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Efficient simulation of finite horizon problems

in queueing and insurance risk

Leonardo Rojas-Nandayapa1, Søren Asmussen2

Abstract

Let ψ(u, t) be the probability that the workload in an initially empty
M/G/1 queue exceeds u at time t < ∞, or, equivalently, the ruin probabil-
ity in the classical Crámer-Lundberg model. Assuming service times/claim
sizes to be subexponential, various Monte Carlo estimators for ψ(u, t) are sug-
gested. A key idea behind the estimators is conditional Monte Carlo. Variance
estimates are derived in the regularly varying case, the efficiencies are com-
pared numerically and also one of the estimators is shown to have bounded
relative error. In part, also extensions to general Lévy processes are treated.

Key words: Bounded relative error, complexity, conditional Monte Carlo, Lévy
process, regularly varying distribution, finite horizon ruin function, M/G/1 queue

1 Introduction

Stochastic models with heavy tails have been the subject of intense interest during
recent years, not least in areas such as insurance risk and queueing theory (and
its telecommunications applications). See, e.g., Adler, Feldman and Taqqu (1998);
Embrechts, Klüppelberg and Mikosch (1997); and the Notes in Asmussen (2003) pp.
300–301. The purpose of this paper is to develop some new simulation algorithms
in some heavy-tailed settings, where crude Monte Carlo simulation sofar has been
the only possibility.

Our primary object of interest is the transient workload process {V (t)} in the
M/G/1 queue with V (0) = 0 and

ψ(u, t) = P(V (t) > u) .

Another standard interpretation of ψ(u, t) is as the ruin probability in the classical
Cramér-Lundberg risk model with Poisson arrivals of claims and constant premium
inflow at unit rate. The netput process has the form X(t) =

∑N(t)
1 Uk − ct in both

cases where the Uk are the service times/claim sizes and {N(s)} an independent
Poisson process at rate β. In queueing, c is the service rate and in insurance risk,
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c is the premium rate. A simple time change argument shows that we may take
c = 1, which is done throughout in the following.

Recently there has, however, been substantial interest in this simple model per-
turbed by Brownian motion or an infinite activity jump part, and therefore we also
partially deal with such extensions.

In the light-tailed case, it has long been understood how to perform efficient sim-
ulation of ψ(u) = limt→∞ ψ(u, t) (the tail of the stationary workload or the infinite
horizon ruin probability) as well as of ψ(u, t). The basic tool is importance sampling,
see Asmussen (2000) pp. 287–292 (the algorithms described there exploit variants
of large deviations ideas, see in particular Siegmund (1976); Bucklew, Ney and Sad-
owsky (1990); Anatharam (1998)). In the heavy-tailed case, all algorithms has sofar
only dealt with the infinite horizon case and the Cramér-Lundberg setting. Here
efficient simulation algorithms for ψ(u) have been developed in a number of recent
papers, in particular Asmussen and Binswanger (1997); Asmussen, Binswanger and
Højgaard (2000); Juneja and Shahabuddin (2002); Asmussen and Kroese (2006). All
of these heavily rely on the Pollaczek-Khinchine formula, expressing ψ(u) as the tail
probability of a geometric sum. For the finite horizon problem, the only reference
we know of is Boots and Shahabuddin (2001). For the algorithm in that paper to
be efficient, it is, however, needed that u and t vary together in a specific manner,
and that F is not too far from the heavy-tailed Weibull.

The contribution of the present paper is to suggest some completely different
algorithms which appear to have a broader scope. In particular, for one of them
(Algorithm B), we are able to theoretically verify good efficiency properties in the
most important case of subexponentiality, regular variation. Algorithm B is, however
restricted to the M/G/1—Cramér-Lundberg setting. The other idea we present,
developed in Algorithm A, applies to general Lévy processes and we also empirically
demonstrate that it has excellent efficiency, though at the moment we have not been
able to come up with variance estimates quite as sharp as for Algorithm B.

2 Preliminaries

Going beyond the M/G/1—Cramér-Lundberg setting, we assume that the netput
process X is a general Lévy process. As is well known, X can be written as the
independent sum of a Brownian motion and a pure jump part, whose construction
may involve compensation.

The traditional stability condition is ρ < 1 in the queuing setting where ρ denotes
the traffic intensity. This means µ = EX(1) < 0, but we will only partially impose
this assumption. All that will matter for us is the upper tail, and we use therefore
the alternative decomposition X = Y + Z where Y is compound Poisson with
positive jumps, say the intensity is λ and the jump distribution is F . In the Cramér-
Lundberg risk model, Z(s) = −s (here the upward jumps correspond to claims), but
it should be noted that the representation X = Y + Z is completely general and
can be achieved for any Lévy process by just letting Y be the sum of jumps of size
at least 1 and Z = X − Y (then Z is the sum of a Brownian component, possibly
with drift, and a jump part with jumps bounded by 1). We write X(t1, t2) =
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supt1≤s<t2{X(s) −X(t1)}, τ(u) = inf{s > 0 : X(s) > u} and

ψ(u) = P(τ(u) <∞), ψ(u, t) = P(τ(u) < t) = P(X(0, t) > u).

In the M/G/1—Cramér-Lundberg setting, τ(u) is the probability that the steady-
state workload exceeds u, or, equivalently, the infinite horizon ruin probability.

In the following, we will assume Y is compound Poisson with only positive jumps
(not necessarily bounded below by 1) so that Y (s) =

∑N(s)
1 Ui, where {U1 : i ∈ N}

are i.i.d. with common distribution F supported by R
+ and {N(s)} is an inde-

pendent Poisson process with rate λ and interarrival times {Ti : i ∈ N}. We will
further throughout assume that F is regularly varying with index α > 0. Define the
integrated tail distribution

FI(x) = µ−1
F

∫ x

0

F (y)dy

where F (x) := 1 − F (x) and µF := EUi < ∞. We will assume that F is regularly
varying with index α > 0, that is, that F (x) = ℓ(x)/xα with ℓ(x) slowly varying. If
α > 1, then F I(x) = ℓI(x)/x

α−1 where ℓI(x) ∼ ℓ(x)/(α − 1). It is well known that
if µ < 0 and α > 1, it holds for the Cramér-Lundberg model that

lim
u→∞

ψ(u)

F I(u)
=

ρ

|µ| (2.1)

where ρ = λµF . In Asmussen and Klüppelberg (1997), asymptotics for ψ(u, t) are
given when t is of order E [U − u |U > u]. This means in the regularly varying
case that t = t(u) depends on u in such a way that t(u)/u → k ∈ (0,∞). Then,
Corollary 1.6 from the cited reference states that under these assumptions

lim
u→∞

ψ(u, t(u))

ψ(u)
= 1 − (1 + (1 − ρ)k)−α+1 > 0 . (2.2)

The same result holds in a general Lévy process, as can be seen from Klüppelberg,
Kyprianou and Maller (2004) after some rewriting. If instead t(u)/u→ 0, then Foss,
Palmowski and Zachary (2005); Tang (2004) imply

lim
u→∞

ψ(u, t(u))

λ t(u)F (u)
= 1 (2.3)

(this result does not require µ < 0 and holds under more general subexponential
assumptions, as does (2.1); the given references only give the result for discrete-time
random walks, but it is not difficult to extend it to the M/G/1—Cramér Lundberg
setting and even to a general Lévy process by writing X = Y + Z and treating Z
as a light-tailed perturbation of Y ).

By a simulation estimator ψ̂(u, t) for ψ(u, t), we understand a r.v. which can be

generated by simulation and is unbiased, E ψ̂(u, t) = ψ(u, t). A family of such

estimators has bounded relative error if Var ψ̂(u, t)/ψ(u, t)2 remains bounded as
u → ∞ (recall that t is considered a function of u), and is logarithmically efficient

if Var ψ̂(u, t)/ψ(u, t)2−ǫ remains bounded for all ǫ > 0. These definitions tacitly
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assume that the time to generate one copy of ψ̂(u, t) is of the same order t as for
the crude Monte Carlo method (which is the case in the algorithms we consider).
For further discussion of these concepts see Asmussen and Rubinstein (1995); Hei-
delberger (1995); Asmussen and Glynn (2007) Ch. VI.

When simulating X, the compound Poisson part Y is of course straightforward
to generate. The remaining Lévy component Z may require more sophistication,
and we refer to Asmussen and Glynn (2007) Ch. XII for a survey of methods. Note,
however, that Y and Z need not be simulated separately, but X can be simulated
and next Y extracted as the jumps > 1.

3 Algorithms

The cited references on simulation of ψ(u) all use a representation of the form
ψ(u) = P(SN > u) where SN = V1 + · · · + VN with V1, V2, . . . i.i.d. and non-
negative with distribution say G, and N is an independent r.v. supported over N.
Our algorithms are further developments of the conditional Monte Carlo idea in
Asmussen and Kroese (2006) which is as follows. Given N has been simulated, by
exchangeability of the Vi’s one has

P(SN > u) = E
[
N ; SN > u, VN > Vj , j < N

]
. (3.1)

Then one simulates V1, . . . , VN−1, forms the order statistics V(1) < · · · < V(N−1) and
the conditional expectation of [. . .] is taken w.r.t. F1 = σ

(
N, V1, . . . , VN−1

)
resulting

in the conditional Monte Carlo estimator

N P
(
SN > u, VN > V(N−1)

∣∣F1

)
= N G

(
(u− SN−1) ∨ V(N−1)

)
. (3.2)

where SN−1 = V1 + · · · + VN−1. The numerical evidence shows that the algorithm
(3.2) is superior to all other algorithms suggested in the heavy-tailed P(Sn > u)
setting.

In the present paper, the role of V1, V2, . . . is taken by the jumps of the compound
Poisson part Y in Algorithm A and by the ladder heights in Algorithm B (see
e.g. Asmussen, 2000, pp. 271-279). However, both the above algorithms needs
substantial modification. In particular, the difficulty of adapting (3.2) is the presence
of the Z component which destroys exchangeability. For example, if Z has negative
drift, i.e., EZ(1) < 0, then an early large jump of Y is more likely to cause ruin
than a late one, because by the late time the negative drift is likely to have taken
X to a smaller value.

3.1 Algorithm A

It follows from Asmussen and Klüppelberg (1997); Foss, Palmowski and Zachary
(2005); Tang (2004) that ruin occurs with high probability as consequence of one
big jump.

The idea here is to adapt the conditional algorithm in Asmussen and Kroese
(2006) by first defining a r.v. J which given {X(s)}s≤t has a discrete uniform dis-
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Figure 1: A sample path of X with a big jump UJ

tribution over {1, . . . , N(t)}. Then replace the symmetry argument in (3.1) by

P(τ(u) < t) = P(τ(u) < t,N(t) = 0) + E [N(t); τ(u) < t,

UJ = max{Ui : i ≤ N(t)}, N(t) > 0]

and compute the estimator as the conditional probability of {τ(u) < t} given

FA = σ
(
J, {N(s)}s≤t, {Uj : j 6= J}, {Z(s)}s≤t

)
,

the σ-field containing all information about the r.v. J and the process X except the
size of jump J . This conditional probability comes out as

P
(
τ(u) < t

∣∣FA

)
=

{
I(Z(0, t) > u) N(t) = 0

N(t) P
(
τ(u) ≤ t, UJ = max{Ui : i ≤ N(t)} |FA

)
N(t) > 0

If N(t) > 0, ruin occurs typically as consequence of the big jump UJ or possibly
if the value of the process after jump J exceeds u, i.e., if

X(TJ−) + UJ +X(TJ , t) > u

where X(TJ−) is the value of the process just before jump J . However, we also have
to take into account the possibility that ruin occurs before the time of jump J (i.e.,
that τ(u) < TJ). This argument is illustrated in Fig. 1. In conclusion,

P
(
τ(u) < t, UJ = max{Ui : i ≤ N(t)} |FA

)
= P(UJ > W )

where

W : = sup{Ui : i 6= J} ∨
[(
u−X(TJ−) −X(TJ , t))I(τ(u) ≥ TJ)

]
.

Here we used the FA-measurability of I(τ(u) ≥ TJ), X(TJ , t) and X(TJ−) to
compute the conditional probability P(τ(u) < t|FA). Algorithmically:
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1. Simulate the Poisson process {N(s)}s≤t by generatingN(t) = Nt as Poisson(λt)
and given that Nt ≥ 1, the jump times T1 < T2 < · · · < TNt

as the order statis-
tics from the (0, t)-uniform distribution

2. Simulate the whole of {Z(s) : s ≤ t} (we again refer to Asmussen and Glynn
(2007) for this step). If Nt = 0 return I(Z(0, t) > u). Else go to 3.

3. Simulate J as a discrete uniform r.v. over {1, . . . , Nt} and the Ui, i 6= J ,
from F .

4. Calculate W and return

ψ̂A(u, t) = NtF (W )

Remark 1. Algorithm A can in a straightforward way be generalized to a discrete
time random walk XN = Y1 + · · · + YN with increment distribution F . For ex-
ample, one replaces Nt by t, Ti by i, X(t1, t2) by maxi1≤i<i2 Xi and supi6=J Ui by
maxj≤n,j 6=J Yj. Also the derivation of the variance estimates of the next section is
entirely similar. 2

3.2 Algorithm B

We restrict here our attention to the M/G/1 queue or equivalently the Crámer-
Lundberg risk model, which allow us to use the sample path decomposition of the
process {X(s)} according to ladder steps (e.g. Asmussen, 2000, pp. 271-279). Let
the sequence of random vectors {(T 0

i , Vi,Wi) : i ∈ N} be the lengths of the ladder
segments, the ladder heights, and the deficits before ladder epochs as illustrated in
Fig. 2.
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3
 

 T
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0

time 

Figure 2: The ladder structure
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Here, the number of ladder steps L is geometric(ρ), different ladder segments
are independent and the joint distribution of (T 0

i , Vi,Wi) is as described in the
following lemma, where parts (i), (ii) are classical and part (iii) from Asmussen and
Klüppelberg (1997):

Lemma 1. Under P
(0) = P(·|τ(0) < ∞), Vi,Wi have the same joint distribution

as the backward and forward recurrence time distribution in a renewal process with

interarrival distribution F . That is,

1. The marginal distributions of Vi,Wi are both FI .

2. The conditional distribution of (Wi|Vi = v) is the same as the distribution of

(U − v|U > v) where U is a r.v. with distribution F .

Moreover,

3. The conditional distribution of (T 0
i |Wi = w) is the same as the unconditional

distribution of inf{t > 0 : R(t) = w}, where the process R is given by R(t) =

t−
∑N0(t)

i=1 U0
i and is an independent copy of −S.

In the Cramér-Lundberg model ruin occurs always at a ladder epoch. Therefore,
since the probability of ruin given that no ladder steps occured (i.e., that L = 0) is
0, we can write

P(τ(u) < t) = P(τ(u) < t, L > 0) = (1 − ρ) P(τ(u) < t|L > 0).

It follows that τ(u) < t if and only if the sequence of random vectors {(Vi, Ti) :
i ∈ N} is such that V1 + · · · + VL > u and T 0

1 + · · · + T 0
K < t where K := inf{k :

V1 + · · ·+ Vk > u} (observe that this two conditions together imply K ≤ L). Thus

{τ(u) < t} =
{
V1 + · · ·+ VL > u, T 0

1 + · · · + T 0
K < t

}
.

In the implementation, it is convenient not to generate the T 0
i separately from

the representation in part (iii) of Lemma 1, but generate R in the whole of [0, t],
define R(t) = R(0, t) and note that the upward skipfree property of R implies
that the process of first passage time to different levels has stationary independent
increments so that

P(τ(u) < t) = P
(
V1 + · · · + VL > u, W1 + · · · +WK < R(t)

)
. (3.3)

The estimator I
{
(V1 + · · · + VL > u, W1 + · · · +WK < R(t)

}
can ve viewed as the

crude Monte Carlo estimator based on Lemma 1, and we proceed to develop some
ideas that will reduce this estimator’s variance.

We first adapt the argument in Asmussen and Kroese (2006) to the present
setting as follows. We define J to be an independent random variable with a discrete
uniform distribution on {1, . . . , L}, replace the symmetry argument in (3.1) by

P(τ(u) < t) = E
[
L; τ(u) < t, VJ = max{Vi : i ≤ L}, L > 0

]

and compute our estimator as the conditional probability of (3.3) given

FB = σ
(
L, J, {Vj : j 6= J}, {R(s) : s ≤ t}

)
,
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the σ-field containing the information on the random variable J , the process {R(s)}
up to time t and the number and sizes of the ladder heights Vi except of the Jth.
This conditional probability comes out as

P
(
τ(u) < t|FB

)
= LP

(
W1 + · · · +WK < R(t), VJ > H

∣∣ {Vj : j 6= J})
= LF I(H)P

(
W1 + · · · +WK < R(t)

∣∣ {Vj : j 6= J}, VJ > H) (3.4)

where

H =
(
u−

∑

j 6=J

Vj

)
∨ sup

{
Vj : j 6= J

}
.

However, K it is not measurable with respect the σ-field generated by
{
{Vj : j 6=

J}, I(VJ > H)
}

and therefore (3.4) should be calculated via conditional Monte
Carlo. We let V ∗

J be a r.v. having the conditional distribution of VJ given (H,∞).
Then

P
(
W1 + . . .+WK < R(t)

∣∣ {Vj : j 6= J}, VJ > H)

= E [P
(
W1 + . . .+WK < R(t)

∣∣ {Vj : j 6= J}, V ∗
J

)
]

The last step of the algorithm is to reduce the variance coming from the set {Wi}
as follows: Since R(t) < t, we have for i ≤ K that τ(u) ≥ t if Wi ≥ t. So, we let
W ∗

i be a r.v. having the conditional distribution of Wi given Vi and Wi < t. Then

P
(
W1 + · · ·+WK < R(t)

∣∣ {Vj : j 6= J}, V ∗
J

)

=
K∏

i=1

P(Wi < t|Vi)P(W ∗
1 + · · · +W ∗

K < Rt)

Combining the above steps leads to the following algorithm:

1. Simulate L, J , {Vi : i 6= J} with distributions as above (in particular, P(L =
n) = (1 − ρ)ρn−1, n = 1, 2, . . .). To simulate R, generate M = N0

t as
Poisson(λt), the jumps U0

1 , . . . , U
0
M as i.i.d. with distribution F , and the jump

times π1, . . . , πM as the order statistics from the uniform distribution on (0, t).
Let πM+1 = t, U0 = 0 and

R(t) = max
1≤k≤M+1

{
πk −

k−1∑

i=0

U0
i

}

2. Calculate H and simulate the random variable V ∗
J .

3. Identify K and simulate the random variables {W ∗
i : i ≤ K}.

4. Return the estimator

ψB(u) = (1 − ρ)LF I(H)

K∏

i=1

P(Wi < t|Vi)I(W
∗
1 + · · ·+W ∗

K < R(t))
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4 The efficiency of the estimators

We can now state our main theoretical results on Algorithms A, B. They assume
t = t(u) to be a function of u and consider the limit u → ∞.

Proposition 1. Assume that t/u→ 0. Then for each ǫ > 0, one has

Var ψ̂A(u, t) = t2(α+1)F
2
(u)O(eǫu) .

Note that this result does not require α > 1 or µ < 0. The result is, however,
somewhat weaker than logarithmic efficiency: then the power of t should have been 2.
The bound provided by Theorem 1 is sharpest when t grows relatively slowly with u.
In particular, if t = uβ with 0 ≤ β < 1, then Proposition 1 guarantees that Algorithm
A provides an improvement over the crude Monte Carlo algorithm only when β <
α/(2α + 1) (but of course, the bound of Proposition 1 could be too rough; cf. the
numerical results and discussion of Section 6!).

Theorem 1. Assume α > 1 and that

P(U − v < t|U > v) = O(1)
t

v
(4.1)

where the O(1) is uniform in 0 < t < t0 for any t0 <∞. Then the estimator ψ̂B(u, t)
has bounded relative error when t→ ∞ with u in such a way that t/u→ k ∈ [0,∞).

Note that (4.1) is very weak. It holds, for example, if F has a density f(x)
satifying f(x) ∼ ℓ1(x)/x

β with ℓ1 slowly varying (integration shows that one must
have β = α + 1, ℓ1(x) ∼ (α + 1)ℓ(x), as is seen by straightforward calculus.

5 Proofs

The following Lemma will be needed in the proof of Theorem 1.

Lemma 2. Let Z(0, t) = sup{Z(s) : s ≤ t}. Then P(Z(0, t) ≥ u) ≤ e−γu for some

γ > 0.

Proof. Let Z1(t) = Z(t)− bt where b is so large that EZ1(1) < 0. Then Lundberg’s
inequality (Asmussen, 2000) gives that P(Z1(0,∞) ≥ u) ≤ e−γ1u for some γ1 > 0
(note that all exponential moments of Z1(1) exist). It follows that

P(Z(0, t) ≥ u) ≤ P(Z1(0,∞) ≥ u− bt) ≤ e−γ1(u−bt) .

From this the result follows, since t/u→ 0.

Proof of Theorem 1. We start with an upper bound for the variance of the estima-
tor A.

Var [ψ̂A(u, t)] ≤ E [ψ̂2
A(u, t)]

= E

[
ψ̂2

A(u, t) I(Z(0, t) <
√
u)

]
+ E

[
ψ̂2

A(u, t) I(Z(0, t) ≥
√
u)

]

9



Since ψ̂A(u, t) ≤ 1 a.s. the second term is smaller than P(Z(0, t) ≥ √
u) which is

bounded above by e−γ
√

u for some γ > 0 by Lemma 2.
To get an upper bound for the first term it will be useful to rewrite Estimator

A as follows

ψ̂A(u, t) = I(Nt = 0, Z(0, t) > u) + I(Nt > 0, τ(u) < TJ)Nt F (Umax)

+ I(Nt > 0, τ(u) ≥ TJ)Nt F
(
Umax ∨ (u−X(TJ−) −X(TJ , t))

)

where Umax = sup{Ui : i 6= J}. The first indicator describes the event where the
process {Y (s) : s < t} has no jumps but the process {Z(s)} reached u before time t.
The second term corresponds to the case when ruin happens before time TJ , however
we still require UJ to be larger than Umax. The third term is the complement of the
other two: ruin should happen after time TJ , so UJ is required both to be larger
than Umax and to make the process reach the level u in the time interval [TJ , t].

Since the events involved are disjoint, by taking the square of ψ̂A(u, t) we are left
with the sum of the square of each term. Next we multiply by I(Z(0, t) <

√
u) and

analyze each term separately:

ψ̂2
A(u, t) I(Z(0, t) <

√
u)

= I(Nt = 0, Z(0, t) > u, Z(0, t) <
√
u) (5.1)

+ I(Nt > 0, τ(u) < TJ , Z(0, t) <
√
u)N2

t F
2
(Umax) (5.2)

+ I(Nt > 0, τ(u) ≥ TJ , Z(0, t) <
√
u)N2

t F
2(
Umax ∨ (u−X(TJ−) −X(TJ , t))

)

(5.3)

When u > 1 the events {Z(0, t) <
√
u}, {Z(0, t) > u} are disjoint and the term

(5.1) is 0.
Next, consider the case where J = 1 and the process {X(s)} reaches level u

before the time of the first jump, then Z(0, t) > u and the corresponding term (5.2)
is 0 when u > 1. Therefore

I
(
Nt ≥ 1, τ(u) < TJ , Z(0, t) <

√
u
)

= I
(
1 < J ≤ Nt, X(0, TJ) > u,Z(0, t) <

√
u
)

≤ I
(
1 < J ≤ Nt, Y (0, TJ) > u−

√
u
)

(5.4)

Now, if J > 1 and Y (0, TJ) > u − √
u there exists at least one jump larger than

(u−√
u)/J and the following relations remain true

Umax >
u− 2

√
u

J
≥ u− 2

√
u

Nt
.

Hence I
(
Umax ≥ (u − 2

√
u)/Nt, Nt > 1

)
is an upper bound of (5.4) and it follows

that (5.2) is smaller than

I
(
1 < Nt, Umax ≥ (u− 2

√
u)/Nt

)
N2

t F
2
(Umax) ≤ I

(
1 < Nt

)
N2

t F
2
((u− 2

√
u)/Nt).

We move to the term (5.3). Observe that if Z(0, t) <
√
u we have that

X(TJ−) +X(TJ , t) ≤ X(0, TJ) +X(TJ , t) <
∑

i6=J

Ui + 2Z(0, t) <
∑

i6=J

Ui + 2
√
u

10



Thus we obtain the following upper bound for (5.3):

I(Nt ≥ 1)N2
t F

2
(
Umax ∨

(
u− 2

√
u−

∑

i6=J

Ui

))

Now, if Umax < z/Nt then it follows that

z −
∑

i6=Jt

Ui ≥ z − (Nt − 1)Umax > z/Nt

for any positive value z. This relation implies that

Umax ∨
(
u− 2

√
u−

∑

i6=Jt

Ui

)
>
u− 2

√
u

Nt

So, the term (5.3) is bounded above by I(Nt ≥ 1)N2
t F

2(
(u− 2

√
u)/Nt

)
.

Taking expectation and putting all the terms together we have obtained that

Var ψ̂A(u, t) ≤ e−γ
√

u + 2 E

[
N2

t F
2
(
u− 2

√
u

Nt

)
;Nt ≥ 1

]

when u > 1. Divide the l.h.s. by F
2
(u), take the limit as u→ ∞ and rewrite it as

lim
u→∞

e−γ
√

u

F
2
(u)

+
F

2
(u− 2

√
u)

F
2
(u)

2 E

[
N2

t

F
2(

(u− 2
√
u)/Nt

)

F
2
(u− 2

√
u)

;Nt ≥ 1

]
.

Since F is subexponential the first limit is 0. Recalling F (x) = ℓ(x)/xα, the second
is the limit of

E

[
N2+2α

t

ℓ(u/Nt)
2

ℓ(u)2
;Nt ≥ 1

]
.

We split this expectation into two parts corresponding to 1 ≤ Nt ≤ u or Nt > u.
Since ℓ is slowly varying, ℓ(x) and 1/ℓ(x) are both is O(xǫ/4), so the first part is
bounded by

E

[
N2+2α

t

sup1≤v≤u ℓ(v)
2

ℓ(u)2
; 1 ≤ Nt ≤ u

]
= O(uǫ)EN2+2α

t = O(uǫ)O(t2+2α) .

Using F (x) ≤ 1, the second part is bounded by

E

[
N2

t

u2α

ℓ(u)2
;Nt > u

]
=

u2α

ℓ(u)2
O(e−δu) = O(e−δu/2)

for some δ > 0 where we used t/u → 0 and easy tail estimates in the Poisson
distribution. Putting these estimates together completes the proof.
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Proof of Theorem 1. For an upper bound of the variance of the estimator B we have

Var [ψB(u)] ≤ E [L2F
2

I(H)P2(W < t(u)|V = Vmax)]

= E [L2F
2

I(H)P2(U − Vmax < t(u)|U > Vmax)]

where Vmax is the the largest value among V1, . . . , VK . Next observe that the process
is simulated in such way that ruin occurs with probability 1, then it is not difficult
to verify that H > u/L and Vmax > u/L. Since H > u/L, the stated hypothesis on

the overshoot distribution gives the following upper bound for Var ψ̂2
B:

E [L2F
2

I(u/L)P2(U − u/L < t(u)|U > u/L)]

= O(1)
t2

u2
E [L4F

2

I(u/L); L ≤ u] + E [L2;L > u] . (5.5)

Now comparing (2.1) with (2.2) when k > 0 and with (2.3) when k = 0 shows
that ψ(u, t) is always of order tℓ(u)/uα. Since k < ∞, the second term in (5.5) is
therefore o

(
ψ(u, t)2

)
. Dividing the first term by ψ(u, t)2, we obtain

O(1)u2α−2
E

[
L4F

2

I(u/L)

ℓ(u)2
; L ≤ u

]
= O(1)E

[
L2α+4 ℓ(u/L)2

ℓ(u)2
; L ≤ u

]
. (5.6)

The proof will therefore be completed if we can show that the r.h.s. of (5.6) remains
bounded as u→ ∞. Less restrictively, it is easy to see from the above analysis that
it suffices to show this assertion with the qualifier L ≤ u replaced by L ≤ au for
some a > 0.

To this end, write

ℓ(u/L)

ℓ(u)
=

ℓ(u/L)

ℓ(u/(L− 1)
· ℓ(u/(L− 1))

ℓ(u/(L− 2)
· · · ℓ(u/2)

ℓ(u)
. (5.7)

From the uniform convergence theorem for slowly varying functions (see the Ap-
pendix of Embrechts, Klüppelberg and Mikosch, 1997), it follows that given ǫ > 0,
there exists u0 such that

ℓ(ut)

ℓ(u)
≤ 1 + ǫ for all 1/2 ≤ t ≤ 1 and all u ≥ u0 . (5.8)

For u ≥ u0, the r.v. L2α+4ℓ(u/L)2/ℓ(u)2 · I{L ≤ u/u0} is therefore bounded by
L2α+4(1 + ǫ)2L, which is integrable if ǫ is so small that ρ(1 + ǫ)2 < 1. Since
L2α+4ℓ(u/L)2/ℓ(u)2 · I{L ≤ u} → L2α+4 a.s. by the definition of a slowly vary-
ing function, dominated convergence therefore gives

E

[
L2α+4 ℓ(u/L)2

ℓ(u)2
; L ≤ u/u0

]
→ EL2α+4 < ∞ ,

and the proof is complete

Remark 2. The efficiency result in Asmussen and Kroese (2006) on the estimator
(3.2) includes a (weak) regularity condition on the slowly varying function ℓ. This
can be removed by using the above dominated convergence argument based on
(5.7), (5.8). 2
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6 Tables and figures

In this section, we give some numerical examples to illustrate the performance of
our algorithms. We considered the M/G/1—Cramér-Lundberg setting, taking U
to be Pareto(α) distributed with F (x) = (1 + x)−α. In the figures, the upper left

panel shows the estimates ψ̂A(u, t), ψ̂B(u, t) of ψ(u, t). The lower left panel gives the

variance of ψ̂A(u, t), ψ̂A(u, t) and the lower right panel the elapsed computer time.
Finally, the upper right panel gives variance times elapsed time (which is the most
fair comparison measure of the algorithms, cf. Asmussen and Glynn (2007) Section
III.10) normalized by z2 = ψ(u, t)2. R = 1000 replications were used in each case.

Example 1. Here we estimate ψ(u, u) by implementing Algorithms A and B. The
approximation given by (2.2) is included for comparison purposes. We have used
α = 3/2, β = 1/3 and a ’window’ of u = (100, 1000).
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Algorithm A
Algorithm B
Approximation (2.2)

1000 2000 3000 4000 5000

10
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Algorithm B

1000 2000 3000 4000 5000
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Algorithm A
Algorithm B

1000 2000 3000 4000 5000
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Times Elapsed
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Figure 3: α = 3
2
, β = 1

3
.

Example 2. Here we estimated ψ(u,
√
u), that is, considered a smaller time hori-

zon than in Example 1.. The approximation given by (2.3) is included for comparison
purposes. We have used α = 3/2, β = 1/3 and a ’window’ of u = (100, 1000).
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Figure 4: α = 3
2
, β = 1

3
.

Conclusion

The conclusion of the numerical examples is that both algorithms appear to give
excellent results. It is notable, however, that according to the variance times elapsed
time criterion Algorithm A has a substantially better performance than Algorithm
B. This could be an indication that the estimates of Proposition 1 are too rough,
but we have not been able to come up with sharper bounds.
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