
07

THIELE CENTRE
for applied mathematics in natural science

THIELE CENTRE
for applied mathematics in natural science

A rotational integral formula for intrinsic volumes

Eva B. Vedel Jensen and Jan Rataj

ISSN 1398-2699

www.thiele.au.dk

The T.N. Thiele Centre
Department of Mathematical Sciences
University of Aarhus

Ny Munkegade Building 1530
8000 Aarhus C
Denmark

Phone +45 89 42 35 15
Fax +45 86 13 17 69
Email thiele@imf.au.dk Research Report No. 06 May 2007



A rotational integral formula for
intrinsic volumes

This Thiele Research Report is also Research Report number 493 in
the Stochastics Series at Department of Mathematical Sciences,
University of Aarhus, Denmark.





A rotational integral formula for intrinsic volumes

Eva B. Vedel Jensen1, Jan Rataj2

1. The T.N. Thiele Centre for Applied Mathematics in Natural Science
Department of Mathematical Sciences, University of Aarhus
Ny Munkegade, DK-8000 Aarhus C, Denmark

2. Charles University, Faculty of Mathematics and Physics
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Summary

A rotational version of the famous Crofton formula is derived. The motivation
for deriving the formula comes from local stereology, a new branch of stereology
based on sections through fixed reference points. The formula shows how rotational
averages of intrinsic volumes measured on sections passing through fixed points are
related to the geometry of the sectioned object. In particular it is shown how certain
weighting factors, appearing in the rotational integral formula, can be expressed in
terms of hypergeometric functions. Close connections to geometric tomography will
be pointed out. Applications to stereological particle analysis are discussed.
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1 Introduction

Classical stereology makes it possible to obtain information about quantitative
properties of a spatial structure from randomly positioned and orientated sections
through the structure. The same stereological methods apply for arbitrarily posi-
tioned and orientated sections if the spatial structure is translation and rotation
invariant. Up-to-date monographs on stereology are Baddeley and Jensen [3] and
Beneš and Rataj [4].

Prompted by advances in microscopic sampling and measurement techniques,
a new branch of stereology, local stereology, has been developed during the last
decades, cf. [5, 11, 17, 18, 22, 27, 29]. The microscopic techniques involve optical
sectioning by means of which virtual sections can be generated through a reference
point of the structure. A typical example is optical sectioning of a biological cell
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through its nucleus. A technical advantage of such sectioning of biological mate-
rial is that the boundary of a central section is much more clearly seen than the
boundary of a periferal section. More importantly, central sections carry more in-
formation about the structure than arbitrary sections. The main field of application
of local stereology is in quantitative analysis of cell populations. The local meth-
ods do not require specific assumptions of the shape of the cells which is a great
advantage in practice. Local stereology is by now recognized as being very powerful
in biomedicine, especially in neuroscience and cancer grading. Recent important
examples of applications are [1, 12, 13].

In local stereology, geometric identities involving sections through a fixed point
are used. A geometric identity has the following general form∫

α(X ∩ L)dL = β(X),

where α and β are geometrical quantities (volume, surface area or, more generally,
intrinsic volumes), X is the spatial object of interest, L is the probe (line, plane,
grid of parallel lines, linear subspace, affine subspace) and dL is ‘uniform integra-
tion’ over positions of L (integration with respect to a measure invariant under
a certain group action). In local stereology, we focus on geometric identities for
j−dimensional planes Lj in Rd passing through O (Lj is a j−dimensional linear
subspace in Rd, called a j−subspace in the following). The mathematical founda-
tion of local stereology has been developed in [15]. It should be noted that local
stereology is closely related to geometric tomography, especially to central concepts
of the dual Brunn-Minkowski theory, as pointed out in [10], see also [8]. In geometric
tomography, α(X ∩ L) is called a section function for particular choices of α.

A number of geometric identities have been developed in local stereology, in-
cluding a generalized Blaschke-Petkantschin formula [16], a slice formula [19], a
geometric identity for surface area [14] and a vertical section formula [4]. Affine
versions of the vertical section formula and the generalized Blaschke-Petkantschin
formula appeared already in Baddeley [2] and Zähle [31], respectively. A review of
these geometric identities has recently been given in [21].

To the best of our knowledge a geometric identity involving rotational averages
of general intrinsic volumes is not yet available. In the present paper, we derive such
a geometric identity. Recall that for a subset X of Rd, satisfying certain regularity,
we can define d + 1 intrinsic volumes Vk(X), k = 0, . . . , d. For d=2 and 3, the
intrinsic volumes have the following interpretations, cf. e.g. [3],

d = 2 : V2(X) = A(X) area

2V1(X) = L(X) boundary length

V0(X) = χ(X) Euler-Poincaré characteristic

d = 3 : V3(X) = V (X) volume

2V2(X) = S(X) surface area

πV1(X) = M(X) integral of mean curvature

V0(X) = χ(X) Euler-Poincaré characteristic

The formula to be derived in the present paper shows how the rotational average
of intrinsic volumes relates to principal curvatures and their corresponding principal
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directions of the original spatial structure. The formula can be regarded as a rota-
tional version of the classical Crofton formula, relating integrals of intrinsic volumes
defined on j−dimensional affine subspaces to intrinsic volumes of the original set X,∫

Fd
j

Vk(X ∩ Fj)dF d
j = cd,j,kVd−j+k(X), (1)

j = 0, 1, . . . , d, k = 0, 1, . . . , j. Here, Fd
j is the set of j−dimensional affine subspaces

in Rd and Fj = x+Lj , Lj j−subspace, x ∈ L⊥
j . Furthermore, dF d

j = dxd−jdLd
j is the

element of the motion invariant measure on j−dimensional affine subspaces, where
dLd

j is the element of the rotation invariant measure on Ld
j , the set of j−subspaces,

and dxd−j is the element of the Lebesgue measure in L⊥
j . Finally, cd,j,k is a known

constant.
The formula to be derived in the present paper focuses instead on the rotational

average ∫
Ld

j

Vk(X ∩ Lj)dLd
j . (2)

An early version of the formula has already been presented in [14] but here the
rotational average of intrinsic volumes is related to curvatures on sections. The
formula derived in the present paper states more clearly how the rotational average
of intrinsic volumes is related to geometric properties of the original spatial structure.

The derived identity will allow us to relate averages of measurements of intrinsic
volumes in section planes passing through a fixed point to quantitative properties
of the set under study. Knowledge of rotational averages of sectional curvatures
are of particular importance in relation to the study of cell populations. Change in
curvature properties may be associated with deficiencies of the cell population as
discussed in [9]. The latter paper did however not relate curvatures measured in a
section plane to properties of the original set.

The proof of the formula uses the representation of curvature measures as integral
currents carried on the unit normal bundle of the set (see [30]). The main technical
tool is Federer’s coarea formula for currents and the form of the curvature defining
current for the flat section of a body which has already been used in [23]. We
use the framework of compact sets with positive reach introduced by Federer in
1959 [6] in connection with curvature measures; this set class extends the family of
convex bodies, and a restriction to convex bodies would only save almost no effort.
An extension to finite unions of sets with positive reach (encompassing polyconvex
sets) is mentioned as well.

The paper is organized as follows. In Section 2, basic concepts from geometric
measure theory are shortly summarized. The rotational integral formula for intrinsic
volumes is presented in Section 3. In Section 4, we show how certain weight factors
appearing in the rotational integral formula can be expressed in terms of hypergeo-
metric functions. Modified sectional intrinsic volumes with a more clear relation to
geometric properties of the original set are introduced in Section 5. Applications to
stereological particle analysis is shortly discussed in Section 6. Section 7 is devoted
to a geometric measure theoretic proof of the main theorem. In Section 8, extensions
of the main theorem are discussed. The paper has been written such that a reading
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of Sections 2 to 6 does not require specialist knowledge in geometric measure theory.
The presented results are illustrated by 6 simple examples.

2 Preliminaries

For the background of multilinear algebra and geometric measure theory, we refer to
Federer’s book [7]. We shall also use the notation of [7] throughout the paper, unless
otherwise stated. In particular, Hk denotes the k−dimensional Hausdorff measure
in Rd.

We will consider compact sets X ⊆ Rd of positive reach. To explain this notion,
consider the parallel set of amount s ≥ 0 defined as Xs := X + sB(0, 1) where
B(0, 1) is the closed unit ball in Rd. Following [6], the supremum of all s ≥ 0, such
that for any y ∈ Xs, there exists a unique point in X nearest to y, is called reach X.
The normal cone Nor(X, x)

Nor(X, x) = {w ∈ Rd : v · w ≤ 0 for v ∈ Tan(X, x)}
is the dual cone to the tangent cone Tan(X, x) of X at x (which is always a convex
cone if reach X > 0). For an illustration, see Figure 1. The unit normal bundle of
X is given by

nor X = {(x, n) : x ∈ ∂X, n ∈ Nor(X, x) ∩ Sd−1},
where Sd−1 is the unit sphere in Rd.

s

Xs

X

Tan(X,x)

Nor(X,x)

x

Figure 1: Illustration of the parallel set Xs of X, the tangent cone Tan(X, x) and
the normal cone Nor(X, x).

Using the parallel sets it is possible for Hd−1-almost all points (x, n) ∈ nor (X) to
define (generalized) principal curvatures κi(x, n) ∈ [−reach X,∞] and corresponding
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principal directions ai(x, n) at (x, n), i = 1, . . . , d− 1, see [24] and [30]. We assume
that the principal directions are ordered in such a way that

a1(x, n), . . . , ad−1(x, n), n

form a positively oriented orthonormal basis of Rd.
To each compact set X of positive reach we can associate d+1 intrinsic volumes

Vk(X), k = 0, 1, . . . , d. The intrinsic volume Vd(X) is the volume (Lebesgue mea-
sure) of X, Vd−1(X) one half of the surface area (provided that X is d-dimensional
in the sense that the normal cone Nor(X, x) does not contain a line for almost
all boundary points x), and V0(X) is the Euler-Poincaré characteristic of X, see [6,
Theorem 5.19]. For k = 0, 1, . . . , d−1, it can be shown that the kth intrinsic volume
has the following integral representation, cf. [30],

Vk(X) =
1

σd−k

∫
nor X

∑
|I|=d−1−k

∏
i∈I κi(x, n)∏d−1

i=1

√
1 + κ2

i (x, n)
Hd−1(d(x, n)), (3)

where σk = 2πk/2/Γ(k/2) = Hk−1(Sk−1) is the surface area of the unit sphere in Rk,
I is a subset of {1, . . . , d − 1} and |I| denotes the number of its elements. Since
the principal curvatures may be infinite, we set ∞√

1+∞2 = 1 and 1√
1+∞2 = 0. In the

special case where ∂X is a (d− 1)−dimensional manifold of class C2, the principal
curvatures κi(x, n) = κi(x) are functions of x ∈ ∂X only and (3) reduces to

Vk(X) =
1

σd−k

∫
∂X

∑
|I|=d−1−k

∏
i∈I

κi(x)Hd−1(dx),

cf. [28, Section V.3] and [26, Section 13.6].
Let Ld

j be the Grassmann manifold of j-dimensional linear subspaces of Rd,
0 ≤ j ≤ d. The elements of Ld

j will usually be denoted by Lj , L⊥
j stands for the

orthogonal complement of Lj which is a (d − j)-dimensional subspace of Rd. Note
that Ld

j can be regarded as a j(d− j)-dimensional smooth compact submanifold of
a Euclidean space (see [7, §3.2.28]) and, hence, we can equip it with the Hausdorff
measure Hj(d−j). We shall use the shortened notation here

dLd
j = Hj(d−j)(dLj).

The total mass of the measure is ∫
Ld

j

dLd
j = cd,j,

where
cd,j =

σdσd−1 · · ·σd−j+1

σjσj−1 · · ·σ1

.

The resulting measure on Ld
j is the unique, up to multiplication with a positive

constant, rotation invariant measure. If 0 ≤ q < j and Lq ∈ Ld
q is fixed, then Ld

j(q)

denotes the set of j-subspaces containing the fixed subspace Lq (note that Ld
j(q) is

isomorphic to Ld−q
j−q). The measure described by the integration dLd

j(j−1) dLd
j−1 is
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clearly rotation invariant on Ld
j and, after computation of its total mass, we get the

relation

dLd
j =

σ1

σj
dLd

j(j−1) dLd
j−1. (4)

Note that a subspace Lj ∈ Ld
j(j−1) can be written as

Lj = Lj−1 ⊕ Lin {z},

where ⊕ indicates orthogonal sum and Lin {z} is the linear space spanned by z ∈
L⊥

j−1∩Sd−1. The space Ld
j(j−1) is thereby isomorphic to the unit sphere Sd−j in L⊥

j−1

modulo change of sign and we can write

dLd
j(j−1) = 1

2
Hd−j(dz).

In the main text of the paper, we will use the following result, valid for u ∈ Rd\Lq

and a measurable non-negative function g, cf. [15, Proposition 3.9],

∫
Ld

j(q)

g

(
|p(u|L⊥

j )|2
|p(u|L⊥

q )|2
)

dLd
j(q)

cd−q,j−q

=
1

B((d− j)/2, (j − q)/2)

∫ 1

0

g(y)y
d−j
2
−1(1− y)

j−q
2
−1dy, (5)

0 ≤ q < j < d. Here, p(·|Lk) denotes the orthogonal projection onto Lk.

The Grassmann manifold Ld
j can be embedded into the linear space

∧
j Rd of

j-vectors in Rd as the submanifold of simple unit j-vectors modulo change of sign
(cf. [7]). The space

∧
j Rd is equipped with the scalar product which can be defined

on simple j-vectors as

(u1 ∧ · · · ∧ uj) · (v1 ∧ · · · ∧ vj) = det
(
ui · vl

)j
i,l=1

.

Given two linear subspaces Lp, Lq with sum of dimensions p + q ≥ d, we define
G(Lp, Lq) as the determinant of the orthogonal projection of (Lp∩Lq)

⊥
Lp

(the orthogo-

nal complement of Lp∩Lq in Lp) onto L⊥
q , cf. [15, p. 47]. We have 0 ≤ G(Lp, Lq) ≤ 1.

Note that if p+ q = d then G(Lp, Lq) = |Lp ·L⊥
q |, with the scalar product introduced

above. In the main part of the paper we shall often use that G(Ld−1, Lq) = |p(n|Lq)|,
where n is a unit normal of Ld−1. For d = 3, G(Lp, Lq) is simply | sin α| where α is
the angle between Lp and Lq.

The following result concerning the G functions turns out to be useful.

Lemma 1. Let Lp, Lq be subspaces of dimensions p, q, respectively, p + q ≥ d, and
let {v1, . . . , vq} be an orthonormal basis of Lq. Then

G(Lp, Lq)
2 =

∑
I⊆{1,...,q}
|I|=d−p

G(Lp, Lin {vi : i ∈ I})2.
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Proof. We shall identify the subspaces Lin {vi : i ∈ I} with the simple unit |I|-
vectors

∧
i∈I vi. In order to show the result of the lemma we use that for any index

subset I with cardinality d− p,

G
(
Lp,
∧
i∈I

vi

)
= G(Lp, Lq)G

(
Lp ∩ Lq,

∧
i∈I

vi

)
(see [15, Proposition 5.1]), where the last function G has to be understood as defined
relatively in the q−subspace Lq. If dim(Lp ∩Lq) > p+ q−d then G(Lp, Lq) = 0 and
the equality is obviously true. We shall suppose in the sequel that dim(Lp ∩ Lq) =
p + q − d. It is enough to show that∑

I⊆{1,...,q}
|I|=d−p

G
(
Lp ∩ Lq,

∧
i∈I

vi

)2

= 1. (6)

We may represent the orthogonal complement of Lp∩Lq in Lq as a unit (d−p)-vector
in Lq and G(Lp ∩ Lq,

∧
i∈I vi) is its scalar product with

∧
i∈I vi in

∧
d−p Lq. Since

{∧i∈Ivi : |I| = d− p} forms an orthonormal basis of
∧

d−p Lq, (6) follows.

In the new rotational formula to be derived in this paper, hypergeometric func-
tions play an important role. A hypergeometric function can be represented by a
series of the following form

F (α, β; γ; z) =
∞∑

k=0

∏k−1
i=0 (α + i)

∏k−1
i=0 (β + i)∏k−1

i=0 (γ + i)

zk

k!

=
Γ(γ)

Γ(α)Γ(β)

∞∑
k=0

Γ(α + k)Γ(β + k)

Γ(γ + k)

zk

k!
. (7)

The coefficient of zk is for k = 0 equal to 1. We shall always assume that α+β−γ < 0
which ensures that the series is convergent for |z| < 1. In case 0 < β < γ, we can
also represent the hypergeometric series by an integral

F (α, β; γ; z) =
1

B(β, γ − β)

∫ 1

0

(1− zy)−αyβ−1(1− y)γ−β−1dy. (8)

3 The main Theorem

The particular cases relating to rotational averages of sectional Lebesgue measure
can easily be derived. In the simplest case where k = j = 1, we get∫

Ld
1

V1(X ∩ L1)dLd
1 =

∫
Ld

1

∫
X∩L1

dx1dLd
1

=

∫
X

|x|−(d−1)dxd,

where we at the last equality sign have used polar decomposition in Rd:

dxd = |x|d−1dx1dLd
1.
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More generally, the rotational average can for k = j, where j = 1, 2, . . . , d, be
expressed as follows∫

Ld
j

Vj(X ∩ Lj)dLd
j = cd−1,j−1

∫
X

|x|−(d−j)dxd. (9)

The proof of this geometric identity can be based on the Blaschke-Petkantschin
formula [16, 31].

Example 1. For d = 3 and j = 2, we get, cf. (9),∫
L3

2

A(X ∩ L2)dL3
2 = β(X),

where

β(X) = π

∫
X

|x|−1dx3.

�

In order to solve the more difficult remaining case k < j, we consider a compact
set X ⊆ Rd with positive reach. Given O 6= x ∈ Rd, n ∈ Sd−1 and Aq ⊆ Rd a
q-subspace perpendicular to n, we define

Qj(x, n, Aq) =

∫
Ld

j(1)

G(Lj , Aq)
2

|p(n|Lj)|d−q
dLd

j(1),

where the integral runs over all j-subspaces containing the line through O spanned
by x. Note that Qj(x, n, Aq) is finite whenever n 6⊥ x since |p(n|Lj)| ≥ |x · n| / |x|.

For a subset I of {1, . . . , d−1} and a point (x, n) ∈ norX with principal directions
ai(x, n), we shall use the notation AI = AI(x, n) for the (d−1−|I|)-subspace spanned
by all the vectors ai(x, n) with i 6∈ I.

Theorem. Assume that O 6∈ ∂X and that for almost all Lj ∈ Ld
j ,

(x, n) ∈ norX, x ∈ Lj =⇒ n 6⊥ Lj . (10)

Then for any 0 ≤ k < j, 1 ≤ j ≤ d,∫
Ld

j

Vk(X ∩ Lj) dLd
j

=
1

σj−k

∫
nor X

1

|x|d−j

×
∑

|I|=j−1−k

Qj(x, n, AI)

∏
i∈I κi(x, n)∏d−1

i=1

√
1 + κ2

i (x, n)
Hd−1(d(x, n)), (11)

provided that the integral on the right-hand side exists.
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It is worthwhile to compare the rotational version (11) of the Crofton formula
with the classical Crofton formula (1). The right-hand side of the classical Crofton
formula is, up to a known constant, Vd−j+k(X). The right-hand side of the rotational
version of the Crofton formula has an integral representation similar to that of
Vd−j+k(X) but with the additional terms 1/|x|d−j and Qj(x, n, AI). For j = d, these
terms are identically equal to 1 and (11) reduces to the well-known integral form (3)
for intrinsic volumes. In the next section, we will show for j < d that Qj(x, n, AI)
can be expressed in terms of hypergeometric functions. If X is a ball, then 1/|x|d−j

and Qj(x, n, AI) are constant and the right-hand side of (11) is proportional to
Vd−j+k(X).

Corollary 1. Let the situation be as in Theorem. Assume furthermore that ∂X is
a (d− 1)−dimensional manifold of class C2. Then,∫

Ld
j

Vk(X ∩ Lj) dLd
j

=
1

σj−k

∫
∂X

1

|x|d−j

∑
|I|=j−1−k

Qj(x, n(x), AI)
∏
i∈I

κi(x)Hd−1(dx), (12)

where n(x) is the unique outer unit normal to ∂X at x.

Proposition 1 below shows that the regularity condition (10) is mild; in partic-
ular, the second statement of Proposition 1 implies that (10) can be violated only
for exceptional choices of the origin.

Proposition 1. Assume that O 6∈ ∂X. Then, the regularity condition (10) holds
whenever X is convex. Furthermore, if X is a compact set with positive reach, then

Hd{z ∈ Rd : z + X does not satisfy (10)} = 0. (13)

Proof. To verify (13), it is enough to show that (Hd ×Hj(d−j))(N) = 0, where

N = {(z, Lj) ∈ Rd ×Ld
j : ∃(x, n) ∈ norX, z + x ∈ Lj, n ⊥ Lj}.

The image of N under the projection Π : (z, Lj) 7→ (p(z|L⊥
j ), Lj) is the subset of

j-flats in Rd “locally colliding with X” which is known to have finite r-dimensional
measure with r = d−1+j(d−1−j) (see [25]). Hence, the invariant (d−j+j(d−j))-
dimensional measure of Π(N), and, consequently, also the (d+j(d−j))-dimensional
measure of N , is zero.

Sufficient conditions for the boundedness of the integral in Theorem are given in
the following proposition.

Proposition 2. The integral in Theorem converges if X is convex or if j − k ≤ 2,
in particular, always in R3.

Proof. If X is convex then all principal curvatures are finite and nonnegative, hence
the integrated function is nonnegative. One easily sees that the integral on the left
hand side is bounded, hence the right hand side is bounded as well.
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For the second assertion, note that since n ⊥ AI , we have

G(Lj , AI) = G(Lj , n
⊥)G(Lj ∩ n⊥, AI)

≤ G(Lj , n
⊥)

= |p(n|Lj)|.

Consequently, Qj(x, n, AI) ≤
∫ |p(n|Lj)|2+k−j dLd

j(1) =: c(j, k, d) which is clearly
finite if j − k ≤ 2. Thus, we have∫

nor X

∣∣∣∣ 1

|x|d−j

∑
|I|=j−1−k

Qj(x, n, AI)

∏
i∈I κi(x, n)∏d−1

i=1

√
1 + κ2

i (x, n)

∣∣∣∣Hd−1(d(x, n))

≤
∫

nor X

1

|x|d−j

∑
|I|=j−1−k

Qj(x, n, AI)

∣∣∣∣ ∏
i∈I κi(x, n)∏d−1

i=1

√
1 + κ2

i (x, n)

∣∣∣∣Hd−1(d(x, n))

≤ 1

(dist (O, ∂X))d−j

(
d− 1

j − 1− k

)
c(j, k, d)Hd−1(nor X) < ∞.

The fact that Hd−1(norX) < ∞ follows from the (locally) (d − 1)−rectifiability of
norX, cf. [30, p. 560].

4 Explicit forms of Qj(x, n, Aq)

We will in this section evaluate the integral Qj(x, n, Aq) where O 6= x ∈ Rd, n ∈ Sd−1

and Aq is a q−subspace perpendicular to n. The dimensions j, q satisfy 1 ≤ j, q ≤
d− 1 and j + q ≥ d. We will first consider the case q = d− 1, next q = 1 and finally
1 < q < d− 1, representing increasing degree of complexity.

4.1 The case q = d− 1

Here, Aq = n⊥ and G(Lj , n
⊥) = |p(n|Lj)|. It follows that

Qj(x, n, Aq) =

∫
Ld

j(1)

G(Lj , Aq)
2

|p(n|Lj)|d−q
dLd

j(1)

=

∫
Ld

j(1)

|p(n|Lj)|dLd
j(1)

= cd−1,j−1F
(−1/2, (d− j)/2; (d− 1)/2; |p(n|L⊥

1 )|2),
where we have used (5) and (8) at the last equality sign. Since L1 is the line spanned
by x,

|p(n|L⊥
1 )|2 = sin2 β, (14)

where β = ∠(x, n). Using the series expansion of the hypergeometric function, a
first-order approximation of Qj becomes

Qj(x, n, Aq) ≈ cd−1,j−1

(
1− d− j

2(d− 1)
sin2 β

)
.
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In the particular case where β = 0 we have

Qj(x, n, Aq) = cd−1,j−1.

Example 2. For d = 3 and j = 2, we find, using (8),

F

(
−1

2
,
d− j

2
;
d− 1

2
; |p(n|L⊥

1 )|2
)

=
2

π

∫ π/2

0

(1− |p(n|L⊥
1 )|2 sin2 φ)1/2dφ

=
2

π
E(|p(n|L⊥

1 )|, π/2),

where E is the elliptic integral of the second kind. For X ⊆ R3 such that ∂X is a
2-dimensional manifold of class C2, we find, cf. (12),∫

L3
2

L(X ∩ L2)dL3
2 = β(X),

where

β(X) = 2

∫
∂X

|x|−1E(|p(n(x)|L⊥
1 )|, π/2)H2(dx)

and n(x) is the unique outer unit normal to ∂X at x. �

4.2 The case q = 1

Since j + q ≥ d, we have j = d − 1 or j = d. Since the case j = d is trivial, we
concentrate on j = d− 1. We will assume that d ≥ 3 because the planar case d = 2
has been treated in the previous subsection.

As shown in the proposition below, Qj(x, n, Aq) becomes a linear combination
of hypergeometric functions.

Proposition 3. Let q = 1 and j = d−1. Let Aq be spanned by a and let α = ∠(x, a),
β = ∠(x, n) and θ = ∠(m, p(a|x⊥)), where m = π(n|x⊥) := p(n|x⊥)

/ |p(n|x⊥)|.
Then,

Qd−1(x, n, a) =
π(d−1)/2

2Γ((d + 1)/2)
sin2 α

[
sin2 θF

(
d− 1

2
,
1

2
;
d + 1

2
; sin2 β

)
+ cos2 θF

(
d− 1

2
,
3

2
;
d + 1

2
; sin2 β

)]
. (15)

Furthermore,

d−1∑
i=1

Qd−1(x, n, ai(x, n)) = cd−1,d−2F

(
d− 3

2
,
1

2
;
d− 1

2
; sin2 β

)
. (16)

11



Proof. Let Ld−1 be spanned by x and Ld−2 ⊂ x⊥. Then it can be shown that

G(Ld−1, a) = sin α Gx⊥(Ld−2, p(a|x⊥)),

where the upper index x⊥ of G indicates that the function G is here considered
relatively in x⊥. Furthermore,

|p(n|Ld−1)|2 = cos2 β + sin2 β cos2 ∠(m, Ld−2).

It follows that

Qd−1(x, n, a)

=

∫
Ld

d−1(1)

G(Ld−1, a)2

|p(n|Ld−1)|d−1
dLd

d−1(1)

= sin2 α

∫
Ld−1

d−2

Gx⊥(Ld−2, p(a|x⊥))2[1− sin2 β sin2 ∠(m, Ld−2)]
− d−1

2 dLd−1
d−2,

where Ld−1
d−2 is the set of (d− 2)−subspaces of x⊥. Each such subspace Ld−2 can be

identified with its unit normals v,−v ∈ Sd−2 ⊂ x⊥. Using this identification, we get

Qd−1(x, n, a) =
sin2 α

2

∫
Sd−2

(v · π(a|x⊥))2[1− sin2 β(m · v)2]−
d−1
2 dvd−2.

Using the coarea formula on the mapping ϕ : v → (m · v)2 with Jacobian

Jϕ(v; Sd−2) = 2|m · v|
√

1− (m · v)2,

cf. [15, Proposition 2.11], we finally get after some manipulation

Qd−1(x, n, a)

=
sin2 α

2

∫ 1

0

∫
Sd−2∩ϕ−1(y)

(v · π(a|x⊥))2[1− (sin2 β)y]−
d−1
2

1

2
√

y
√

1− y
dvd−3dy1

=
π

d−1
2

2Γ(d+1
2

)
sin2 α

[
sin2 θF

(
d− 1

2
,
1

2
;
d + 1

2
; sin2 β

)
+ cos2 θF

(
d− 1

2
,
3

2
;
d + 1

2
; sin2 β

)]
,

where θ = ∠(m, p(a|x⊥)) satisfies

cos θ =
cos α cos β

sin α sin β
.

12



A direct way of proving (16) is the following

d−1∑
i=1

Qd−1(x, n, ai) =

∫
Ld

d−1(1)

∑d−1
i=1 G(Ld−1, ai)

2

|p(n|Ld−1)|d−1
dLd

d−1(1)

=

∫
Ld

d−1(1)

|p(n|Ld−1)|2
|p(n|Ld−1)|d−1

dLd
d−1(1)

=

∫
Ld

d−1(1)

|p(n|Ld−1)|3−ddLd
d−1(1)

= cd−1,d−2F

(
d− 3

2
,
1

2
;
d− 1

2
; sin2 β

)
,

where we at the last equality sign have used (5) and (8).

Example 3. For d = 3 and j = 2, we find that

d−1∑
i=1

Qd−1(x, n, ai(x, n)) = c2,1 = π

does not depend on x and n. It follows for X ⊆ R3 with ∂X a 2-dimensional
manifold of class C2 that, cf. (12),∫

L3
2

χ(X ∩ L2)dL3
2 = β(X),

where

β(X) =
1

2

∫
∂X

|x|−1
2∑

i=1

ωi(x)κi(x)H2(dx)

and ωi(x) = Q2(x, n(x), a2−i+1(x))/π, i = 1, 2, sum to 1. �

4.3 The case 1 < q < d− 1

This case is more complicated than the two previous cases. We conjecture that
Qj(x, n, Aq) can be written as a linear combination of four hypergeometric functions.
The details will be worked out in a future paper. Note that the previous cases cover
all cases of immediate practical interest (d = 3).

5 Modifications for applications

In the previous sections, we have derived new geometric identities of the form∫
Ld

j

Vk(X ∩ Lj)dLd
j = β(X),

showing how the rotational averages of the sectional intrinsic volumes depend on
the principal curvatures and their principal directions of the set X. The ‘opposite’

13



problem of finding functions α defined on X ∩ Lj with rotational average equal to
the intrinsic volumes of X is also of interest for applications, see Section 6 below.
So in this section we will study the problem of finding α such that∫

Ld
j

α(X ∩ Lj)dLd
j = Vd−j+k(X),

0 ≤ j ≤ d, 0 ≤ k ≤ j. It turns out that the cases k = j and k = j − 1 can be solved
but otherwise the problem is largely open.

5.1 The case k = j

For k = j, Vd−j+k is Lebesgue measure and the Blaschke-Petkantchin formula implies
that, cf. e.g. [15, Proposition 4.5],∫

Ld
j

Ṽd,j(X ∩ Lj)dLd
j = Vd(X),

1 ≤ j ≤ d, where

Ṽd,j(X ∩ Lj) =
1

cd−1,j−1

∫
X∩Lj

|x|d−jdxj . (17)

In geometric tomography, Ṽd,j is a special case of a dual volume, cf. [8, (A.63)]. Dual
volumes have a number of interesting properties, cf. [10, Section 4]. In particular,
they satisfy a generalization of the dual Kubota integral recursion (see [8, Theorem
A.7.2]). Also, (17) can be expressed as a section function as defined in [8, Section
7.2].

Example 4. For d = 3 and j = 2, we find∫
L3

2

α(X ∩ L2)dL3
2 = V (X),

where

α(X ∩ L2) =
1

π

∫
X∩L2

|x|dx2.

�

5.2 The case k = j − 1

For k = j − 1, results in [15, Proposition 5.4 and Section 5.6] can be used to show
the following proposition.

Proposition 4. Let X be a subset of Rd with ∂X a (d− 1)−dimensional manifold
of class C1 with finite surface area. Assume that O /∈ ∂X and that

Hd−1({x ∈ ∂X : n(x) ⊥ x}) = 0.

Then, for 1 < j < d, ∫
Ld

j

Ṽd,j−1(X ∩ Lj)dL
d
j = Vd−1(X),

14



where

2cd−1,j−1Ṽd,j−1(X ∩ Lj)

=

∫
∂X∩Lj

|x|d−jF

(
−1

2
,−d− j

2
;
j − 1

2
; |p(nLj

(x)|L⊥
1 )|2

)
Hj−1(dx),

nLj
(x) ∈ Lj is the unit normal to ∂X ∩ Lj at x ∈ ∂X ∩ Lj and L1 = Lin {x}.

Proof. Using [15, p. 142–144], we find that

1

2

∫
Ld

1

∫
Ld

j(1)

m̃
(d)
j (∂X, Lj ; L1)

dLd
j(1)

cd−1,j−1

dLd
1

cd,1
= Vd−1(X), (18)

where

m̃
(d)
j (∂X, Lj ; L1) =

πd/2

Γ(d/2)

∑
x∈∂X∩L1

|x|d−1|p(nLj
(x)|L1)|−1

× F

(
−1

2
,−d− j

2
;
j − 1

2
; |p(nLj

(x)|L⊥
1 )|2

)
.

Interchanging the order of integration in (18) and applying [15, Proposition 5.4], we
obtain the result.

Note that Ṽd,j−1(X ∩ Lj) can be determined from information in Lj alone.

Example 5. Let d = 3 and j = 2. Furthermore, let |p(nL2(x)|L⊥
1 )| = sin γ(x).

Then,

F

(
−1

2
,−d− j

2
;
j − 1

2
; sin2 γ(x)

)
= cos γ(x) + γ(x) sin γ(x),

cf. [15, Example 5.10]. It follows that∫
L3

2

α(X ∩ L2)dL3
2 = S(X),

where

α(X ∩ L2) =
1

π

∫
∂X∩L2

|x|(cos γ(x) + γ(x) sin γ(x))H1(dx).

�

5.3 The case k < j − 1

In order to make some progress in the case k < j − 1, let us consider the following
generalized intrinsic volumes

Ṽ d
i,k(X) =

1

σd−k

∫
nor X

|x|i−k
∑

|I|=d−1−k

∏
i∈I κi(x, n)∏d−1

i=1

√
1 + κi(x, n)2

Hd−1(d(x, n)),

15



0 ≤ k ≤ d − 1, i ≥ k. Note that Ṽ d
k,k(X) = Vk(X). It follows from the proof of the

main Theorem that for 0 ≤ k < j, 1 ≤ j ≤ d,∫
Ld

j

Ṽ j
d−j+k,k(X ∩ Lj) dLd

j

=
1

σj−k

∫
nor X

∑
|I|=j−1−k

Qj(x, n, AI)

∏
i∈I κi(x, n)∏d−1

i=1

√
1 + κ2

i (x, n)
Hd−1(d(x, n)). (19)

Comparing with the integral representation (3) of Vd−j+k(X), the right-hand side of
(19) will be proportional to Vd−j+k(X) if Qj(x, n, AI) is constant. This is, of course,
not the case in general. But the sum of the Qjs are constant in the case of practical
interest discussed in the example below.

Example 6. Let d = 3 and j = 2. Suppose, for simplicity, that ∂X is a 2-
dimensional manifold of class C2. In R3, it still remains to find α such that∫

L3
2

α(X ∩ L2)dL3
2 = M(X),

where

M(X) =

∫
∂X

1

2
[κ1(x) + κ2(x)]H2(dx)

is the integral of mean curvature of X, cf. the list of intrinsic volumes in R3 given in
the Introduction. Using (19), we can obtain the following related geometric identity∫

L3
2

α(X ∩ L2)dL3
2 = M̃(X), (20)

where

M̃(X) =

∫
∂X

2∑
i=1

ωi(x)κi(x)H2(dx),

and the weights ωi(x) are defined in Example 3 and sum to 1. Furthermore, the α
in (20) is given by

α(X ∩ L2) =
1

π

∫
∂X∩L2

|x|κL2(x)H1(dx),

where κL2(x) is the curvature of ∂X ∩ L2 at x ∈ L2. �

6 Applications to stereological particle analysis

In this section we will briefly discuss how the derived geometric identities can be
used in the stereological analysis of particle populations. The particles are regarded
as a realization of a marked point process Ψ = {[xi; Ξi]} where the xis are points in
Rd and the marks Ξi are compact subsets of Rd of positive reach. The ith particle
of the process is represented by Xi = xi + Ξi. In this framework, xi is called the
nucleus of the ith particle and Ξi the ‘primary’ or ‘centred’ particle.
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Under assumptions of stationarity and isotropy of the particle process, it can be
shown for any nonnegative measurable function h that

E
∑

i

h(xi, Ξi) = λ

∫
Rd

∫
P

h(x, K)Pm(dK)dxd, (21)

where λ is the particle intensity and Pm is a probability distribution on the set P
of compact sets in Rd of positive reach. The distribution Pm is called the particle
distribution. We let Ξ0 be a random compact set of positive reach with distribu-
tion Pm.

In relation to such a particle population, a geometric identity∫
Ld

j

α(X ∩ Lj)dLd
j = β(X) (22)

can be used to express the mean value of a specified measurement α on sectioned
particles in terms of a certain β−content of the original particles (Examples 1–3).
A geometric identity may also give the measurement α to be determined on sec-
tioned particles in order to estimate the mean particle β−content for a specified β
(Examples 4–6).

To be more specific, note that for the generic particle Ξ0, we get from (22) that

Eβ(Ξ0) = E

∫
Ld

j

α(Ξ0 ∩ Lj)dLd
j =

∫
Ld

j

Eα(Ξ0 ∩ Lj)dLd
j .

Since the distribution of Ξ0 is invariant under rotations, Eα(Ξ0∩Lj) does not depend
on Lj and it follows that for an arbitrary but fixed j−subspace Lj0

1

cd,j
α(Ξ0 ∩ Lj0)

is an unbiased estimator of Eβ(Ξ0), i.e. the mean value of α(Ξ0 ∩ Lj0)/cd,j with
respect to the distribution Pm of Ξ0 is equal to Eβ(Ξ0). In practice, a sample of
particle {xi + Ξi : xi ∈ W} is collected in a sampling window and a central section

(xi + Ξi) ∩ (xi + Lj0)

is determined through each particle. The resulting estimator of Eβ(Ξ0) based on
this sample becomes

1

cd,j

∑
{i:xi∈W}

α(Ξi ∩ Lj0)/NW , (23)

where NW is the number of sampled particles. Using (21), it can be shown that
this estimator is ratio-unbiased for Eβ(Ξ0), i.e. the ratio of the mean values of the
numerator and denominator is equal to Eβ(Ξ0).
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7 Proof of main Theorem

Let Lj−1 ∈ Ld
j−1 be fixed and write Sd−j = Sd−j(L⊥

j−1). Let further Lz
j be the linear

space spanned by Ld−1 and z whenever z is a vector which does not lie in Lj−1. We
introduce the following mappings.

f : norX \ {(x, n) : n ⊥ Lx
j } → Rd × Sd−1,

(x, n) 7→ (x, π(n|Lx
j )),

g : norX \ (Lj−1 × Sd−1) → Sd−j ,

(x, n) 7→ π(x|L⊥
j−1),

where π(·|L) = p(·|L)/|p(·|L)| denotes the spherical projection onto the unit sphere
in a subspace L.

Lemma 2. The differentials of the mappings f, g are

Dg(x, n)(u, v) =
p(u|(Lx

j )
⊥)

|p(x|L⊥
j−1)|

, (24)

Df(x, n)(u, v) =

(
u,

p(v|Lx
j ∩ n⊥)

|p(n|Lx
j )|

+

(
n · p(u|(Lx

j )
⊥)
)
p
(
p(x|L⊥

j−1)
∣∣Lx

j ∩ n⊥
)

|p(x|L⊥
j−1)|2 |p(n|Lx

j )|

+

(
n · p(x|L⊥

j−1)
)
p(u|(Lx

j )
⊥)

|p(x|L⊥
j−1)|2 |p(n|Lx

j )|
)

, (25)

(u, v) ∈ Rd ×Rd.

Proof. The formulae are obtained by a routine calculation, using the representation

p(n|Lx
j ) = p(n|Lj−1) +

(
n · π(x|L⊥

j−1)
)
π(x|L⊥

j−1).

Note that the differential of the spherical projection πL : n 7→ π(n|L) is

DπL(n)v =
p(v|L ∩ n⊥)

|p(n|L)| .

The idea of the following procedure is as follows. Given any linear subspace
L ∈ Ld

j of Rd which does not ‘osculate’ with X (i.e., there is no pair (x, n) ∈ norX
with n ⊥ L), then X ∩ L has positive reach and its unit normal bundle (relative
to L) is

nor (j)(X ∩ L) = {(x, π(n|L)) : (x, n) ∈ norX}.
This fact follows from [6, Theorem 4.10]. Note also that if X and L do osculate
than X ∩ L need not have positive reach; therefore, such cases have to be avoided
by assumptions.

At first, we shall show a technical lemma stating that for Hd−j-almost all z ∈
Sd−j, Hj−1-almost all points in f(g−1{z}) have a unique pre-image under f . This
will enable us later to use the area formula for f without multiplicities. (For an
analogous result for the translative formula, see [32].)

Let f (z) denote the restriction of f to g−1{z}.
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Lemma 3. For Hd−j-almost all z ∈ Sd−j we have

Hj−1
({(x, v) ∈ f(g−1{z}) : card f−1{(x, v)} > 1}) = 0.

Proof. Let N denote the set of all (x, n) ∈ norX, n 6⊥ Lx
j , such that there exists

another unit vector n′ 6= n, n′ 6⊥ Lx
j , with (x, n′) ∈ nor X and f(x, n) = f(x, n′).

We have to show that∫
Sd−j

Hj−1
(
f(N ∩ g−1{z}))Hd−j(dz) = 0. (26)

Using the area and co-area formulae, the last integral can be bounded from above
by ∫

Sd−j

∫
N∩g−1{z}

Jj−1f
(z) dHj−1Hd−j(dz)

=

∫
N

Jd−jg(x, n)Jj−1f
(z)(x, n)Hd−1(d(x, n)),

where Jj−1f
(z), Jd−jg(x, n) is the (j−1)-dimensional Jacobian of f (z) at z = g(x, n),

(d− j)-dimensional Jacobian of g at (x, n), respectively. We shall show that almost
everywhere on N , at least one of the Jacobians is zero . To end this, note that

ker Dg(x, n) = Tan(g−1{z}, (x, n)) = Tan(nor X, (x, n)) ∩ (Lx
j × Rd).

If dim ker Dg(x, n) > j−1 then Jd−jg(x, n) = 0. Assume thus that dim ker Dg(x, n) ≤
j − 1. Due to the definition of N , if (x, n) ∈ N then there exists a nonzero vector

ξ := (o, πn⊥(n′ − n)) ∈ Tan(g−1{z}, (x, n))

such that Df (z)(x, n)ξ = 0, hence Jj−1f
(z)(x, n) = 0.

In what follows we shall use the representation of curvature measures (intrinsic
volumes) of a set X with positive reach by means of the associated normal cycle NX

due to Zähle [30]. NX is a (d− 1)-dimensional current on R2d

NX = (Hd−1xnor X) ∧ aX ,

i.e., the (d− 1)-dimensional Hausdorff measure restricted to norX, multiplied with
a unit (d− 1)-vectorfield orienting nor X; this can be given in the following form:

aX(x, n) =

d−1∧
i=1

(
1√

1 + κi(x, n)2
ai(x, n),

κi(x, n)√
1 + κi(x, n)2

ai(x, n)

)
(27)

(recall the convention ∞√
1+∞2 = 1, 1√

1+∞2 = 0). The current NX acts on (d−1)-forms

φ on R2d as

NX(φ) =

∫
nor X

〈aX(x, n), φ(x, n)〉Hd−1(d(x, n)).
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The Lipschitz-Killing curvature form ϕk on R2d of order k = 0, . . . , d − 1 is defined
as

〈(u1
0, u

1
1) ∧ · · · ∧ (ud−1

0 , ud−1
1 ), ϕk(x, n)〉 =

1

σd−k

∑
εi=0,1

ε1+···+εd−1=d−1−k

〈u1
ε1
∧ · · · ∧ ud−1

εd−1
∧ n, Ωd〉,

where Ωd is the volume d-form in Rd. The kth intrinsic volume of X can then be
expressed as

V d
k (X) = NX(ϕk).

When considering a section of X with a j-subspace Lj , the upper index (j) will
always indicate that the corresponding notion is considered in the j-dimensional
space Lj , and not in the whole Rd. (E.g., N

(j)
X∩Lj

is a (j − 1)-dimensional current in

Lj × Lj .)
For the definition of the slice 〈NX , g, z〉 of the current NX with the Lipschitz

mapping g at a point z see [7, §4.2.1 and §4.3.13]. We need to fix an orientation of
the unit sphere Sd−j in L⊥

j−1 which is the image of g. To do this, we fix a unit simple
(j−1)-vector ωj−1 orienting Lj−1 and a unit simple (d−j+1)-vector ωd−j+1 orienting
L⊥

j−1, so that 〈ωj−1 ∧ ωd−j+1, Ωd〉 = 1. Let Ωj−1, Ωd−j+1 be the dual multi-covectors
to ωj−1, ωd−j+1. If z ∈ Sd−j we choose ωd−j(z) = ωd+j+1xdz as the unit simple
(d− j)-vectorfield orienting Sd−j. Its dual form will be denoted Ωd−j(z) = zyΩd−j+1

and we denote also by Ωj(z) = ωd−1 ∧ dz a volume form in Lz
j . Note that

Ωj(z) ∧ Ωd−j(z) = Ωd.

Further, f#φ denotes the push-forward of a differential form φ by a Lischitz
mapping f , whereas f#T is the dual pull-back of a current T .

Lemma 4. Assume that

Hj−1 ({(x, n) ∈ nor X : x ∈ Lj−1}) = 0 (28)

and that for Hd−j-almost all z ∈ Sd−j, (10) holds with Lj = Lz
j . Then

N
(j)
X∩Lz

j
= f

(z)
# 〈NX , g, z〉+ f

(−z)
# 〈NX , g,−z〉

for Hd−j-almost all z ∈ Sd−j.

Proof. First, we apply [7, §4.3.8,13] to get the expression of the section current

〈NX , g, z〉 =
(Hj−1xg−1{z}) ∧ ζ

for Hj−1-almost all z ∈ Sd−j, with the unit vector field

ζ(x, n) =
aX(x, n)x

(∧d−j Dg(x, n)
)

Ωd−j(g(x, n))

Jj−1g(x, n)

associated with g−1{z}. Further, we apply [7, §4.1.30] (area theorem for currents)
together with Lemma 3 and obtain

f
(z)
# 〈NX , g, z〉 =

(Hj−1xf(g−1{z})) ∧ η
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with unit vector field

ηz(x, v) =

(∧
j−1 Df(f−1(x, v))

)
ζ

Jj−1f(f−1(x, v))
.

(In fact, f (z) cannot be extended to a locally Lipschitz mapping over the whole space
Lz

j×Sj−1, nevertheless, due to (10) and since the unit normal bundle is closed, we can

find a compact set containing g−1{z} to which f (z) can be extended as a Lipschitz
function, verifying so the assumption of [7, §4.1.3].)

Conditions (10) and (28) assure that forHd−j-almost all z ∈ Sd−j, nor (j)(X∩Lz
j )

agrees with the disjoint union of f(g−1{z}) and f(g−1{−z}) up to a set of Hj−1-
measure zero. It is thus sufficient to verify that the vector fields η and aX∩Lz

j
coincide

almost everywhere, for Hd−j-almost all z ∈ Sd−j. Since both are unit tangent vector
fields associated with the same set, if suffices to show that they have the same
orientation. To check the orientation, it is sufficient to verify that for almost all
(x, v) ∈ nor (j)(X ∩ Lj), 〈η(x, v), ϕ

(j)
p (v)〉 > 0 if d − 1 − p is the number of infinite

principal curvatures of X ∩ Lj at (x, v). We have

〈η, ϕ(j)
p 〉 = α〈aXxg#Ωd−j , f

#ϕ(j)
p 〉

= α〈aX , g#Ωd−j ∧ f#ϕ(j)
p 〉,

with a positive factor α. The last expression will be calculated later and the form
(33) shows that it is positive at points where exactly d− 1− p principal curvatures
are infinite.

For the application of Lemma 4, the following result will be needed.

Lemma 5. If O 6∈ ∂X then (28) is fulfilled for almost all Lj−1 ∈ Ld
j−1.

Proof. Note that (28) can be written equivalently as

Hj−1(norX ∩ (Lj−1 ×Rd)) = 0 for almost all Lj−1. (29)

If j = 1, the assertion follows from the assumption O 6∈ ∂X. Let us procede by
induction on j. Assume that j > 1 and (29) is true for j − 1. We shall show that

Hj−1(norX ∩ (Lj−1(j−2) × Rd)) = 0

for almost all Lj−1(j−2) and almost all Lj−2, which is equivalent to (29). For Lj−2

fixed, consider the locally Lipschitz mapping

φ : norX \ (Lj−2 × Rd) → Sd−j+1(L⊥
j−2)

qiven by φ(x, n) = π(x|L⊥
j−2). Applying [7, §3.2.22(2)] to φ, we get that φ−1{z}

is locally (Hj−2, j − 2) rectifiable, hence Hj−1(φ−1{z}) = 0, for Hd−j+1-almost all
z ∈ Sd−j+1(L⊥

j−2). Since

norX ∩ (Lj−1(j−2) × Rd) = φ−1(Lj−1(j−2) ∩ L⊥
j−2) ∪ (nor X ∩ (Lj−2 × Rd))

and Lj−1(j−2) ∩ L⊥
j−2 has only two points, the assertion follows.
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Proof of Theorem. Using the desintegration (4) we can write∫
Ld

j

Vk(X ∩ Lj) dLj

=
2

σj

∫
Ld

j−1

∫
Ld

j(j−1)

Vk(X ∩ Lj) dLj(j−1) dLj−1

=
1

σj

∫
Ld

j−1

I(Lj−1)dLj−1, (30)

and

I(Lj−1) :=

∫
Sd−j

Vk(X ∩ Lz
j )Hd−j(dz),

Sd−j being the unit sphere in L⊥
j−1 (recall that Lz

j denotes the subspace spanned by
Lj−1 and z). The subspace Lj−1 will be fixed in the following. Our next aim is to
evaluate the integral I(Lj−1). Let us remark that we do not know at this moment
whether the integral exists since Vk(X ∩ Lz

j ) can change sign.
Assume that (28) holds and that

(10) holds for Hd−j − almost all z ∈ Sd−j . (31)

Using Lemma 4 and [7, §4.3.13], we get

I(Lj−1) = 2

∫
Sd−j

(
f

(z)
# 〈NX , g, z〉

)
(ϕ

(j)
k )Hd−j(dz)

= 2

∫
Sd−j

(〈NX , g, z〉) (f#ϕ
(j)
k )Hd−j(dz)

= 2
(
NXxg#Ωd−j

)
(f#ϕ

(j)
k )

= 2

∫
nor X

〈aX , g#Ωd−j ∧ f#ϕ
(j)
k 〉 dHd−1.

We can represent the (d− 1)-vector aX in the form

aX = (u1, v1) ∧ · · · ∧ (ud−1, vd−1)

with ud−j+1, . . . , ud−1 ∈ Lz
j , since

dim
(
Tan(norX, (x, n)) ∩ (Lx

j ×Rd)
) ≥ (d− 1) + (j + d)− 2d = j − 1.

Then (ui, vi) ∈ ker Dg(x, n), i = d− j + 1, . . . , d− 1, and, hence,

I(Lj−1) = 2

∫
nor X

〈 d−j∧
i=1

Dg(x, n)(ui, vi), Ωd−j(z)

〉

×
〈 d−1∧

i=d−j+1

Df(x, n)(ui, vi), ϕ
(j)
k (π(n|Lz

j ))

〉
Hd−1(d(x, n)).
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Using the definition of ϕ
(j)
k and (25), we obtain〈 d−1∧

i=d−j+1

Df(x, n)(ui, vi), ϕ
(j)
k (πLz

j
n)

〉

=
∑
|I|=k

(sgn I)

〈 ∧
i∈I

ui ∧
∧

i∈IC

p(vi|Lx
j ∩ n⊥)

|p(n|Lx
j )|

∧ π(n|Lj), Ωj

〉

=
1

σj−k

1

|p(n|Lj)|j−k

∑
|I|=k

(sgn I)

〈 ∧
i∈I

p(ui|Lx
j ∩ n⊥)

∧
∧

i∈IC

p(vi|Lx
j ∩ n⊥) ∧ p(n|Lj), Ωj

〉
,

with summation over all index sets I ⊆ {1, . . . , d − 1} of given cardinality |I|,
where sgn I is the sign of the permutation which maps the numbers 1, . . . , |I| in
an increasing order onto I, and |I| + 1, . . . , d − 1 in an increasing order to IC :=
{1, . . . , d− 1} \ I. On the other hand, (24) yields〈 d−j∧

i=1

Dg(x, n)(ui, vi), Ωd−j(z)

〉
=

1

|p(x|L⊥
j−1)|d−j

〈 d−j∧
i=1

p(ui|(Lx
j )
⊥), Ωd−j(z)

〉
.

Thus we get

I(Lj−1) =
2

σj−k

∫
nor X

1

|p(x|L⊥
j−1)|d−j|p(n|Lx

j )|j−k
τ(x, n)Hd−1(d(x, n)) (32)

with

τ(x, n) =
∑
|I|=k

(sgn I)

〈 ∧
i∈I

p(ui|Lx
j ∩ n⊥) ∧

∧
i∈IC

p(vi|Lx
j ∩ n⊥) ∧ p(n|Lj)

∧
d−1∧
i=j

p(ui|(Lx
j )
⊥), Ωd

〉
.

Using the fact that ui ∈ Lj for i ≤ j − 1, we can write

τ(x, n) =
∑
I⊆J

|I|=k,|J |=j−1

(sgn I)(sgn J)

〈 ∧
i∈I

p(ui|Lx
j ∩ n⊥)

∧
∧

i∈J\I
p(vi|Lx

j ∩ n⊥) ∧ p(n|Lj) ∧
∧

i∈JC

p(ui|(Lx
j )
⊥), Ωd

〉

=
∑
I⊆J

|I|=k,|J |=j−1

(sgn I)(sgn J)

〈 ∧
i∈I

p(p0(ui, vi)ui|Lx
j ∩ n⊥)

∧
∧

i∈J\I
p(p1(ui, vi)|Lx

j ∩ n⊥) ∧ p(n|Lj)

∧
∧

i∈JC

p(p0(ui, vi)|(Lx
j )
⊥), Ωd

〉
;
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here p0(u, v)−u and p1(u, v) = v are the orthogonal projections and the summations
is taken over all index subsets I ⊆ J ⊆ {1, . . . , d − 1} of given cardinalities. The
last expression is the value of a (d−1)-form applied to aX , hence it does not depend
on the particular representation of the (d − 1)-vector aX . Using the representation
(27), we get

τ(x, n) =
∑
I⊆J

|I|=k,|J |=j−1

(sgn J)

∏
i∈J\I κi∏d−1

i=1

√
1 + κ2

i

×
〈 ∧

i∈J

p(ai|Lx
j ∩ n⊥) ∧ p(n|Lj) ∧

∧
i∈JC

p(ai|(Lx
j )
⊥), Ωd

〉
=

∑
|I′|=j−1−k

∏
i∈I′ κi∏d−1

i=1

√
1 + κ2

i

∑
J⊇I′

|J |=j−1

∣∣∣∣ ∧
i∈J

p(ai|Lx
j ∩ n⊥) ∧ p(n|Lj)

∣∣∣∣
×
∣∣∣∣ ∧

i∈JC

p(ai|(Lx
j )
⊥)

∣∣∣∣
=

∑
|I′|=j−1−k

∏
i∈I′ κi∏d−1

i=1

√
1 + κ2

i

∑
J⊇I′

|J |=j−1

∣∣∣∣ ∧
i∈J

p(ai|Lx
j ) ∧ p(n|Lj)

∣∣∣∣
×
∣∣∣∣ ∧

i∈JC

p(ai|(Lx
j )
⊥)

∣∣∣∣
=

∑
|I′|=j−1−k

∏
i∈I′ κi∏d−1

i=1

√
1 + κ2

i

∑
J⊇I′

|J |=j−1

G
(

Lx
j ,
∧
i∈Jc

ai

)2

.

Applying Lemma 1 to the subspaces Lx
j and AI , we obtain

τ(x, n) =
∑

|I|=j−1−k

∏
i∈I κi∏d−1

i=1

√
1 + κ2

i

G (Lx
j , AI

)2
. (33)

Revoking (30) and (32), we arrive at∫
Ld

j

Vk(X ∩ Lj) dLj

=
2

σjσj−k

∫
nor X

∑
|I|=j−1−k

∏
i∈I κi∏d−1

i=1

√
1 + κ2

i

Q̃(x, n, AI)Hd−1(d(x, n)),

with

Q̃(x, n, AI) =

∫
Ld

j−1

1

|p(x|L⊥
j−1)|d−j |p(n|Lx

j )|j−k
G(Lx

j , AI)
2 dLj−1.

Finaly, we apply the coarea formula for the projection h of the subspace Lj−1 into
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the orthogonal complement of x, see Lemma 6:

Q̃(x, n, AI) =

∫
Ld

j−1

J(j−1)(d−j)h(Lj−1)
1

|x|d−j

1

|p(n|Lx
j )|j−k

G(Lx
j , AI)

2 dLj−1

=

∫
Ld−1

j−1(x⊥)

Hj−1(h−1(Lj−1))
1

|x|d−j

1

|p(n|Lx
j )|j−k

G(Lx
j , AI)

2 dLj−1

=
σj

2

1

|x|d−j

∫
Ld

j(j−1)

G(Lx
j , AI)

2

|p(n|Lx
j )|j−k

dLj(j−1)

=
σj

2
Q(x, n, AI)

(we have used the fact that h−1(Lj−1) is isomorphic to the space Lj
j−1 of (j − 1)-

subspaces of Lx
j ), and the assertion follows.

Lemma 6. Given a nonzero vector x ∈ Rd and 1 ≤ q ≤ d−1, consider the mapping

h : Ld
q \ Ld

q(1) → Ld−1
q (x⊥),

Lq 7→ p(Lq|x⊥).

Then the Jacobian of h is given by

Jq(d−1−q)h(Lq) =
|x|d−1−q

|p(x|L⊥
q )|d−1−q

.

Proof. Choose an orthonormal basis {u1, . . . , ud} of Rd such that u1 = π(x|Lq),
ud = π(x|L⊥

q ) and Lq is spanned by u1, . . . , uq. Considering Ld
q as a submanifold of∧

q Rd, the q-vectors

ξr
i = u1 ∧ · · · ∧ ui−1 ∧ ur ∧ ui+1 · · · ∧ uq, 1 ≤ i ≤ j, j + 1 ≤ r ≤ d,

form an orthonormal basis of the tangent space Tan(Ld
q , Lq). Then, denoting v1 =

π(u1|x⊥),
h(Lq) = v1 ∧ u2 ∧ · · · ∧ uq,

and if the q-vectors ζr
i are defined as ξr

i with u1 replaced by v1, then

ζr
i : 1 ≤ i ≤ q, q + 1 ≤ r ≤ d− 1,

form an orthonormal basis of Tan(Ld−1
q , h(Lq)). We can evaluate the differential

Dh(Lq) at these basis vectors:

Dh(Lq)(ξ
r
1) =

1

sin ∠(x, u1)
ζr
1 , j + 1 ≤ r ≤ d− 1,

Dh(Lq)(ξ
d
i ) = 0, 1 ≤ i ≤ q,

Dh(Lq)(ξ
r
i ) = ζr

i , 2 ≤ i ≤ q, q + 1 ≤ r ≤ d− 1.

Consequently,

Jq(d−1−q)h(Lq) =
1

| sin ∠(x, u1)|d−1−q
=

|x|d−1−q

|p(x|L⊥
q )|d−1−q

.
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8 Extensions of the main theorem

A very slight modification of the proof of Theorem yields a local variant of (11) for
curvature measures: Let the assumptions of Theorem be fulfilled and let, moreover,
h be a nonegative measurable function on Rd. Then∫

Ld
j

∫
Lj

h(x)Ck(X ∩ Lj , dx)dLd
j

=
1

σj−k

∫
nor X

h(x)
1

|x|d−j

×
∑

|I|=j−1−k

Qj(x, n, AI)

∏
i∈I κi(x, n)∏d−1

i=1

√
1 + κ2

i (x, n)
Hd−1(d(x, n)).

(Recall that the curvature measure Ck(X, A) of X at A is defined by a formula
analogous to (3), with the indicator function 1A(x) added to the integral, see e.g.
[30].)

Furthermore, we can use the additivity of curvature measures to generalise The-
orem to finite unions of sets with positive reach. A set X ⊆ Rd is called a UPR set
if it can be represented as a locally finite union X =

⋃∞
i=1 Xi for some m ∈ N such

that for any index set I ⊆ {1, . . . , m}, the intersection
⋂

i∈I Xi has positive reach
(provided that it is nonempty). Note that, in particular, sets from the extended
convex ring are UPR sets. Using the index function

iX(x, n) := 1X(x)
(
1− lim

r→0+

lim
s→0+

χ
(
X ∩B(x + ((r + s)n, r)

))
,

x ∈ Rd, n ∈ Sd−1 (B(y, t) denotes the closed ball of centre y and radius t and χ
stands for the Euler-Poincaré characteristic), we can define the unit normal bundle
of X as the support of iX and the normal cycle of X as

NX = (Hd−1xnorX) ∧ iXaX ,

where aX is a unit simple (d− 1) vector field orienting norX in the same way as in
the case of sets with positive reach. Applying NX to the Lipschitz-Killing curvature
forms, we obtain additive extensions of curvature measures for UPR-sets (see [24]).

Corollary 2. Let X be a compact UPR set with an UPR representation X =
⋃m

i=1 Xi

such that for any I ⊆ {1, . . . , m}, O 6∈ ∂
⋂

i∈I Xi and
⋂

i∈I Xi fulfills (10). Then for
any 0 ≤ k < j,∫

Ld
j

V d
k (X ∩ Lj) dLd

j =
1

σj−k

×
∫

nor X

iX(x, n)
1

|x|d−j

∑
|I|=j−1−k

Q(x, n, AI)

∏
i∈I κi(x, n)∏d−1

i=1

√
1 + κ2

i (x, n)
Hd−1(d(x, n)),

provided that the integral on the right hand side has sense.

Remark. It follows from Propositions 1 and 2 that the assumptions of Corollary 2
are fulfilled and the integral converges whenever X is a compact set from the convex
ring with O 6∈ ∂X.
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local stereology. Adv. Appl. Math. 30, 397–423.

[11] H.J.G. Gundersen (1988): The nucleator. J. Microsc. 151, 3–21.

[12] M. Hosseini-Sharifabad, J.R. Nyengaard (2007): Design-based estimation of
neuronal number and individual neuronal volume in the rat hippocampus. J.
Neurosci. Meth., to appear.

[13] C. Hundahl, J. Kelsen, K. Kjaer, L.C. Ronn, R.E. Weber, E. Geuens, A. Hay-
Schmidt, J.R. Nyengaard (2006): Does neuroglobin protect neurons from is-
chemic insult? A quantitative investigation of neuroglobin expression follow-
ing transient MCAo in spontaneously hypertensive rats. Brain Research 1085,
19–27.

27



[14] E.B.V. Jensen (1995): Rotational versions of the Crofton formula. Adv. Appl.
Probab. 27, 87–96.

[15] E.B.V. Jensen (1998): Local Stereology. World Scientific, New York.
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