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On estimating the asymptotic variance of

stationary point processes

Lothar Heinrich∗, Michaela Prokešová∗∗

Abstract

We investigate a class of kernel estimators σ̂2
n of the asymptotic variance σ2 of

a d–dimensional stationary point process Ψ =
∑

i≥1 δXi
which can be observed

in a cubic sampling window Wn = [−n, n]d . σ2 is defined by the asymptotic
relation Var(Ψ(Wn)) ∼ σ2 (2n)d (as n → ∞) and its existence is guaranteed

whenever the corresponding reduced covariance measure γ
(2)
red(·) has finite to-

tal variation. Depending on the rate of decay (polynomially or exponentially)

of the total variation of γ
(2)
red(·) outside of an expanding ball centered at the

origin, we determine optimal bandwidths bn (up to a constant) minimizing

the mean squared error of σ̂2
n. The case when γ

(2)
red(·) has bounded support is

of particular interest. Further we suggest an isotropised estimator σ̃2
n suitable

for motion-invariant point processes and compare its properties with σ̂2. Our
theoretical results are illustrated and supported by a simulation study which
compares the (relative) mean squared errors of σ̂2 for planar Poisson, Poisson
cluster, and hard–core point processes and for various values of n bn .

Keywords: reduced covariance measure, factorial moment and cumulant mea-
sures, Poisson cluster process, hard–core process, kernel–type estimator, mean
squared error, optimal bandwidth, pair correlation function, central limit the-
orem, Brillinger–mixing

AMS 2000 Subject Classification: Primary 60G55, 62F12; Secondary 62G05,
62G20

1. Introduction

In various fields of application statisticians are faced with irregular but in some
sense homogeneous patterns consisting of randomly distributed points or at least
point-like objects which can be observed in a more or less large planar or spatial
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sampling window. Stationary point processes provide appropriate models to de-
scribe such phenomena. For a rigorous and detailed introduction in this field we
refer the reader to the monograph [2] supplemented by the monograph [15] in which
special emphasis is put on statistical analysis of point processes and their appli-
cation in stochastic geometry. Throughout this paper, let Ψ =

∑
i≥1 δXi

denote a
simple stationary second–order point process on the d–dimensional Euclidean space
Rd (equipped with the Euclidean norm ‖·‖ and the corresponding Borel σ–field Bd).
Mathematically spoken, Ψ is a locally finite random counting measure with the dis-
crete random closed set of atoms {X1, X2, . . . } defined on some common probability
space [Ω,A, P] . We will speak of “points of Ψ” instead of “atoms of Ψ” and write
“x ∈ Ψ” instead of “Ψ({x}) > 0”. The mean number of points of Ψ per unit volume
λ = E Ψ([0, 1)d) is called the intensity or point density of Ψ. This simplest numeri-

cal characteristic associated with Ψ is standardly estimated by λ̂n = Ψ(Wn)/|Wn| ,
where Wn ⊂ Rd denotes a bounded (convex) sampling window with volume |Wn|
which is assumed to expand unboundedly in all directions as n → ∞ . Under mild
mixing conditions (expressible by the reduced covariance measure of Ψ, see Sect. 2)

the limiting variance of λ̂n exists:

σ2 := lim
n→∞

|Wn| E(λ̂n − λ)2 = lim
n→∞

Var(Ψ(Wn))

|Wn|
. (1)

The limit (1) is briefly called asymptotic variance of Ψ. Under somewhat stronger

mixing assumptions one can show that
√

|Wn| (λ̂n − λ) converges in distribution to
a Gaussian random variable N (0, σ2) with mean zero and variance σ2 (if σ2 > 0),
see e.g. [4], [3], [7]. This result suggests an asymptotic significance test to check
the hypothetical intensity λ provided that a (weakly) consistent estimator σ̂2

n for σ2

is available. In a recent paper [6], such estimators are also needed for testing non–
parametric point process hypothesis by using scaled empirical K–functions. There
are other fields of spatial statistics in which asymptotic variances and their estima-
tion play an important role, see [1], [9]. The main aim of this paper is a quantitative
asymptotic analysis of a class of estimators for σ2 introduced in Sect. 2. The main
results are formulated in Sect. 3, the proofs of which are given in Sect. 4. In Sect. 5,
we study a modified estimator for motion–invariant point processes and describe
its asymptotic properties. In Sect. 6 we briefly mention two alternative methods
to estimate σ2 . We close this paper with a simulation study to compare different
estimators of σ2 for moderate–size windows Wn .

2. Estimating the asymptotic variance

First we recall the definitions and relations between factorial moment and factorial
cumulant measures, see [2] for details. The kth-order factorial moment measure α(k)

of Ψ is a locally finite measure on [(Rd)k,Bdk] defined by

∫

(Rd)k

f(x1, . . . , xk) α(k)(d(x1, . . . , xk)) = E

( 6=∑

x1,...,xk∈Ψ

f(x1, . . . , xk)
)

(2)
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for any non–negative, Borel measurable function f on (Rd)k , where the sum
6=∑

runs
over k–tuples of distinct points of Ψ . The kth-order factorial cumulant measure γ(k)

of Ψ is a locally finite signed measure on [(Rd)k,Bdk] which is formally connected
with the measures α(1), . . . , α(k) by

γ(k)
( k
×
i=1

Ai

)
=

k∑

j=1

(−1)j−1(j − 1)!
∑

K1∪···∪Kj={1,...,k}

j∏

i=1

α(#Ki)
(

×
ki∈Ki

Aki

)

for bounded A1, . . . , Ak ∈ Bd , where the inner sum is taken over all partitions of
the set {1, . . . , k} in disjoint non–empty subsets K1, . . . , Kj . In particular, we have
α(1)(A) = γ(1)(A) = λ |A| for A ∈ Bd and

γ(2)(A1 × A2) = α(2)(A1 × A2) − λ2 |A1| |A2| for A1, A2 ∈ Bd .

Since, for any k ≥ 2 , α(k) is invariant under diagonal shifts there exists a correspond-
ing reduced kth-order factorial moment measure α

(k)
red on [(Rd)k−1,Bd(k−1)] which is

uniquely determined by the disintegration formula
∫

(Rd)k

f(x1, . . . , xk)α
(k)(d(x1, . . . , xk))

= λ

∫

Rd

∫

(Rd)k−1

f(x1, x2 + x1, . . . , xk + x1) α
(k)
red(d(x2, . . . , xk)) dx1 (3)

where f is as in (2). In the same way we may define the reduced kth-order factorial

cumulant measure γ
(k)
red which turns out to be a signed measure on [(Rd)k−1,Bd(k−1)]

with the Jordan decomposition γ
(k)
red = (γ

(k)
red)

+−(γ
(k)
red)

− , see e.g. [16] for details. The

corresponding total variation measure |γ(k)
red| = (γ

(k)
red)

+ + (γ
(k)
red)

− on [(Rd)k−1,Bd(k−1)]
is locally finite, but in general not finite.

In the special case k = 2 we get γ
(2)
red(·) = α

(2)
red(·)− λ | · | and call γ

(2)
red the reduced co-

variance measure (briefly: r.c.m.) of Ψ . The variance Var(Ψ(Wn)) can be expressed
by means of this r.c.m. which together with (1) leads to

σ2 = λ + λ lim
n→∞

∫

Rd

|Wn ∩ (Wn − x)|
|Wn|

γ
(2)
red(dx) = λ

(
1 + γ

(2)
red(R

d)
)

,

whenever Wn increases unboundedly in all directions and |γ(2)
red|(Rd) < ∞ . Note

that the latter condition is sufficient but in some exceptional cases not necessary to
ensure the existence of the limit.

The Lebesgue density ̺(2) of α
(2)
red (if it exists) is called the second–order product

density of Ψ. Further, if Ψ is motion–invariant then ̺(2)(x) depends only on ‖x‖
and the function g(r) := ̺(2)(x)/λ for r = ‖x‖ is called the pair–correlation function
of Ψ . In this case

γ
(2)
red(R

d) =

∫

Rd

( ̺(2)(x) − λ )dx = λ d κd

∫ ∞

0

( g(r) − 1 )rd−1 dr (4)

provided the integrals exist, where κd denotes the volume of the unit ball in Rd.

To study the asymptotic behaviour of estimates of σ2 we need some regularity as-
sumptions:
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(A0) The sampling windows are cubes Wn = n W for n ≥ 1 , where W = [−1, 1]d .

(A1) The kernel function w : W → [0,∞) is symmetric, bounded, and continuous
at the origin o ∈ Rd such that w(o) = 1 .

(A2) The (positive) sequence of bandwidths (bn) satisfies 1 ≥ bn −−−→
n→∞

0 and

bnn −−−→
n→∞

∞ .

(A3) The r.c.m. of Ψ has finite total variation, i.e., ‖γ(2)
red‖var := |γ(2)

red|(Rd) < ∞ .

(A4) The third– and fourth–order reduced factorial cumulant measures of Ψ have

finite total variation, i.e., ‖γ(k)
red‖var := |γ(k)

red|((Rd)k−1) < ∞ for k = 3, 4 .

Now, we are in a position to define the kernel estimators σ̂2
n of σ2 by

σ̂2
n = λ̂n +

6=∑

x,y∈Ψ

w((y − x)/bn n)1Wn
(x)1Wn

(y)

|(Wn − x) ∩ (Wn − y)| − ω (bn n)d (λ̂2)n , (5)

where

ω =

∫

W

w(x)dx and (λ̂2)n =
Ψ(Wn)(Ψ(Wn) − 1)

|Wn|2
.

3. Asymptotic behaviour of σ̂2
n – main results

To begin with we quote two results from [3] stating the qualitative behaviour of the
mean and variance of σ̂2

n when Wn grows large.

Theorem 1 (Heinrich, 1994) Under the assumptions (A0)–(A3), the sequence of
estimators (σ̂2

n) is asymptotically unbiased for σ2 , i.e.

E σ̂2
n −−−→

n→∞
σ2 . (6)

and, under the additional assumptions (A4) and b2
nn −−−→

n→∞
0 , the sequence (σ̂2

n) is
mean square consistent, i.e.

MSE( σ̂2
n ) := E( σ̂2

n − σ2 )2 −−−→
n→∞

0 . (7)

The rates of convergence in (6) and (7) depend on the chosen kernel function w(·) (in
particular on its behaviour near the the origin o), the sequence of bandwidths (bn) ,

and the rate of decay of |γ(2)
red|(Bc(o, r)) as r → ∞ , where Bc(o, r) denotes the

complement of the ball B(o, r) = {x ∈ Rd : ‖x‖ ≤ r} . Our first aim is to determine
an asymptotically optimal sequence of bandwidths (bn) minimizing the mean squared
error of σ̂2

n defined by (7), which can be expressed as the sum of variance and squared
bias of σ̂2

n ,
MSE( σ̂2

n ) = Var( σ̂2
n ) + ( E σ̂2

n − σ2)2 .
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We mention that, if in (5) the product bn n is replaced by cn := bn |Wn|1/d, relation
(6) holds for any sequence (Wn) of sampling windows satisfying cn −−−→

n→∞
∞ . On the

other hand, relation (7) remains valid for any increasing sequence (Wn) of convex
windows satisfying additionally bn cn −−−→

n→∞
0 and cn/r(Wn) −−−→

n→∞
0 , where r(Wn)

stands for the inball radius of Wn , see [6].

The proof of (6) relies on multiple application of the formula

E

6=∑

x,y∈Ψ

f(x, y) = λ

∫

Rd

∫

Rd

f(x, x + y) α
(2)
red(dy) dx

(which is easily seen by combining (2) and (3)) to functions f : R2d 7→ R1 occurring
on the right–hand side of (5). After some rearrangements we finally arrive at

E σ̂2
n−σ2 = λ

∫

Rd

(
w
( x

bn n

)
−1
)
γ

(2)
red(dx)− ω (bn n)d λ

|Wn|2
∫

Rd

|Wn∩(Wn−y) | γ(2)
red(dy) .

Thus, the bias of σ̂2
n can be estimated as follows:

| E σ̂2
n − σ2 | ≤ λ

∣∣∣
∫

Rd

(
w
( x

bn n

)
− 1
)

γ
(2)
red(dx)

∣∣∣+
(bn

2

)d

ω λ ‖γ(2)
red‖var . (8)

The proof of (7) given in [3] is based on the calculation of the variances of each of

the three summands S
(n)
i , i = 1, 2, 3 , in the decomposition

σ̂2
n = λ̂n +

6=∑

x, y∈Ψ

f1(x, y) − ω (bn n)d

6=∑

x, y∈Ψ

f2(x, y) ,

where

f1(x, y) =
w((y − x)/bn n) 1Wn

(x) 1Wn
(y)

|(Wn − x) ∩ (Wn − y)| and f2(x, y) =
1Wn

(x) 1Wn
(y)

|Wn|2
.

The variance Var(σ̂2
n) is then bounded by 3 ( Var(S

(n)
1 )+Var(S

(n)
2 )+Var(S

(n)
3 ) ), which

gives

Var(σ̂2
n) = O((b2

nn)d) as n → ∞ , see [3] .

There are further terms like O(bd
n) and O(n−d) hidden behind the O-symbol which

can be neglegted due to the assumption (A2).

However, a thorough check of these calculations shows that a slightly sharper bound
of Var(σ̂2

n) and even its exact asymptotic order can be obtained. For this purpose
rewrite σ̂2

n as follows

σ̂2
n = λ̂n +

6=∑

x, y∈Ψ

f(x, y) with f(x, y) = f1(x, y) − ω (bn n)d f2(x, y) . (9)
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Theorem 2 Under the assumptions (A0) – (A4) we have

Var(σ̂2
n) = O(n−d) + O(b2d+1

n nd) + O(bd
n) as n → ∞ . (10)

If in addition bd+1
n nd −−−→

n→∞
0 , then

Var(σ̂2
n)

bd
n

−−−→
n→∞

τ 2 :=
σ4

2d−1

∫

W

w2(x) dx +
λ2 ω

2d−2

(
2 γ

(2)
red(R

d) + γ
(3)
red(R

2d)
)

. (11)

Moreover, if bd+1
n nd −−−→

n→∞
0 and the stationary point process Ψ is Brillinger-mixing,

i.e. | γ(k)
red |(Rd(k−1)) < ∞ for all k ≥ 2, then b

−d/2
n ( σ̂2

n − E σ̂2
n ) converges in distribu-

tion (as n → ∞) to a Gaussian random variable N (0, τ 2) .

Remark Relation (10) remains also valid if bn n −−−→
n→∞

c > 0 instead of bn n −−−→
n→∞

∞ .

As seen from (8) and (10) the choice of the (asymptotically) MSE–optimal band-
width b∗n (minimizing MSE(σ̂2

n) for large enough n up to a multiplicative constant)
is strongly influenced by the behaviour of the integral term on the right–hand side
of (8) which in turn depends on the particular shape of w and γ

(2)
red .

To facilitate a more detailed analysis of the MSE–asymptotics we choose kernel
functions w being equal to 1 in some neighbourhood of the origin, e.g. the cylinder
kernel

w(x) = 1B(o,1)(x) with ω =

∫

W

w2(x) dx = κd . (12)

We distinguish three different types of the tail behaviour of γ
(2)
red – polynomial decay,

(sub)exponential decay and γ
(2)
red having bounded support.

Theorem 3 Let (5) be defined with the cylinder kernel (12) and assume that (A0)
and (A2)–(A4) are satisfied. If

|γ(2)
red(B

c(o, r))| = O(r−β) for some β > 0 , (13)

then

MSE(σ̂2
n) = O

(
n−min

{
2β d

2β+d
,

2β (d+1)
2β+2d+1)

} )
and b∗n = c n−max

{
2β

2β+d
, d+2β

1+2d+2β)

}

with some constant c > 0 . If

| γ(2)
red(B

c(o, r)) | = O( exp{−h(r)} ) , where
h(r)

log r
−−−→
r→∞

∞ , (14)

then
MSE(σ̂2

n) = O
(
n−(1−ε)d

)
for bn = c n−(1−ε)

with some constant c > 0 , where ε > 0 can be chosen arbitrarily small.
If the r.c.m. γ

(2)
red has bounded support in Rd, i.e.,

c∗ = inf{r > 0 : |γ(2)
red|(Bc(o, r)) = 0} < ∞ , (15)

then
MSE(σ̂2

n) = O( n−d ) and b∗n =
c

n
for some c > c∗ .
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If the product density ̺(2) exists and Ψ is even isotropic it is often more convenient
to express the conditions (13)–(15) in terms of the corresponding pair–correlation

function g. Indeed, by the definitions of γ
(2)
red and g we have

γ
(2)
red(B(o, r)) = α

(2)
red(B(o, r)) − λ |B(o, r) | = λ d κd

∫ r

0

( g(u) − 1 ) ud−1 du ,

so that

| γ(2)
red |(Bc(o, r)) = λ d κd

∫ ∞

r

| g(u)− 1 | ud−1 du .

Thus, we arrive at

Corollary 4 Let Ψ be a motion–invariant second–order point process on Rd with
pair–correlation function g(r) r > 0 . Then

(i) | g(r)− 1 | = O(r−(d+β)) (as r → ∞) for some β > 0 implies (13) ,

(ii) | g(r)−1 | = O(exp{−(1+δ) h(r)}) (as r → ∞) for some δ > 0 implies (14) ,

(iii) c∗ = sup{ r ≥ 0 : g(r) 6= 1 } < ∞ is equivalent to (15) .

4. Proofs of the Theorems 2 and 3

The proof of Theorem 2 is essentially based on the following

Lemma 5 Let Ψ be a stationary fourth–order point process on Rd with intensity
λ. Further, let f : Rd × Rd 7→ R1 be a bounded, symmetric, and Borel measurable
function with bounded support. Then

Var

( 6=∑

x,y ∈Ψ

f(x, y)
)

= 2λ

∫∫
f 2(x, x + y) γ

(2)
red(dy)dx + 2 λ2

∫∫
f 2(x, y) dy dx

+ 4λ

∫∫∫
f(x, x + y)f(x + y, x + u)γ

(3)
red(d(y, u))dx

+ 4λ2

∫∫∫
f(x, y)[2f(y, y + u) + f(y, x + u)]γ

(2)
red(du)dy dx

+ 4λ3

∫∫∫
f(x, y)f(y, u)dudy dx

+ λ

∫∫∫∫
f(x, x + y)f(x + u, x + v)γ

(4)
red(d(y, u, v))dx

+ 4λ2

∫∫∫∫
f(x, y)f(y + u, y + v)γ

(3)
red(d(u, v))dy dx

+ 2λ2

∫∫∫∫
f(x, y)f(x + u, y + v)γ

(2)
red(du)γ

(2)
red(dv)dy dx

+ 4λ3

∫∫∫∫
f(x, y)f(x + u, v)γ

(2)
red(du)dvdy dx.
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Proof of Lemma 5 : Applying the defining relation (2) to the decomposition

( 6=∑

x,y∈Ψ

f(x, y)
)2

= 2

6=∑

x,y∈Ψ

f 2(x, y) + 4

6=∑

x,y,u∈Ψ

f(x, y) f(y, u) +

6=∑

x,y,u,v∈Ψ

f(x, y)f(u, v)

we find that

Var

( 6=∑

x,y∈Ψ

f(x, y)
)

= E

( 6=∑

x,y∈Ψ

f(x, y)
)2

−
(

E

6=∑

x,y∈Ψ

f(x, y)
)2

= 2

∫∫
f 2(x, y) α(2)(d(x, y)) + 4

∫∫∫
f(x, y)f(y, u) α(3)(d(x, y, u))

+

∫∫∫∫
f(x, y) f(u, v)

[
α(4)(d(x, y, u, v))− α(2)(d(x, y))α(2)(d(u, v))

]

= 2

∫∫
f 2(x, y)

[
γ(2)(d(x, y)) + λ2 dx dy

]
+ 4

∫∫∫
f(x, y)f(y, u)

×
[
γ(3)(d(x, y, u)) + 2λ γ(2)(d(y, u)) dx + λ γ(2)(d(x, u)) dy + λ3 dx dy du

]

+

∫∫∫∫
f(x, y) f(u, v)

[
γ(4)(d(x, y, u, v)) + 4 λ γ(3)(d(y, du, dv) dx

+ 2γ(2)(d(x, u)) γ(2)(d(y, v)) + 4 λ2 γ(2)(d(x, u)) dy dv
]
.

The second equality is seen by expressing the third–order factorial cumulant measure
γ(3) in terms of α(3), α(2), and α(1) and applying the identity

γ(4)
( 4
×
i=1

Ai

)
= α(4)(A1 × A2 × A3 × A4) − α(2)(A1 × A2)α

(2)(A3 × A4)

− λ
(
|A1| γ(3)(A2 × A3 × A4) + |A2| γ(3)(A1 × A3 × A4)

+ |A3| γ(3)(A1 × A2 × A4) + |A4| γ(3)(A1 × A2 × A3)
)

− γ(2)(A1 × A3) γ(2)(A2 × A4) − γ(2)(A1 × A4) γ(2)(A2 × A3)

− λ2
(
|A2| |A4| γ(2)(A1 × A3) + |A2| |A3| γ(2)(A1 × A4)

+ |A1| |A4| γ(2)(A2 × A3) + |A1| |A3| γ(2)(A2 × A4)
)

for any A1, . . . , A4 ∈ Bd . Finally, the assertion of Lemma 5 follows by disintegrating
the factorial cumulant measures in analogy to (3). �

Proof of Theorem 2 : From (9) and (1) it is easily seen that

Var(σ̂2
n) ≤ 2 Var(λ̂n) + 2 Var(Sn)

≤ 2 λ (1 + ‖γ(2)
red‖var) |Wn|−1 + 2 Var(Sn) , (16)

where Sn =
∑6=

x,y∈Ψ f(x, y) with f(x, y) defined in (9). Applying Lemma 5 to this

function f(x, y) we may write Var(Sn) =
∑9

i=1 T
(n)
i (f), where the summands T

(n)
i (f)

8



appear in the same order as in the variance representation of Lemma 5. By the rough
estimate

|f(x, y)| ≤ c1

|Wn|
1Wn

(x) 1Wn
(y)

and the assumptions (A3) and (A4) it is readily seen that

| T (n)
i (f) | ≤ c2 |Wn|−1 for i = 1, 3, 6 .

Next we consider those terms in which exactly two integrals w.r.t. the Lebesgue
measure on Rd appear. It turns out that the asymptotic behaviour of each of these
terms is determined by the function f1(x, y). We demonstrate this in detail with

the typical term T
(n)
8 (f). A short calculation shows that

∫∫
f(x, y) f(x + u, y + v) dydx =

∫∫
f1(x, y) f1(x + u, y + v) dydx + O(b2d

n )

and, together with (A2),

1

bd
n

∫∫
f1(x, y) f1(x + u, y + v) dydx

= nd

∫
w(y) w(y + v−u

n bn
) |Wn ∩ (Wn − nbn y) ∩ (Wn − u) ∩ (Wn − nbn y − v)|

|Wn ∩ (Wn − nbn y)| |(Wn − u) ∩ (Wn − nbn y − v)| dy

−−−→
n→∞

1

2d

∫
w2(y) dy

for any fixed u, v ∈ Rd . Here, we have used among others that, for any ε > 0 , there
is a continuous function wε : W → R1 such that

∫
|w(y) − wε(y)|dy ≤ ε . Likewise,

one can verify that

lim
n→∞

1

bd
n

∫∫
f(x, y) f(y + u, y + v) dydx

= lim
n→∞

nd

∫
w(y) w(v−u

nbn
) |Wn ∩ (Wn − nbn y) ∩ (Wn − u) ∩ (Wn − v)|

|Wn ∩ (Wn − nbn y)| |(Wn − u) ∩ (Wn − v)| dy

=
1

2d

∫
w(y) dy

for any fixed u, v ∈ Rd . Hence, in view of the assumptions (A3) and (A4), the
dominated convergence theorem yields the asymptotic relations

T
(n)
2 (f) ∼ 2 λ2 bd

n

2d

∫
w2(y) dy ,

T
(n)
4 (f) ∼ 4 λ2 bd

n

2d
γ

(2)
red(R

d)
(

2

∫
w(y) dy +

∫
w2(y) dy

)
,

T
(n)
7 (f) ∼ 4 λ2 bd

n

2d
γ

(3)
red(R

d × Rd)

∫
w(y) dy ,

T
(n)
8 (f) ∼ 2 λ2 bd

n

2d
(γ

(2)
red(R

d))2

∫
w2(y) dy ,

9



where an ∼ a′
n means an/a′

n −−−→
n→∞

1 . To study the contribution of the remaining

terms T
(n)
5 (f) and T

(n)
9 (f) to Var(Sn) we have to evaluate the corresponding integrals

explicitly. After a lengthy calculation we get

T
(n)
5 (f) = 4 λ3

(b2
n n

2

)d
∫∫ ( |Wn| |Wn ∩ (Wn − nbn x) ∩ (Wn − nbn y)|

|Wn ∩ (Wn − nbn x)| |Wn ∩ (Wn − nbn y)| − 1

)

× w(x) w(y) dxdy

and

T
(n)
9 (f) = 4 λ3

(b2
n n

2

)d
∫∫∫

w(x) w(y) |Wn|
|Wn ∩ (Wn − nbn x)|

×
(

|W (u)
n ∩ (Wn − nbn x) ∩ (Wn − nbn y − u)|

|Wn ∩ (Wn − nbn y)| − |W (u)
n ∩ (Wn − nbn x)|

|Wn|

+
|W (u)

n |
|Wn|

( |Wn ∩ (Wn − nbn x)|
|Wn|

− 1
))

dx dy γ
(2)
red(du) , (17)

where we have used the abbreviation W
(u)
n = Wn ∩ (Wn − u) for u ∈ Rd .

By assumption (A0) it is easily shown that

1 − |W (n bn y)
n ∩ (Wn − n bn x)|

|W (n bn y)
n |

= 1 − |W ∩ (W − bn y) ∩ (W − bn x)|
|W ∩ (W − bn y)| ≤ c3 bn

with some constant c3 > 0 not depending on n and x, y ∈ W .

Hence,
T

(n)
5 (f) = O(b2d+1

n nd) as n → ∞ .

Using the inequality

|W (u)
n ∩ (Wn − nbn x)| − |W (u)

n ∩ (Wn − nbn x) ∩ (Wn − nbn y − u)|
= |Wn ∩ (Wn − nbn x) ∩

(
(Wn − u) \ (Wn − nbn y − u)

)
|

≤ |Wn| − |Wn ∩ (Wn − nbn y)|
≤ c3 |Wn| bn ,

we see that the integrand in (17) is uniformly bounded by c4 bn for all (x, y, u) ∈
W × W × Rd and n ≥ 1 so that, together with (A3),

T
(n)
9 (f) = O(b2d+1

n nd) as n → ∞ .

Finally, summarizing the obtained bounds of T
(n)
1 (f), . . . , T

(n)
9 (f) yields Var(Sn) =

O(n−d)+ O(b2d+1
n nd) + O(bd

n) and then (10) follows from (16).

If the sequence bn n has a finite and positive limit, then the above estimates re-
mains almost unchanged resulting in Var( σ̂2

n ) = O(n−d) . This justifies the Remark
immediately after Theorem 2.

10



Further, provided that bn n −−−→
n→∞

∞ and bd+1
n nd −−−→

n→∞
0, the above asymptotic

relations for T
(n)
i (f) , i = 2, 4, 7, 8 , imply the existence of the limit

lim
n→∞

Var(σ̂2
n)

bd
n

= lim
n→∞

b−d
n

(
T

(n)
2 (f) + T

(n)
4 (f) + T

(n)
7 (f) + T

(n)
8 (f)

)
,

which gives (11) after some obvious rearrangements.

The essential step to prove the third assertion of Theorem 2 consists in showing
that the k-th order cumulant of the normalized sum b

−d/2
n Sn converges to 0 for

any k ≥ 3. For this purpose the assumption | γ(j)
red |(Rd(k−1)) < ∞ for j = 2, . . . , k

is needed. The treatment of the higher–order cumulants of Sn is quite similar to
the estimation procedure carried out in [7] to prove a central limit theorem for
functionals of the form

∑6=
x,y∈Ψ 1Wn

(x)g(y − x) , where the function g : Rd 7→ R1

does not depend on n . We omit the details of these rather lengthy computations.
The remaining term b

−d/2
n (λn − λ) tends to 0 in probability. Thus, together with

Slutsky’s lemma, see [16], and (11) we obtain the desired normal convergence. This
completes the proof of Theorem 2. �

Proof of Theorem 3 : The relations (10) and (8) with the cylinder kernel (12)
imply

MSE( σ̂2
n ) = O

( (
γ

(2)
red(B

c(o, nbn))
)2 )

+ O(bd
n) + O(b2d+1

n nd) + O(n−d) (18)

Suppose now that (13) holds. By the equations

( bn n )−2β = bd
n and ( bn n )−2 β = b2d+1

n nd

we get two canditates of bandwidths b
(1)
n = n−2β/(2β+d) and b

(2)
n = n−(2β+d)/(2β+2d+1)

(up to a multiplicative constant c > 0) which minimize the right–hand side of (18).
Therefore,

MSE( σ̂2
n ) = O

(
max{(b(1)

n )d, (b(2)
n )2d+1 nd)}

)

with the optimal bandwidth b∗n = c min{b(1)
n , b

(2)
n } . Note that b

(1)
n ≤ b

(2)
n iff β ≥ d2/2

and this is equivalent to (b
(1)
n )d ≥ (b

(2)
n )2d+1 nd .

If (14) holds we may take the parameter β in the previous case arbitrarily large. In
particular, letting 2β = d(1−ε)/ε for 0 < ε ≤ 1/(d+1) gives the optimal bandwidth
b∗n = c n−(1−ε) .

The third part of Theorem 3 is an obvious consequence of (18) combined with the
Remark after Theorem 2. �

5. The isotropised estimator σ̃2
n

Inserting the kernel function (12) in (5) we may write the estimator σ̂2
n as follows:

σ̂2
n = λ̂n + (̂λ2K)n(n bn) − κd (n bn)d (̂λ2)n . (19)
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The middle term is obtained by taking r = n bn in

(̂λ2K)n(r) =

6=∑

x, y∈Φ

1B(o,r)(x − y) 1Wn
(x)1Wn

(y)

|(Wn − x) ∩ (Wn − y)| , (20)

which is nothing else but the standard edge–corrected Horvitz–Thompson type esti-
mator of λ2 K(r) , where K(r)(= λ−1 α

(2)
red(B(o, r))) denotes Ripley’s K-function, see

[12], [15] and [10, Sect.9.1.2] for its relevance in statistical analysis of planar and spa-
tial point patterns. If the stationary point process Ψ is additionally isotropic (that
is, Ψ is motion–invariant), the following isotropised estimator of λ2 K(r) is prefer-
ably used due to certain optimality properties, see [12, Chapt.3], [15, p.135/136]
and references given there or [13]:

(̃λ2K)n(r) =

6=∑

x,y∈Φ

1B(o,r)(x − y) 1Wn
(x)1Wn

(y)

|W [‖x−y‖]
n |

k(x, y) for 0 ≤ r ≤ r∗n , (21)

where W
[r]
n = {x ∈ Wn : ∂B(x, r) ∩ Wn 6= ∅} , r∗n = sup{r : |W (r)

n | > 0} , and

k(x, y) =
|∂B(x, ‖x − y‖)|d−1

|∂B(x, ‖x − y‖) ∩ Wn|d−1
for x, y ∈ Wn , x 6= y .

Here | · |d−1 designates the (d−1)–dimensional Hausdorff measure in Rd and ∂B(x, r)
denotes the surface of the ball B(x, r) . In the special case d = 2, we get k(x, y) =
2π/α(x, y) , where α(x, y) equals the sum of all angles of the arcs in Wn induced by
a circle with radius r = ‖x − y‖ centered at x ∈ Wn .

The isotropised estimator (21) is believed to have similar properties like the Horvitz–
Thompson type estimator (20) for r being small in comparison with the length of
the edges of Wn, and for large r it should have smaller variance than (20).

Hence, for a motion–invariant point process Ψ we introduce a new estimator of σ2

defined by

σ̃2
n = λ̂n + (̃λ2K)n(bn n) − κd (n bn)d (̂λ2)n , (22)

where |W [bn n]
n | = |Wn| for n ≥ 1 , since bn ≤ 1 by (A2).

Note that the estimator σ̃2
n does not allow to be written in the form (5) because the

function k(x, y) depends on the window Wn. The specific shape of Wn = [−n, n]d

implies that

k(x, y) ≤ 2d for all x, y,∈ Wn satisfying ‖x − y‖ ≤ n ,

and in the special case d = 2 , a little trigonometry yields

1

k(x, y)
= 1 − a(1)

n (x, y) − a(2)
n (x, y) − min

{
1

4
, a(1)

n (x, y) + a(2)
n (x, y)

}
,

where, for x = (x1, x2) , y ∈ Wn ,

a(i)
n (x, y) =





1
2 π

arccos
(

n−|xi|
‖x−y‖

)
if 0 ≤ n − ‖x − y‖ ≤ |xi|

0 if 0 ≤ |xi| ≤ n − ‖x − y‖
, i = 1, 2 .
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A careful analysis of the quantities MSE( σ̃2
n ) and Var( σ̃2

n ) confirms that the se-
quence of estimators σ̃2

n behaves asymptotically like σ̂2
n with the cylinder kernel (12).

This results are summarized in

Theorem 6 If the point process Ψ is additionally isotropic, the Theorems 1–3 for-
mulated for the particular case of the cylinder kernel (12) remain completely valid
when σ̂2

n is replaced by σ̃2
n .

Though σ̃2
n has the same asymptotic behaviour as σ̂2

n , the advantage of σ̃2
n in com-

parison with σ̂2
n is that the correction weights k(x, y) exceed 1 not for all pairs of

distant points x, y ∈ Wn , but only when these points are close to the boundary of
Wn . Thus the variance of σ̃2

n on moderate–size windows is expected to be smaller
than that of σ̂2

n with cylinder kernel. On the other hand, σ̃2
n should have approxi-

mately the same bias as σ̂2
n with the cylinder kernel (12). The behaviour of σ̂2

n and
σ̃2

n on moderate–size windows will be discussed in detail in Sect. 7.

Theorem 6 will not be proved in detail because its proof differs from the above proofs
of the Theorems 1–3 only in a few technical arguments. In the remaining part of
Sect. 5 we only outline these slight differences. First note that in case of motion-

invariant point processes the estimator (̃λ2K)n(r) is unbiased for λ α
(2)
red(B(o, r)) ,

see [11], which implies

E σ̃2
n = λ + λ γ

(2)
red(B(o, bn n)) − κd(bn n)dλ

|Wn|2
∫

Rd

|Wn ∩ (Wn − y)|γ(2)
red(dy) .

Therefore we get in analogy to (8) that

|E σ̃2
n − σ2| ≤ λ |γ(2)

red(B
c(o, bn n))| +

(
bn

2

)d

λ κd ‖γ(2)
red‖var,

which shows the asymptotic unbiasedness of σ̃2
n under (A0)–(A3). Under the addi-

tional assumption (A4) it follows that MSE( σ̃2
n ) −−−→

n→∞
0 provided that b2d+1

n nd −−−→
n→∞

0 .

This is directly seen from the latter inequality in combination with

Var(σ̃2
n) = O(n−d) + O(b2d+1

n nd) + O(bd
n) as n → ∞ . (23)

This and the foregoing relation enable us to derive the optimal order of MSE( σ̃2
n )

just as in Theorem 3. To prove (23) we start from (22) with the simple inequality

Var(σ̃2
n) ≤ 2 λ (1 + ‖γ(2)

red‖var) |Wn|−1 + 2 Var(S̃n) ,

where

S̃n =
1

|Wn|

6=∑

x,y∈Ψ

(
f̃(x, y) − κd

2d
bd
n

)
1Wn

(x) 1Wn
(y)

with a symmetric function f̃ : Rd × Rd 7→ R1 defined by

f̃(x, y) = 1
2
( k(x, y) + k(y, x) ) 1B(o,n bn)(x − y) .

13



Here we have used the definitions (21) and (22) and that W
[r]
n = Wn for r ∈ [0, bn n] .

Now, we may proceed as in the proof of Theorem 3. It turns out after some lengthy
calculations that the both weights k(x, y) and k(y, x) in the definition of f̃ can be

replaced by 1 without changing the asymptotic order of the variance Var(S̃n). In this
way we finally obtain (23) and that the limit lim

n→∞
Var(σ̃2

n) b−d
n exists and coincides

with (11) for w(x) = 1B(o,1)(x) . �

6. Other methods of estimating σ2

For the sake of completeness we briefly discuss two other possibilities to estimate
the asymptotic variance (1). The above formula (4) yields

σ2 = λ +

∫

Rd

( λ ̺(2)(x) − λ2 ) dx

and this suggests a further estimator σ̂2
n,1 for σ2 by using an appropriate edge–

corrected kernel–type estimator for λ ̺(2)(x) which can be defined on the sampling
window Wn = [−n, n]d by

(̂λ ̺(2))n(x) =
1

bd
n

6=∑

u,v∈Ψ

1Wn
(u) 1Wn

(v)

| (Wn − u) ∩ (Wn − v) | k
(v − u − x

bn

)
, (24)

see [15],[10],[14], where the sequence of bandwidths (bn) satisfies (A2) and the kernel
function k : Rd 7→ R1 is assumed to be bounded with bounded support such
that

∫
Rd k(x) dx = 1 . Together with the estimators λ̂n and (λ̂2)n for λ and λ2 ,

respectively, we introduce the estimator

σ̂2
n,1 = λ̂n +

∫

B(o,bn n)

(
(̂λ ̺(2))n(x) − (λ̂2)n

)
dx ,

which seems to have similar properties as σ̂2
n . Rates of the strong convergence of

(λ ̺(2))n(x) obtained in [5] can be used to derive strong convergence results for σ̂2
n,1 .

One can also define an isotropised variant by using corresponding kernel–type esti-
mators of the pair–correlation function g, see [10, Chapt. 9.1.3] and [14] for several
improved versions.

There is a further alternative to estimate σ2 , namely by applying spectral analysis
of stationary second–order point processes, see [2, Chapt. 11] for details and [1],
[8] for extensions to random closed sets. Let the point process Ψ satisfy (A3) and
let h : Rd 7→ R1 be a nonnegative, integrable function such that

∫
Rd h(x)dx = 1.

The covariance function Kh(x) = Cov(ξh(x), ξh(o)) of the stationary random field
ξh(x) =

∑
y∈Ψ h(y − x) , x ∈ Rd , (being a shot-noise process, see [4]) possesses the

form

Kh(x) = λ h(2)(x) + λ

∫

Rd

h(2)(x − y)γ
(2)
red(dy) where h(2)(x) =

∫

Rd

h(z) h(z + x)dz ,
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and is absolutely integrable with
∫

Rd Kh(x) dz = σ2 . In view of Bochner’s theorem
there exists a unique nonnegative, integrable (continuous) function fh : Rd 7→ R1 ,
the spectral density of ξh , which coincides with the usual Fourier transform of Kh

given by

fh(y) =

∫

Rd

Kh(x) ei〈x,y〉 dx = λ |H(y) |2
(
1 +

∫

Rd

ei〈x,y〉γ
(2)
red(dy)

)
,

where H(y) =
∫

Rd h(z) ei〈y,z〉 dz . By the properties of h it is easily seen that
fh(o) = σ2.

A quite natural kernel-type estimator for the spectral density fh , see e.g. [1], is
given by

(̂fh)n(y) =
1

|Wn| bd
n

∫

Rd

k
(y − x

bn

) ∣∣∣
∫

Wn

( ξh(z) − λ ) ei〈x,z〉 dz
∣∣∣
2

dx , for y ∈ Rd ,

where the kernel function k and the bandwidths (bn) are chosen as in (24) ensuring

the pointwise asymptotic unbaisedness of (̂fh)n for fh . Hence, (̂fh)n(o) is a suitable
estimator for σ2 .

Finally, after replacing h by hε(x) = (2ε)−d 1ε W (x) we can show that

fhε
(y) −−→

ε→0
λ
(
1 +

∫

Rd

ei〈x,y〉γ
(2)
red(dx)

)

and
∫

Wn

ξhε
(z) ei〈x,z〉 dz −−→

ε→0

∑

z∈Ψ

1Wn
(z) ei〈x,z〉 .

Thus, we may suggest a further estimator for σ2 ,

σ̂2
n,2 =

1

|Wn| bd
n

∫

Rd

k
(−x

bn

) ∣∣∣
∑

z∈Ψ

1Wn
(z) ei〈x,z〉 − λ

∫

Wn

ei〈x,z〉 dz
∣∣∣
2

dx .

In practise the use of the Fast Fourier Transform could reduce the complexity of the
computation of σ̂2

n,2. The asymptotic properties of σ̂2
n,2 can be obtained with the

methods used in [1].

7. Behaviour of the estimators on sampling

windows Wn of moderate size – simulation

results

Turning back to the decomposition (19) we can see once again that the middle term
is responsible for the main part of the variability of the estimator σ̂2

n , especially,
when the value of bn is close to 1 since the correction weights

1 ≤ |Wn|
|(Wn − x) ∩ (Wn − y)| ≤

1

(1 − bn)d
for (x − y) ∈ [−n bn, n bn]d, (25)
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may exceed 1 considerably. For small windows the estimator may take even negative
values. The variability of the middle term depends also on the shape of the chosen
kernel w. For kernel functions like

w(x) = max(1 − ‖x‖d, 0) or w(x) = max(1 − ‖x‖, 0); ,

the larger correction weights (25) are balanced by smaller values of the kernel func-
tion for larger values of x− y. On the other hand, for these two kernel functions the
bias of σ̂2

n can be larger than that for the cylinder kernel (12) due to the integral
term in (8).

To get an impression of how the estimators σ̂2
n and σ̃2

n behave on moderate–size
windows we present a simulation study. For this we generate realizations of four
different models of planar motion–invariant point processes satisfying (A4) on three
squares of different size,

W5 = [−5, 5]2, W10 = [−10, 10]2, and W20 = [−20, 20]2 .

For each window size and each of the simulated point patterns we compare the values
of four different estimators of σ2 which are

– σ̂2
n with the cylinder kernel w(x) = 1B(o,1)(x)

– σ̂2
n with the half-ball kernel w(x) = max(1 − ‖x‖2, 0)

– σ̂2
n with the cone kernel w(x) = max(1 − ‖x‖, 0)

– the isotropised estimator σ̃2
n

with variable bandwidths bn satisfying n bn ∈ [1, 3], n bn ∈ [1, 5] and n bn ∈ [1, 6], for
W5 , W10 and W20 , respectively. The squared bias, the variance and the MSE are
estimated for each of these estimators from 100 realizations of the simulated point
processes.

To be precise we briefly describe the point process models and compute σ2 as well as
their r.c.m. γ

(2)
red ; more information on these models the reader can find e.g. in [15].

(i) Poisson process with intensity λ = 1 (γ
(2)
red ≡ 0 and σ2 = λ = 1 ).

(ii) Matérn cluster process with intensity λ = 1, mean cluster size µ = 5 and

cluster radius r = 1 (γ
(2)
red(B

c(o, 2)) = 0 and σ2 = λ(1 + µ) = 6 ).

This Poisson cluster process is generated by a stationary Poisson process
of parent points with intensity µ−1 = 0.2; the typical cluster consists of a
Poisson distributed number of daughter points with locations independently
and uniformly distributed on the disk B(o, r) . This gives γ

(2)
red(B(o, r)) =

µ |B(o, 1)|−2
∫

B(o,r)
|B(o, 1) ∩ B(x, 1)| dx .

(iii) Modified Thomas process with intensity λ = 1, mean cluster size µ = 5,

and variability parameter v = 1 (γ
(2)
red(B(o, r)) = µ (1 − exp{−r2/4v}) and

σ2 = λ(1 + µ) = 6 ).
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This Poisson cluster process has the same parent point process and cluster size
distribution as in (ii), but each member in the typical cluster has independent
N (0, v)–distributed coordinates. Thus, the clusters are unbounded in contrast
to Matérn’s cluster processes (ii).

(iv) Matérn (II) hard–core process with hard–core distance h = 1/2 and λp = 1 .

This point process, denoted by Ψhc, is derived from a stationary Poisson process
Ψp with intensity λp by dependent thinning. The points x ∈ Ψp are marked
independently by random numbers m(x) distributed uniformly on (0, 1) . Then
Ψhc consists of those points of Ψp which survive the following thinning proce-
dure:

x ∈ Ψhc iff x ∈ Ψp and m(x) < min{m(y) : y ∈ Ψp, 0 < ‖y − x‖ ≤ h}.

It can be shown that Ψhc has the intensity λ = (1 − exp{−λpπh2 })/πh2 and
the pair–correlation function

g(r) =





0 if r < h ,
2Gh(r)(1−exp(−λpπh2))−2πh2(1−exp(−λpGh(r)))

πh2Gh(r)(Gh(r)−πh2)λ2 if h ≤ r < 2 h ,

1 if r > 2 h ,

where Gh(r) = 2h2
(
π − arccos( r

2h
) + h

2

√
4h2 − r2

)
.

Thus, |γ(2)
red|(Bc(o, 2h)) = 0 and in our case with λp = 1 and h = 1/2 we get

γ
(2)
red(B(o, 1)) = −0.494, λ = 0.693, σ2 = 0.350 .

The point processes (i) – (iii) have intensity λ = 1 (i.e. the mean number of observed
points in the above three windows equals 100, 400, and 1600, respectively) and the
remaining point process (iv) has a slightly smaller intensity.

The Figures 1–4 present the obtained results of our simulation study only for the
largest window W20 . The plotted curves in the below graphics show the behaviour
of the (empirical) relative MSE

rel MSE(·) = MSE(·)/(σ2)2,

of the different estimators of σ2 as function of the quantity n bn. The solid line
corresponds to σ̂2

n with cylinder kernel, the dashed line to σ̃2
n, the dotted line to σ̂2

n

with the half-ball kernel, and the dash–dotted line to σ̂2
n with the cone kernel.

The complete set of plots for the three sizes of observation windows and two further
point processes, including display of the variance and squared bias part of rel MSE
the reader can find at
http://www.math.uni-augsburg.de/stochastik/heinrich/papers/asymvar.pdf.

To conclude with, all the estimators show good performance for the Poisson process
(i) since there is no problem with the bias. For the Matérn (II) hard–core process

(iv) we get similar results since |γ(2)
red|(Bc(o, 1)) = 0 . In this case the estimators
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Figure 1: Performance of the estimators of σ2 for the Poisson process (i) on W20.
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Figure 2: Performance of the estimators of σ2 for the Matérn cluster process (ii) on W20.

σ̃2
n and σ̂2

n with the cylinder kernel (12) are unbiased even for n bn = 1 and the
variability of them is smaller because of more regularity within the point pattern.

The situation is quite different for the Poisson cluster processes (ii) and (iii) since

inf{r > 0 : |γ(2)
red|(Bc(o, r)) = 0} is larger or even infinite and the bias courses more

problems. The smallest possible values of rel MSE are obtained (in any of the models
(ii)–(iv)) for σ̂2

n with cylinder kernel (12) and the isotropised estimator σ̃2
n with a

suitably chosen bandwidth.

However, looking on the most favouring values of rel MSE for the point processes
(ii) and (iii) on W5 and W10 , we must recognize that it is hardly possible to estimate
σ2 satisfactorily for small window sizes. Our estimators behave reasonably well only
for larger windows like W20.
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Figure 3: Performance of the estimators of σ2 for the modified Thomas process (iii) on
W20.
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Figure 4: Performance of the estimators of σ2 for the Matérn (II) hard–core process (iv)
on W20.
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