.11 0.82
150 300 0.00 3.04 480 630 0.00 0.16 0.80
300 150 0.00 1170.54 342 386 0.00 1.27 3.40
300 300 0.00 599.25 369 486 0.00 0.60 2.41
300 600 0.50 86.99 623 767 0.00 0.20 1.14
400 200 0.00 1419.62 382 430 0.23 5.60 9.42
400 400 0.00 1250.09 399 458 0.00 2.20 5.00
400 800 51.51 482.98 618 777 0.00 0.15 1.07

for the 10 instances and finally we report both minimum, maximum and average
deviation from the lower bound in percent.

The servers at Sonofon face two peaks during the night. One at the beginning
of the process where a large number of jobs are allowed to start and one at 24:00
where a second group of jobs are allowed to start due to the shift in date. The
instances which resemble data from Sonofon adopt this structure in the sense that
one quarter of the jobs must be finished before 24:00, one quarter of the jobs must
start after 24:00 and the rest are free. Furthermore, three quarters of the jobs are
small with duration randomly chosen between 1 and 5 minutes while the rest are
large jobs with duration randomly chosen between 5 and 40 minutes. The capacity
consumption is random and so are the precedence constraints.

The results for the instances resembling data from Sonofon are presented in
Table 8.2. We see that the average time for finding the best solution increases with
the number of jobs while it decreases with the number of precedence constraints.
The latter observation shows that the precedence constraints actually constrain
the problem in a way that makes it easier to solve.

The tabu search was able to solve all instances within the time limit and we
see that the best solution is very close to the lower bound in almost all instances
and in the worse case it only exceeds the lower bound with 9.42 percent.

For the instances with random data structure all jobs have a random time
window, a random capacity consumption, a random duration and the precedence
constraints are random. The results for these instances are reported in Table 8.3
and again we see that the computation time to obtain the best solution increases
with the number of jobs and decreases with the number of precedence constraints.
On the other hand this table shows that additional precedence constraints make it
harder to find a feasible solution and in the case with 400 jobs and 800 precedence
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constraints the tabu search is not able to find a feasible solution for 2 of the 10
instances within the time limit.

Table 8.3: Results for random data.

CPU (avg.) Makespan Deviation (%)

|J | |P | Initial Best min max min avg. max

150 75 0.00 107.48 514 547 0.00 0.30 0.96
150 150 0.00 43.76 521 568 0.00 0.19 0.75
150 300 0.00 3.80 568 668 0.00 0.10 0.32
300 150 0.00 1296.62 520 542 0.00 1.47 4.13
300 300 3.84 574.26 538 617 0.00 0.76 4.00
300 600 8.16 75.94 610 705 0.00 0.13 0.33
400 200 1.80 1607.16 536 563 1.90 5.21 8.35
400 400 135.35 1357.75 549 630 0.32 2.01 5.82
400 800∗ 212.85 553.53 609 690 0.00 0.26 1.00

∗Only 8 of the 10 instances have been solved.
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