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Properties of d’Alembert functions

Henrik Stetkær

Abstract

We study properties of solutions f of d’Alembert’s functional equations on a
topological group G. For nilpotent groups and for connected, solvable Lie groups
G, we prove that f has the form f(x) = (γ(x) + γ(x−1))/2, x ∈ G, where γ is
a continuous homomorphism of G into the multiplicative group C \ {0}. We
give conditions on G and/or f for equality in the inclusion {u ∈ G | f(xu) =
f(x) for all x ∈ G} ⊆ {u ∈ G | f(u) = 1}.

Mathematics Subject Classification: Primary 39B52. Secondary 22E25
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1 Introduction and notation
Let G be a topological group. In this paper we will study properties of the solutions
f : G→ C of d’Alembert’s functional equation

f(xy) + f(xy−1) = 2f(x)f(y) for all x, y ∈ G. (1.1)

A continuous solution f such that f(e) = 1, e denoting the neutral element of G, is
said to be a d’Alembert function on G. The condition f(e) = 1 may be replaced by
the equivalent one that f 6= 0.

Our purpose is to investigate the d’Alembert functions on groups that need not
be compact or abelian, and to find the properties that such functions possess. The
d’Alembert functions are known on abelian groups, where Kannappan [10] character-
ized them (see Theorem 2.12), and they have also been studied on compact groups by
Davison [4] and Yang [14].

Any solution of (1.1) is also a solution of d’Alembert’s long functional equation

f(xy) + f(yx) + f(xy−1) + f(y−1x) = 4f(x)f(y), x, y ∈ G. (1.2)

Some of our results are valid for solutions of (1.2).
Three themes about a function f ∈ C(G) dominate the paper:

(I) The first and longest is about the following three subsets of G and their mutual
relations:

N(f) := {u ∈ G | f(xu) = f(x) for all x ∈ G}, (1.3)
U(f) := {u ∈ G | f(u) = f(e)}, (1.4)
Z(f) := {z ∈ G | f(xyz) = f(xzy) for all x, y ∈ G}. (1.5)
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In particular we ask when f satisfies Kannappan’s condition Z(f) = G. In other
words, when f(xyz) = f(xzy) for all x, y, z ∈ G. Following Davison [4] we say
that a d’Alembert function is abelian if it satisfies Kannappan’s condition, and
non-abelian if it does not.

(II) The second is the range of a possibly unbounded solution of d’Alembert’s long
functional equation.

(III) The third is about properties that d’Alembert functions have in common with
group characters, i.e. properties from abstract harmonic analysis.

Some comments on the themes:

(I) N(f) is the group of (right) periods of the function f . For the cosine function
the set of periods {u ∈ R | cos(x + u) = cosx for all x ∈ R} and the set
{u ∈ R | cosu = 1} are the same. This equality persists for d’Alembert
functions on nilpotent (and hence also on abelian) groups and on connected,
solvable Lie groups, although not on all groups (Proposition 4.1, Theorem 5.2,
Remark 2.2).
In [4] Davison calls N(f) the nub of f . In hindsight the nub N(f) of a
d’Alembert function was in disguise introduced already in the paper [12] (the
group H1 in [12, Proposition 6.3]), but it was not exploited beyond the study
of d’Alembert’s functions on step 2 nilpotent groups in [12]. Its role was first
recognized by [4]. The discussion in the present paper of its relation to U(f) is
new.
d’Alembert functions need not be abelian (The subsections 8.2–8.4 provide ex-
amples), but we prove that they are so on groups that are close to being abelian
(Theorem 4.2 and Theorem 5.2). Furthermore we find and apply a new criterion
for a d’Alembert function f to be abelian: f is abelian iff f([x, y]) = 1 for all
x, y ∈ G (Theorem 3.7(b)).
In the paper [10] from 1968 Kannappan proved that if a d’Alembert function
f is abelian (in particular if G is abelian) then it can be written in the form
f = (γ + γ̌)/2 where γ : G → C

∗ is a continuous homomorphism. Before that
d’Alembert functions were only known on special groups like the real line. Suf-
ficient conditions for d’Alembert functions on non-abelian groups to be abelian
have later been published by Corovei [2, 3], Friis [7] and the author [11, 12].
Most of these results are generalized here in Sections 4 and 5.

(II) In Section 6 we study solutions of d’Alembert’s long functional equation, that
may be unbounded. Davison [4] considered the range of bounded d’Alembert
functions.

(III) In Section 7 we present two properties from abstract harmonic analysis: Linear
independence and orthogonality relations.

Examples are gathered in Section 8.
Throughout we let G denotes a topological group with neutral element e. Some

authors, for example Bourbaki, include the Hausdorff property in the definition of
locally compact. We do not.
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By function we always mean complex-valued function. If F is a function on G we
let F̌ denote the function defined by F̌ (x) = F (x−1), x ∈ G. We let [x, y] = xyx−1y−1

denote the commutator between x ∈ G and y ∈ G. For A,B ⊆ G we let [A,B] denote
the smallest subgroup of G containing the commutators {[a, b] | a ∈ A, b ∈ B}. C(G)
denotes the algebra of all continuous, complex-valued functions on G.
C
∗ denotes the multiplicative group of the non-zero complex numbers.

The identity matrix will be denoted I.

2 Preliminary results
We now derive some properties of and relations between the sets N(f), U(f) and
Z(f), first for any function f : G → C, and then for a solution of d’Alembert’s long
functional equation.

Lemma 2.1. Let f ∈ C(G).

(a) N(f) is a closed subgroup of G.

(b) f is a function on the coset space G/N(f), i.e. f is constant on each coset xN(f),
x ∈ G.

(c) Z(f) is a closed, normal subgroup of G.

(d) Z(f) = {u ∈ G | [u,G] ⊆ N(f)}.
(e) U(f) is a closed subset of G, and N(f) ⊆ U(f).

Proof. (a), (b) and (c) are immediate consequences of the definitions.

(d) Let u ∈ Z(f). For any x, y ∈ G we get that f(x[u, y]) = f(x), because any
element from Z(f) behaves like an element from the center of G when it occurs in
argument for f . This shows that [u, y] ∈ N(f). Since y is arbitrary, we have proved
that [u,G] ⊆ N(f), and so that Z(f) ⊆ {u ∈ G | [u,G] ⊆ N(f)}.

Assume conversely that u is an element of the right hand side. For any x, y ∈ G
we get that f(xu−1y) = f(xyu−1[u, y−1]) = f(xyu−1), which shows that u−1 ∈ Z(f).
But then also u ∈ Z(f), proving the other inclusion.

(e) Put x = e in f(xu) = f(x). �

Remark 2.2. Even if f is a d’Alembert function U(f) need not be a subgroup of G (in
contrast to N(f) and Z(f)), and the inclusion in Lemma 2.1(e) may be strict. More is
needed for U(f) to be a subgroup and for the inclusion to be an equality: For example
that f is bounded (Proposition 2.11) or that G is nilpotent (Proposition 4.1). The
following example illustrates these phenomena:

Let G = SL(2,C). By [4, Proposition 4.8] f(X) := 1
2

trX, X ∈ G, is a d’Alembert
function on G such that N(f) = {I}. We find that

U(f) =
{(1 + bc b2

−c2 1− bc
) ∣∣∣ b, c ∈ C},

3



so N(f) $ U(f). Furthermore U(f) is not a subgroup of G:(
1 1
0 1

)
,

(
1 0
1 1

)
∈ U(f), but

(
1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
/∈ U(f).

Any algebraic combination of homomorphisms of G into C∗ satisfies Kannappan’s
condition. To take an example, f = (γ + γ̌)/2 is an abelian d’Alembert function on
G, if γ : G→ C

∗ is a continuous homomorphism.

Lemma 2.3. Let f : G→ C be a function on G. Then the following three conditions
are equivalent

(a) f satisfies Kannappan’s condition.

(b) f is a function on G/[G,G].

(c) [G,G] ⊆ N(f).

If f : G→ C satisfies Kannappan’s condition, then f([x, y]) = f(e) for all x, y ∈ G.
We derive in Theorem 3.7(b) a converse under the assumption that f is a d’Alembert
function.

Lemma 2.4. Let G1 be a group and let π : G1 → G be a surjective homomorphism.
Let f be a function on G. Then f ◦ π satisfies Kannappan’s condition if and only if f
does.

Definition 2.5. We say that a function f on G is basic, if N(f) = {e}.

Lemma 2.6. If f : G→ C assumes the value f(e) only at x = e, then f is basic.

Proof. If u ∈ N(f) then f(xu) = f(x) for all x ∈ G. Taking x = e we find that
f(u) = f(e). By our hypothesis we infer that u = e. This means that N(f) = {e}. �

Remark 2.7. Lemma 2.6 is one direction of the last statement of [4, Corollary 4.11].
Compactness of G is not needed for this simple fact. We shall later present a converse
for bounded d’Alembert functions (Corollary 3.8(a)).

Lemma 2.8. Let f ∈ C(G) be basic. Then Z(f) = Z(G), so f satisfies Kannappan’s
condition if and only if G is an abelian group.

Proof. Follows from Lemma 2.1(d). �

Definition 2.9. The pair (G, f) is said to be a d’Alembert group, if f is a basic
d’Alembert function on G.

From now on we no longer discuss a general function f on G. In the remainder
of the present section we restrict our attention to a solution f of d’Alembert’s long
functional equation (1.2) such that f(e) = 1. In that case U(f) = {u ∈ G | f(u) = 1}.
The special case of a d’Alembert function will be studied in the following sections.
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Proposition 2.10. Let f : G → C be a bounded solution of d’Alembert’s long func-
tional equation. Then f(G) ⊆ [−1, 1].

Proof. Davison proves the proposition for d’Alembert functions [4, Proposition 6.1],
but his proof works also for solutions of d’Alembert’s long functional equation. �

Lemma 2.11. If f ∈ C(G) is a bounded solution of d’Alembert’s long functional
equation, then U(f) is a subgroup of G.

Proof. We may assume that f(e) = 1, because otherwise f = 0. If u, v ∈ U(f) = {u ∈
G | f(u) = 1}, then

1
4
{f(uv) + f(vu) + f(uv−1) + f(v−1u)} = f(u)f(v) = 1.

f is a bounded solution of d’Alembert’s long functional equation, so −1 ≤ f(x) ≤ 1
for all x ∈ G by Proposition 2.10. Due to the strict convexity of the unit interval we
get that f(uv) = f(vu) = f(uv−1) = f(v−1u) = 1, so uv−1 ∈ U(f). Thus U(f) is a
subgroup of G, because U(f) 6= ∅. �

Theorem 2.12 (Kannappan’s theorem). Let f ∈ C(G) be a solution of d’Alem-
bert’s long functional equation such that f(e) = 1. Then f satisfies Kannappan’s
condition if and only if there exists a continuous homomorphism γ : G→ C

∗ such that
f = (γ + γ̌)/2.

Kannappan’s theorem is useful, because (1) it gives an explicit expression for the
structure of the abelian d’Alembert functions, and (2) it can be applied to the study of
a d’Alembert function f even on a non-abelian group G: For any x0 ∈ G the restriction
of f to the subgroup 〈x0〉 ofG generated by x0 satisfies Kannappan’s condition, because
〈x0〉 is abelian, so Kannappan’s theorem can be applied to 〈x0〉. We use the idea (2)
in Section 6.

3 Properties of d’Alembert functions

From now on we concentrate on d’Alembert functions. In the present section we
continue the discussion from Section 2 of the relations between the sets N(f), U(f)
and Z(f). We use it to derive a new criterion for a d’Alembert function to be abelian
(Theorem 3.7(b)). We also derive some identities that are valid for any d’Alembert
function.

The following Lemma 3.1 describes two important properties of d’Alembert func-
tions. It is well known.

Lemma 3.1. Any solution f of d’Alembert’s functional equation (1.1) is central,
i.e. f(xy) = f(yx) for all x, y ∈ G, and even, i.e. f̌ = f .

The identity (3.1) in the following Lemma 3.2 is useful in the study of bounded
d’Alembert functions.
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Lemma 3.2. Let f ∈ C(G) be a d’Alembert function on G, and let u ∈ U(f). Then
f(un) = 1 for all n ∈ Z. More generally,

f(xun)− f(x) = n[f(xu)− f(x)] for all x ∈ G and n ∈ Z. (3.1)

Proof. For n ≥ 0 the proof goes by induction on n. For n < 0 we write n = −m,
where m ∈ N. Using that f(um) = 1 (take x = e in (3.1)) we get

f(xun)− f(x) = f(xu−m)− f(x) = f(xum) + f(xu−m)− f(xum)− f(x)

= 2f(x)f(um)− f(xum)− f(x) = 2f(x)− f(xum)− f(x)

= −[f(xum)− f(x)] = −[m(f(xu)− f(x))] = n[f(xu)− f(x)]. �

Remark 3.3. Lemma 3.2 was derived under the hypothesis that u ∈ U(f), i.e. that
f(u) = 1. If f(u) = ±1 we get the more general formula

f(xun)− f(x)f(u)n = nf(u)n−1[f(xu)− f(x)f(u)], ∀x ∈ G, ∀n ∈ Z.

Given a function f on G we let fx(y) := f(xy)− f(x)f(y), x, y ∈ G, and define

∆(x, y) := fx(x)fy(y)− fx(y)2, x, y ∈ G. (3.2)

The function ∆ : G × G → C was introduced by Davison in [5]. The formula (3.6)
below shows how ∆ is related to the values of f on commutators.

Proposition 3.4. If f is a d’Alembert function on G and x, y ∈ G then

(f(xy)− 1)(f(xy−1)− 1) = (f(x)− f(y))2 +
1− f([x, y])

2
, (3.3)

f(xy)f(xy−1) = f(x)2 + f(y)2 − 1 + f([x, y])

2
, (3.4)[

f(xy)− f(xy−1)

2

]2

= [f(xy)− f(x)f(y)]2

= [f(x)2 − 1][f(y)2 − 1]− 1− f([x, y])

2
, (3.5)

∆(x, y) =
1− f([x, y])

2
. (3.6)

Proof. Using that f is central, we find that

(f(xy)− 1)(f(xy−1)− 1) = f(xy)f(xy−1)− [f(xy) + f(xy−1)] + 1

= 1
2
[f(xyxy−1) + f(xy2x−1)]− 2f(x)f(y) + 1

= 1
2
[f(xyxy−1) + f(y2)]− 2f(x)f(y) + 1

= 1
2
[f(xyxy−1) + f(xyx−1y−1)]− 1

2
f(xyx−1y−1) + 1

2
f(y2)− 2f(x)f(y) + 1

= f(x)f(yxy−1)− 1
2
f([x, y]) + f(y)2 − 1

2
− 2f(x)f(y) + 1

= f(x)2 − 1
2
f([x, y]) + f(y)2 − 2f(x)f(y) + 1

2

= 1
2
(1− f([x, y])) + [f(x)− f(y)]2.
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(3.4) follows from (3.3) by simple computations. For the proof of (3.5) we first note
that f(xy)− f(xy−1) = 2f(xy)− 2f(x)f(y), which gives us the first equality sign. We
get the remainder of (3.5) by substituting (3.4) into the identity

[f(xy)− f(xy−1)]2 = [f(xy) + f(xy−1)]2 − 4f(xy)f(xy−1)

= [2f(x)f(y)]2 − 4f(xy)f(xy−1).

The proof of (3.6) consists of the following computation

∆(x, y) = fx(x)fy(y)− fx(y)2

= (f(x)2 − 1)(f(y)2 − 1)− (f(xy)− f(x)f(y))2

= −f(x)2 − f(y)2 + 1− f(xy)2 + 2f(xy)f(x)f(y)

= 1− f(x)2 − f(y)2 − f(xy)2 + f(xy)[f(xy) + f(xy−1)]

= 1− f(x)2 − f(y)2 + f(xy)f(xy−1),

combined with the formula (3.4). �

If x and y commute, or just if f([x, y]) = 1, then (3.3) reduces to

(f(xy)− 1)(f(xy−1)− 1) = (f(x)− f(y))2, ∀x, y ∈ G, (3.7)

from which [4, Proposition 2.2] follows, and (3.5) reduces to

[f(xy)− f(x)f(y)]2 = [f(x)2 − 1] [f(y)2 − 1],

which is [2, Lemma 1].

Proposition 3.5. Let f be a d’Alembert function on the group G. Then

(a) N(f) is a closed, normal subgroup of G.

(b) N(f) = Z(f) ∩ U(f).

(c) Z(f) ⊇ {u ∈ G | u2 ∈ N(f)}.
(d) If f is non-abelian, then Z(f) = {u ∈ G | u2 ∈ N(f)}.

Proof. During the proof we shall without explicit mentioning use that f as a d’Alem-
bert function is central and even.

(a) This was noted in Lemma 2.1(a) except for the normality, which follows from
f being central.

(b) For any u0 ∈ N(f) and x, y ∈ G we get f(xu0y) = f(yxu0) = f(yx) = f(xy) =
f(xyu0), showing that u0 ∈ Z(f). Using Lemma 2.1(e) we get that u0 ∈ U(f) as well.
Hence N(f) ⊆ Z(f)∩U(f). Assume conversely that u0 ∈ Z(f)∩U(f). It follows from
[12, Lemma 6.2(c)] that f(xu0) = f(x)f(u0) = f(x) for all x ∈ G, i.e. that u0 ∈ N(f).

(c) Let u2 ∈ N(f). We first note that f(u2) = f(e) = 1 by Lemma 2.1(e). From
f(u2) = 2f(u)2 − 1 we infer that f(u) = ±1. In particular that f(u) 6= 0.

That u2 ∈ N(f) means that f(xu2) = f(x) for all x ∈ G. Replacing x by xu−1

here we find that f(xu) = f(xu−1) for all x ∈ G. Since f is even we get similarly that
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f(ux) = f(u−1x) for all x ∈ G. Using this when taking y = u in d’Alembert’s long
functional equation (1.2) we find that

f(xu) + f(ux) = 2f(x)f(u) for all x ∈ G. (3.8)

We replace x in (3.8) by uxu−1 and note that (u2)−1 ∈ N(f) [because N(f) is a group]
to get (starting with the right hand side of (3.8)) that

2f(uxu−1)f(u) = f(uxu−1u) + f(uuxu−1) = f(ux) + f(u2xu−1)

= f(ux) + f(ux−1)(u2)−1) = f(ux) + f(ux−1)(u2)−1)

= f(ux) + f(ux−1)) = f(ux) + f(xu−1) = 2f(x)f(u).

Since f(u) 6= 0 we infer from the computations just made that f(uxu−1) = f(x). It
now follows from (3.8) that f(xu) = f(x)f(u). Finally, for any x, y ∈ G we get that
f(xuy) = f(yxu) = f(yx)f(u) = f(xy)f(u) = f(xyu), which shows that u ∈ Z(f).
Thus Z(f) ⊇ {u ∈ G | u2 ∈ N(f)}.

(d) For the other inclusion we first note that Z(f) 6= G, since f is non-abelian. By
[12, Lemma 6.2(d)] we then get that f(xu) = f(x)f(u) for all x ∈ G and u ∈ Z(f),
and that f(u) = ±1 for all u ∈ Z(f).

If u ∈ Z(f) we find that u2 ∈ Z(f) and that f(u2) = f(uu) = f(u)2 = 1, so that
u2 ∈ Z(f) ∩ U(f). But according to (b) the right hand side is N(f). �

Remark 3.6. Proposition 3.5(d) is closely related to [4, Proposition 5.2] (via Lemma 2.8).

We have in Lemma 2.11 seen that U(f) is a group, if f is a bounded non-zero
solution of d’Alembert’s long functional equation. Theorem 3.7 continues the study of
U(f), now for a possibly unbounded d’Alembert function. (b) gives a necessary and
sufficient condition for a d’Alembert function to be abelian, which is used in the proof
of Proposition 5.1.

Theorem 3.7. Let f be a d’Alembert function on G.

(a) The following four conditions are equivalent:

(i) U(f) is a subgroup of G
(ii) f([a, b]) = 1 for all a, b ∈ U(f)

(iii) U(f) = N(f)

(iv) U(f) ⊆ Z(f)

(b) f is abelian if and only if f([x, y]) = 1 for all x, y ∈ G.
(c) f is abelian if and only if ∆(x, y) = 0 for all x, y ∈ G, where ∆ is defined by (3.2).

Proof. (a) If U(f) is a subgroup of G, then [a, b] = aba−1b−1 ∈ U(f) for all a, b ∈ U(f),
so f([a, b]) = 1 for all a, b ∈ U(f).

Assume conversely that f([a, b]) = 1 for all a, b ∈ U(f). Since e ∈ U(f), all we
need to prove is that a, b ∈ U(f)⇒ ab−1 ∈ U(f). So let a, b ∈ U(f). From the formula
(3.3) we read that

(f(ab)− 1)(f(ab−1)− 1) = 0,
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so either f(ab) = 1 or f(ab−1) = 1. By help of the formula f(ab) + f(ab−1) =
2f(a)f(b) = 2 we see that f(ab) = 1 implies that f(ab−1) = 1. So in any case
f(ab−1) = 1, which means that ab−1 ∈ U(f).

If U(f) = N(f) then U(f) is a subgroup of G, because so is N(f). So let us
conversely assume that U(f) is a subgroup of G. The inclusion N(f) ⊆ U(f) is noted
in Lemma 2.1, so left is the reverse inclusion: Let u ∈ U(f) and let x ∈ G. Replacing
a by xu and b by x in the identity (3.3) we get that

[f(xux)− 1][f(xux−1)− 1] = [f(xu)− f(x)]2 +
1− f([xu, x])

2
,

which, because f is central, implies that

0 = [f(xu)− f(x)]2 +
1− f([xu, x])

2
. (3.9)

Now, [xu, x] = x{uxu−1x−1}x−1, so, f being central,

f([xu, x]) = f(x{uxu−1x−1}x−1) = f(uxu−1x−1).

Here we note that U(f) is a normal subgroup of G because f is central. Therefore
xu−1x−1 ∈ U(f) and hence u(xu−1x−1) ∈ U(f), i.e. f(uxu−1x−1) = 1. Finally we get
from (3.9) that 0 = [f(xu)− f(x)]2 as desired. Thus U(f) = N(f).

From Proposition 3.5(b) we read that N(f) = Z(f) ∩ U(f). This means that
U(f) = N(f) if and only if U(f) ⊆ Z(f).

(b) That f is abelian means that it satisfies Kannappan’s condition (1.5)). Putting
z = x−1y−1 in (1.5)) we get that f([x, y]) = 1 for all x, y ∈G.

Let us conversely assume that f([x, y]) = 1 for all x, y ∈ G. Then all commutators
[x, y] ∈ G are elements of U(f), and so U(f) is a subgroup of G (by (a)). Hence
the subgroup of G generated by the commutators is contained in U(f), i.e. [G,G] ⊆
U(f). Using (a) we have that [G,G] ⊆ U(f) = N(f), which means that Kannappan’s
condition is satisfied (see Lemma 2.8(c)).

(c) is immediate from (b) and formula (3.6). �

Corollary 3.8. Let f be a bounded d’Alembert function on G. Then

(a) f is basic if and only if f(x) = 1 only for x = e.

(b) If f is basic, then f |H is basic for any subgroup H of G.

Proof. (a) Let f be basic. We read from Lemma 2.11 that U(f) is a subgroup of G.
In that case U(f) = N(f) by Theorem 3.7(a). Thus U(f) = {e}, so that f(u) = 1
only for u = e. The converse is Lemma 2.6.

(b) is immediate from (a). �

Remark 3.9. (i) Corollary 3.8 extends [4, Corollary 4.11], in which G is compact.

(ii) Corollary 3.8(a) contains a partial converse of Lemma 2.6.
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It is not true in general that the restriction of a basic d’Alembert function to a
subgroup is basic, not even if the restriction is bounded. But here is a positive result
about restrictions:

Proposition 3.10. Let f be a d’Alembert function on G. Let H be a compact subgroup
of G, or a normal subgroup of G such that f(H) is bounded. Then

(a) f(xH) is bounded for any fixed x ∈ G.
(b) H ∩ U(f) = H ∩N(f).

(c) Let f be basic. Then f |H is basic. Furthermore f |H 6= 1 if H 6= {e}.
Proof. (a) Let x0 ∈ G be fixed. From d’Alembert’s functional equation f(x0h) +
f(x0h

−1) = 2f(x0)f(h) we see that {f(x0h) + f(x0h
−1) | h ∈ H} is bounded. From

the identity (3.5) we see that {f(x0h) − f(x0h
−1) | h ∈ H} is bounded. Hence so is

their sum. In particular {f(x0h) | h ∈ H} is bounded.
(b) Let u ∈ H ∩ U(f) and let x0 ∈ G be fixed. The left hand side of the formula

(3.1), i.e. of f(x0u
n) − f(x0) = n[f(x0u) − f(x0)], has by (a) a bound independent

of n. A glance at the right hand side reveals that in that case f(x0u) − f(x0) = 0.
We have thus shown that H ∩ U(f) ⊆ N(f). The rest follows from N(f) ⊆ U(f)
(Lemma 2.1(e)).

(c) Using (b) we get that N(f |H) ⊆ U(f |H) = H ∩ U(f) = {e}, so f is basic on
H. Now f |H is both bounded and basic, so we may refer to Corollary 3.8(a), in which
we replace G by H. �

4 d’Alembert functions on nilpotent groups
If f is an abelian d’Alembert function on an abelian group G, then U(f) = N(f)
(This is immediate from Proposition 3.5(b)). It is known more generally to hold on
step 2 nilpotent groups ([12, Lemma 7.1(b)]). The following Proposition 4.1 finishes
the considerations for nilpotent groups by removing the step 2 condition.

Proposition 4.1. Let f be a d’Alembert function on a nilpotent group G. Then
N(f) = U(f).

Proof. N(f) ⊆ U(f) by Lemma 2.1. To prove the converse inclusion we let u ∈ G be
such that f(u) = 1. We shall prove that u ∈ N(f).

Let π : G→ G := G/N(f) be the quotient map. Then (G, f), where f = f ◦ π, is
a d’Alembert group which is n-nilpotent for some n ∈ N∪ {0}. For any x ∈ G we use
the abbreviation x = π(x) ∈ G.

If n ≤ 1, then G is abelian, so f and hence also f is abelian (Lemma 2.4). Then
u ∈ N(f) as observed in the beginning of this subsection.

If n ≥ 2 we read from [4, Lemma 5.3] that u2n
= e. The formula in Lemma 3.2

tells us that

f(xu2n

)− f(x) = 2n[f(xu)− f(x)] for all x ∈ G,
which (because u2n

= e) implies that f(xu) − f(x) = 0, i.e. f(xu) − f(x) = 0, or
equivalently that u ∈ N(f). �
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Theorem 4.2. Let G be a nilpotent group that is generated by its squares. Then any
d’Alembert function on G is abelian.

Proof. Let f be a d’Alembert function on G. Possibly replacing G by G/N(f) we may
assume that (G, f) is a nilpotent d’Alembert group. If f is abelian we are done, so let
us assume that f is not abelian and then lead this assumption to a contradiction. So
G is now an n-nilpotent d’Alembert group for some n ∈ N, where n ≥ 2, because G is
not abelian. With Z0(G) := {e} and inductively Zj+1(G) := {x ∈ G | [x,G] ⊆ Zj(G)}
this means that {e} = Z0(G) ⊂ Z1(G) = Z(G) ⊂ · · · ⊂ Zn−1(G) ⊂ Zn(G) = G with
strict inclusions. In particular Zn−1(G) 6= G.

Let x ∈ G be arbitrary. Since G is generated by its squares, x may be written in
the form x = x2

1x
2
2 . . . x

2
s, where x1, x2, . . . , xs ∈ G. From the proof of [4, Lemma 5.3]

we read in particular that y ∈ G = Zn(G) ⇒ y2 ∈ Zn−1(G). Hence x ∈ Zn−1(G). It
follows that G ⊆ Zn−1(G), which implies the desired contradiction Zn−1(G) = G. �

Theorem 4.2 has as corollaries

1. [4, Proposition 5.4], who imposes the stronger condition on the nilpotent group
G that it shall be 2-divisible. Our proof of Theorem 4.2 is a modification of
Davison’s procedure in [4].

2. [2, Theorem 2] who deals with a nilpotent group, all of whose elements have
(finite) odd order.

3. [7, Theorem 2.6] in which G is a connected nilpotent Lie group. More precisely
only in the case of d’Alembert functions, because Friis’ result holds for solutions
of d’Alembert’s long functional equation.

The assumption in Theorem 4.2 that the group is generated by its squares cannot
be omitted: (Q8, g0) from subsection 8.4 is a counter-example.

1
2

tr is a non-abelian d’Alembert function on G = SL(2,R). Being a connected Lie
group G is generated by its squares, so we see that the assumption about nilpotency
in Theorem 4.2 cannot be deleted either.

Nilpotent groups are members of the larger class of solvable groups, for which we
obtain a special result in the next section (Theorem 5.2).

5 d’Alembert functions on solvable Lie groups
d’Alembert’s functional equation has been studied on various classes of groups: Abe-
lian, nilpotent, compact etc. However, on solvable groups it has only been studied in
the special instance of the (ax+ b)-group [6, Example 3.14], where it was shown that
the d’Alembert functions are abelian. We will in Theorem 5.2 below extend this special
result by proving that all d’Alembert functions on solvable, connected Lie groups are
abelian.

First a result that can be applied when G is a semi-direct product G = N ×sH of
two subgroups N and H:

11



Proposition 5.1. Let N and H be two subgroups of G such that G = NH = {nh |
n ∈ N, h ∈ H}. We assume that

(a) N is normal,

(b) H is abelian, and

(c) H is connected, or the subgroup generated by the squares {h2 | h ∈ H} is dense in
H, or the subgroup generated by the squares {x2 | x ∈ G} is dense in G.

Let f ∈ C(G) be a d’Alembert function on G such that f |N is abelian. Then f is
abelian.

Proof. By Theorem 3.7(b) it suffices to prove that f([x, y]) = 1 for all x, y ∈ G.
f |N being abelian there exists by Kannappan’s theorem (Theorem 2.12) a contin-

uous homomorphism γ : N → C
∗ such that f |N = 1

2
(γ + γ̌). For any x ∈ G we let

x · γ : N → C
∗ be the homomorphism defined by (x · γ)(n) = γ(x−1nx), n ∈ N . Since

f is central we find for any fixed x ∈ G that 1
2
(γ + γ̌) = f |N = 1

2
(x · γ + x · γ̌). This

implies that either x · γ = γ or x · γ = γ̌, because the set of homomorphisms of G into
C
∗ is linearly independent in the vector space of complex-valued functions on G ([9,

Lemma 29.41]).

• Here we assume thatH is connected. H+ := {h ∈ H | h·γ = γ}, andH− := {h ∈
H | h · γ = γ̌} are closed subsets of H, such that H = H+ ∪ H−. Furthermore
e ∈ H+, so H+ is not empty. Let h ∈ H. If γ = γ̌, then h · γ = γ. If γ 6= γ̌,
then H+ and H− are disjoint. By the connectedness of H we get that H = H+,
so that h · γ = γ. So in both cases h · γ = γ for all h ∈ H.

• Here we assume that H is generated by its squares. Let x ∈ H.

(1) If x · γ = γ, then (x2) · γ = x · (x · γ) = x · γ = γ.
(2) If x · γ = γ̌, then (x2) · γ = x · (x · γ) = x · γ̌ = (x · γ)∨ = (γ̌)∨ = γ.

Since H is generated by its squares we get that h · γ = γ for all h ∈ H.

• Here we assume that G is generated by its squares. Arguing as in the previous
point we get that x · γ = γ for all x ∈ G. In particular that h · γ = γ for all
h ∈ H.

Let x = n1h1 and y = n2h2, where n1, n2 ∈ N and h1, h2 ∈ H. Then

[x, y] = [n1h1, n2h2] = n1(h1n2h
−1
1 )(h1h2h

−1
1 n−1

1 (h1h2h
−1
1 )−1)[h1, h2]n

−1
2 .

Since H is abelian, so that the factor [h1, h2] = e vanishes and h1h2h
−1
1 = h2, this

expression reduces to [x, y] = n1(h1n2h
−1
1 )(h2n

−1
1 h−1

2 )n−1
2 . Each factor belongs to N ,

so also [x, y] ∈ N . Now γ : N → C
∗ is a homomorphism, so

γ([x, y]) = γ(n1) γ(h1n2h
−1
1 ) γ(h2n

−1
1 h−1

2 ) γ(n−1
2 )

= γ(n1) (h−1
1 · γ)(n2) (h−1

2 · γ)(n−1
1 ) γ(n−1

2 )

= γ(n1) γ(n2) γ(n−1
1 ) γ(n−1

2 ) = 1.

Hence f([x, y]) = 1
2
(γ + γ̌)([x, y]) = 1

2
(1 + 1) = 1. �
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Theorem 5.2. Any d’Alembert function on a connected, solvable Lie group is abelian.

Proof. The proof goes by induction on the dimension n of the group. The theorem is
clearly true if n ≤ 1, because the group then is abelian.

Assume that the theorem is true for all groups of dimension ≤ n− 1, where n ≥ 2.
Let f be a d’Alembert function on a connected, solvable Lie group G of dimension n.
We shall prove that f is abelian. Possibly replacing G by its universal covering group
we may (according to Lemma 2.4) assume that G is simply connected.

Let g denote the Lie algebra of G. Choose a subspace n of g such that n ⊇ [g, g]
and dim n = n−1. Then n is an ideal of g. Choose a complementary subspace h of n in
g. Then dim h = 1, so h is an abelian subalgebra of g. Let N and H be the respective
analytic subgroups of G defined by n and h. Then N is a normal subgroup of G, and
H is an abelian subgroup of G. According to [13, Lemma 3.18.4] G = N ×s H is the
semidirect product of the two subgroups N and H. By our induction hypothesis f |N
is abelian, so we get from Proposition 5.1 that f is abelian. �

6 On the range of a d’Alembert function

If f is a bounded solution of d’Alembert’s long functional equation, then f(G) ⊆ [−1, 1]
(Lemma 2.10). We shall in this section study

(A) the range of solutions of d’Alembert’s long functional equation under weaker
boundedness assumptions. For example assuming only that the real part <f of
the solution f is bounded.

(B) relations between a solution of d’Alembert’s long functional equation on G and
its restriction to the identity component G0 of G.

Unless otherwise specified f : G→ C will throughout this Section 6 denote a non-
zero solution of d’Alembert’s long functional equation on G. That f 6= 0 is equivalent
to f(e) = 1.

As illustrations the reader may have in mind the d’Alembert functions

1. cosx, coshx and cos(1 + i)x = cosx coshx− i sinx sinhx on G = R. coshx is an
unbounded real-valued d’Alembert function, which is bounded from below by 1.
The range of cosx is all of [−1, 1].

2. 1
2

trx, x ∈ SL(2,R). This is a real-valued d’Alembert function, which is un-
bounded both from above and from below.

3. f(x) = (x + x−1)/2, x ∈ G = Z3 = {exp (2πi
3
n) | n = 0, 1, 2} ⊆ C

∗. Here
f(G) = {−1

2
, 1}.

None of the other sections depend on this section.
Let x0 ∈ G be arbitrary. Kannappan’s theorem applied to the subgroup 〈x0〉 of

G says that there exists a homomorphism γ : 〈x0〉 → C
∗ such that f(x) = (γ(x) +

γ(x−1))/2 for all x ∈ 〈x0〉. Let us write γ(x0) = r0e
iθ0 , where r0 > 0 and θ0 ∈ ]− π, π].
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Possibly replacing x0 by x−1
0 we may assume that r0 ≥ 1. By elementary computations

we find for any n ∈ Z we find that

f(xn0 ) =
rn0 + r−n0

2
cos(nθ0) + i

rn0 − r−n0

2
sin(nθ0), so that (6.1)

<f(xn0 ) =
rn0 + r−n0

2
cos(nθ0), and in particular (6.2)

<f(x0) =
r0 + r−1

0

2
cos(θ0). (6.3)

The above notation will be used in the proofs of the Propositions 6.1 and 6.2 whenever
an x0 ∈ G is given.

Proposition 6.1. (a) If <f is bounded from above, then f(G) ⊆ [−1, 1].

(b) If <f is bounded from below, then <f(x) ≥ −1 for all x ∈ G.
(c) If =f is bounded, then f is real-valued.

Proof. Writing f = g + ih, where g = <f and h = =f , we find for all x, y ∈ G that

g(xy) + g(yx) + g(xy−1) + g(y−1x) = 4{g(x)g(y)− h(x)h(y)} (6.4)
h(xy) + h(yx) + h(xy−1) + h(y−1x) = 4{g(x)h(y) + h(x)g(y)}. (6.5)

(a) If g = <f is also bounded from below, then it follows from (6.4) that h = =f is
bounded. Hence f = g + ih is bounded, so that we are done by Proposition 2.10.

Thus it suffices to show that <f is bounded from below. This we do by contradic-
tion, so we assume that <f is not bounded from below. Then there exists an x0 ∈ G,
such that <f(x0) < −1. If θ0 is a rational multiple of π, say θ0 = p

q
π, where p, q ∈ Z

and q > 0, then we get for any m ∈ N by taking n = 2mq in (6.2) that

<f(x2mq
0 ) =

r2mq
0 + r−2mq

0

2
cos(2mpπ) =

r2mq
0 + r−2mq

0

2
.

Letting m→∞ we see that <f is not bounded from above, contradicting our assump-
tion.

Thus θ0 is not a rational multiple of π, and so there exist arbitrarily large n ∈ N
such that cosnθ0 > 1/2. Once again we see from (6.2) that <f is not bounded from
above, contradicting our assumption.

(b) We prove that <f ≥ −1 by contradiction, so we assume that there exists an
element x0 ∈ G such that <f(x0) < −1. We get from (6.3) that cos θ0 < 0 and that
r0 > 1.

If θ0 is a rational multiple of π, say θ0 = p/q π, where p ∈ Z, q ∈ N, we see from
(6.2) for any n ∈ N that

<f(x1+2qn
0 ) =

r1+2qn
0 + r−1−2qn

0

2
cos(θ0),

which converges to −∞ for n→∞, contradicting that <f is bounded from below. If
θ0 is not a rational multiple of π, then cos(nθ0) < −1/2 for infinitely many n ∈ N,
which once more via (6.2) leads to a contradiction to <f being bounded from below.

(c) Here h = =f is bounded. We shall prove that h = 0, so we may assume that
h 6= 0. From (6.5) we see that also g is bounded. But then f is real-valued by (a). �
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Proposition 6.2. (a) If <f(x) ≥ −1/2 for all x ∈ G, then f is real-valued.

(b) If <f(x) > −1/2 for all x ∈ G, then f(x) ≥ 1 for all x ∈ G.

Proof. (a) Letting x0 ∈ G be arbitrary we shall prove that f(x0) ∈ R.
If r0 = 1, then the last term of (6.1) vanishes, so that f(x0) ∈ R. Thus we may

from now on assume that r0 > 1. Combining our assumption with (6.2) we find for
any n ∈ N that

rn0 + r−n0

2
cos(nθ0) ≥ −1

2
.

For any n ∈ N
rn0 + r−n0

2
≥ r0 + r−1

0

2
> 1, so

cos(nθ0) ≥ −1

2

(rn0 + r−n0

2

)−1

≥ −1

2

(r0 + r−1
0

2

)−1

> −1

2
,

which implies that θ0 = 0, because it holds for all n ∈ N. And then f(x0) ∈ R by (6.1).
(b) We get from (a) that f is real-valued, so that f(x) > −1/2 for all x ∈ G. Then
−1/2 < f(x2) = 2f(x)2 − 1, or equivalently f(x)2 > 1/4, so that either f(x) > 1/2
or f(x) < −1/2. The last possibility must be discarded by our assumption so that
f(x) > 1/2 for all x ∈ G.

Assume now that f(x) > a for all x ∈ G for some a ≥ 1/2. Then a < f(x2) =
2f(x)2−1, so that f(x)2 > (1+a)/2, implying that either f(x) >

√
(1 + a)/2 or f(x) <

−√(1 + a)/2. The last possibility does not occur (because f(x) > a ≥ 1/2 > 0), so
f(x) >

√
(1 + a)/2 for all x ∈ G. Since

√
(1 + a)/2 ≥ 1/2 we may continue the

process. We obtain a sequence a1 = 1/2, a2, . . . , such that 1/2 ≤ an ≤ f(x) and
an+1 =

√
(1 + an)/2. It follows by induction that the sequence {an} is increasing. It is

bounded from above by f(x), so it converges. Let a0 = limn→∞ an. Then a0 ≤ f(x) for
all x ∈ G. When we let n→∞ in an+1 =

√
(1 + an)/2 we get that a0 =

√
(1 + a0)/2,

which implies that a0 = 1. �

Remark 6.3. The condition <f(x) > −1/2 in Proposition 6.2(b) cannot be strength-
ened to <f ≥ −1/2 as shown by the example G = Z3 from the beginning of this
section.

Proposition 6.4. Let G be connected. Then

(a) f(x) ≥ 1 for all x ∈ G or <f(G) ⊇ [−1, 1].

(b) If furthermore f is bounded, then f(G) = {1} or f(G) = [−1, 1].

Proof. (a) Due to Proposition 6.2(b) we may assume that inf <f(G) ≤ −1/2. By
connectedness <f(G) ⊇ [−1/2, f(e)] = [−1/2, 1], so there exists an a ∈ G such that
<f(a) = 0. Then <f(a2) = 2<(f(a)2) − 1 ≤ 2(<f(a))2 − 1 = 0 − 1 = −1. By
connectedness <f(G) ⊇ [−1, 1].

(b) Combine Proposition 2.10 and (a). �
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Many of the ingredients of the following Lemma 6.5 are present in [4, Proposi-
tion 6.6]. However, we deal with a locally compact group, while [4] only has a compact
one.

Lemma 6.5. A totally disconnected, locally compact d’Alembert group is discrete.

Proof. Let the d’Alembert group be denoted (G, f). We get from [8, Theorem 7.7]
that every neighborhood of e contains a compact open subgroup of G. In particular
P = {x ∈ G | <f(x) > 0} contains a compact open subgroup of G, say H ⊆ P . It
suffices to prove that H = {e}, because then {e} is open, and so G is discrete.

We note that f(H) ⊆ [−1, 1], because H is compact so that f is bounded (Propo-
sition 2.10).

Furthermore on H the function f assumes the value 1 only at the point e (Corol-
lary 3.8(a)). If H 6= {e} we get from Proposition 6.2(b) with G replaced by H that
there exists an h ∈ H such that f(h) ≤ −1/2. But h ∈ H ⊆ P , so that contradicts
the definition of P . Hence H = {e}. �

Proposition 6.6. Let f be a d’Alembert function on a locally compact group G.
Assume that f = 1 on the identity component G0 of G. Then N(f) is open and
G0 ⊆ N(f).

Proof. The quotient map π : G→ G/N(f) is an open and continuous homomorphism
of G onto G/N(f). Define f̃ : G/N(f) → C by f = f̃ ◦ π. Then (G/N(f), f̃) is a
d’Alembert group.

Let G0 and (G/N(f))0 denote the identity components of G and G/N(f) respec-
tively. π(G0) = (G/N(f))0 according to [8, Theorem 7.12].

Now f̃ = 1 on π(G0) and hence also on π(G0) = (G/N(f))0. Since f̃ is basic
we read from Corollary 3.10(c) that (G/N(f))0 = {eN(f)}. Then G/N(f) is totally
disconnected, and hence discrete by Lemma 6.5. But then N(f) is an open, and hence
also closed, subgroup of G. By connectedness G0 ⊆ N(f). �

7 Relations to harmonic analysis
The following two results describe properties of d’Alembert functions that they have in
common with group characters (cf. [9, Lemma 29.41] and the orthogonality relations)
and more generally with spherical functions.

None of the other sections depend on this section.

Proposition 7.1. The non-zero solutions of d’Alembert’s long functional equation on
a group G are linearly independent in the vector space of all complex-valued functions
on G.

Proof. We shall show that any finite set of non-zero solutions of d’Alembert’s long
functional equation is linearly independent. We do this by induction on the number
n of elements in the set. It is true, if n = 1, because the solutions are non-zero.
Assuming that any set of n non-zero solutions of d’Alembert’s long functional equation
is linearly independent, we shall prove it is also true for any set of n+ 1 elements. So
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let f1, . . . , fn, fn+1 be n+1 different non-zero solutions of d’Alembert’s long functional
equation, and let α1, . . . , αn, αn+1 ∈ C be such that

α1f1 + · · ·+ αnfn + αn+1fn+1 = 0. (7.1)

We shall prove that α1 = · · · = αn = αn+1 = 0.
Let x, y ∈ G be arbitrary. Evaluating (7.1) at xy−1, xy−1, yx and y−1x and adding

the resulting four identities we obtain from d’Alembert’s long functional equation that

α1f1(x)f1(y) + · · ·+ αnfn(x)fn(y) + αn+1fn+1(x)fn+1(y) = 0. (7.2)

Multiplying (7.1) by fn+1(y) and subtracting the result from (7.2) we get

α1f1(x)[f1(y)− fn+1(y)] + · · ·+ αnfn(x)[fn(y)− fn+1(y)] = 0.

By our induction hypothesis {f1, . . . , fn} is a linearly independent set, so

α1[f1(y)− fn+1(y)] = · · · = αn[fn(y)− fn+1(y)] = 0.

Since fn+1 6= fk for k = 1, . . . , n, we get that α1 = · · · = αn = 0. By (7.1) then also
αn+1 = 0, so all the coefficients vanish. �

Next the orthogonality relations:

Proposition 7.2. Let g1, g2 ∈ C(G) be two different d’Alembert functions on a com-
pact group G. Then ∫

G

g1(x)g2(x) dx = 0,

where dx denotes a Haar measure on G.

Since bounded d’Alembert functions are real (Proposition 2.10) the integral in the
proposition is the usual inner product in L2(G) between g1 and g2. The orthogonality
relations of course imply the linear independence of the set of d’Alembert functions,
but only under the assumption that G is compact. Proposition 7.1 works on any group.

Proof. (g1 ∗ g2)(x) =
∫
G
g1(y)g2(y

−1x) dy for x ∈ G. g1 being even we can change
variables to get (g1 ∗ g2)(x) =

∫
G
g1(y)g2(yx) dy. Adding the two identities gives that

g1 ∗ g2 = {∫
G
g1(y)g2(y) dy} g2.

g1 is central (Lemma 3.1), which implies that g1 ∗ f = f ∗ g1 for any f ∈ C(G). In
particular g1 ∗ g2 = g2 ∗ g1, so that{∫

G

g1(y)g2(y) dy
}
g2 =

{∫
G

g2(y)g1(y) dy
}
g1.

If
∫
G
g1(y)g2(y) dy 6= 0 we get the contradiction g1 = g2. �
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8 Examples

8.1 The group R

The d’Alembert functions on G = R are the functions fα(x) = cos(αx), where the
parameter α ranges over C. The d’Alembert functions for which α ∈ C \R are basic,
while the remaining ones are not.

8.2 The special linear groups SL(2,C) and SL(2,R)

Theorem 8.1. g1 = 1, g2 = 1
2

tr and g3 = 1
2

tr (i.e. the complex conjugate of g2) are
the only d’Alembert functions on the group SL(2,C). g1 is the only abelian d’Alembert
function, while the functions g2 = 1

2
tr and g3 = 1

2
tr are basic and non-abelian

d’Alembert functions.

We see that there may well exist two different basic, non-abelian d’Alembert func-
tions on a group.

For a proof that the functions g1, g2 and g3 are d’Alembert functions, and that
g2 and g3 are basic see [4, Proposition 4.8]. g = 1 is the only abelian solution of
d’Alembert’s functional equation on G = SL(2,C), i.e. the only solution of the form
g(A) = (γ(A) + γ(A−1)/2, A ∈ SL(2,C), where γ : G → C

∗ is a homomorphism.
Indeed, as is well known G = [G,G] (see for example [13, Corollary 3.18.10]). Being a
homomorphism γ is 1 on any commutator [A,B] = ABA−1B−1, so it follows that γ is
identically 1 on G (We could also apply Theorem 3.7(b)).

g2 and g3 are not abelian: Indeed, abelian d’Alembert functions are 1 on commu-
tators, but g2 and g3 take the value 3/2 on the commutator[(1 1

0 1

)
,

(
1 0
1 1

)]
=

(
1 1
0 1

)(
1 0
1 1

)(
1 1
0 1

)−1(
1 0
1 1

)−1

=

(
3 −1
1 0

)
We skip the details in our long proof of the uniqueness statement of Theorem 8.1.

The main ingredient is that d’Alembert functions, being central, are constant on the
orbits of inner automorphisms.

By similar considerations to the ones for SL(2,C) we derive

Theorem 8.2. g = 1 and g = 1
2

tr are the only d’Alembert functions on the group
SL(2,R). g1 is the only abelian d’Alembert function, while the function g = 1

2
tr is

basic and non-abelian.

8.3 The special unitary group SU(2)

There are only two d’Alembert functions on the compact group SU(2), viz. the constant
function 1 and the function tr /2 [14, Theorem 2]. That tr /2 is a d’Alembert function
is clear, because it is the restriction to SU(2) of the d’Alembert function g2 on SL(2,C).
It is non-abelian by the argument above for SL(2,C), applied to[(0 i

i 0

)
,

(
0 −1
1 0

)]
=

(−1 0
0 −1

)
.

Finally tr /2 is basic by Corollary 3.10(c), because it is basic on SL(2,C).
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8.4 The quaternion group

The first non-abelian d’Alembert functions that were discovered, were related to the
quaternions. Below we point out how they are related to the quaternions and to one
another.

As is well known, the map

a+ bi+ cj + dk 7→
[

a+ ib c+ id
−(c− id) a− ib

]
, a, b, c, d ∈ R,

is an injective R-linear multiplicative homomorphism of the quaternions into the com-
plex 2×2 matrices. The restriction h to the groupQ = {a+ib+cj+dk | a2+b2+c2+d2 =
1} of unit quaternions is a topological group isomorphism between Q and SU(2) (See
[9, 29.54]).

Since h is a topological isomorphism, the functions 1 and g = 1
2

tr ◦h : Q→ C are
the only d’Alembert functions on Q by the results described in subsection 8.3. g is
basic and non-abelian, because so is 1

2
tr on SU(2). A simple computation reveals that

g(a+ ib+ cj + dk) = a for a+ ib+ cj + dk ∈ Q. Ng observed in [1, Remark] that g is
a non-abelian d’Alembert function on Q.

Corovei had earlier in [2, p. 105–106] (see also [3, Example]) considered the quater-
nion group Q8 = {±1,±i,±j,±k} and found that the function g0 : Q8 → C defined
by g0(±1) = ±1, g0(±i) = g0(±j) = g0(±i) = 0, is a non-abelian d’Alembert func-
tion on Q8. g0 is the restriction of Ng’s function g from Q to Q8, so it is clearly
a d’Alembert function. That g0 is non-abelian, is immediate from the computations
g0(ijk) = g0(k

2) = g0(−1) = −1 and g0(ikj) = g0(−ijk) = g0(1) = 1. It is basic
by Corollary 3.8(b). Actually g0 is the only basic d’Alembert function on Q8: Let
f0 be any basic d’Alembert function on Q8. Then f0 is non-abelian by Lemma 2.8.
But there is only one non-abelian d’Alembert function on Q8, viz g0 (according to [12,
Example 7.4]). Hence f0 = g0.

8.5 On existence of non-trivial d’Alembert functions

There are both non-compact and compact groups on which g = 1 is the only d’Alembert
function:

Consider the group G = P SL(2,R) = SL(2,R)/{±I}. Let π : SL(2,R) →
PSL(2,R) be the quotient map. If g is a d’Alembert function on G, then g ◦ π is
a d’Alembert function on SL(2,R). By Theorem 8.2 we either have g ◦ π = 1 or
g ◦ π = 1

2
tr. But the latter case can not occur, because it leads to a contradiction:

(g ◦π)(−I) = g(π(−I)) = g(e) = 1, but 1
2

tr(−I) = −1. Hence g ◦π = 1, and so g = 1
is the only d’Alembert function on PSL(2,R).

g = 1 is the only d’Alembert function on SU(n) for n ≥ 3 [14, Proposition 1]. See
[14] for examples of d’Alembert functions on connected, compact groups.

By similar arguments as for G = PSL(2,R) you see that g = 1 is the only
d’Alembert function on the special orthogonal group G = SO(3). Indeed, SU(2) is
a 2-fold covering group of SO(3) (actually its universal covering group) and g = 1

2
tr

and g = 1 are the only d’Alembert functions on SU(2).
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