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On the classical, statistical, and stochastic
approaches to the hydrodynamic turbulence

(an overview for probabilists)

Albert N. Shiyaev
Steklov Mathematical Institute

Moscow

Recently the International mathematical community celebrated the
70th anniversary of our distinguished colleague and friend Prof. Ole E.
Barndorff-Nielsen. In March 20–24, 2006 the Centro de Investigación
en Matemáticas (CIMAT) in Guanajuato, Mexico was host of the big
International “Conference on Stochastics in Science” in Honor of Ole
E. Barndorff-Nielsen. I was invited by the Organizing Committee to
deliver a talk in a field where Ole worked and is working, as usual very
efficient, now. Taking it into account, I decided that the right theme
from Ole’s interests should be Turbulence. As a result of this idea I
have proposed the talk “On the classical, statistical, and stochastic ap-
proaches to the hydrodynamic turbulence”, slides of which is presented
in this booklet. So, this talk is for Ole to whom I have great respect
and love.

Albert Shiryaev
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§ 1. Hydrodynamics in XVIII century—an epoch of D. Ber-

noulli and L. Euler

Discover of differential and integral calculus by

I. Newton (1642–1727) and G. Leibniz (1646–1716)

offered an incentive for

D. Bernoulli (1700–1782) and L. Euler (1707–1793)

to create the theoretical hydrodynamics as a special science.

Newton, Leibniz: continuous motion of a single, discrete object

(points, balls, planets,. . . )

Bernoulli, Euler: application of the “calculus” to description of

dynamics of continuous medium (first of all

to fluids)
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Bernoulli (1738)—treatise “Hydrodynamics” (“academic re-

search which was done at the time of

author’s work in Petersbourg”; the term

hydrodynamics has been introduced in this

treatise)

D. Bernoulli proved a fundamental Bernoulli theorem that gives

a formula of the relationship between

pressure (p), level (h), and velocity (v)

of the fluid with constant density (ρ) under gravity force (g):

v2

2
+

p

ρ
+ gh = const . (∗)
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A

(v0, p0)

(v1, p1)

Application: At point B we have v1 = 0 and from (∗) (with

ρ = 1)

p1 = p0 + 1
2 v2

0 .

At first sight, it is surprising that pressure at point B increases

as the initial velocity increases.

This seeming contradiction was explained by Euler who showed

that Bernoulli’s theorem holds not for the whole flow but only

along narrow streams.

4

Equation (∗) gives the fol-

lowing result about the ve-

locity v1 of outflow from

open container with an

aperture in the bottom un-

der gravity force:

h0

�

�

v0 = 0

v1

v2
0

2
+ gh0 =

v2
1

2
+ gh1

↑ ↑
(v0 = 0) (h1 = 0)

⇒ v1 =
√

2gh0

i.e., velocity of outflow is the same as the velocity under free

downfall from the level h0.
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Very important novelty of D. Bernoulli in “Hydrodynamics” was

an idea

to use a vector field of the velocities for mathematical

description of the motion of fluids.

This idea was used by L. Euler, who got a famous system of

equations for ideal fluids, that was a fundament for analytic me-

chanics of continuous media.

There are two basic classical way (Lagrange and Bernoulli–Euler)

for description of motion in the continuous media.

6

J. L. Lagrange (1736–1813)

method:

a fixed particle occupies at

time t0 a position

ω0 = (x0, y0, z0);

its evolution in time is given by

ωt = f(t;ω0)

where ωt is the position of the

particle at time t, i. e.,

xt = f1(t;x0, y0, z0),

yt = f2(t;x0, y0, z0),

zt = f3(t;x0, y0, z0).

Bernoulli–Euler method

operates with the field of ve-

locities

u = (u1, u2, u3);

where

u1 = u1(t;x, y, z),

u2 = u2(t;x, y, z),

u3 = u3(t;x, y, z)

are three velocities in the three

axial directions.

7
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Main difference between these descriptions:

In the Lagrange method points (x, y, z) are coordinates of a

moving particle.

In the Bernoulli–Euler method (x, y, z) are coordinates of the

fixed point and we are looking for speeds of the particles that

pass (x, y, z) by.

L. Euler gave his famous equations for ideal (i. e., without inte-

rior friction) incompressible fluid. These equations are good for

description of many effects of the “flow round”, percolation of

fluids in channels. But they don’t explain effects of resistance,

warming of fluids as a result of dissipation of the mechanical

energy in heat.
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By applying Newton’s law

Force = Mass × Acceleration

to each point P = P (x, y, z) in the ideal incompressible fluid,

Euler got the following equations for the vector of the velocities

u = (u1(t;x, y, z), u2(t;x, y, z), u3(t;x, y, z)):

du

dt
= f −∇p, (∗∗)

where d/dt is a convective derivative,

f = f(t;x, y, z) is a vector of external forces,

p = p(t;x, y, z) is a (scalar) pressure and

∇p =

(
∂p

∂x
,

∂p

∂y
,

∂p

∂z

)
.
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Since

du

dt
=

∂u

∂t
+

∂u

∂x

∂x

∂t
+

∂u

∂y

∂y

∂t
+

∂u

∂z

∂z

∂t
=

∂u

∂t
+ (u .∇)u,

where u .∇ = u1 ∂/∂x + u2 ∂/∂y + u3 ∂/∂z, equation (∗∗) can be

written in the form

∂u

∂t
+ (u .∇)u = f −∇p ,

or, in more details,
∂u1

∂t
+ u1

∂u1

∂x1
+ u2

∂u1

∂x2
+ u3

∂u1

∂x3
= f1 − ∂p

∂x1
,

∂u2

∂t
+ u1

∂u2

∂x1
+ u2

∂u2

∂x2
+ u3

∂u2

∂x3
= f2 − ∂p

∂x2
,

∂u3

∂t
+ u1

∂u3

∂x1
+ u2

∂u3

∂x2
+ u3

∂u3

∂x3
= f3 − ∂p

∂x3
.
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Euler added also to these system the following equation:

∂u1

∂x
+

∂u2

∂x
+

∂u3

∂x
= 0, or divu := ∇u = 0

which follows from assumption that the fluid is incompressible.

So, we have four equations for four unknown functions u1, u2,

u3, and p.

The boundary condition and (in case of nonstationary motion)

the initial conditions should be added.

11
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§ 2. THE NAVIER–STOKES EQUATION:

A Millenium Problem—

one of the greatest unsolved mathematical puzzle

Among 72 names of the XIX century French scientists listed on

the four facade of the Eiffel Tower, together with Lagrange,

Laplace, Legendre,. . . , we find name

Claude Louis Marie Henri Navier (1785–1836)

—known during his lifetime as one of France’s most famous

designer and builder of bridges.

12

In 1822 Navier made very essential step in hydrodynamics theory—

he not only introduced an important characteristic of the real

fluid
a viscosity parameter ν

as a measure of the friction between particles of fluid but also

added the corresponding term to the Euler equation

du

dt
+ (u .∇)u = f −∇p, (∗)

thus obtaining a new equation

du

dt
+ (u .∇)u = ν ∆u + f −∇p . (∗∗)

13
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Note that ν is a cinematic (molecular) viscosity coefficient:

ν = µ/ρ ,

where µ is a coefficient of viscosity and

ρ is the density of the fluid.

Navier’s reasoning (1822) for the validity of the equation (∗∗)
was on engineering’s level.

In 1845 Irish mathematician

George Gabriel Stokes (1819–1903)

rediscovered (in his case, with correct mathematical reasoning)

the Navier equation. This is a reason why now we call equations

(∗∗) the Navier–Stokes equation.

14

With these equations there is just one “small” problem—no one

has been able to solve them and, in fact, no one has been able

to show in principle whether a solution even exists !

The mathematics of fluid flow turned out extremely hard.

Taking into account these difficulties, the Clay Institute proposed

to award the one-million dollars prize for the solution to any one

of several variations of the problem.

The simplest version is the following:

assuming f ≡ 0 and ν > 0, find functions p = p(t;x, y, z)

and u1(t;x, y, z), u2(t;x, y, z), u3(t;x, y, z) which satisfy

the Navier–Stokes equations together with the incom-

pressibility equation.

9



Let us mention that the analogous problem, where the viscosity

ν = 0 (i. e., for the Euler equations) has neither been solved, but

that version is not a Millennium Problem.

For the dimension d = 2 situation is better:

J. Leray (1933) demonstrated both existence and uniqueness for

some of the plausible boundary conditions. We shall discuss

these results a little bit later.
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§ 3. Earlier theories of turbulence

It is known that the phenomena of turbulence (turbulenza) was

described along time ago by Leonardo da Vinci (1452–1519)

who placed obstructions in water and observed the result:

“Observe the motion of the surface of the water, which

resembles that of hair, which has two motions, of which

one is caused by the weight of the hair, the other by

the direction of the curls; thus the water has eddying

motions, one part of which is due to the principal current,

the other to random and reverse motion.”

17
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Drawing of Leonardo da Vinci

Kármán vortex street (from the book of U. Frisch
“Turbulence. The legacy of A. N. Kolmogorov”)
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The scientific study of turbulence was began in 1883 by

Osborne Reynolds (1842–1912)

when he observed the behaviour of water in a cylindrical pipe

driven by a pressure-gradient and tried to find explanation of the

strange dynamics of the fluid.

For small velocities the flows had laminar character—all lines of

flow are parallel with the axis of the cylinder and all physical

characteristics of the flow (pressure, velocity) depend only on

the distance from axis.

Reynolds found that this type of flow prevailed, in every arrange-

ment that he investigated, for velocities below a certain “critical”

velocity (which depends on the conditions of the experiments).

20

When the critical velocity was exceeded, the flow became “turbu-

lent”, the stream-lines of it showed a highly irregular and rapidly

changing pattern.

21
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Beside of discovering of the described phenomena he also mea-

sured the relationship between

the geometrical characteristics of the pipe,

on the one hand, and

the physical characteristics

on the other. These latter being the pressure-gradient required

to maintain the flow, the velocity of the resulting flow v and the

(cinematic) viscosity coefficient ν.

22

He found that for “laminar” flow the pressure-gradient is pro-

portional to v, as well as to ν.

In the “turbulent” domain he was led to an entirely different

law of dependence for the pressure-gradient.

Indeed, in this domain the v-dependence is more like one of

proportionality to v2 rather than v, while the dependence on ν is

less well developed.

23
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He also found that

(a) v, ν, and the essential geometrical characteristics of the

pipe (its diameter L) could be varied within very wide

limits, and

(b) the only combination of these quantities which mat-

tered in determining whether the “critical” point has

been reached or not, i. e., whether a “laminar” or a “tur-

bulent” regime prevails, is the combination

R =
Lv

ν
.

Now we call R Reynolds number.

24

By the way, emergence of the Reynolds number at this point can

be justified by a simple dimensional consideration:

The dimensions of L, v, and ν are

[L] = cm, [v] =
cm

sec
, [ν] =

cm2

sec
,

respectively. The number which determines whether a “lami-

nar or a “turbulent” regime exists must obviously be dimen-

sionless. The only dimensionless combination which can be

formed out of L, v, and ν as indicated above is Lv/ν.

25

14



Reynolds found, furthermore, that the critical value of R de-

pended essentially on how undisturbed the fluid was while the

experiment was been conducted.

More specifically, in the experiment in which the fluid was least

disturbed, where he merely injected some colored stream-lines

the critical R proved to be about 12,000 .

When the liquid was more seriously disturbed, namely, when the

pressure measurements referred to above were effected, the crit-

ical R was in the neighborhood of 2,000 .

26

2. The circumstances described above made it very plausible

that turbulence is a phenomenon of instability . In the case of

the cylindrical laminar flow pattern represents a solution of the

Navier–Stokes equations.

But this laminar solution disappears for Reynolds’ numbers in

excess of some critical limit between 1,000 and 100,000. It is

only reasonable to infer from this that the laminar flow, while

still a solution ceases to be a stable one, or at least the most

stable one.

It is plausible to conclude that the turbulent flow represents one

or more solutions of a higher stability.

27
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It is , by the way, obvious that one has to talk not of one turbulent

solution, but of many turbulent solutions.

There is probably no such thing as a most favored or most rele-

vant, turbulent solution. Instead, the turbulent solutions repre-

sent an ensemble of statistical properties, which they all share,

and which alone constitute the essential and physically repro-

ducible traits.

The Navier–Stokes equations describe evolution of vector field

of the velocities in infinite-dimensional space. These equations

are nonlinear that is a main reason for all mathematical difficul-

ties and very complicated physical structure of the solutions and

nature of the flows of fluids.

28

If viscosity ν is large (R is small) then vector field in infinite-

dimensional space has an attracting point (“attractor”) that

is a stationary solution which is called “laminar” flow. This

motion is stable in the following sense:

under small perturbation of the intial vector field of the

velocities hydrodynamical evolution will automatically re-

turn flow to the nondisturbed laminar flow.

29
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When R increases we will observe that “attracting point” (in

infinite-dimensional space) loses stability.

We begin to observe periodical fluctuations of the flow.

But again this motion will be stable in the sense that influence

of small perturbations will be damped with time.

So, we see that with growing of Reynolds a laminar flow (zero-

dimensional “attractor”) turns to a periodic motion (one-dimen-

sional “attractor”). In both case we have stability.

With increase of R the periodic motion disappears. The “attrac-

tor” of larger dimensions will appear later on with growing of R

and motions along attractors become less and less stable.

30

3. For the clarification of the described phenomena let us con-

sider the following, very often cited example of the “discrete

version of the Navier–Stokes system”.

The question is the nonlinear dynamical system

xn = λxn−1(1 − xn−1), n � 1, x0 ∈ (0,1). (∗)

(Apparently, so-called logistic equation (∗) occurred first in the

models of population dynamics that imposed constraints on the

growth of a population.)

For λ � 1 the solutions Xn = Xn(λ) converge monotonically to

0 as n → ∞ for all 0 < x0 < 1. Thus, the stable state x∞ = 0 is

the unique stable state in this case, and it is the limit point of

the xn’s as n → ∞.

31
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For λ = 2 we have xn ↑ 1/2. Hence there also exists in this case

a unique stable state xn = 1/2 attracting the xn’s as n → ∞.

20 40 60 80 100

0.35

0.4

0.45

0.5

33
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We now consider larger values of λ. For λ < 3 the system (∗) still

has a unique stable state. However, an entirely new phenomenon

occurs for λ = 3: as n grows, one can distinguish two states x∞
and the system alternates between these states.

20 40 60 80 100

0.4

0.5

0.6

0.7

34

This pattern is retained as λ increases, until something new hap-

pens for λ = 3.4494 . . .: the system has now four different states

x∞ and leaps from one to another.

20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

35
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New distinguished states come into being with further increases

in λ: there are 8 such states for λ = 3.5360, . . ., 16 for λ =

3.5644, and so on. For λ = 3.6 there exists infinitely many such

states, which is usually interpreted as a loss of stability and a

transition into a chaotic state.

36

20 40 60 80 100
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1

37

20



3 3.4494 3.5360 4 λ

1
x∞
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Now the periodic character of the movements between different

states is completely lost; the system wanders over an infinite set

of states jumping from one to another.

It should be pointed out that although our system is determin-

istic, it is impossible in practice to predict its position at some

later time because

the limited precision in our knowledge about the values

of the xn’s and λ can considerably influence the results.

39
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It is clear from this brief description already that the values λk

of λ, at which the system “branches”, “bifurcates”, draw closer

together in the process.

As conjectured by M.Feigenbaum and proved by O. Lanford,

for all parabolic systems,

λk − λk−1

λk+1 − λk
→ F, k → ∞,

where F = 4.669201 . . . is a universal constant

(Feigenbaum’s constant).

40

The value λ = 4 is of particular importance for the dynamical

system

xn = λxn−1(1 − xn−1), n � 1, x0 ∈ (0,1). (∗)

It is for this value of the parameter that

the sequence of observations (xn)

of our (chaotic) system

is similar to

a realization of a stochastic

sequence of “white nose” type.

41
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Indeed, let x0 = 0.1. We calculate recursively the values of

x1, x2, . . . , x1000 using (∗). The

(empirical) mean value and the standard deviation

evaluated on the basis of these 1000 numbers are

0.48887 and 0.35742

respectively (up to the 5th digit).

The values of the (empirical) correlation function ρ̂(k) calculated

from x1, x2, . . . , x1000 show that in practice

for λ = 4 the values xn can be assumed to be uncorrelated.

In this sense, (xn) can be called “chaotic white noise”.

42

It is worth noting that the system

xn = 4xn−1(1 − xn−1), n � 1, x0 ∈ (0,1),

has an invariant distribution P

[
i. e. P(T−1A) = P(A) for each

Borel set A of (0,1) with x � Tx = 4x(1 − x)
]

with density

p(x) =
1

π
√

x(1 − x)
, x ∈ (0,1).

In this case

Ex0 = 1
2, Ex2

0 = 3
8, Dx0 = 1

8 = (0.35355)2

(cf. 0.48887 and 0.35742 above) and the correlation function

ρ(k)
def
=

Ex0xk − Ex0Exk√
Dx0Dxk

=





1, if k = 0,

0, if k 	= 0.

43
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4. Presented descriptions explain that, probably, to get an ad-

equate model for the movement of the fluid we should use a

statistical approach to the Navier–Stokes equations (with ran-

dom initial velocities, random forces, etc.).

O. Reynolds had realized the need of the stability theory and

the statistical approach to the turbulence.

We shall see that he had actually laid the foundations for the

statistical theory. He used the decomposition of the velocity into

two components:

slowly changing “mean value” + the fluctuation part.

44

Nevertheless, the early history of turbulence history evolves pri-

mary around stability theories.

These ones have actually dealt in the main with the following

4 CASES:

Couette flow Poiseuille flow

Cylindrical Couette flow Boundary-layer flow

45
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(1) Couette flow which takes place between two parallel

plates; the motion of the liquid is induced by these plates

being in relative motion w.r.t. each other.

Laminal Couette flow is stable for all values of ν but

this stability for small ν is very weak.

See details in only recently published paper by Kol-

mogorov about 2D turbulence:

Mathematical models of the turbulent motion of

the incompressible viscous fluid

(Russian Math. Surv. 59:1 (2004), 5–10)].

46

(2) Poiseuille flow . This flow also takes place between

two parallel plates. Here, however, the plates are fixed

and the flow is driven by a pressure gradient.

This flow may thus be viewed as that in a two-

dimensional pipe.

Although for some cases the motion is stable, the

complete picture of stability for all Reynolds numbers,

to our knowledge, is not clear.

47
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(3) Cylindrical Couette flow . This flow also takes place

between two concentric cylinders which rotate with dif-

ferent speeds.

G. I. Taylor (1922) has shown that, depending on the

ratio of the radii and the values of the velocities, var-

ious stability and lability conditions may exist.

48

(4) Boundary-layer flow . This flow also takes place in

the narrow layer close to a fixed wall in an otherwise

uniformly flowing, low-viscosity liquid.

The mathematical concept of the boundary layer was

developed by L. Prandtle.

The stability of the laminar flow in the boundary layer

was exhaustively investigated by W. Tollmien (1929).

He found that

the laminar boundary layer is stable for a cer-

tain distance (downstream) and then develops

instability.

49
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5. From the point of view of the mathematical approach to the

Navier–Stokes equation, the work of J. Leray in the 1930s is

very important. He considered the questions of existence and

uniqueness for the solutions of the Navier–Stokes equations for

any ν > 0.

2D case: he demonstrated both existence and uniqueness

(for some plausible boundary conditions).

3D case: he was able to prove the uniqueness of the solution

provided that one existed, taking the stricter view

of what constitutes a solution;

taking, alternatively, the wider view, he was able to

demonstrate the existence of a solution, but not its

uniqueness.

50

We don’t go to the details. Only we want to say that the ma-

chinery of J. Leray uses different notions of the differentiability—

everywhere, in a certain average sense only, etc.

In the case of wider view—where he proved existence of the

solution—he gave also some heuristic reasons to expect that

uniqueness might actually fail.

More details about recent approaches to, results on, and de-

velopments of the Navier–Stokes equation see in the paper by

E. C. Waymire

Probability and incompressible Navier–Stokes equations:

an overview of some recent developments

(Probab. Surv. 2 (2005), 1–32).

51
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We conclude description of the classical approaches to the Navier–

Stokes equation with the note that recently Ya. G. Sinai (using

the Fourier transform method) got some interesting (local) re-

sults about the 3-dimensional Navier–Stokes equations. See his

paper

On local and global existence and uniqueness

of the 3d Navier–Stokes system on R
3

(Perspectives in Analysis. Conference in honor of Lennart Car-

leson’s 75th birthday, Springer).

52

Ya. G. Sinai wrote the Navier–Stokes system for four unknown

functions

u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and p(x, t),

where x = (x1, x2, x3), in the form

∂u(x, t)

∂t
+ (u(x, t),∇)u(x, t) = ν ∆u(x, t) + ∇p(x, t)

(assuming the absence of an external force) with the condition of

the incompressibility

div u
def
=

3∑

i=1

∂ui

∂xi
= 0.

53
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§ 4. Statistical approaches to the hydrodynamic turbulence

1. Already the founder of all turbulence O. Reynolds had realized

that

• the study of the individual irregularly fluctuated hydro-

dynamic fields of the turbulent flows is impracticable and

• this study should use statistical description based on

some smoothed characteristics, changing more smoothly

and more regularly.

54

Keep in mind that ideas he proposed were to consider

the field of velocities u = u(x, t) as a statistical object

(u(x, t) = u(x, t;ω) using common probabilistic notation) split-

ting it into two components:

u = u + u′ ,

where u is a mean velocity and

u′ is a fluctuation (pulsating) velocity.

55
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O. Reynolds has studied mainly only smooth component u, where

he understood averaging as

• averaging on a big interval T :

u(t, x) =
1

T

∫ t+T/2

t−T/2
u(s, x) ds.

A. N. Kolmogorov, in his talk on the Conference of the Institute

of Mechanics of the Moscow State University in December 1936,

proposed to understand averaging u(t, x) as (usual now)

• mathematical expectation Eu(t, x;ω) .

56

Write four Navier–Stokes equations (assuming f ≡ 0) in the form

ν ∆ui −
1

ρ

∂p

∂xi
− ∂ui

∂t
−

3∑

j=1

uj
∂ui

∂xj
= 0, i = 1,2,3,

div u =
3∑

j=1

∂ui

∂xj
= 0,

where ν = µ
p is the “cinematic” (molecular) viscosity

coefficient,

µ is a viscosity,

ρ is the density.

57
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Then for any point M = (x, y, z, t) we obtain for ten character-
istics

u1, u2, u3, p, and

bij(M) = E(ui(M) − ui(M))(uj(M) − uj(M)), i, j = 1,2,3,

only four equations





ν ∆ui −
1

ρ

∂u

∂xi
− ∂ui

∂t
−

3∑

j=1

uj
∂ui

∂xj
−

3∑

j=1

∂bij

∂xj
= 0,

i = 1,2,3,

div u =
3∑

j=1

∂ui

∂xj
= 0,

(∗)

How to close this system of 4 equations for

10 unknown functions
?

58

Russian scientists

A. A. Friedmann and L. Keller

in their talk on the

First International Congress for Applied Mechanics

in Delft (Holland) in 1925

proposed to close systems of the above type an idea of attracting

additional characteristics of the fluctuations of velocities and

pressures in two points of the flow of the fluid.
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Let

M ′ = (x′1, x′2, x′3; t′), M ′′ = (x′′1, x′′2, x′′3; t′′), M ′′′ = (x′′′1 , x′′′2 , x′′′3 ; t′′′)

be three points and

Bαβ(M
′, M ′′) = E[uα(M ′) − uα(M ′)][uβ(M

′′) − uβ(M
′′)],

Bαβγ(M
′, M ′′, M ′′′) = E[uα(M ′) − uα(M ′)][uβ(M

′′) − uβ(M
′′)]

× [uγ(M
′′′) − uγ(M

′′′)].

Then with the neglect of these latter moments Bαβγ of order

three Kolmogorov (1936) and Millionshchikov (1938) ob-

tained (additionally to the previous 4 equations) the new equa-

tions (for point M ′).

In case when ui = 0, i = 1,2,3, the systems for Bik(M
′, M ′′)

have the following form:





ν ∆′Bik(M
′, M ′′) − 1

ρ

∂Bik(M
′, M ′′)

∂x′i
− ∂Bik(M

′, M ′′)
∂t′

= 0,

3∑

j=1

∂Bik(M
′, M ′′)

∂x′j
= 0;

ν ∆′′Bik(M
′′, M ′) − 1

ρ

∂Bik(M
′′, M ′)

∂x′′i
− ∂Bik(M

′′, M ′)
∂t′′

= 0,

3∑

j=1

∂Bik(M
′′, M ′)

∂x′′j
= 0.

We will return later to the problem of solving these equations—it

is important for getting the results about rate of degeneracy of

the turbulence (Kármán, Howarth, Millionshchikov, et al.)
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Now we want to consider some general aspects about a statistical

solution of the Navier–Stokes equation.

Essentially, here there are the following two models:

IMPLICIT

statistical

models

and

EXPLICIT

statistical

models
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Papers related with the models of the first type

(implicit statistical models):

Reynolds (1880)

Friedmann and Keller (1924)

Taylor (1935)

Kármán and Howarth (1938)

Millionshchikov (1938)

Hopf (1952)

Foias and Temam (1970, 1980)

Vishik and Fursikov (1980), . . .
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The general statistical problem for the Navier–Stokes equation

can be formulated as follows.

Suppose that

Ω = {ω : ω = u(x, t), x ∈ R
3, t ≥ 0}

is a space of all possible solutions to the Navier–Stokes equation.

A probability-statistical solution of the Navier–Stokes equation

is a probability measure P whose restriction onto the velocities

at time t = 0 coincides with a priori given measure P0.

The main difficulty for construction of such measure P:

there is no operator St that transfer initial values

u(x,0) to solutions u(x, t) of the Navier–Stokes equa-

tion at any time t.

One way to avoid this difficulty consists in

construction of Galerkin’s approximations

for which we have the corresponding operators S
(n)
t that give a

possibility to construct step-by-step the corresponding measures

P
(n)
t and measures P(n) on R3 × R+.
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Using some energy estimates it is possible to show that the

family {P(n)} is tight and so by Prokhorov’s theorem this family

is relatively compact:

the family {P(n)} is tight (energy estimates)

⇓ (Prokhorov′s theorem)

the family {P(n)} is relatively compact

Any limit point of the family {P(n)} is a statistical solution.

(Uniqueness is still an open problem.)
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Very last results about

homogeneous and isotropic probability measures sup-

ported by weak solution of the Navier–Stokes system

were obtained in the preprint (dated November 13, 2005) by

S. Dostoglou, A. V. Fursikov, and J. D. Kahl

Homogeneous and isotropic solutions of the

Navier–Stokes equation.
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Important characteristics of the statistical solution P(dω) are mo-

ments

mk = mk(t, x1, . . . , xk;λ1, . . . , λk) = Euλ1(t, x1) · · ·uλk(t, xk),

where xi ∈ R3 and λi = 1,2 . . ..

Above-mentioned infinite chains of the Friedmann–Keller equa-

tion can be written in the following short form:

∂mk

∂t
+ Akmk = Bkmk+1, (∗)

where

Ak is a second-order differential operator on Ωk = Ω×· · ·×Ω,

Bk is an operator which transfers function mk+1 given on Ωk+1

to a function given on Ωk.
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Emphasize again that it is clear from (∗) that

equation for moments mk of order k contains

moments mk+1 of order k + 1.

(This is a consequence of the presence of the quadratic nonlinear

terms in the Navier–Stokes equation.)

Let us mention also results of H. Hopf (1952) who gave an

equation in variational derivatives for the characteristic func-

tionals of the measures Pt supported by the solutions of the

Navier–Stokes equations.
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Very important contributions in the turbulence theories have

been done in 1935 by G. I. Taylor in the series of papers

Statistical theory of turbulence. I–IV.

In his theory, as well as in most of the subsequent statistical tur-

bulence theories, the turbulent phenomena under consideration

are assumed to be

• (statistically) homogeneous and isotropic in appro-

priately delimited, relevant parts of space and

• (statistically) stationary in time.
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The homogeneity assumption means that, e.g., second mo-

ments Bij(M
(1), M(2)) depend only on distance between point

M(1) and M(2). This assumption requires, of course, that the

flow be not considered too close to the boundaries.

The isotropy assumption means that these characteristics are

invariant with respect

• to the rotation of the system of coordinates around

its axes and

• to the reflection of the coordinate system in the planes

pass through (0,0,0)-point.
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Of course, in the general setting the corresponding

notion are formulated not only for second moments

Bij(M
(1), M(2)) but for all n-dimensional laws Fn for ve-

locities in n point M(1), . . . , M(n).

Let us illustrate how these concepts permit to obtain

results concerning laws of decay of the turbulent per-

turbation (Kármán, Howarth, Millionshchikov).
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Under assumptions that one may neglect third moments (it is

reasonable at the last steps of decay of turbulence then only slow

and big vortices are preserved) we have already given above the

system





ν ∆′Bik(M
′, M ′′) − 1

ρ

∂Bik(M
′, M ′′)

∂x′i
− ∂Bik(M

′, M ′′)
∂t′

= 0,

3∑

j=1

∂Bik(M
′, M ′′)

∂x′j
= 0;

ν ∆′′Bik(M
′′, M ′) − 1

ρ

∂Bik(M
′′, M ′)

∂x′′i
− ∂Bik(M

′′, M ′)
∂t′′

= 0,

3∑

j=1

∂Bik(M
′′, M ′)

∂x′′j
= 0.

73

38



From isotropy assumption it follows that

longitudinal (along the coordinate axis x1)

and

transversal (along the coordinate axis x2)

covariance functions Bdd(r, t
′, t′′) and Bnn(r, t′, t′′) (Bdd = B11,

Bnn = B22 = B33) for small values of density ρ are given by

Bdd(r, t
′, t′′) =

k

[2ν(t′ + t′′)]5/2
exp

{
− r2

4ν(t′ + t′′)

}
,

Bnn(r, t
′, t′′) = Bdd(r, t

′, t′′)
(
1 − r2

4ν(t′ + t′′)

)
.
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In particular, for the coefficients of correlations Rdd(r, t, t) and

Rnn(r, t, t) of the longitudinal and transversal components of ve-

locities in two points disposed at the distance r, we have:

Rdd(r, t, t) = exp

{
− r2

8νt

}
,

Rnn(r, t, t) =

(
1 − r2

8νt

)
exp

{
− r2

8νt

}
.

It is interesting that

Rdd > 0 for all r, but

Rnn > 0 only for r2 < 8νt.

(The experiments of H. L. Dryden’s group confirms this be-

haviour of Rdd and Rnn.)
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These results have been obtained a long time ago, in the 1930s.

Of course, since that time many new results about the behaviour

of decay were obtained. We bring these (old) results to demon-

strate

– the beginning of the statistical theories of turbulence,

– character of the practically interesting problems (type of

decay), and

– used methods (neglecting the third moments; Kármán and

Howarth had tried also to use third moments neglecting

the fourth moments and Millionshchikov later in 1941 ne-

glected third moments but for the fourth moments he used

Gaussian approximation, i.e., assumed that semiinvariants

of order 4 are equal to zero as for Gaussian case).

76

§ 5. Kolmogorov’s theory of the local isotropic turbulence

1. Before 1941 when Kolmogorov published his paper on turbu-

lence, nobody suspected that chaotic turbulent pulsations were

subjected to the simple quantitative regularities for very well de-

veloped turbulence, i.e., for the case where Reynolds number

is much larger than the critical threshold which characterizes

transfer of laminar flow to the turbulent motion.

The key idea of Kolmogorov was to introduce the notions of the

locally homogeneous and locally isotropic

turbulence.
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In connection with Taylor’s definition of the isotropic turbulence

Kolmogorov wrote that his definition is narrower in the sense

that distributions of the increments of velocities ui(M)− ui(M
◦)

are stationary in time but at the same time his definition is wider

because restrictions lay only on distributions of the difference of

velocities but not on velocities themselves.

78

The main characteristics of Kolmogorov’s theory are longitudinal

and transversal values

Bdd(r) = (ud(M
′) − ud(M))2,

Bnn(r) = (un(M ′) − un(M))2,

where

– r is distance between points M and M ′,

– ud(M) and ud(M
′) are components of velocities at points

M and M ′ in the direction MM ′,

– un(M) and un(M ′) are components of velocities at points

M and M ′ in a direction perpendicular to MM ′-direction.
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The basic result of the first Kolmogorov’s paper The local struc-

ture of turbulence in an incompressible field at very high Reynolds

number (1941) is so-called law of two-thirds that is, essentially,

a fundamental law of the nature of the turbulence.

it is interesting to note that this paper is written in purely phys-

ical style and it is a magnificent piece of applied mathematical

analysis.

Kolmogorov has considered turbulent velocities as a random

fields for probability-statistical behavior to which he formulated

two physically natural hypotheses. (He said later that it is “dif-

ficult to prove them but they are correct (!)”.)
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For reasoning of these two hypotheses about behavior of tur-

bulence Kolmogorov first of all remarks (in the implicit form)

that Navier–Stokes equations for the field of the velocities has a

certain property of invariancy .

More exactly, for these equations there is invariance under the

following transformations:

spatial translations: x → x + r,

spatial rotations: (x, v) → (Ax, Av) with A ∈ SO(3),

scale transforms: (t, x, v) → (λ1−ht, λx, λhv)

with h > 0, λ > 0.
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Taking into account these properties and assuming that there

exists a probability measure on the functional space of the ve-

locities, Kolmogorov postulated that this measure is such that

the following laws of similarities hold (we use Kolmogorov’s

handwritten notes dated 28 April 1943; in his 1941 paper they

were formulated in a little bit different form).

Let (V0, V1, . . . , Vn) be the vector of the velocities at points

M0, M1, . . . , Mn; the number n ≥ 1 is arbitrary.

Denote

a2 = |V1 − V0|2 + · · · + |Vn − V0|2,

q2 = ρ2(M1, M0) + · · · + ρ2(Mn, M0),

where ρ is the distance between points.
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The FIRST distributional law of similarity:

For the small size of the groups of points M0, M1, . . . , Mn, the

distributional law F
(n)
R of the values

V1 − V0

a
,

V2 − V0

a
, . . . ,

Vn − V0

a

for given Reynolds’ number R = qa/ν is invariant with w.r.t. the

transformations listed above.

The SECOND distributional law of similarity:

The laws F
(n)
R , as R increases, converges to a law F

(n)
∞ which de-

pends only on the “form” of the group of points M0, M1, . . . , Mn.
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Kolmogorov emphasizes that his

“. . . hypotheses concerning the local structure of turbu-

lence at high Reynolds number. . . were based physically on

Richardson’s idea of the existence in the turbulent flow

• of vortices on all possible scale l < r < L between the

‘external scale’ L and the ‘internal scale’ l and

• of a certain uniform mechanism of energy transfer

from the coarser-scaled vortices to the finer. . . ”

Big whirls have little whirls

That heed on their velocity,

And little whirls have littler whirls

And so on to viscosity.

L. F. Richardson
84

Quite soon after Kolmogorov’s hypotheses were originated,

“D. Landau noticed that they did take into account a cir-

cumstance which arises directly from the assumption of the

essentially accidental and random character of the mech-

anism of energy transfer from the coarser vortices to the

finer:

with increase of the ratio L : l the variation of the

dissipation of energy

E =
1

2
ν

∑

α

∑

β

(
∂uα

∂xβ
+

∂uβ

∂xα

)2

should increase without limit.”
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This remark led Kolmogorov to introduce the third hypothesis on

the behavior of the velocity increments, from which he concludes

that, for large L/l, the dispersion σ2
log E has the following form:

σ2
log E ∼ A + K log L

l .
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From his two first hypotheses Kolmogorov concludes that the

quantities

Bdd(r) =
[
V1(x1 + r, x2, x3) − V1(x1, x2, x3)

]2

(longitudinal characteristic),

Bnn(r) =
[
V2(x1 + r, x2, x3) − V2(x1, x2, x3)

]2

(transversal characteristic)

must be functions of r and average energy E of dissipation of

the fluid per unit mass and unit time, only.

It is remarkable that this character of dependence of B(r) (=

Bdd(r), Bnn(r)) can be derived from the

dimensional considerations

alone.
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Indeed, the quantities B(r), E, and r have the following dimen-

sions:

[B(r)] =
cm2

sec2
, [E ] =

cm2

sec3
, [r] = cm.

Hence, there exists one and only one combination of E and r

which agrees dimensionally with B(r):

B(r) = c E 2/3
r2/3 ,

where c is a dimensionless absolute constant.
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The longitudinal and transversal characteristics Bdd(r)

and Bnn(r) are measured repeatedly in sea and in atmo-

sphere.

It is remarkable that in the experiments both functions

Bdd(r) and Bnn(r) were proportional to r2/3 on the sig-

nificant interval of the values r.
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There exists also spectral analogue of the “2/3-law”. It is

so-called 5/3-law, which says that, e. g.,

the spectral measure Φdd(k) = Edd(k) dk is such that

Edd(k) ∼ k−5/3 .





This follows from: Let B(r) =
∫∞
−∞(1 − eikr)E(k) dk be a

spectral representation of B(r); then for E(k) = |k|−α

B(r) = crα−1 with c =
∫ ∞

∞
(1 − eik)|k|−α dk.

Thus, if B(r) ∼ r−2/3, then α − 1 = 2/3 and α = 5/3, i. e.,

E(k) = |k|−5/3.




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We conclude the description of Kolmogorov’s 1941 results in the

theory of the local isotropic turbulence by two remarks:

(a) the similar results were later obtained by L. Onsager (1945),

C. F. von Weizsäcker (1948), and W. Heisenberg (1948);

(b) Kolmogorov, in his 1962 paper

A refinement of previous hypotheses concerning

the local structure of turbulence in a viscous im-

compressible fluid at high Reynolds number

obtained a new formula for Bdd(r):

Bdd(r) ∼ E2/3
r2/3

(
L

r

)−k
,

where k is a constant.
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In Comments (1985) to his work in the theory of turbulence,

A. N. Kolmogorov wrote that it was clear for him (already in the

end of 1930s) that

the main mathematical tool for investigation of turbu-

lence should be the theory of random functions of many pa-

rameters (time, coordinates, etc.), i.e., the random field,

(at that time this theory was only at its beginning).

In 1940 Kolmogorov published two papers (Curves in a Hilbert space

that are invariant under the one-parameter group of motions and Wienersche

Spiralen und einige andere interessante Kurven in Hilbertschen Raum) that

are important for both the turbulence and the general theory of

stochastic processes and fields.
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It is reasonable to recall now some definitions and facts concern-

ing homogeneous random processes and fields.

Let (Ω,F , P) be a probability space and V (s) = V (s, ω), ω ∈ Ω, a

family of (complex-valued) random variables, where s ∈ S and S

is a homogeneous space of points with a transitive group G = {g}
of transformations, mapping the space S into itself (S → gS = S).

The random field V = V (s), s ∈ S, is called homogeneous (in

a wide sense) if

E|V (s)|2 < ∞, EV (s) = EV (gs), EV (s)V (t) = EV (gs)V (gt)

for all s, t ∈ S and g ∈ G.
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IMPORTANT CASES:

S = R
k and G is the group of parallel shifts;

S = R
k and G is the group of isometric transformations

on S generated by the parallel shifts, rota-

tions and reflections (V is thus called the

homogeneous isotropic random field).

The special case of the homogeneous fields is a (wide-sense)

stationary process V = V (s), s ∈ R, where

E|V (s)|2 < ∞, EV (s) = const,

EV (s)V (t) depends only on the difference t − s.
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Assume m = 0 and denote by R(t) = EV (s + t)V (s) the corre-

lation function of the process V .

For the mean-square continuous process V this function R(t)

admits the spectral representation (BOCHNER–KHINCHIN)

R(t) =
∫ ∞

−∞
eiλt F (dλ) ,

where the spectral measure F = F (A) is a finite measure on

the Borel sets A ∈ B(R).

For real-valued process X we have similar representation:

R(t) =
∫ ∞

0
cosλt G(dλ) .
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IMPORTANT:

E|V (t) − V (s)|2 = 2
∫ ∞

−∞
(1 − eiλ(t−s))F (dλ)

and for a real-valued process V

E|V (t) − V (s)|2 = 2
∫ ∞

0
(1 − cosλ(t − s)) G(dλ).
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Essentially, the same is true for the homogeneous one-dimensional

random real-valued field V = V (s), s ∈ Rk.

In particular, for the homogeneous isotropic fields the covariance

function R(t), t = (t1, . . . , tk), is defined as

a function of ‖t‖ =
√

t21 + · · · + t2k: R(t) = R(‖t‖).

In this case

R(u) = 2(k−2)/2 Γ

(
k

2

) ∫ ∞

−∞

I(k−2)/2(λu)

(λu)(k−2)/2
Q(dλ) ,

where Iν(x) is the Bessel function of index ν and

Q is a non-negative random measure on B(R+)

such that Q(R+) = G(Rk).
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Recall also spectral representation for the stationary (in a wide

sense) mean-square continuous process V = V (t), t ∈ R:

V (t) =
∫ ∞

−∞
eiλt Z(dλ)

(Cramér, Karhunen, Kolmogorov), where Z = Z(A) is a complex-

valued random measure with E|Z(A)|2 = F (A).

The similar representation is valid for the homogeneous ran-

dom fields on Rk with values in Rl.
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The first Kolmogorov work on the turbulence (1941) was pre-

ceded by his two papers mentioned above, in which he made the

first steps towards the notion of local isotropy that became the

main mathematical means in analyzing the turbulence phenom-

ena (especially in the case of high Reynolds numbers).
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For a R1-valued random process V = V (s), s ∈ R1, with station-

ary increments he considered the increments

∆rV (t) = V (t) − V (t − r)

and supposed that

(a) E∆rV (t) depends only on r and

(b) E∆r1V (t + s)∆r2V (s) does not depend on s

for any s, t, r1, r2.

This will be stressed by the notation

B(t, r1, r2) = E∆r1V (t + s)∆r2V (s).

The function B(t, r1, r2) is called the structural function of the

process B.
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Due to the equality

(a−b)(c−d) = 1
2

{
(a−d)2 + (b−c)2 − (a−c)2 − (b−d)2

}

the structural function B(t, r1, r2) can be represented as a func-

tion of one variable:

B(r) = B(0, r, r) = E|∆Vr(t)|2

which is called the structural function as well.
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Kolmogorov obtained the spectral representation for B(r):

B(r) = 2
∫

R\{0}
(1 − cos λr)Φ(dλ) + ar2

and the spectral representation for the process V :

V (t) =
∫ ∞

−∞
(eiλt − 1)Z(dλ) + ut + V (∗)

with E|Z(A)|2 = Φ(A), A ∈ B(R). If the process V is stationary

in itself (in a wide sense) then its spectral representation V (t) =
∫∞
−∞ eiλt Z(dλ) can be derived from (∗).

Similarly, Kolmogorov obtained the corresponding representation

also for the locally homogeneous and locally isotropic Rl-valued

vector fields V (M) = (V1(M), . . . , Vl(M)), M ∈ Rk.
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In 1968 R. H. Kraichnan—in his paper “Small-scale structure of

a scalar field convected by turbulence”—proposed, following to

the described mathematics, the Gaussian model for a random

field.

This random field Vkra(t, x) is a generalized Gaussian field with

zero mean and covariance

K(x − y, t − s) = C(x − y) δ(t − s)

such that the spatial part

• is of the form

Cij(x − y) = Aij + Dij|x − y|κ

for |x − y| ≪ 1, where κ ∈ (0,2), and

• decays rapidly as |x − y| → ∞.
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This velocity field Vkra(t, x) can be realized by its identification

with a random field of the form

σ(x) Ẇ (t), where σ(x) =
√

C(x)

(Y. Le Yan, O.Raimond. Integration of Brownian vector fields,

Ann. Probab. 30 (2002), 826–873).

It could be shown that if κ = 2/3 the fluid particles diverge at

the velocity which is characteristic for Kolmogorov’s 1/3 law.

Therefore, Kraichnan’s velocity field with κ = 2/3 can be con-

sidered as an approximation of Kolmogorov’s velocity.
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Other explicit models that capture the salient features of turbu-

lence were developed in the last time.

It is necessary to say that one of the great mysteries of the tur-

bulence theory, as we know it, is how (if at all) the Kolmogorov

turbulence theory is related to the Navier–Stokes equations.

Particularly discouraging is that no relation of Kolmogorov’s or

Kraichnan’s theory to Newtonian mechanics has been established

yet.
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We want to speak now only about

THREE DIFFERENT STOCHASTIC APPROACHES

TO THE TURBULENCE

that give some strategies to link the two considered theories.

Ya. G. Sinai

and his collaborators

B. Rozovsky, R. Mikulevicius, S. Lototsky,

and their collaborators

O. E. Barndorff-Nielsen, J. Schmiegel,

and their collaborators

106

One approach (Ya. G. Sinai and his collaborators) is to inves-

tigate the spectrum of invariant measure of the stochastic

Navier–Stokes equation

∂tu = ν ∆u − (u,∇)u −∇p +
√

Q Ẇ (t) ,

u(0) = u0, div u = 0,

W (t) is a Hilbert-space-valued Brownian motion and

Q is an operator determining the spatial covariance.

The aim is to compare the asymptotics of the energy spectrum of

this invariant measure to the ones characteristic for Kolmogorov

theory.
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Some preliminary results regarding existence and uniqueness of

the invariant measures for the stochastic Navier–Stokes equation

in dimension 2 have been obtained by

S. B. Kuksin, A. Shirikan, J. Mattingly, M. Hairer, Ya. Sinai.

Of course, there is no guarantee that the Brownian motion is

the correct perturbation; other types of perturbations are inves-

tigated by the group of O. E. Barndorff-Nielsen (we shall see

it below).
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Another approach is being explored by

B. Rozovsky, R.Mikulevicius, S. Lototsky (USC)

and their collaborators.

The idea of their approach is to consider the velocity vector field

v(t, x) = u(t, x) + Vkol(t, x) ,

where Vkol(t, x) is the Kolmogorov velocity field and

u(t, x) is a more regular function.

The function u(t, x) is selected in such a way that the total

velocity v(t, x) satisfies the second Newton law.
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In fact, this idea is a generalization of the Reynolds method of

splitting up the velocity field into a sum of slow oscillating and

fast oscillating stochastic components.

So far this idea has been implemented only for Kraichnan’s veloc-

ity field that can be considered as approximation of Kolmogorov

velocity.
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The basic result of B. Rozovsky and R. Mikulevicius is the fol-

lowing:

the regular component u(t, x) is a solution to the

stochastic Navier–Stokes equation

∂tu = ν ∆u − (u,∇)u −∇p + f + ((σ,∇)u −∇ũ + g) ◦ Ẇ ,

divu = 0, u(0) = u0.

Special cases of this equation include the standard deterministic

Navier–Stokes and Euler, randomly forced Navier–Stokes equa-

tion

∂tu = ν ∆u − (u,∇)u −∇p +
√

Q Ẇ (t),

u(0) = u0, div u = 0.
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B.Rozovky and R.Mikulevicius developed also the Lagrangian

approach which postulates that the dynamics of a fluid particle

is given by the stochastic diffeomorphism

dX(t) = u(t, X(t)) dt + V (t, X(t)) dt

= u(t, X(t)) dt + σ(t, X(t)) ◦ dW,

(where ◦ denotes Stratonovich integration)

div σ = 0, divu = 0.

112

For simplicity assume that the fields is non-viscous.

Also assume that u(t, x) is a Brownian semimartingale:

du(t, x) = a(t, x) dt + b(t, x) ◦ dW.

By Itô’s formula

du(t, X(t)) = a(t, X(t)) dt + b(t, X(t)) ◦ dW

+ uj(t, X(t)) ∂ju(t, X(t))

+ σj(t, X(t)) ∂ju(t, X(t)) ◦ dWt.
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One now assumes that the force acting on the fluid particles has

a slowly varying (adjective) part, as well as an irregular (diffusive)

part, each of them split into a pressure and a bulk force term:

adjective part diffusive part

dF(t, X(t)) = (−∇p + f) dt + (−∇p̃ + g) ◦ dWt.

pressure bulk pressure bulk
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Using Newton’s second law du(t, X(t)) = dF (t, X(t)) and match-

ing similar terms, we arrive at the stochastic Euler equation:

∂tu(t, x) = −uj(t, x) ∂ju(t, x) −∇p(t, x) + f

+ [−σj∂ju + g −∇p̄ ] ◦ dWt.

(For case d = 2 Rozovsky and Mikulevicius gave proof of exis-

tence of strong path-wise unique and strongly continuous solu-

tion of this equation and the corresponding stochastic Navier–

Stokes equation with an additional term ν∆u.)
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The approach of

O.E. Barndorff-Nielsen, J. Schmiegel

and their collaborators to the dynamics of turbulent velocities is

based on the following idea.

Suppose that ut = ut(σ;ω) is the main component of the veloc-

ity (in the direction of the mean flow, i.e., in the longitudinal

direction), where σ is a fixed position.
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Let us assume that ut has the form

ut = ū +
∫ ∞

−∞
g(t − s) dYs ,

where

• ū is a constant,

• g is a deterministic kernel, and

• the process Y has the differential

dYt = βEt dt +
√
Et dWt,

where

• β is a constant,

• (Et) is a positive stationary process, and

• W is a Wiener process (Brownian motion).
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The authors of this model show that suitable choices of g and

(Et) can reproduce key stylized features of the time-wise behavior

of the velocity.

From given representations for ut and Yt we see that

ut = ū + β
∫ t

−∞
g(t − s) Es ds +

∫ t

−∞
g(t − s)

√
Es dWs.

This is again a Reynolds-type decomposition with

ū + β
∫ t

−∞
g(t − s) Es ds playing the role of the slowly varying

component,∫ t

−∞
g(t − s)

√
Es dWs reflecting the strongly varying com-

ponent.

In other words, ut has a decomposition of the semimartingale

type.
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The authors of this promising approach demonstrated that their

model is capable to capture many basic stylized facts of the

statistics of temporary velocity increments.

In particular, they show that the probability density of velocity

increments is characterized by

• a normal inverse Gaussian shape with heavy tails

for small scales and

• approximately Gaussian tails for large scales.
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They show also that their model is in accordance with the ex-

perimental verification of three refined Kolmogorov’s similarity

hypotheses.

As the authors say, their approach is

a step in a project to formulate a full-fledged

tempo-spatial stochastic process model for the

three-dimensional velocity field.
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