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Abstract
We provide a simple explicit estimator for discretely observed Barndorff-

Nielsen and Shephard models, prove rigorously consistency and asymptotic
normality based on the single assumption that all moments of the stationary
distribution of the variance process are finite, and give explicit expressions for
the asymptotic covariance matrix.

We develop in detail the martingale estimating function approach for a
bivariate model, that is not a diffusion, but admits jumps. We do not use
ergodicity arguments.

We assume that both, logarithmic returns and instantaneous variance are
observed on a discrete grid of fixed width, and the observation horizon tends
to infinity. This anaysis is a starting point and benchmark for further develop-
ments concerning optimal martingale estimating functions, and for theoretical
and empirical investigations, that replace the (actually unobserved) variance
process with a substitute, such as number or volume of trades or implied
variance from option data.

KEYWORDS:

Martingale estimating functions, stochastic volatility models with jumps, consis-
tency and asymptotic normality

1 Introduction

In [BNS01] Barndorff-Nielsen and Shephard introduced a class of stochastic volatility
models in continuous time, where the instantaneous variance follows an Ornstein-
Uhlenbeck type process driven by an increasing Lévy process. Those models al-
low flexible modelling, capture many stylized facts of financial time series, and
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yet are of great analytical tractability. For further information see also [BNNS02].
BNS-models, as we will call them from now on, are affine models in the sense of
[DPS00] and [DFS03], where the associated Riccati type equations can be solved up
to quadrature in general. In several concrete cases the integration can be performed
explicitly in closed form in terms of elementary functions, see [NV03] and [Ven01].

BNS-models have been studied from various points of view in mathematical fi-
ance and related fields. In [NV03] option pricing and structure preserving martingale
measures are studied. In [BK05, BMB05, BG05, RS06] the minimal entropy mar-
tingale measure is investigated. The papers [BKR03, Lin06] address the portfolio
optimization problem. Baysian/MCMC/computer intensive estimation is already in
the seminal paper [BNS01], and in the works [RPD04, GS01, FSS01, tH03]. The
papers [Jam05, Jam06] exploit the analytical tractability to develop maximum like-
lihood estimation using the results of [CM00, CR90] for Dirichlet processes. BNS
models are also treated in the textbooks [CT04, Sch03].

Strangely though, it seems that statistical estimation of the model is the most
difficult problem, and most of the work in that area focused on computationally
intensive methods.

The contributions of the present paper are as follows: first we develop a sim-
ple and explicit estimator for BNS models. Secondly, we give rigorous proofs of its
consistency and asymptotic normality. In doing so we compute explicitly the asymp-
totic covariance matrix and develop to that purpose formulas for arbitrary bivariate
integer moments of returns and variance. Thirdly we provide a detailed application
of the theory of martingale estimating functions in a non-diffusion setting, including
numerical illustrations.

The literature on estimation for discretely observed diffusions is vast, a few refer-
ences are [Uch04b, Uch04a, DS04, MR03, KP02, Jac02, Jac01, Sør01, BS01, Kes00,
KS99a, Sør97, BS95]. In particular, the martingale estimating function approach is
used, developed and studied for example in [Sø99], [Sø00], [Sø97]. In the diffusion
setting the major difficulty is that the transition probabilities are not known and
are difficult to compute. In contrast to that, the characteristic function of the tran-
sition probability is known in closed form for many BNS models and the transition
probability can be computed with Fourier methods with high precisions. Yet the
model exhibits other peculiarities, see the remarks in section 2.3.

In the present paper we explore the joint distribution of logarithmic returns X
and the instantaneous variance V supposing that both processes can be observed
in discrete time. Since the joint conditional moment-generating function of (X,V )
is known in closed form we obtain close form expressions for the join conditional
moments up to any desired order which yields a sequence of martingale differences.
We employ then the large sample properties of those, in particular the strong law
of large numbers for martingales and martingale central limit theorem. In this way
we do not need ergodicity, mixing conditions, etc.1

The remainder of the paper is organized as follows: in section 2.1 we describe
the class of BNS models in continuous time and present two concrete examples, the
Γ−OU and IG-OU model. In section 2.2 we introduce the quantities observed in

1Let us mention though, that the martingale strong law and the ergodic theorem have similar
proofs and can be derived from a common source, [Rao73].
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discrete time that are used for estimation. Section 2.3 contains some remarks of
particular features of the model and its estimation. In section 3 we present the
estimating equations, their explicit solution which is our estimator and prove its
consistency and asymptotic normality. This estimator is reviewed in section 3.4
in a general framework given in the lecture notes [Sø97]. In section 4 we present
numerical illustrations. In section 5 we sketch further and alternative developments,
in particular concerning the issue that volatility is typically not observed in discrete
time. Explicit moment calculations of any order can be found in the appendix A.
Appendix B contains explicit expressions required for the asymptotic covariance,
and in Appendix C we provide for the readers convenience a simple multivariate
martingale central limit theorem.

2 The model

2.1 The continuous time model

2.1.1 The general setting

As in Barndorff-Nielsen and Shepard [BNS01], we assume that the price process of
an asset S is defined on some filtered probability space (Ω,F , (Ft)t≥0, P ) and is given
by St = S0 exp(Xt) with S0 > 0 a constant. The process of logarithmic returs X
and the instantaneous variance process V satisfy

dX(t) = (µ+ βV (t−))dt+
√
V (t−)dWθ(t) + ρdZλ(t), X(0) = 0. (2.1)

and
dV (t) = −λV (t−)dt+ dZλ(t), V (0) = V0, (2.2)

where the parameters µ, β, ρ and λ are real constants with λ > 0. The process W is
a standard Brownian motion, the process Z is an increasing Lévy process, and we
define Zλ(t) = Z(λt) for notational simplicity. Adopting the terminology introduced
by Barndorff-Nielsen and Shepard, we will refer to Z as the background driving Lévy
process (BDLP). The Brownian motion W and the BDLP Z are independent and
(Ft) is assumed to be the usual augmentation of the filtration generated by the pair
(W,Zλ). The random variable V0 has a self-decomposable distribution corresponding
to the BDLP such that the process V is strictly stationary and

E[V0] = ζ, Var[V0] = η. (2.3)

To shorten the notation we introduce the parameter vector

θ = (λ, ζ, η, µ, β, ρ)>, (2.4)

and the bivariate process
X = (X,V ). (2.5)

If the distribution of V0 is from a particular class D then X is called a BNS-DOU(θ)
model.

The process (Xt, Vt)t≥0 is clearly Markovian.
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2.1.2 The Γ-OU model

The Γ-OU model is obtained by constructing the BNS-model with stationary gamma
distribution, V0 ∼ Γ(ν, α), where the parameters are ν > 0 and α > 0. The
corresponding background driving Lévy process Z is a compound Poisson processes
with intensity ν and jumps from the exponential distribution with parameter α.
Consequently both processes Z and V have a finite number of jumps in any finite
time interval.

For the Γ-OU model it is more convenient to work with the parameters ν and α.
The connection to the generic parameters used in our general development is given
by

ζ =
ν

α
, η =

ν

α2
. (2.6)

As the gamma distribution admits exponential moments we have integer moments
of all orders and our Assumption 1 below is satisfied.

2.1.3 The IG-OU model

The IG-OU model is obtained by construction the BNS-model with stationary in-
verse Gaussian distribution, V0 ∼ (δ, γ), with parameters δ > 0 and γ > 0.

The corresponding background driving Lévy process is the sum of an IG(δ/2, γ)
process and an independent compound Poisson process with intensity δγ/2 and
jumps from an Γ(1/2, γ2/2) distribution. Consequently both processes Z and V
have infinitely many jumps in any finite time interval.

For the IG-OU model it is more convenient to work with the parameters δ and γ.
The connection to the generic parameters used in our general development is given
by

ζ =
δ

γ
, η =

δ

γ3
. (2.7)

As the inverse Gaussian distribution admits exponential moments we have integer
moments of all orders and our Assumption 1 below is satisfied.

2.2 Discrete observations

We observe returns and variance process on a discrete grid of points in time,

0 = t0 < t1 < · · · < tn. (2.8)

This implies

V (ti) = V (ti−1)e
−λ(ti−ti−1) +

∫ ti

ti−1

e−λ(ti−s)dZλ(s). (2.9)

Using

Vi := V (ti), Ui :=

∫ ti

ti−1

e−λ(ti−s)dZλ(s) (2.10)

we have that (Ui)i≥1 is a sequence of idependent random variables, and it is inde-
pendent of V0. If the grid is equidistant, then (Ui)i≥1 are iid. Observing the returns
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X on the grid we have

X(ti)−X(ti−1) = µ(ti − ti−1) + β(Y (ti)− Y (ti−1)

+

∫ ti

ti−1

√
V (s−)dW (s) + ρ(Zλ(ti)− Zλ(ti−1)). (2.11)

This suggests introducing the discrete time quantities

Xi = X(ti)−X(ti−1), Yi = Y (ti)− Y (ti−1), Zi = Zλ(ti)− Zλ(ti−1) (2.12)

and

Wi =
1√
Yi

∫ ti

ti−1

√
V (s−)dW (s). (2.13)

Furthermore, it is also convenient to introduce the discrete quantity

Si =
1

λ
(Zi − Ui). (2.14)

It is not difficult to see (conditioning!) that (Wi)i≥1 is an iid N(0, 1) sequence
independent from all other discrete quantities. We note also that (Ui, Zi)i≥1 is a
bivariate iid sequence, but Ui and Zi are obviously dependent.

From now on, for notational simplicity, we consider the equidistant grid with

tk = k∆, (2.15)

where ∆ > 0 is fixed. This implies

Vi = γVi−1 + Ui (2.16)

and

Yi = εVi−1 + Si, (2.17)

where

γ = e−λ∆, ε =
1− γ

λ
. (2.18)

Furthermore,

Xi = µ∆ + βYi +
√
YiWi + ρZi. (2.19)

The sequence (Xi, Vi)i≥0 is clearly Markovian. From now on we assume all moments
of the stationary distribution of V0 exist.

Assumption 1.

E[V n
0 ] <∞ ∀n ∈ N. (2.20)

In the estimating context we assume all moments are finite with respect to all
probability measures Pθ, θ ∈ Θ under consideration, where Θ is the parameter space.

No other assumtions are made, and all conditions required for consistency and
asymptotic normality of our estimator will be proven rigorously from that assump-
tion.

5



Proposition 1. We have for all n ∈ N that

E[Zn
1 ] <∞, E[Un

1 ] <∞, E[Sn1 ] <∞, (2.21)

and
E[Y n

1 ] <∞, E[W n
1 ] <∞, E[Xn

1 ] <∞. (2.22)

Consequently the expectation of any (multivariate) polynomial in Z1, U1, S1,
√
Y1,

W1, X1 exists under Pθ.

Proof. We will use repeatedly the well-know relation between the existent of mo-
ments and the differentiability of the characteristic function of a random variable,
see [CT97, Theorem 8.4.1, p.295f], for example.

Let φ(t) denote the characteristic function of V0. By assumption Eθ[V
n
0 ] <∞ for

all n ∈ N. Thus φ(t) is arbitrarily many times differentiable. The law of V0 is self-
decomposable, thus infinitely divisible and φ(t) 6= 0 for all t ∈ R. Thus the Fourier
cumulant function κ(t) = log φ(t) is arbitrarily many times differentiable. It follows
from [BNS01, equation (12)], that the characteristic function of Z(1) is ψ(t) =
exp(tκ′(t)). Thus ψ(t) is arbitrarily many times differentiable and consequently
E[Z(1)n] < ∞, for all n ∈ N. As Z is a Lévy process this implies E[Z(λ)n] < ∞,
and as Z1 = Z(λ) we have shown E[Zn

1 ] <∞, for all n ∈ N.
From (2.10) and (2.14) we have U1 ≤ Z1 and S1 ≤ λ−1Z1 so E[Un

1 ] < ∞
and E[Sn1 ] < ∞ for all n ∈ N. As W1 has a standard normal distribution it
follows trivially E[W n

1 ] < ∞ for all n ∈ N. Repeated application of the binomial
resp. multinomial theorem, the Hölder and the Cauchy-Schwarz inequalities yields
E[Y n

1 ] <∞ and E[Xn
1 ] <∞ for all n ∈ N, and the final conclusion for polynomials.

Let us remark that, by the stationarity, the above result holds also for Zi, Ui,
Si,

√
Yi, Wi, Xi instead of Z1, U1, S1,

√
Y1, W1, X1, where i ∈ N is arbitrary.

2.3 Some remarks

Most work on estimating function is developed for diffusions, see for example [Sø97,
Uch04b, Uch04a, DS04, MR03, KP02, Jac02, Jac01, Sør01, BS01, Kes00, KS99a,
Sør97, BS95], although it is often remarked that the results extend to Markov chains.
Yet the models under consideration here display several peculiarities.

One assumption that is made usually is that the transition probabilities under Pθ
have the same support for each θ. Typically the support of the conditional distribu-
tion of V1 in a BNS model given V0 = v is (ve−λ∆,+∞) under Pθ, thus depends on θ.
This does not affect our analysis. The experiment is not homogeneous, cf.[Str85].

If the BDLP is a compound Poisson process, as in the Γ−OU case, we have the
atom of the conditional distribution of V1 given V0 = v under Pθ at the parameter
dependent position ve−λ∆. Consequently no dominating measure exists and maxi-
mum likelihood cannot be defined in the usual way. There is an alternative definition
covering that case, cf. [KW56, Joh78], but we have not exploited that direction fur-
ther. See also [NS03]. This problem does not appear with an infinite activity BDLP
such as in the IG-OU model and standard maximum likelihood estimation could be
studied.
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The description given in sections 2.1 and 2.2 provides a BNS model for each θ,
but not a statistical experiment as it is taken as a starting point in section 3. The
reason is that the processes X and V will depend on θ. This can be avoided by
introducing statistical experiment generated by a BNS model. In analogy to the
statistical experiment generated by a diffusion, see [SS00]. This means we take the
distribution of X and V on the Skorohod space

(
D

2,B(D2)
)

under each Pθ as a
starting point.

3 The simple explicit estimator

3.1 The simple estimating equations and their explicit
solution

For estimation purposes we consider a probability space on which a parametrized
family of probability measures is given:(

Ω,F ,
{
Pθ : θ ∈ Θ

})
, (3.1)

where Θ = {θ ∈ R6 : θ1 > 0, θ2 > 0, θ3 > 0}. The data is generated under the true
probability measure Pθ0 with some θ0 ∈ Θ. The expectation with respect to Pθ is
denoted by Eθ[.] and with respect to Pθ0 simply by E[.].

We assume there is a process X that is BNS-DOU(θ) under Pθ. We want to find
an estimator for θ0 using observations X1, . . . , Xn, V1, . . . , Vn. We are interested in
asymptotics as n → ∞. To that purpose let us consider the following martingale
estimating functions:

G1
n(θ) =

∑n
k=1

[
Vk − f 1(Vk−1, θ)

]
, f1(v, θ) = Eθ[V1|V0 = v]

G2
n(θ) =

∑n
k=1

[
VkVk−1 − f 2(Vk−1, θ)

]
, f2(v, θ) = Eθ[V1V0|V0 = v]

G3
n(θ) =

∑n
k=1

[
V 2
k − f 3(Vk−1, θ)

]
, f3(v, θ) = Eθ[V

2
1 |V0 = v]

G4
n(θ) =

∑n
k=1

[
Xk − f 4(Vk−1, θ)

]
, f 4(v, θ) = Eθ[X1|V0 = v]

G5
n(θ) =

∑n
k=1

[
XkVk−1 − f 5(Vk−1, θ)

]
, f5(v, θ) = Eθ[X1V0|V0 = v]

G6
n(θ) =

∑n
k=1

[
XkVk − f 6(Vk−1, θ)

]
, f6(v, θ) = Eθ[X1V1|V0 = v]

(3.2)

Lemma 1. We have the explicit expressions

f 1(v, θ) = γv + (1− γ)ζ

f 2(v, θ) = γv2 + (1− γ)ζv

f 3(v, θ) = γ2v2 + 2γ(1− γ)ζv + (1− γ)2ζ2 + (1− γ2)η

f 4(v, θ) = βεv + µ∆ + β(1− ε)ζ + ρλζ

f 5(v, θ) = βεv2 + (µ∆ + β(1− ε)ζ + ρλζ)v

f 6(v, θ) = βεγv2 + ((µ∆ + β(1− ε)ζ + ρλζ)γ

+ βε(1− γ)ζ)v + (1− ε)(1− γ)ζ2 + ε2λη

(3.3)
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Proof. The formulas are special cases of the general moment calculations given in
the appendix. For demonstrating the basic idea we will prove the statements for
two special and simple cases here, namely for f 1(v, θ) and f 4(v, θ). From (2.16) it
follows that

Eθ[V1|V0 = v] = γv + Eθ[U1] (3.4)

and from the stationarity of V we have

Eθ[U1] = (1− γ)Eθ(V0) = (1− γ)ζ. (3.5)

Furthermore, from (2.19) and the fact that E[W1] = 0, it follows that

Eθ[X1|V0 = v] = µ∆ + βEθ[Y1|V0 = v] + ρEθ[Z1|V0 = v]. (3.6)

But, from (2.17) we have that

Eθ[Y1|V0 = v] = εv + 1
λ
Eθ[Z1 − U1] = εv + ζ(1− ε), (3.7)

and

Eθ[Z1] = λζ. (3.8)

So, from (3.6) it follows that

Eθ[X1|V0 = v] = µ∆ + βεv + β(1− ε)ζ + ρλζ. (3.9)

The estimator θ̂n is obtained by solving the estimating equation Gn(θ) = 0 and
it turns out that this equation has a simple explicit solution.

Proposition 2. The estimating equation Gn(θ̂n) = 0 admits for every n ≥ 2 on the
event

Cn =
{
ξ2
n − ξ1

nυ
1
n > 0, υ2

n − (υ1
n)

2 > 0
}

(3.10)

a unique solution θ̂n = (λn, ζn, ηn, βn, ρn, µn) that is given by

γn = (ξ2
n − ξ1

nυ
1
n)/(υ

2
n − (υ1

n)
2);

ζn = (ξ1
n − γnυ

1
n)/(1− γn);

ηn = ((ξ3
n − (ξ1

n)
2)− γ2

n(υ
2
n − (υ1

n)
2))/(1− γ2

n);

λn = − log(γn)/∆;

εn = (1− γn)/λn;

βn = (ξ5
n − υ1

nξ
4
n)/(εn(υ

2
n − (υ1

n)
2));

ρn = (ξ6
n − ξ4

nξ
1
n − βnεn(ηn(1− γn) + γn(υ

2
n − (υ1

n)
2)))/(2(1− γn)ηn);

µn = (ξ4
n − βnεn(υ

1
n − ζn))/∆− (βn + λnρn)ζn;

(3.11)
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where

ξ1
n =

1

n

n∑
i=1

Vi, ξ2
n =

1

n

n∑
i=1

ViVi−1, ξ3
n =

1

n

n∑
i=1

V 2
i ,

ξ4
n =

1

n

n∑
i=1

Xi, ξ5
n =

1

n

n∑
i=1

XiVi−1, ξ6
n =

1

n

n∑
i=1

XiVi,

(3.12)

and

υ1
n =

1

n

n∑
i=1

Vi−1, υ2
n =

1

n

n∑
i=1

V 2
i−1. (3.13)

Proof. The first three equations Gj
n(θ) = 0, for j = 1, 2, 3 contain only the unknowns

ζ, η, λ and are easily solved. In fact we get a familiar estimator for the first two
moments and the autocorrelation coefficient of an AR(1) process. The last three
equations Gj

n(θ) = 0, for j = 4, 5, 6 can be seen as a linear system for the unknowns
µ, β, ρ, once the other parameters have been determined.

Remark 1. The exceptional set Cn could be simplified to

C ′
n =

{
ξ2
n − ξ1

nυ
1
n > 0

}
(3.14)

Since the jump times and the jump size of the BDLP are independent, and the former
have an exponential distribution it follows that V0, . . . , Vn is with probability one not
constant, so P [υ2

n− (υ1
n)

2 > 0] = 1. But although it can be shown that the probability
of Cn tends to zero, for finite n we have P [ξ2

n − ξ1
nυ

1
n ≤ 0] > 0. This is the common

phenomenon that sample moments do not share all properties of their theoretical
counterparts. For definiteness we put θ̂n = 0 outside Cn.

3.2 Consistency

Let us investigate the consistency of the estimator from the previous section. First,
we will need the following lemma.

Lemma 2. For every k ≥ 1 and p > 0

V k
n

np
a.s.−→ 0 as n→∞. (3.15)

Proof. The random variables
{
Vn, n ≥ 1

}
are identically distributed and mk =

E[|V k
1 |] <∞ for all k ≥ 1. Thus we are in the situation of [Sto74, Exercise 2.1.2(i),

p.14].
Let k ≥ 1 and ε > 0 be arbitrarily chosen. Taking any integer α > 1/p and using

the Chebyshev inequality we obtain

∞∑
n=1

P

(∣∣∣∣V k
n

np

∣∣∣∣ > ε

)
≤

∞∑
n=1

E
∣∣V k
n |α

nαpεα
≤

∞∑
n=1

mkα

nαpεα
<∞. (3.16)

Therefore from the Borel-Cantelli lemma it follows that P
(
lim supn n

−p|V k
n | > ε

)
= 0.
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Lemma 3. We have for all k ∈ N that

1

n

n∑
i=1

V k
i

a.s.−→ E[V k
1 ], (3.17)

as n→∞.

Proof. We will prove this statement by induction.

(1) k = 1. Let define
Xi = Vi − E(Vi|Vi−1), i ≥ 1.

Obviously, (Xi, i ≥ 1) is a sequence of martingale differences and is therefore
uncorrelated. Using expressions (2.10) and (2.16) we obtain

E
[
X2
i

]
= E(V 2

i )− E
[
E(Vi|Vi−1)

2
]

= (1− γ2)E(V 2
0 )− 2γE(U1)E(V0) + E(U2

1 ),

so E
[
X2
i

]
have a common bound for every i ≥ 1. Since the assumptions of the

theorem 5.1.2 from Chung are satisfied, it follows that

1

n

n∑
i=1

Vi −
1

n

n∑
i=1

E(Vi|Vi−1)
a.s.−→ 0, as n→∞.

But using again the definition (2.16), the last expression is equivalent to

1− γ

n

n∑
i=1

Vi +
V0 − Vn

n
+ E(U1)

a.s.−→ 0, as n→∞.

Finally, using the result of the previous lemma, it follows that

1

n

n∑
i=1

Vi
a.s.−→ E(V0), as n→∞.

This completes the proof for k = 1.

(2) Suppose now that the statement of the theorem holds for l ≤ k − 1, i.e.
E(V k−1

1 ) <∞ and

1

n

n∑
i=1

V l
i

a.s.−→ E(V l
0 ), l ≤ k − 1 (3.18)

when n→∞. For k > 1, and for i ≥ 1, let

Xk
i := V k

i − E
[
V k
i |Vi−1

]
and Skn :=

n∑
i=1

Xk
i . (3.19)

Obviously, (Xk
i , i ≥ 1) is a sequence of martingale differences so it is specially

uncorrelated. Moreover, due to the strong stationarity of the volatility sequence
and relations (3.19) and (2.16) we obtain

E
[
Xk
i

]2
= E

[
V 2k
i − 2V k

i E[V k
i |Vi−1] + E[V k

i |Vi−1]
2
]

= E[V 2k
i ]− E

[
(E[V k

i |Vi−1])
2
]

≤ E[V 2k
1 ] =: ck, (3.20)
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ck denoting some constant that does not depend on i. Hence, by [Chu01, Theo-
rem 5.1.2, p.108], it follows that Skn

/
n

a.s.−→ 0 when n→∞, that in our case, due to

the definition of Skn, is equivalent to

1

n

n∑
i=1

V k
i −

1

n

n∑
i=1

E
[
V k
i |Vi−1

] a.s.−→ 0. (3.21)

Using again the definition (2.16) and the independency of Ui from Vi−1, for i ≥ 1,
we obtain

1

n

n∑
i=1

V k
i −

1

n

n∑
i=1

E
[
V k
i |Vi−1

]
=

1

n

n∑
i=1

V k
i −

1

n

n∑
i=1

k∑
j=0

(
k

j

)
γjV j

i−1E
[
Uk−j

1

]
=

1− γk

n

n∑
i=1

V k
i −

γk

n
(V k

0 − V k
n )−

k−1∑
j=0

(
k

j

)
E

[
Uk−j

1

]γj
n

n∑
i=1

V j
i−1.

Finally, applying the assumption of the induction, the lemma 2 and the statement
(3.21), we obtain

1

n

n∑
i=1

V k
i

a.s.−→ 1

1− γk

k−1∑
j=0

(
k

j

)
γjE

[
Uk−j

1

]
E(V j

0 ) = E(V k
1 ),

where the last equality follows calculating E(γV0 + U1)
k using (2.16).

In the next lemma we extend the strong law of large numbers for (V p
i , i ≥ 1) to

more general sequences.

Lemma 4. For all integers p, q, r ≥ 0 we have

1

n

n∑
i=1

Xp
i V

q
i V

r
i−1

a.s.−→ E
[
Xp

1V
q
1 V

r
0

]
(3.22)

as n→∞.

Proof. Let
Mi = Xp

i V
q
i V

r
i−1 − E

[
Xp
i V

q
i V

r
i−1|Vi−1

]
.

Obviously, (Mi, i ≥ 1) is a sequence of martingale differences, and in particular it
is uncorrelated. It is stationary and E[M2

1 ] < ∞. So we can use again [Chu01,
Theorem 5.12] to show

1

n

n∑
i=1

Xp
i V

q
i V

r
i−1 −

1

n

n∑
i=1

E
[
Xp
i V

q
i V

r
i−1|Vi−1

] a.s.−→ 0.

The conditional expectation E
[
Xp
i V

q
i V

r
i−1|Vi−1

]
is a polynomial in Vi−1, namely

E
[
Xp
i V

q
i V

r
i−1|Vi−1

]
=

p+q∑
k=0

φpqkV
k+r
i−1 .

11



This is shown in the section A.5 in the appendix where the coefficients φpqk are
explicitly calculated. Applying Lemma 3 yields

1

n

n∑
i=1

E
[
Xp
i V

q
i V

r
i−1|Vi−1

] a.s.−→
p+q∑
k=0

φpqkE[V k+r
0 ].

As we have

E[Xp
1V

q
1 V

r
0 ] = E[E[Xp

1V
q
1 V

r
0 |V0]] =

p+q∑
k=0

φpqkE[V k+r
0 ], (3.23)

the proof is completed.

Theorem 1. We have P (Cn) → 1 when n→∞ and the estimator θ̂n is consistent
on Cn, namely

θ̂n
a.s.−→ θ0

on Cn as n→∞.

Proof. Using the results of lemma 3 it easily follows that

ξ2
n − ξ1

nυ
1
n → Cov(V1, V0) > 0, (3.24)

so P (Cn) → 1 as n→∞.
Using again the results of lemma 3 it follows that the empirical moments in (3.12)

and (3.13) converge to their theoretical counterparts, ξin
a.s.−→ ξi and υin

a.s.−→ υi, where

ξ1 = ζ,
ξ2 = ζ2 + γη,
ξ3 = ζ2 + η,
ξ4 = µ+ (β + λρ)ζ,
ξ5 = µζ + (β + λρ)ζ2 + βεη,
ξ6 = µζ + (β + λρ)ζ2 + (β + 2ρλ)εη,

υ1 = ζ,
υ2 = ζ2 + η.

(3.25)

Plugging the limits into (3.11) shows, after a short mechanical calculation, that the
estimator is in fact consistent.

3.3 Asymptotic normality

For a concise vector notation we introduce

Ξk = (Vk, VkVk−1, V
2
k , Xk, XkVk−1, XkVk)

>, (3.26)

and write the estimating equations in the form

Gi
n(θ) =

n∑
k=1

[
Ξik − f i(Vk−1, θ)

]
, i = 1, . . . , 6 (3.27)

and f i(v, θ) given by (3.3). We write

f i(v, θ) =

pi+ri+qi∑
`=ri

φi`(θ)v
`. (3.28)

12



with

p = (0, 0, 0, 1, 1, 1), q = (1, 1, 1, 0, 0, 1), r = (0, 1, 0, 0, 1, 0) (3.29)

and

φ1
1(θ) = γ, φ1

0(θ) = (1− γ)ζ,

φ2
2(θ) = γ, φ2

1(θ) = (1− γ)ζ,

φ3
2(θ) = γ2, φ3

1(θ) = 2γ(1− γ)ζ,

φ3
0(θ) = (1− γ)2ζ2 + (1− γ2)η,

φ4
1(θ) = βε, φ4

0(θ) = µ+ β(1− ε)ζ + ρλζ,

φ5
2(θ) = βε, φ5

1(θ) = µ+ β(1− ε)ζ + ρλζ,

φ6
2(θ) = βεγ, φ6

1(θ) = ((µ+ β(1− ε)ζ + ρλζ)γ + βε(1− γ)ζ),

φ6
0(θ) = (1− ε)(1− γ)ζ2 + ε2λη.

(3.30)

We will use, that f i(v, θ) is a polynomial in v, and that its coefficients φ are smooth
functions in θ.

We shall first prove the central limit theorem for the estimating functions.

Proposition 3. We have

1√
n
Gn(θ0)

D−→ N(0,Υ), (3.31)

as n→∞, where
Υij = E

[
Cov(Ξi1,Ξ

j
1|V0)

]
. (3.32)

Proof. To show the above result, we use the multivariate martingale central limit
theorem, that is recapitulated in the appendix. To that purpose we introduce the
vector martingale difference array

χn,k =
1√
n

[
Ξik − f i(Vk−1, θ)

]
. (3.33)

We have to show the two assumptions from the previous theorem. First, we prove
a multivariate Lyapuonov condition which implies the Lindeberg condition. From
(3.33) it follows that

√
nχ

(j)
n,k is of the form p(V0, V1, X1) where p(v0, v1, x1) is a

polynomial in v0, v1, x1 which does not depend on n. Thus, n2‖χn,k‖4 has the same
property and from the explicit moment expression from the appendix it follows that

E
[
‖χn,k‖4|Fk−1

]
=

1

n2
q(Vk−1), (3.34)

where q(v0) is a polynomial in v0. From Lemma 3 it thus follows

1

n

n∑
k=1

q(Vk−1)
a.s.−→ E[q(V0)], (3.35)

where the expression on the righthand side exists and is finite. Thus the first con-
dition for the martingale central limit theorem is satisfied. For verifying the second

13



condition from the same theorem we consider the (i, j)−th element of the matrix
χn,kχ

>
n,k which is given by

1
n

(
Ξik − f i(Vk−1, θ)

)(
Ξjk − f j(Vk−1, θ)

)
. (3.36)

This is again a polynomial in Vk−1, Vk and Xk so by Lemma 4 it follows that

1

n

n∑
k=1

(
Ξik − f i(Vk−1, θ)

)(
Ξjk − f j(Vk−1, θ)

)
a.s.−→ E

[(
Ξik − f i(Vk−1, θ)

)(
Ξjk − f j(Vk−1, θ)

)]
(3.37)

as n→∞.

Remark 2. A systematic method to evaluate Υ is given in appendix A and the
resulting explicit expressions are listed in appendix B.

Lemma 5. We have
1√
n

[
ξn − ξ

] D−→ N(0,Σ), (3.38)

where
Σ = P−1Υ(P−1)> (3.39)

and
Pij = δij − φi1δ1j − φi2δ3j (3.40)

with δij denoting the Kronecker delta.

Proof. We can write
1√
n
Gn(θ0) = P

√
n(ξn − ξ) +Qn, (3.41)

with

Qi
n =

1√
n

[
φi1(Vn − V0) + φi2(V

2
n − V 2

0 )
]
. (3.42)

In view of lemma 2 above we see, that the remainder term Qn goes to zero in
probability as n → ∞. As P has determinant (1 − γ)2(1 + γ) > 0 it is invertible,
and we have

√
n(ξn − ξ) = P−1

(
1√
n
Gn(θ0)

)
+Rn (3.43)

with Rn = −P−1Qn going to zero in probability as n → ∞. The expression
P−1

(
n−1/2Gn(θ0)

)
is asymptotically normal with mean 0 and covariance matrix Σ.

An application of Slutsky’s Theorem proves the lemma.

Finally, we have all the ingredients for proving the following result.

Theorem 2. The estimator

θ̂n = (λn, ζn, ηn, βn, ρn, µn) (3.44)

is asymptotically normal, namely

√
n
[
θ̂n − θ0

] D−→ N(0, T ), (3.45)
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as n→∞, where
T = DΣDT (3.46)

and D is given in appendix B.

Proof. We observe from (3.11) that θ̂n = g(ξn, υn), where g is well defined and con-
tinuously differentiable in a neighborhood of (ξ, υ). Using the Taylor expansion in
the last two variables we have θ̂n = h(ξn) + Sn, where h is well defined and contin-
uously differentiable for in a neighborhood of ξ, and Sn goes to zero in probability
in view of lemma 2. Thus it can be neglected according to Slutsky’s Theorem. We
apply the delta method, see [Leh99] for example, and compute the Jacobian matrix
D with

Dij =
∂hi
∂xj

(ξ), i, j = 1, . . . , 6. (3.47)

A lengthy elementary calculation shows that the matrix has determinant

λ

2(1− γ)2γη3
,

thus it is invertible.

3.4 The simple estimator in a general framework

For comparison and the preparation to the study of optimal estimating functions
we would like to review our simple estimator in the general framework of [Sø99].
There the properties of the estimator are studied without exploiting the fact that
the estimating equation allows an explicit solution. We extend the theory in the
case of a bivariate Markov process. To do so we want to use Sørensen’s corollary 2.7
and below for asymptotic normality we want to use his Theorem 2.8. This requires
to show that his Condition 2.6 is satisfied which we will do now: For ease of notation
let us write the estimating function in the form

Gj
n(θ) =

n∑
i=1

αj(Vi−1; θ)
[
X
pj

i · V qj
i − φj

(
Vi−1; θ

)]
, j = 1, . . . , d (3.48)

where

θ ∈ Rd, φj(v; θ) =

pj+qj∑
l=0

φjl (θ) · v
l, αj(v; θ) = vrj . (3.49)

Let

J j,kn (θ(1), . . . , θ(d)) =
∂Gj

n(θ
(j))

∂θk
, k = 1, . . . , d (3.50)

and
Mα

n (θ̄) =
{
θ ∈ Θ : ‖θ − θ̄‖ ≤ α√

n

}
, α > 0. (3.51)

Proposition 4. The condition 2.6 of [Sø99] is satisfied, namely

(i) the mapping θ 7−→ Gn(θ) is twice continuously differentiable.

15



(ii) There exist a θ̄ ∈ int Θ and an invertible non-random d× d matrix A(θ̄) such
that

sup
θ(i)∈Mα

n (θ̄)

∥∥ 1
n
Jn(θ

(1), . . . , θ(d))− A(θ̄)
∥∥ → 0

in probability as n→∞ for all α > 0.

(iii) There exist d non-random d× d matrices Bi(θ̄), i = 1, . . . , d, such that

sup
θ(i)∈Mα

n (θ̄)

∥∥ 1
n
Q(i)
n (θ(1), . . . , θ(d))−Bi(θ̄)

∥∥ → 0

in probability as n → ∞ for all α > 0 and all i = 1, . . . , d, where Q(i)
n (θ) =

∂2
θG

i
n(θ).

(iv)

{
Gn(θ̄)

n
: n ∈ N

}
is stochastically bounded.

(v) sup
θ∈Mα

n (θ̄)

∥∥∥∥Gn(θ)

n

∥∥∥∥ → 0 in probability as n→∞ for all α > 0.

Proof. In our case the number of parameters is d = 6. From the definitions above it
immediately follows that the mapping

θ 7→ Gj
n(θ)

is twice continuously differentiable w.r.t. θ.
Let us consider the matrix Jn = (J j,kn ), j, k = 1, . . . , d componentwise. For k =
1, . . . , d let

αj,k(v; θ) =
∂αj(v; θ)

∂θk
, φj,k(v; θ) =

∂φj(v; θ)

∂θk
, j = 1, . . . , d, (3.52)

φj,kl (θ) =
∂φjl (θ)

∂θk
, φj,k,ll (θ) =

∂φj,kl (θ)

∂θl
, j = 1, . . . , d. (3.53)

Using the definitions of φj and φj,k we obtain

J j,kn (θ)

=
n∑
i=1

[
αj,k(Vi−1; θ)

[
X
pj

i V
qj
i − φj(Vi−1; θ)

]
− αj(Vi−1; θ)φ

j,k(Vi−1; θ)

]
=

n∑
i=1

αj,k(Vi−1; θ)
[
X
pj

i V
qj
i − φj(Vi−1; θ)

]
−

n∑
i=1

αj(Vi−1; θ)φ
j,k(Vi−1; θ)

=
n∑
i=1

αj,k(Vi−1; θ)
[
X
pj

i V
qj
i − φj(Vi−1; θ)

]
−

n∑
i=1

αj(Vi−1; θ)

pj+qj∑
l=0

φj,kl (θ)V l
i−1.

(3.54)

Let us define

Aj,k(θ̄) = −
pj+qj∑
l=0

φj,kl (θ̄)E
[
αj(V0; θ̄)V

l
0

]
. (3.55)
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Using the definitions of φj the just obtained expression for J j,kn and (3.55) we obtain

sup
θ(p)∈Mn(θ̄)

∣∣∣∣ 1nJ j,kn (θ(p))− Aj,k(θ̄)

∣∣∣∣
= sup

θ(p)∈Mn(θ̄)

∣∣∣∣ 1n
n∑
i=1

αj,k(Vi−1; θ
(p))

[
X
pj

i V
qj
i − φj(Vi−1; θ

(p))
]

− 1

n

n∑
i=1

αj(Vi−1; θ
(p))

pj+qj∑
l=0

φj,kl (θ(p))V l
i−1

+

pj+qj∑
l=0

φj,kl (θ̄)E
[
αj(V0; θ̄)V

l
0

]∣∣∣∣
≤ sup

θ(p)∈Mn(θ̄)

∣∣∣∣ 1n
n∑
i=1

αj,k(Vi−1; θ
(p))

[
X
pj

i V
qj
i − φj(Vi−1; θ

(p))
]∣∣∣∣

+ sup
θ(p)∈Mn(θ̄)

∣∣∣∣− 1

n

n∑
i=1

αj(Vi−1; θ
(p))

pj+qj∑
l=0

φj,kl (θ(p))V l
i−1

+

pj+qj∑
l=0

φj,kl (θ̄)E
[
αj(V0; θ̄)V

l
0

]∣∣∣∣. (3.56)

Adding and subtracting expressions

1

n

n∑
i=1

αj(Vi−1; θ̄)

pj+qj∑
l=0

φj,kl (θ(p))V l
i−1 and

1

n

n∑
i=1

αj(Vi−1; θ̄)

pj+qj∑
l=0

φj,kl (θ̄)V l
i−1

to (3.56) it follows that

sup
θ(p)∈Mn(θ̄)

∣∣∣∣ 1nJ j,kn (θ(p))− Aj,k(θ̄)

∣∣∣∣
≤ sup

θ(p)∈Mn(θ̄)

∣∣∣∣ 1n
n∑
i=1

αj,k(Vi−1; θ
(p))

[
X
pj

i V
qj
i − φj(Vi−1; θ

(p))
]∣∣∣∣

+ sup
θ(p)∈Mn(θ̄)

∣∣∣∣ 1n
n∑
i=1

[
αj(Vi−1; θ̄)− αj(Vi−1; θ

(p))
] pj+qj∑

l=0

φj,kl (θ(p))V l
i−1

∣∣∣∣
+ sup

θ(p)∈Mn(θ̄)

∣∣∣∣ pj+qj∑
l=0

[
φj,kl (θ̄)− φj,kl (θ(p))

] 1

n

n∑
i=1

αj(Vi−1; θ̄)V
l
i−1

+

pj+qj∑
l=0

φj,kl (θ̄)

[
E[αj(V0; θ̄)V

l
0 ]− 1

n

n∑
i=1

αj(Vi−1; θ̄)V
l
i−1

]∣∣∣∣. (3.57)

For ease of notation let

Kj,k
n (θ(p)) =

1

n

n∑
i=1

αj,k(Vi−1; θ
(p))

[
X
pj

i V
qj
i − φj(Vi−1; θ

(p))
]
. (3.58)
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Since a function belonging to C∞ is bounded on a compact set, using a definition of
the set Mn it follows that

sup
θ(p)∈Mn(θ̄)

∣∣∣∣ pj+qj∑
l=0

[
φj,kl (θ̄)− φj,kl (θ(p))

]∣∣∣∣
≤

pj+qj∑
l=0

sup
θ(p)∈Mn(θ̄)

d∑
m=1

sup
θ∗∈Mα

n (θ̄)

∣∣∣∣∂φj,kl
∂θ

(p)
m

(θ∗)

∣∣∣∣∣∣θ̄m − θ(p)
m

∣∣
≤

pj+qj∑
l=0

d∑
m=1

M
α√
n

=:
C1,j√
n
, (3.59)

where sup
θ∗∈Mα

n (θ̄)

∣∣∣∣∂φj,kl
∂θ

(p)
m

(θ∗)

∣∣∣∣ ≤M and C1,j = Mα(pj + qj)d.

Since α(v, θ) = 1 or α(v, θ) = v, using definition (3.58), from the relation (3.57)
it follows that

sup
θ(p)∈Mn(θ̄)

∣∣∣∣ 1nJ j,kn (θ(p))− Aj,k(θ̄)

∣∣∣∣
≤ sup

θ(p)∈Mn(θ̄)

∣∣Kj,k
n (θ(p))

∣∣ +
α√
n

[
sup

θ(p)∈Mn(θ̄)

∣∣∣∣ pj+qj∑
l=0

φj,kl (θ(p))

∣∣∣∣]∣∣∣∣ 1n
n∑
i=1

V l
i−1

∣∣∣∣
+
C1,j√
n

∣∣∣∣ 1n
n∑
i=1

αj(Vi−1; θ̄)V
l
i−1

∣∣∣∣
+

pj+qj∑
l=0

∣∣∣∣φj,kl (θ̄)

[
1

n

n∑
i=1

αj(Vi−1; θ̄)V
l
i−1 − E[αj(V0; θ̄)V

l
0 ]

]∣∣∣∣. (3.60)

Adding and subtracting expressions

1

n

n∑
i=1

αj,k(Vi−1; θ̄)
[
X
pj

i V
qj
i − φj(Vi−1; θ

(p))
]

and
1

n

n∑
i=1

[
αj,k(Vi−1; θ

(p))− αj,k(Vi−1; θ̄)
]
φj(Vi−1; θ̄)
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to Kj,k
n (θ(p)) in relation (3.60) and since functions αj,k(v, θ) = 0 or 1, we obtain

sup
θ(p)∈Mn(θ̄)

∣∣Kj,k
n (θ(p))

∣∣
≤ sup

θ(p)∈Mn(θ̄)

∣∣∣∣ 1n
n∑
i=1

[
αj,k(Vi−1; θ

(p))− αj,k(Vi−1; θ̄)
][
X
pj

i V
qj
i − φj(Vi−1; θ̄)

]∣∣∣∣
+ sup

θ(p)∈Mn(θ̄)

∣∣∣∣ 1n
n∑
i=1

[
αj,k(Vi−1; θ

(p))− αj,k(Vi−1; θ̄)
][
φj(Vi−1; θ̄)− φj(Vi−1; θ

(p))
]∣∣∣∣

+ sup
θ(p)∈Mn(θ̄)

∣∣∣∣ 1n
n∑
i=1

αj,k(Vi−1; θ̄)
[
φj(Vi−1; θ̄)− φj(Vi−1; θ

(p))
]∣∣∣∣

+

∣∣∣∣ 1n
n∑
i=1

αj,k(Vi−1; θ̄)
[
X
pj

i V
qj
i − φj(θ̄)

]∣∣∣∣
≤ α√

n

{∣∣∣∣ 1n
n∑
i=1

[
X
pj

i V
qj
i − φj(Vi−1; θ̄)

]∣∣∣∣
+ sup

θ(p)∈Mn(θ̄)

1

n

n∑
i=1

[
φj(Vi−1; θ̄)− φj(Vi−1; θ

(p))
]∣∣∣∣}

+ sup
θ(p)∈Mn(θ̄)

1

n

n∑
i=1

αj,k(Vi−1; θ̄)
[
φj(Vi−1; θ̄)− φj(Vi−1; θ

(p))
]

+

∣∣∣∣ 1n
n∑
i=1

αj,k(Vi−1; θ̄)
[
X
pj

i V
qj
i − φj(θ̄)

]∣∣∣∣. (3.61)

But again, for every i = 1, . . . n, we have

∣∣φj(Vi−1; θ̄)− φj(Vi−1; θ
(p))

∣∣ ≤ pj+qj∑
l=0

∣∣φjl (θ̄)− φjl (θ
(p))

∣∣V l
i−i

≤
pj+qj∑
l=0

d∑
m=1

sup
θ∗∈Mα

n (θ̄)

∣∣∣∣∂φj,kl
∂θ

(p)
m

(θ∗)

∣∣∣∣ · ∣∣θ(p)
m − θ̄m

∣∣V l
i−1

≤ C1,j√
n
V l
i−1, (3.62)

so from (3.61) using lemma 4 it follows that

sup
θ(p)∈Mn(θ̄)

∣∣Kj,k
n (θ(p))

∣∣ a.s.−→ 0 (3.63)

when n→∞. Applying the just obtained result into the expression (3.60) and using
again lemma 4, it follows that

sup
θ(p)∈Mn(θ̄)

∣∣ 1
n
J j,kn (θ(p))− Aj,k(θ̄)

∣∣ a.s.−→ 0 (3.64)

as n→∞. This proves the part (ii). Let

Qj,k,l
n (θ) =

∂J j,kn (θ)

∂θl
, l = 1, . . . , d. (3.65)
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From (3.65) it follows that we consider one higher order derivative of the function
Gn than in the matrix Jn. Let us denote

αj,k,l(v; θ) =
∂αj,k(v; θ)

∂θl
, l = 1, . . . , d. (3.66)

From (3.54) we have

Qj,k,l
n (θ) =

n∑
i=1

αj,k,l(Vi−1; θ)
[
X
pj

i V
qj
i − φj(Vi−1; θ)

]
−

n∑
i=1

αj,k(Vi−1; θ)φ
j,l(Vi−1; θ)

−
n∑
i=1

αj,l(Vi−1; θ)

pj+qj∑
m=0

φj,km (θ)V m
i−1 −

n∑
i=1

αj(Vi−1; θ)

pj+qj∑
m=0

φj,k,lm (θ)V m
i−1.

(3.67)

Let us define

Bj,k,l(θ) = −
pj+qj∑
m=0

{
φj,lm (θ)E

[
αj,k(V0; θ)V

m
0

]
+ φj,km E

[
αj,l(V0; θ)V

m
0 + φj,k,lm (θ)E

[
αj(V0; θ)V

m
0

]}
. (3.68)

Thus, the part (iii) can be proved following the lines of the proof of part (ii) consid-
ering φj,km , φ

j,k,l
m instead of φjm and φj,km , respectively and taking in consideration that

αj,k(v, θ) = 0 and αj,k,l(v, θ) = 0 since αj(v, θ) = 1 or v.
For arbitrary ε > 0 and Kε > 0 using the Chebyshev inequality and the station-

arity of the volatility process we have

P

[∣∣∣∣Gj
n(θ̄)√
n

∣∣∣∣ > Kε

]
≤
E

[
|Gj

n(θ̄)|2
]

nK2
ε

=

n∑
i=1

E
[
αj(Vi−1; θ)

2 · (Xpj

i V
qj
i − φj(Vi−1; θ))

2
]

nK2
ε

=
E

[
αj(V0; θ)

2
{
E[X

2pj

1 V
2qj
1 |V0]− φj(V0; θ)

2
}]

K2
ε

=
E

[
αj(V0; θ)

2
(
X

2pj

1 V
2qj
1 − φj(V0; θ)

2
)]

K2
ε

≤
E

[
αj(V0; θ)

2X
2pj

1 V
2qj
1

]
K2
ε

. (3.69)

Taking

K2
ε :=

E
[
αj(V0; θ)

2X
2pj

1 V
2qj
1

]
ε

it follows that for every ε > 0 exists a Kε > 0 such that

sup
n∈N

P

[∣∣∣∣Gj
n(θ̄)√
n

∣∣∣∣ > Kε

]
< ε,
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that proves the part (iv). Finally, using the just proven result, the definition of
Mα

n (θ̄) and (3.64), componentwise we have

sup
θ∈ Mα

n (θ̄)

∣∣ 1
n
Gj
n(θ)

∣∣ = sup
θ∈ Mα

n (θ̄)

∣∣ 1
n
Gj
n(θ̄) + 1

n
J j,kn (θ∗)(θ − θ̄)

∣∣
≤

∣∣ 1
n
Gj
n(θ̄)

∣∣ + sup
θ∗∈Mα

n (θ̄)

∣∣ 1
n
J j,kn (θ∗)

∣∣ sup
θ∈Mα

n (θ̄)

|θ − θ̄|

≤ 1√
n
Kε + sup

θ∗∈Mα
n (θ̄)

∣∣ 1
n
J j,kn (θ∗)

∣∣ α√
n
−→ 0

in probability as n→∞.

From our proposition 4 and corollary 2.7 from [Sø99] consistency of our estimator
follows.

We have shown the asymptotic normality of the estimating function in proposi-
tion 3. By Theorem 2.8 from [Sø99] and our Proposition 4 it follows that our estima-
tor is asymptotically normal. The covariance matrix equals T = A(θ̄)−1Υ(A(θ̄)−1)>.
In particular, A(θ̄) = −PD−1 which is a consequence of the implicit function theo-
rem.

4 Numerical illustrations

4.1 Description of the model and its parameter values

To illustrate the results from the previous sections numerically, we consider the
Γ-OU model from Section 2.1.2, where the variance V has a stationary gamma
distribution. We use as time unit one year consisting of 250 trading days. The true
parameters are

ν = 2.56, α = 64, λ = 256, β = −0.5, ρ = −0.1, µ = 1.2. (4.1)

The parameters imply that there are 2.6 jumps per day on the average, and the
jumps in the BDLP and in the volatility are exponentially distributed with mean
0.0156. The interpretation is, that typically every day two or three new pieces of
information arrive and make the variance process jump. The stationary mean of
the variance is 0.04, hence if we define instantaneous volatility to be the square root
of the variance, it will fluctuate around 20% in our example. The half-life of the
autocorrelation of returns is about half a day.

In our example annual log returns have (unconditional) mean 25.6% and a annual
volatility 20%. Figure 1 displays a simulation of one year of daily observations
from the background driving Lévy process, from the instantaneous variance process,
and log returns, or more precisely, simulated realizations of Zi, Vi, and Xi for i =
1, . . . , 250. In [Pos06] other scenarios are considered, for example, small jumps
arriving every minute, with fast decaying autocorrelation, or few jumps per year,
corresponding to exceptional new, with heavy impact on the variance process.
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Figure 1: Daily observations Zi, Vi, Xi.

4.2 The asymptotic covariance matrix of the estimator

As our goal is an analysis of the estimator, and not an empirical study, we do
not estimate the asymptotic covariance, but evaluate the explicit expression using
the true parameters. Denoting the vector of asymptotic standard deviations of the
estimates and the correlation matrix by s/

√
n resp. r we have

s =


4.86
125
650
7.36
253

0.526

 , r =


1 0.89 0.41 0.03 0.09 −0.02

0.89 1 0.4 0.03 0.09 −0.03
0.41 0.4 1 0.06 0.22 0
0.03 0.03 0.06 1 −0.75 0.06
0.09 0.09 0.22 −0.75 1 −0.57
−0.02 −0.03 0 0.06 −0.57 1

 (4.2)
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4.3 Distribution of the estimates

Figure 4.3 illustrates the empirical and asymptotic distribution of the simple estima-
tors for the Γ-OU model. The histograms are produced from m = 10000 replications
consiting of n = 8000 observations each, corresponding to 32 years with 250 daily
obervations per year.
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Figure 2: Empirical and asymptotic distribution of the simple estimators for the
Γ-OU model. The histograms are produced from m = 10000 replications consiting
of n = 8000 observations each, corresponding to 32 years with 250 daily obervations
per year. The true values are ν = 2.56, α = 64, λ = 256, µ = 1.2, β = −0.5,
ρ = −0.1. The standard deviations used for the normal curves are taken from the
explicit asymptotic results, not estimated.

We see from the graphs that in our illustration the parameters ν, α, λ, and µ
can be estimated quite accurately, in the sense that the usual confidence intervals
yield one or two significant digits at least. The estimate for ρ is not as accurate and
the accuracy for the estimate for β is unsatisfactory.
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The bad quality of the estimator for β is neither surprising nor very troublesome.
It has little impact on the model. The main reason for including the parameter β in
the specification of BNS models is, for derviatives pring: A risk-neutral BNS-model
must have β = −1/2. In most applications working under a physical probability
measure β = 0 can be assumed without much loss of generality or flexibility.

In ongoing work [HP06] we compare this asymptotic covariance with the covari-
ance of the optimal quadratic estimating function.

5 Further and alternative developments

5.1 Optimal quadratic estimating functions

Our choice of estimating functions is natural, but, mathematically speaking, some-
what arbitrary. In ongoing work [HP06] we show, that the optimal quadratic es-
timating function based on the moments of V1, X1, V

2
1 , V1X1, X

2
1 can be computed

explicitly, though the corresponding estimator has to be determined numerically.
Our simple estimator can be used as a starting point for an iterative root-finding
procedure. Consistency and asymptotic normality can be shown using the general
theory as presented in [Sø99] along the lines of the present paper, although the
expressions involved are slightly more complicated.

5.2 Using more integer or trigonometric moments for
better efficiency

More efficient estimators than provided by the optimal quadratic estimating function
can be obtained by incorporating further moments. As we have provided explicit
computations for arbitrary integer moments and conditional moments, our methods
can be extended to that situation. We might even have the number of moments tend
to infinity with the number of observations, and obtain an estimator that is asymp-
totically equivalent to the maximum likelihood estimator, when the latter exists
resp. can be defined, see 2.3. The reader might object, that very high moments are
not reliable for empirical investigations. BNS-models allow also explicit computation
of the characteristic function and thus of conditional and unconditional trigonomet-
ric moments E[ei(ξkV1+ψkX1)] and E[ei(ξkV1+ψkX1)|V0] for arbitrary constants ξk and
ψk, that could be used instead to construct estimating functions. See [AS02] for
diffusions, [Sch05] for Lévy type processes, and [Sin01] for affine models.

5.3 Intra-day observations

Our approach is based on the explicit calculation of conditional and unconditional
moments. Those calculations can be done for BNS-models on arbitrary time inter-
vals. Hence our analysis is not restricted to a fixed time grid with the number of
observation intervals tending to infinity, but could be performed also on a fixed hori-
zon, with the number of intra-day observations increasing to infinity. The resulting
estimators should then be compared to power-variation methods, cf. [Tod06].
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5.4 Comparison to the generalized method of moments

We would be interested in a comparison of our results to the related generalized
methods of moments. For a rigorous treatment of the latter, a precise specification
of the weighting matrix is required, see [HHY96] and the references therein.

5.5 Unobserved volatility and substitutes for volatility

Finally, perhaps the biggest issue is, that the instantaneous variance is not observed
in discrete time. In [Lin05] it is reported, that the number of trades is an excellent
substitute for statistical purposes. This is certainly a promising starting point for
an empirical analysis. For a theoretical analysis a joint model for the number prices
and number of trades has to be specified.

Another direction would be, to adapt the implied state method (IS-GMM) as
introduced in [Pan02] to our martingale estimating function approach: We replace
the unobserved Vi in the estimating equations by the model-implied variance Vi(θ)
that is obtained from option prices, assuming that the dynamics are governed by
BNS-models both under the physical probability measure Pθ0 and a risk-neutral
measure Pθ̃0 . The resulting estimating function will not be a martingale estimating
function any more, and the bias has to be accounted for in a rigorous analysis.
Nevertheless, in view of the results of [Pan02], we are optimistic, that consistency
and asymptotic normality will hold also here.

A Explicit moment calculations

This section is about computing explicitly E[Xn
1 V

m
1 |V0 = 0] and E[Xn

1 V
m
1 ]. All

moments below will be given in terms of the cumulants of the stationary distribution,
denoted by Kn. We set

ζ = K1, η = K2. (A.1)

If the stationary distribution is determined by the two parameters ζ and η the higher
cumulants are obviously functions of ζ and η, but the formulae hold in more general
cases.

The calculations exploit the analytical tractability of the BNS-model, namely
conditional Gaussianity of the logarithmic returns X and the linear structure of the
OU-type process V . From that it follows, and it is well-known, that univariate and
multivariate cumulants can be computed easily. It remains to transform multivari-
ate cumulants to multivariate moments, again a topic that is well-understood, and
explicit expressions involve the multivariate Faa di Bruno formula, multivariate Bell
polynomials and integer partitions, see for example [McC87].

We have chosen to use simple recursions, that are easy to implement on a com-
puter algebra system, in particular, since the expression, though completely explicit
and elementary, are rather lengthy when it comes to evaluating moments of order
four for the asymptotic covariance matrix. For the readers convenience, we give the
details in this appendix.
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A.1 Preliminaries

Let us recaptiulate the variables and notation from section 2.2, that is required in
the following calculations. We use

γ = e−λ∆, ε =
1− e−λ∆

λ
. (A.2)

We have

V1 = γV0 + U1, Y1 = εV0 + S1 (A.3)

where

U1 =

∫ ∆

0

e−λ(∆−s)dZλs, S1 =

∫ ∆

0

λ−1(1− e−λ(∆−s))dZλs. (A.4)

Note, that we have the simpler formula S1 = (Z1 − U1)/λ, but the integral above is
sometimes notationally more convenient. We have

X1 = A1 +
√
Y1W1, A1 = µ∆ + βY1 + ρZ1. (A.5)

A.2 Stationary moments

We use the well-known recursion to compute moments from cumulants

E[V n
0 ] = δn0 +

n−1∑
i=0

(
n− 1

i

)
Ki+1E[V n−1−i

0 ]. (A.6)

Alternatively we have E[V n
0 ] = Yn(K1, . . . , Kn), where Yn(x1, . . . , xn) denotes the

complete Bell polynomials. Explicit non-recursive expressions can be given, but we
do not use them.

A.3 Trivariate cumulants

From the key formula for Wiener-type integrals with Lévy process integrator, it
follows that the joint cumulants of (S1, U1, Z1) are given by

Knm` = λεnm(n+m+ `)Kn+m+`, (A.7)

with

εij =


λ−i

(
1 +

i∑
k=1

(
i

k

)
(−1)k

1− γk

kλ

)
j = 0

λ−i
(

1− γj

jλ
+

i∑
k=1

(
i

k

)
(−1)k

1− γk

kλ

)
j > 0

(A.8)
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A.4 Trivariate Moments

Trivariate moments can be computed recursively from trivariate cumulants

E[Sn1U
m
1 Z

`
1] =

n−1∑
i=0

m∑
j=0

∑̀
k=0

(
n− 1

i

)(
m

j

)(
`

k

)
Ki+1,j,kE[Sn−1−i

1 Um−j
1 Z`−k

1 ] (A.9)

E[Sn1U
m
1 Z

`
1] =

n∑
i=0

m−1∑
j=0

∑̀
k=0

(
n

i

)(
m− 1

j

)(
`

k

)
Ki,j+1,kE[Sn−i1 Um−1−j

1 Z`−k
1 ] (A.10)

E[Sn1U
m
1 Z

`
1] =

n∑
i=0

m∑
j=0

`−1∑
k=0

(
n

i

)(
m

j

)(
`− 1

k

)
Ki,j,k+1E[Sn−i1 Um−j

1 Z`−1−k
1 ] (A.11)

Alternatively, we can express E[Sn1U
m
1 Z

`
1] as trivariate complete Bell polynomials

Ynm` evaluated at the trivariate cumulants of S1, U1, Z1, and explicit non-recursive
expressions are available, but not very useful for us.

A.5 Some conditional expectations

Using (A.3) gives

E[Y n
1 V

m
1 Z`

1|V0 = v] =
n∑
i=0

m∑
j=0

(
n

i

)(
m

j

)
εiγjE[Sn−i1 Um−j

1 Z`
1] · vi+j (A.12)

Collection powers of v gives

E[Y n
1 V

m
1 Z`

1|V0 = v] =
n+m∑
k=0

ξnm`kv
k (A.13)

with

ξnm`k =
m∧k∑
j=0

(
n

k − j

)(
m

j

)
εk−jγjE[Sn−k+j1 Um−j

1 Z`
1] (A.14)

Then using (A.5) and conditioning gives

E[An1Y
m
1 V `

1 |V0 = v] =
n∑
i=0

n−i∑
j=0

(
n

i

)(
n− i

j

)
βiρjµn−i−jE[Y m+i

1 V `
1Z

j
1 |V0 = v] (A.15)

Collecting powers of v gives

E[An1Y
m
1 V `

1 |V0 = v] =
n+m+`∑
k=0

ψnm`kv
k (A.16)

with

ψnm`k =
n∑

i=(k−m−l)+

n−i∑
j=0

(
n

i

)(
n− i

j

)
βiρjµn−i−jξm+i,`,j,k (A.17)
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Finally using (A.5) and the Gaussian moments gives

E[Xn
1 V

m
1 |V0 = v] =

bn/2c∑
i=0

(
n

2i

)
(2i)!

2ii!
E[An−2i

1 Y i
1V

m
1 |V0 = v] (A.18)

Collecting powers of v gives

E[Xn
1 V

m
1 |V0 = v] =

n+m∑
k=0

φnmkv
k (A.19)

with

φnmk =

(n+m−k)∧bn
2
c∑

i=0

(
n

2i

)
(2i)!

2ii!
ψn−2i,i,m,k (A.20)

It follows from the calculations above that φnmk are polynomials in γ, ε, µ, β, ρ.

A.6 Some unconditional expectations

The same structure pertains for the unconditional expectations,

E[Y n
1 V

m
1 Z`

1] =
n∑
i=0

m∑
j=0

(
n

i

)(
m

j

)
εiγjE[Sn−i1 Um−j

1 Z`
1]E[V i+j

0 ] (A.21)

then

E[An1Y
m
1 V `

1 ] =
n∑
i=0

n−i∑
j=0

(
n

i

)(
n− i

j

)
βiρjµn−i−jE[Y m+i

1 V `
1Z

j
1 ] (A.22)

and finally

E[Xn
1 V

m
1 ] =

bn/2c∑
i=0

(
n

2i

)
(2i)!

2ii!
E[An−2i

1 Y i
1V

m
1 ]. (A.23)

B Tables with explicit expressions

B.1 The matrix Υ

Let κ3 and κ4 denote the third and the fourth cumulant of the stationary distribution
of V0. We recall that the first and second cumulants are the parameters ζ and η. If
the distribution is determined by those parameters then κ3 and κ4 will be functions
of ζ and η. In particular, for the Γ-OU model we have

κ3 =
2η2

ζ
, κ4 =

6η3

ζ2
. (B.1)

Using those cumulants we obtain for the matrix Υ the entries given below.
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Υ11 = η − γ2η

Υ12 = −
(
γ2 − 1

)
ζη

Υ13 = − 2
(
γ2 − 1

)
ζη −

(
γ3 − 1

)
κ3

Υ14 =
γ − 1

λ
η
(
β(γ − 1)− 2λρ

)
Υ15 =

γ − 1

λ
ζη

(
β(γ − 1)− 2λρ

)
Υ16 = − γ − 1

2λ

[
2η

(
βζ

(
γ2 + (ελ+ λ− 1)γ + (ε+ 1)λ

)
+ λ ((γ + 1)µ+ ζ(γλ+ λ+ 2)ρ)

)
+

(
β(−2γ2 + γ + 1) + 3(γ + 1)λρ

)
κ3

]
Υ22 = −

(
γ2 − 1

)
η

(
ζ2 + η

)
Υ23 =

(
ζ − γ3ζ

)
κ3 − 2

(
γ2 − 1

)
η

(
ζ2 + γη

)
Υ24 =

γ − 1

λ
ζη

(
β(γ − 1)− 2λρ

)
Υ25 =

γ − 1

λ
η

(
ζ2 + η

)
(β(γ − 1)− 2λρ)

Υ26 = − γ − 1

2λ

[
2η

{
β
((
ζ2 − η

)
γ2 +

(
(ελ+ λ− 1)ζ2 + η + εηλ

)
γ

+
(
(ε+ 1)ζ2 + εη

)
λ
)

+ λ
(
(γλ+ λ+ 2)ρζ2 + (γ + 1)µζ + 2γηρ

)}
+ ζ

(
β

(
−2γ2 + γ + 1

)
+ 3(γ + 1)λρ

)
κ3

]
Υ33 = − 4

(
γ3 − 1

)
ζκ3 −

(
γ2 − 1

) (
2η

(
ηγ2 + 2ζ2 + η

)
+

(
γ2 + 1

)
κ4

)
Υ34 =

γ − 1

2λ

[
4ζη(β(γ − 1)− 2λρ) +

(
β

(
2γ2 − γ − 1

)
− 3(γ + 1)λρ

)
κ3

]
Υ35 =

γ − 1

2λ

[
4η

(
ζ2 + γη

)
(β(γ − 1)− 2λρ)

+ ζ
(
β

(
2γ2 − γ − 1

)
− 3(γ + 1)λρ

)
κ3

]
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Υ36 = − γ − 1

6λ

[
3
(
βζ

{
2γ3 + 2(ελ+ λ− 3)γ2

+ (2(ε+ 1)λ+ 3)γ + 2(ε+ 1)λ+ 1
}

+ λ
{

2
(
γ2 + γ + 1

)
µ

+ ζ
(
2λγ2 + (2λ+ 9)γ + 2λ+ 9

)
ρ
})
κ3

+ 2
(
6η

{
β
((
ζ2 + εηλ

)
γ2

+
(
(ελ+ λ− 1)ζ2 + η(ελ− 1)

)
γ

+ η + (ε+ 1)ζ2λ
)

+ λ
(
(γλ+ λ+ 2)ρζ2 + (γ + 1)µζ + 2ηρ

)}
+

(
β

(
−3γ3 + γ2 + γ + 1

)
+ 4

(
γ2 + γ + 1

)
λρ

)
κ4

)]
Υ44 =

1

λ2

[
−η

(
γ2 − 4γ − 2λ+ 3

)
β2 + 4ηλ(γ + λ− 1)ρβ

+ λ
(
2ηλ2ρ2 + ζ(γ + ελ+ λ− 1)

)]
Υ45 =

1

λ2

[
−ζη

(
γ2 − 4γ − 2λ+ 3

)
β2 + 4ζηλ(γ + λ− 1)ρβ

+ λ
(
(γ + ελ+ λ− 1)ζ2 + 2ηλ2ρ2ζ + εηλ

)]
Υ46 =

1

λ2

[
ζη

(
γ3 + (ελ+ λ− 4)γ2 + (7− 2(ε+ 1)λ)γ + (ε+ 3)λ− 4

)
β2

+ ηλ
{
µ(γ − 1)2 + ζ

(
(λ− 2)γ2 − 2((ε+ 2)λ− 4)γ + 2ελ+ 7λ− 6

)
ρ
}
β

+ λ
{

(γ + ελ+ λ− 1)ζ2 − 2(γ − 2)ηλ2ρ2ζ

+ η
(
γ2 + (ελ− 2µρλ− 2)γ + 2λµρ+ 1

)}
− (γ − 1)

(
β2(γ − 1)2 − 3βλρ(γ − 1) + 3λ2ρ2

)
κ3

]
Υ55 =

1

λ2

[(
ζ2 + η

){
−η

(
γ2 − 4γ − 2λ+ 3

)
β2 + 4ηλ(γ + λ− 1)ρβ

+ λ
(
2ηλ2ρ2 + ζ(γ + λ− 1)

)}]
+ ε

(
ζ3 + 3ηζ + κ3

)
Υ56 =

1

λ2

[
η
{(
γ3 + (ελ+ λ− 4)γ2 + (7− 2(ε+ 1)λ)γ + (ε+ 3)λ− 4

)
ζ2

+ η
(
−γ3 + (ελ+ 4)γ2 + (−2(ε− 1)λ− 3)γ + ελ

)}
β2

+ ηλ
{
ζµ(γ − 1)2 + 2η

(
2γ2 − ((ε− 2)λ+ 2)γ + ελ

)
ρ

Υ56 continues
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+ ζ2
(
(λ− 2)γ2 − 2((ε+ 2)λ− 4)γ + 2ελ+ 7λ− 6

)
ρ
}
β

+ λ
{

(γ + ελ+ λ− 1)ζ3 − 2(γ − 2)ηλ2ρ2ζ2

+ η
(
2γ2 + (2ελ− 2µρλ+ λ− 3)γ + ελ+ 2λµρ+ 1

)
ζ + 2γη2λ2ρ2

}
+

{
−β2ζ(γ − 1)3 + 3βζλρ(γ − 1)2 + λ2

(
3ζρ2 + γ

(
ε− 3ζρ2

))}
κ3

]
Υ66 =

1

6λ2

[
3
{

2β2ζ
(
2γ2 + (2(ε+ 1)λ− 3)γ + ελ+ λ+ 1

)
(γ − 1)2

+ 2βλ
[(

2γ2 − γ − 1
)
µ+ ζ

(
(2λ− 3)γ2 + (−3ελ− 4λ+ 6)γ

− 3ελ− 4λ− 3
)
ρ
]
(γ − 1)

+ λ
(
2γ3 +

(
−6ζλ2ρ2 − 6λµρ+ 2ελ− 3

)
γ2

− 12ζλρ2γ + 6ζλ2ρ2 + 6λρ(µ+ 2ζρ) + 1
) }

κ3

− 2
{

3
[
η
(
ζ2

{
γ4 + 2(ελ+ λ− 2)γ3 +

(
(ε+ 1)2λ2 − 4(ε+ 1)λ+ 7

)
γ2

+ 2(ελ+ λ− 4)γ − (ε+ 1)2λ2 − 2λ+ 4
}

− η
{
γ4 + 2(ελ− 2)γ3 −

(
ε2λ2 + 4ελ− 5

)
γ2

+ 2ελγ + ε2λ2 + 2λ− 2
})
β2

+ 2ηλ
{(
λρζ2 + µζ + 2ηρ

)
γ3

+
((

(ε+ 1)λ2 − 2λ+ 2
)
ρζ2 + (ελ+ λ− 2)µζ

+ 2η(ελ− 3)ρ
)
γ2

+
(
(2ελ+ 3λ− 6)ρζ2 + µζ − 2η(ελ− 2)ρ

)
γ

− (ε+ 1)ζλµ− 2ηλρ− ζ2
(
(ε+ 1)λ2 + 2(ε+ 2)λ− 4

)
ρ
}
β

+ λ
{
−(γ + ελ+ λ− 1)ζ3 + ηλ2

(
λγ2 + 4γ − λ− 6

)
ρ2ζ2

− η
((

2− 2λ2µρ
)
γ2 + (2ελ− 4µρλ− 3)γ + 2λ2µρ

+ λ(ε+ 4µρ+ 1) + 1
)
ζ

− ηλ
(
2η

(
2γ2 − 4γ + λ+ 2

)
ρ2 −

(
γ2 − 1

)
µ2

)} ]
+ (γ − 1)

(
β2(3γ + 1)(γ − 1)2 + 6(γ + 1)λ2ρ2

+ 4β
(
−2γ2 + γ + 1

)
λρ

)
κ4} ]
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B.2 The Jacobian D

D1,1 =
2
(
−1 + eλ

)
ζ

η

D1,2 = − eλ

η

D1,3 =
1

η

D1,4 = 0

D1,5 = 0

D1,6 = 0

D2,1 = 1

D2,2 = 0

D2,3 = 0

D2,4 = 0

D2,5 = 0

D2,6 = 0

D3,1 = − 2ζ

D3,2 = 0

D3,3 = 1

D3,4 = 0

D3,5 = 0

D3,6 = 0

D4,1 =
βζ

(
−eλ (λ2 + 4) + 2e2λ + 2

)
− eλλ2(µ+ ζλρ)

(−1 + eλ) ηλ

D4,2 = −
eλβ

(
−λ+ eλ − 1

)
(−1 + eλ) ηλ

D4,3 =
−eλβ + eλλβ + β

ηλ− eληλ

D4,4 =
eλζλ

η − eλη

D4,5 =
eλλ

(−1 + eλ) η

D4,6 = 0

D5,1 = 0

D5,2 =
eλρ

(−1 + eλ) η

D5,3 =
eλρ

η − eλη
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D5,4 = 0

D5,5 =
eλ

2η − 2eλη

D5,6 = − eλ

2η − 2eλη

D6,1 =
1

(−1 + eλ) ηλ

[
β
(
ζ2

(
eλ

(
λ2 + 4

)
− 2e2λ − 2

)
−

(
−1 + eλ

)
ηλ

)
+ λ

(
−2e2λρζ2 − 2ρζ2 + ηλρ

+ eλ
((
λ2 + 4

)
ρζ2 + λµζ − ηλρ

))]
D6,2 =

eλζ
(
−λ+ eλ − 1

)
(β + λρ)

(−1 + eλ) ηλ

D6,3 =
ζ

(
eλ(λ− 1) + 1

)
(β + λρ)

(−1 + eλ) ηλ

D6,4 =
eλλζ2 +

(
−1 + eλ

)
η

(−1 + eλ) η

D6,5 =
eλζλ

2η − 2eλη

D6,6 =
eλζλ

2η − 2eλη

C The simple multivariate martingale central

limit theorem

The following simple version of a multivariate martingale central limit theorem is
certainly well-known or obvious for experts, some references are [CP05, KS99b,
vZ00].

However, when looking for references, we found statments that do not exactly
apply, or that are much more general (continuous time, random normalizations, . . . ).
It turned out that the elementary proof below is shorter, than an attempt to verify
the assumtions and deduce the result from a more ’advanced’ theorem. Yet, any
concrete and precise hint for an appropriate reference would be most welcome to the
authors.

Theorem 3. Suppose (Xn,k) is a martingale difference array such that for every
ε > 0

n∑
k=1

E
[
‖Xn,k‖2

1{‖Xn,k‖>ε}|Fk−1

] P−→ 0 (C.1)

and
n∑
k=1

[
Xn,kX

>
n,k|Fk−1

] P−→ Υ (C.2)
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as n→∞. Then
n∑
k=1

Xn,k
D−→ N(0,Υ). (C.3)

Proof. We will use the Cramer-Wald device. For β ∈ Rd, β 6= 0, let us define a
random variable

Yn,k = β>Xn,k. (C.4)

Then we have

n∑
k=1

E
[
Y 2
n,k|Fk−1

]
=

n∑
k=1

E
[
(β>Xn,k)(X

>
n,kβ)|Fk−1|

]
= β>

n∑
k=1

E
[
Xn,kX

>
n,k|Fk−1]β. (C.5)

From assumption (C.2) it follows that the expression (C.5) converges to β>Υβ and
thus

n∑
k=1

E
[
Y 2
n,k|Fk−1

]
→ β>Υβ (C.6)

as n→∞. Furthermore, it holds∣∣β>Xn,k| ≤ ‖β‖ · ‖Xn,k‖. (C.7)

Thus, for an arbitrarily ε > 0 we have

0 ≤
n∑
k=1

E
[
Y 2
n,k1{|Yn,k|>ε}|Fk−1

]
=

n∑
k=1

E
[
(β>Xn,k)

2
1{|β>Xn,k|>ε}|Fk−1

]
≤ ‖β‖2

n∑
k=1

E
[
‖Xn,k‖2

1{|β>Xn,k|>ε}|Fk−1

]
. (C.8)

Since for β 6= 0 the condition |β>Xn,k| > ε implies

‖Xn,k‖ ≥ ‖β‖−1|β>Xn,k| > ‖β‖−1ε, (C.9)

it follows that
1{|β>Xn,k|>ε} ≤ 1{‖Xn,k‖>‖β‖−1ε} (C.10)

and thus using the assumption (C.1), from (C.8) it follows that

n∑
k=1

E
[
Y 2
n,k1{|Yn,k|>ε}|Fk−1

] P−→ 0 (C.11)

as n→∞. Now, the statement follows from the univariate martingale central limit
theorem from [HH80].
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Lemma 6. The conditional Lyapounov condition implies the conditional Lindeberg
condition, namely, if

n∑
k=1

E
[
‖Xn,k‖4|Fk−1

]
−→ 0 (C.12)

then
n∑
k=1

E
[
‖Xn,k‖2

1{‖Xn,k‖>ε}|Fk−1

]
−→ 0 (C.13)

as n→∞.

Proof. For every ε > 0 we have

n∑
k=1

E
[
‖Xn,k‖4|Fk−1

]
=

n∑
k=1

E
[
‖Xn,k‖4

1{‖Xn,k‖>ε}|Fk−1

]
+

n∑
k=1

E
[
‖Xn,k‖4

1{‖Xn,k‖≤ε}|Fk−1

]
≥ ε2

n∑
k=1

E
[
‖Xn,k‖2

1{‖Xn,k‖>ε}|Fk−1

]
, (C.14)

since
n∑
k=1

E
[
‖Xn,k‖4

1{‖Xn,k‖≤ε}|Fk−1

]
≥ 0.

From assumption (C.12) the statement follows.
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