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ESTIMATION OF SURFACE AREA AND SURFACE AREA
MEASURE OF THREE-DIMENSIONAL SETS FROM

DIGITIZATIONS

JOHANNA ZIEGEL† AND MARKUS KIDERLEN∗,‡

Abstract. A local method for estimating surface area and surface area measure
of three-dimensional objects from discrete binary images is presented. A weight
is assigned to each 2 × 2 × 2 configuration of voxels and the total surface area
of an object is given by summation of the local area contributions. The method
is based on an exact asymptotic result that holds for increasing resolution of the
digitization. It states that the number of occurrences of a 2× 2× 2 configuration
is asymptotically proportional to an integral of its “h-function” with respect to
the surface area measure of the object. We find explicit representations for these
h-functions. Analyzing them in detail, we determine weights that lead to an
asymptotic worst case error for surface area estimation of less than 4%. We show
that this worst case error is the best possible. Exploiting the local nature of the
asymptotic result, we also establish two parametric estimators for the surface area
measure. The latter allow to quantify anisotropy of the object under consideration.
Simulation studies illustrate the validity of the estimation procedure also for finite,
but sufficiently high resolution.

1. Introduction

Already Gauss used the fact that the area of a planar object is approximately
proportional to the number of lattice points contained in it. This observation, ex-
tended to three dimensions, is the basis of modern volume approximations based on
voxel counts in digital black-and-white images of real-world structures. To approx-
imate the surface area, counts of individual voxels are no longer sufficient. Instead,
one determines the number of occurrences of certain patterns – so-called boundary
configurations – of black and white voxels in 2 × 2 × 2 cubes. Then, a weight is
assigned to each configuration of voxels and the total surface area is obtained by
a summation of the local area contributions. As the choice of these weights is not
unique, there is a number of competing choices, all motivated by geometric argu-
ments. In [11] the weights are chosen as the areas of isosurfaces originating from
a marching cubes representation. The weights in [13] are determined by discretiz-
ing an integral geometric relation (the Crofton formula) and using a digital version
of the Euler-Poincaré characteristic in lattice-line sections. Under the assumption
that the object is randomly translated and rotated before digitization, the weights
derived in [10] are optimal, in the sense that the obtained estimator is an MVUE
(minimal variance unbiased estimator). In the present paper we will also work with
randomized positions of the object relative to the main axis of the digitization, but
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only allow for random “uniform” translations. Under this assumption there appears
to be no unbiased estimator based on weighted configuration counts.

The purpose of this work is to present another estimator of surface area (giving
a new set of weights), which has a better worst case behavior than the known ones
when the resolution is high. Furthermore, we can also estimate a local version of
the surface area, the surface area measure. Its normalization (also called the rose
of normal directions) is the distribution of the outer unit normal of the object in
a typical boundary point. If, for instance, the object is a ball, then this measure
is proportional to the uniform distribution on the set of unit vectors. The devia-
tion of the surface area measure from uniformity can therefore be used to quantify
anisotropy of an object. Both estimators are based on a very general asymptotic
result in [6] that was only recently shown. Asymptotics is understood here with
respect to increasing resolution, or, equivalently, with lattice distance t > 0 of the
digitization converging to zero. Let Nt be the number of occurrences of the bound-
ary configuration (B,W ) of black B and white W voxels in the digitized picture
of an object Z. The asymptotic result states that Nt behaves in mean like ct−2 as
t→ 0. Interestingly, the constant c can be given explicitly as an integral

c =

∫
S2

h(B,W )(n)S2(Z, dn) (1)

over the unit sphere S2 of R3. Here, h(B,W ) is the so-called h-function depending
only on the configuration (B,W ) under consideration. The measure S2(Z, ·) is the
surface area measure of Z and is independent of the configuration. The total mass
S(Z) =

∫
S2 1 S2(Z, dn) is the surface area of Z. Hence, any weighted sum of h-

functions, approximating the constant function one, can be used to estimate surface
area from configuration counts. This is the key idea to construct a set of weight
vectors such that the maximal relative error of the derived surface area estimator
is asymptotically minimal. The best possible bound is 3.98%. Simulations suggest
that this worst case bound even holds for finite (but reasonably high) resolution 1/t.
We can show that the estimators of surface area proposed in [10] and [13] both have
an asymptotic worst case error of 7.3%. The weights proposed in [11] have an asymp-
totic worst case error of 12.8%. Their weight vectors are substantially different from
ours and from each other. The analysis of linear dependence between h-functions in
Proposition 3.4 enables us to explain these differences to a large extend. Essentially
there are only five types of configurations that contribute to the asymptotic worst
case error. The coefficients for two of these types are approximately equal in all ap-
proaches, while for the other three they differ substantially. The linear dependence
of certain h-functions implies that some weight can be shifted between the latter
three types without changing the asymptotic worst case error.

As configuration counts allow to approximate certain integrals with respect to the
surface area measure, it is natural to use these counts also for surface area measure
estimation. As there are only finitely many 2×2×2 configurations, yielding finitely
many integrals of the form (1) with different integrands, we will have to choose
a model with finitely many parameters. This leads to the question to find the
number of degrees of freedom that can possibly be determined by the integrals
over all h-functions of 2 × 2 × 2 configurations. In other words, we ask for the
dimension of the subspace H2×2×2, spanned by all h-functions, in the Banach space
C(S2) of all continuous functions on the unit sphere S2. Proposition 3.3 shows that
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dim(H2×2×2) = 50. We then suggest two simple models for the surface area measure
with 50 degrees of freedom. The first model allows for discrete measures with a
prescribed support, the second model has a piecewise constant density. The first
model has the advantage of statistical simplicity: we can derive explicit formulae
for the model parameters depending on the configuration counts, and show that
the derived estimator is asymptotically unbiased, i.e. the mean estimator converges
(weakly) to the true surface area measure, as the resolution increases. The second
model is interesting because it includes the isotropic case, hence it can more easily be
used to detect and quantify deviations from isotropy. The two models are a natural
extension of the two-dimensional models suggested in [4] and refine an existing
approach of [2] allowing for 26 degrees of freedom. Note that estimation of the
surface area measure from counts of point pairs (in the 26-neighborhood) instead of
counts of 2× 2× 2 configurations only determines 13 degrees of freedom. The new
methods clearly yield refined estimators, but build on the same lateral resolution.

∗ ∗ ∗
We described the new approaches for subsets of three-dimensional space R3, but
as many of the concepts also hold in d-dimensional space, we will present them in
this general setting, where appropriate. Similarly, we develop parts of the theory
for n × n × n configurations, which are natural extensions of the 2 × 2 × 2 case in
R3. It should also be mentioned that asymptotic results always depend on certain
regularity conditions of the underlying structure Z. Conditions in the literature
are either not made explicit or rather strong, like polygonality or morphological
openness and closeness with respect to suitable line segments. As we are working
with asymptotic results, the conditions on the set Z in the present paper are very
weak, we assume that Z is gentle; see Section 2 for a definition. Of course, the
validity of the above worst case errors depends on the discretization model chosen.
We formulate all results with respect to the common Gauss digitization model.
As the underlying asymptotic identity from [6] also holds for the volume-threshold
digitization, an extension to this setting is immediate.

Note that the surface area estimators in the present paper are all based on con-
figuration counts and do not require a time consuming reconstruction of the actual
object surface. This is the reason why the implementation is straightforward and
the algorithms have an excellent time performance. Alternatives are a number of
multigrid convergent estimators; see [7] for an overview. These estimators converge
to the true surface area as lattice resolution increases. They are, however, computa-
tionally more intensive, as they require an explicit approximation of the boundary
of the object, which apparently cannot be achieved by local methods. Examples
in this spirit are [8], based on global polyhedrization techniques, and [1], where a
discrete approximation of the normal vector field is integrated.

∗ ∗ ∗
The paper is organized as follows. The main results are presented in Sections 4
and 5. Section 2 introduces notation, the most important definitions and some basic
results about convex polytopes, which will be needed in the sequel. In Section 3
we start with a general analysis of the h-function of an n × n × n configuration
(B,W ). Instead of representing it as the difference of two support functions of
fairly complicated polytopes, we suggest a compact form as a minimum over the
scalar products with only few, so-called visible points of the set B + W̌ . This is a
generalization of [4, Corollary 1]. The set of all informative n×n×n configurations
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can be determined by applying an algorithm suggested in [2]. For each of these
configurations, Algorithm 1 in Section 3.1 determines all visible points and thus
allows to express its h-function in a compact form, which gives insight into the
structure of the h-function. Based on this, we identify linear dependencies between
h-functions (Proposition 3.4), and subsequently determine the dimension of H2×2×2

(Proposition 3.3). Estimation of surface area is treated in Section 4. Section 5
presents the two mentioned estimators for surface area measure.

2. Basic results and Notation

By Sd−1 we denote the unit sphere in Rd. For two points x, y ∈ Rd let 〈x, y〉 be the
standard scalar product and [xy] := {tx + (1 − t)y | t ∈ [0, 1]} be the line segment
with endpoints x and y. Let A,B ⊂ Rd. The reflection of A at the origin is denoted
by Ǎ := {−x | x ∈ A}, its complement by Ac := Rd\A and its topological boundary
by ∂A. We write A+B := {a+b | a ∈ A, b ∈ B} for the Minkowski sum of A and B.
Let H+ and H− be the two closed halfspaces that are bounded by a hyperplane H
of Rd. Recall that A,B ⊂ Rd are separated by H, if A ⊂ H+ and B ⊂ H−, or vice
versa. They are strictly separated by H, if, in addition, A∪B does not hit H. The
positive part of a real valued function f is denoted by f+ := max(f, 0). Furthermore,
we need some notation from convex geometry. Recall that a (convex) polytope is
the convex hull of finitely many points in Rd. The support function of a convex body
K (nonempty compact convex set) in Rd is given by h(K, ·) = supx∈K〈x, ·〉. We use
this notion also for compact sets A ⊂ Rd, A 6= ∅, defining h(A, ·) := h(convA, ·),
where convA denotes the convex hull of A. The support set of the convex body K
in direction u ∈ Sd−1 is given by K(u) := {x ∈ K | 〈x, u〉 = h(K, u)}.

Let Z ⊂ Rd be the set that represents the real-world structure to be analyzed.
Throughout the paper we assume that Z ⊂ Rd is compact and gentle. This means
that the compact set Z satisfies

(i) Hd−1(N(∂Z)) <∞,
(ii) for Hd−1-almost all z ∈ ∂Z there are two non-degenerate open balls touching

in z such that one of them is contained in Z and the other in Zc.

Here Hd−1 is the (d − 1)-dimensional Hausdorff measure in Rd and N(∂Z) is the
reduced normal bundle of ∂Z; for further details see [6]. The class of gentle sets
is rather large. It contains for instance all convex bodies with interior points, all
topologically regular sets in the convex ring (the family of finite unions of convex
bodies), and certain unions of sets of positive reach. By (ii), almost all boundary
points of Z have a unique outer unit normal. The surface area measure Sd−1(Z, ·) of
Z is the image measure of Hd−1( · ∩ ∂Z) under the spherical image map. Hence, for
a Borel set A ⊂ Sd−1, Sd−1(Z,A) is the surface area of the set of all boundary points
of Z having an outer normal in A. It follows from [6, Corollary 2.2] that Sd−1(Z, ·)
satisfies the centroid condition∫

Sd−1

nSd−1(Z, dn) = 0. (2)

A random digitization of Z is obtained as the intersection of Z with the scaled and
randomly translated regular lattice t(U+Zd), where U is a uniform random variable
in the unit cube. This means that we work with the Gauss digitization model and
the midpoints of the voxels, instead of thinking of the digital image as a collection
of small cubes. We call Zd ∩ [0, n− 1]d the n-lattice cube in Rd. An nd configuration
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is a pair (B,W ) of disjoint sets B,W such that B ∪W is the n-lattice cube, n ≥ 2.
If both sets B and W are nonempty, (B,W ) is called a boundary configuration. We
will refer to points in B as black points (belonging to the object) and to points
in W as white (background) points. Theorem 5 in [6], already mentioned in the
introduction, can now be made precise. For an nd boundary configuration (B,W )
we set

h(B,W ) := (−h(B + W̌ , ·))+|Sd−1

and call it the h-function of (B,W ). It would also be natural to define h(B,W ) as a
(positive homogeneous) function on Rd. Whenever we use this extension on Rd, it
will be explicitly stated.

Theorem 2.1. Let Z ⊂ Rd be a compact gentle set. Let U be uniformly distributed
in the unit cube, B,W ⊂ Zd two non-empty finite subsets of Zd. Then the number

Nt =
∑

x∈t(U+Zd)

1{x+tB⊂Z∩t(U+Zd), x+tW⊂Zc∩t(U+Zd)}, t > 0,

of occurrences of (B,W ) in the digitization of Z satisfies

lim
t→0+

td−1ENt =

∫
Sd−1

h(B,W )(n)Sd−1(Z, dn). (3)

The h-function of a configuration has an intuitive geometrical interpretation,
which we describe for d = 3. Fix a direction u ∈ S2. Consider the union S of
all planes with normal u that separate B and W such that u points away from B.
Then h(B,W )(u) is the width of S in direction u. Of course it can happen that S = ∅,
then h(B,W )(u) = 0. We call a configuration informative, if it is a boundary config-
uration and there is a hyperplane which strictly separates B and W . Theorem 2.1
shows that non-informative boundary configurations are asymptotically negligible,
as the right hand side of (3) is zero. Hence, we focus on informative configura-
tions for our estimation procedures; see also [10] and the comment in Section 4.2 on
this matter. Furthermore, we identify twin configurations for estimation purposes,
as they have the same h-function. A configuration (B′,W ′) is called twin of an
n× n× n configuration (B,W ), if

B′ := ρn(W ), W ′ := ρn(B),

where ρn denotes the reflection at the point (n−1
2
, n−1

2
, n−1

2
) ∈ R3.

In order to use Theorem 2.1 for estimation purposes, it is necessary to find a
simpler form of the right hand side of equation (3). Note that h(B + W̌ , ·) =
h(conv(B + W̌ ), ·) and for any convex body K we have

(−h(K, ·))+ = h(K ∪ {0}, ·)− h(K, ·). (4)

The notion of visibility can be used to simplify the right hand side of this equation.

Definition 2.1. Let K ⊂ Rd be a convex body with 0 6∈ K. We call p ∈ K visible
(from the origin), if [0p] ∩K = {p}.

The use of the term visible is motivated by the idea that the visible points of
K are exactly those points of K that can be seen by an observer located at the
origin. Clearly, any visible point of K is a boundary point of K. If a hyperplane
separates the set of visible points and the origin, it also separates K and the origin.
Furthermore, if there is a hyperplane through a point p ∈ K, separating K and 0
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and not containing 0, then p is visible. The converse is true if K is a polytope, and
we will repeatedly work with this characterization of visible points.

Lemma 2.2. Let K be a polytope with vertices p1, . . . , pk and 0 6∈ K. Possibly after
renumbering we may assume that {p1, .., pl}, l ≤ k, are the visible vertices of K.
Then we have

h(K ∪ {0}, ·)− h(K, ·) = min
i∈{1,...,l}

〈−pi, ·〉+. (5)

Proof. As K is a polytope,

h(K, u) = sup
x∈K
〈x, u〉 = max

i∈{1,...k}
〈pi, u〉, u ∈ Rd.

The convex bodyK0 := conv(K∪{0}) is also a polytope, with vertices in {p1, . . . , pk, 0}.
The support function of K0 therefore has the form

h(K0, ·) = max{〈p1, ·〉, . . . , 〈pk, ·〉, 0} = max{h(K, u), 0}.
For u ∈ Rd define f(u) := mini∈{1,...,l}〈−pi, u〉+. Let U be the set all u ∈ Rd such
that there exists a non-visible pj (i.e. j > l) with h(K, u) = 〈pj, u〉. For u ∈ U we
have h(K, u) ≥ 0, hence h(K0, u) = h(K, u) and h(K0, u) − h(K, u) = 0. Fix one
non-visible pj such that h(K, u) = 〈pj, u〉. Suppose that for all i ∈ {1, . . . , l} we
have 〈pi, u〉 < 0. We derive a contradiction to this assumption implying f(u) = 0
and hence that equation (5) holds for all u ∈ U . As pj is not visible we can find a
point p ∈ [0pj] ∩ ∂K in a face of K, whose vertices are all visible. Hence there are
indices j1, . . . , jt ∈ {1, . . . , l} and λj1 , . . . , λjt ∈ [0, 1] summing up to one such that

p =
t∑

n=1

λjnpjn .

At least one of the λjn is positive, so our assumption gives 〈p, u〉 < 0. On the other
hand there is a µ ∈ (0, 1) such that p = µpj. This yields 〈p, u〉 = µ〈pj, u〉 ≥ 0, which
is the desired contradiction.

For u in the complement of U there always exists a visible pi such that h(K, u) =
〈pi, u〉. If 〈pi, u〉 ≥ 0 equation (5) follows immediately. If 〈pi, u〉 < 0 we have

h(K0, u)− h(K, u) = −h(K, u) = −〈pi, u〉 = min
j∈{1,...,l}

〈−pj, u〉 = f(u). �

In the context of h-functions of configurations the polytope K appears as a
Minkowski sum of two polytopes L and M . In view of Lemma 2.2 we therefore
want to characterize visible vertices of a sum of two polytopes. The characteriza-
tion of vertices in Lemma 2.3 is based on standard arguments, which need not be
repeated here. Lemma 2.4 characterizes visible points of polytopal Minkowski sums.

Lemma 2.3. Let L and M be polytopes in Rd. Then p is a vertex of L+M if and
only if the following two conditions hold.

(i) there are vertices l and m of L and M , respectively, such that p = l +m,
(ii) if p = l′ +m′ for some l′ ∈ L, m′ ∈M then l′ = l, m′ = m.

Lemma 2.4. Let L and M be polytopes in Rd and p = l + m ∈ L + M with l ∈ L
and m ∈M . Then p is visible if and only if there is a unit vector u such that

〈m,u〉 = h(M,u) < −h(L, u) = −〈l, u〉.
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Proof. Suppose p is visible, i.e. there is a unit vector u such that 〈p, u〉 = h(L +
M,u) < 0. This implies

h(L, u) + h(M,u) = h(L+M,u) = 〈l, u〉+ 〈m,u〉 < 0.

As 〈l, u〉 ≤ h(L, u) and 〈m,u〉 ≤ h(M,u) we obtain equality in both cases and hence
the desired result. The other direction is straightforward. �

In the following we restrict our attention to the three-dimensional space (d = 3).
We suggest an algorithm for finding the visible vertices of an informative n× n× n
configuration (B,W ), which are, by definition, the visible vertices of the polytope
conv(B + W̌ ). This algorithm is then applied to the special case of 2 × 2 × 2
configurations.

3. Visibility for configurations

3.1. n × n × n configurations. Consider an informative boundary configuration
(B,W ) in R3. Lemmas 2.2, 2.3 and 2.4 imply that

h(B,W ) = min
i∈{1,...,k}

〈−pi, ·〉+,

where the set P = {p1, . . . , pk} of all visible vertices of (B,W ) is characterized as
follows.

Proposition 3.1. The point p = −w + b, b ∈ B and w ∈ W , is a visible vertex of
(B,W ) if and only if

(i) b 6∈ conv(B \ {b}) and w 6∈ conv(W \ {w}),
(ii) if p = −w′ + b′ for some b′ ∈ convB, w′ ∈ convW then w′ = w, b′ = b,

(iii) there is a hyperplane separating B and W , containing b but no point of W ,
and a parallel separating hyperplane containing w but no point of B.

An n-lattice plane is a plane which contains at least three non-collinear points
of the n-lattice cube Z3 ∩ [0, n − 1]3. Analogously an n-lattice line is a line, which
contains two distinct points of the n-lattice cube. According to [2, Proposition 2]
an n× n× n boundary configuration (B,W ) is informative if and only if there is a
separating n-lattice plane h such that either

(a) h only hits one of the sets B and W , or
(b) there is an n-lattice line g ⊂ h separating B ∩ h and W ∩ h, only hitting one

of them.

We call a separating n-lattice plane h with one of these properties an admissible
plane. To determine the set P of all visible vertices for a given informative configu-
ration (B,W ) we have to investigate all admissible planes. Note that there are only
finitely many.

Algorithm 1 (Visible Vertices): Let (B,W ) be an informative n×n×n config-
uration. Start by setting P = ∅.

(α) Choose an admissible plane h not treated before,
(β.1) if h satisfies (a) above and u is its unit normal pointing away from B then

consider the two support sets B′ = (convB)(u) and W ′ = (convW )(−u).
Insert all vertices of conv(B′ + W̌ ′) in P ,
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(β.2) if h satisfies (b) and v is the unit normal of g in h pointing away from B ∩ h
then consider B′ = (conv(B ∩ h))(v) and W ′ = (conv(W ∩ h))(−v). Insert
all vertices of conv(B′ + W̌ ′) in P .

(γ) repeat (α) and (β) until all admissible planes are treated.

The procedure in (β.2) is inspired by the analogous approach in R2 in [3].

Proposition 3.2. The output set P of Algorithm 1 only contains visible vertices of
(B,W ). For n = 2, P contains all visible vertices of (B,W ).

Proof. First we prove that only visible vertices are collected in P . Let h be an
admissible plane with normal u pointing away from B. Suppose h only hits one of
the sets B and W , i.e. we apply step (β.1). Let p be a vertex of conv(B′+ W̌ ′). By
Lemma 2.3 there are unique vertices b′ ∈ B′ and w′ ∈ W ′, respectively, such that
p = b′ − w′. Note that by construction b′ and w′ are also vertices of convB and
convW , respectively, and

〈b′, u〉 = h(B, u) < 〈w′, u〉 = −〈w′,−u〉 = −h(W,−u) = −h(W̌ , u),

hence p is visible. Let b̄ ∈ B, w̄ ∈ W be vertices of convB, convW respectively
such that p = b̄ − w̄. Then h(B, u) + h(W,−u) = h(B + W̌ , u) = 〈p, u〉 = 〈b̄, u〉 +
〈w̄,−u〉. As 〈b̄, u〉 ≤ h(B, u) and 〈w̄,−u〉 ≤ h(W,−u) we obtain 〈b̄, u〉 = h(B, u) and
〈w̄,−u〉 = h(W,−u), which means b̄ ∈ B′ and w̄ ∈ W ′, and thus b′ = b̄ and w′ = w̄.
Hence, points collected in (β.1) are (visible) vertices of (B,W ) by Lemma 2.3.

Suppose now that h hits both sets B and W , and there is an n-lattice line g ⊂ h,
separating B∩h and W ∩h, only hitting one of them. So we are applying step (β.2).
Without loss of generality we assume that B′ ⊂ g. Let g′ ⊂ h be a line parallel to
g such that W ′ ⊂ g′. Note that g′ is not necessarily an n-lattice line, as |W ′| = 1
is possible. Rotating h around g without penetrating one of the points of B ∪W
yields a plane h1, which contains B′ and separates B and W . Let u′ be its normal,
pointing away from B. Now we have B′ = (convB)(u′) and W ′ = (convW )(−u′).
The same argument as in the first paragraph yields that all points in conv(B′+ W̌ ′)
are visible vertices.

It remains to show that all visible vertices are collected in P when n = 2. Let
p = b− w, b ∈ B, w ∈ W be a visible vertex of (B,W ). Without loss of generality
we may assume |B| ≤ |W |.

If |B| = 1, B = {b} is a vertex of the unit cube C = [0, 1]2. The point w can
only be one of the three vertices of C that are endpoints of edges starting in b.
Otherwise, Proposition 3.1.(iii) would be violated. Let h be one of the axis-parallel
planes containing {b, w}. Then h is a 2-lattice plane and p is collected in (β.2) when
this plane h is considered.

For B = |2|, convB is an edge of C. With similar arguments as above, w cannot
be one of the vertices v1, v2 of the most distant parallel edge. Hence, p is collected
in step (β.1), when h is the plane spanned by the four vertices of C not contained
in B ∪ {v1, v2}.

For |B| = 3, we may, without loss of generality, assume B = {(0, 0, 0), (0, 1, 0),
(0, 0, 1)}. If we assume b = (0, 0, 0) then the only plane separating B and W contain-
ing b is the plane spanned by B. This plane contains also (0, 1, 1) ∈ W , so Propo-
sition 3.1.(iii) leads to a contradiction and we have b 6= (0, 0, 0). If b = (0, 1, 0) we
have w ∈ {(0, 1, 1), (1, 0, 0), (1, 0, 1)} as the other points violate Proposition 3.1.(ii).
Actually, w 6= (1, 0, 1), as h = {x ∈ R | 〈x, (1, 1, 0)〉 = 1} is the only separating
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plane containing (1, 0, 1) ∈ W , but it also contains b = (0, 1, 0) ∈ B. Therefore p
is collected in step (β.2) when h is considered. The remaining case b = (0, 0, 1) is
treated the same way.

If |B| = 4, convB is either a facet of C, in which case p is collected in (β.1)
when the plane h spanned by B is considered; or it is a tetrahedron of the form
convB = conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}, say. There is no separating plane
containing (0, 0, 0) or (1, 1, 1). Hence b 6= (0, 0, 0) and w 6= (1, 1, 1). For all other
b and w the point p is collected in (β.1) when h = {x ∈ R3 | 〈x, (1, 1, 1)〉 = 1} is
considered. �
Remark. We conjecture that Algorithm 1 also yields all visible vertices for n > 2,
but we are currently not able to give a proof.

3.2. Closer analysis of 2 × 2 × 2 configurations. The goal of this section is
to understand the form and interplay of the h-functions of informative 2 × 2 × 2
configurations. The purpose of this analysis is twofold. On the one hand we want to
determine the degrees of freedom of a model for the surface area measure S2(Z, ·) that
can possibly be determined by the integrals over the h-functions; see Proposition 3.3.
On the other hand we need precise information about the supports and maxima of
the h-functions in order to construct the actual models for the surface area measure.
At the same time this information is essential to determine the weights for the surface
area estimator. We state two important consequences of the following analysis
as propositions and postpone their proofs to the end of this section. Recall that
H2×2×2 ⊂ C(S2) is the linear subspace spanned by all h-functions derived from
informative 2× 2× 2 configurations.

Proposition 3.3. dim(H2×2×2) = 50.

To state the second proposition we classify 2×2×2 configurations. When speaking
of configurations in the following, we are always referring to 2×2×2 configurations.
A list of all informative configurations can be found in [2, Appendix B]. The numbers
in the following definition refer to this list.

Definition 3.1. An informative configuration is called a configuration of type

one, if it has exactly one black point or exactly one white point
(e.g. configurations no. 1 and 127),

two, if it has exactly two black points or exactly two white points
(e.g. configurations no. 3 and 63),

three, if it has exactly three black points or exactly three white points
(e.g. configurations no. 7 and 31),

four, if it has exactly four black and four white points, which are affinely dependent
(e.g. configuration no. 15),

five, if it has exactly four black and four white points, which are affinely indepen-
dent (e.g. configuration no. 23).

Proposition 3.4. For each configuration (B1,W 1) of type one there exists a configu-
ration (B5,W 5) of type five and three configurations (B3

j1
,W 3

j1
), (B3

j2
,W 3

j2
), (B3

j3
,W 3

j3
)

of type three such that

h(B1,W 1) = h(B5,W 5) + h(B3
j1
,W 3

j1
) + h(B3

j2
,W 3

j2
) + h(B3

j3
,W 3

j3
) (6)

on S2.
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Application of Algorithm 1 in Section 3.1 shows that for configurations of type
one and five there are three visible vertices and for configurations of type two, three
and four there are four of them. For a configuration (B,W ) let {p1, . . . , pk} ⊂ R3,
k ∈ {3, 4}, be the set of these visible vertices. By definition of the function h(B,W ),
equation (4) and Lemma 2.2 we have

h(B,W )(u) = min{〈−p1, u〉+, . . . , 〈−pk, u〉+}
for all u ∈ S2. The support of the function R3 → R, u 7→ 〈−pi, u〉+ is a closed
half-space with outer normal pi. Hence, the support of the homogeneous extension
of h(B,W ) to R3 is a closed polyhedral cone with three or four facets, and the support
supp(h(B,W )) of h(B,W ) is either a spherical triangle or a spherical quadrilateral.

As all configurations of one type are just reflections or rotations by multiples of
π/2 of one another or can be obtained through the twin operation, it suffices to know
the structure of the support and the maximum of the h-function of one configuration
of each type. We will analyze in detail the h-function of a configuration of type three.
As the analysis for the other types is analogous we only give the results in Table 1.

Remark. Identifying twins we have 58 classes of informative configurations of five
different types, hence there is the need for some systematic notation. We will number
the 58 classes starting with configurations of type five, then four, three, two and
one. The function τ : {1, . . . , 58} → {1, . . . , 5} assigns to each index the type of
configuration it is associated to. We write (B

τ(j)
j ,W

τ(j)
j ) for a configuration of class

j of type τ(j). If in some context only the type is of importance the lower index will
be omitted. If on the other hand we are only interested in the class, we omit the
upper index. The supports of h-functions are spherical polygons. There are three
types of vectors which will be crucial in describing these supports. First there are
visible vertices p1, . . . , pk of each configuration. They are the outer facet normals
of the positive cone spanned by the support. For a configuration (Bi,W i) of type
i = τ(j) we will denote them by pi1, . . . , p

i
k, k = ki ∈ {3, 4}. If there is the need to

talk of more than one configuration of type i at the same time, we will use a second
upper index to indicate this, i.e. for a second configuration of type i = τ(j′) we use

pi,j
′

1 , . . . , pi,j
′

k . Secondly, the vertices of the spherical support polygon will be needed
and denoted by vi1, . . . , vik. Finally, we denote the maximum of h(Bi

j ,W
i
j ) by mi

j.

Consider the configuration (B3,W 3) of type three as given in Table 1. An appli-
cation of Algorithm 1 in Section 3.1 yields the visible vertices

p3
1 := (−1, 0, 1), p3

2 := (−1, 1, 0), p3
3 := (0,−1, 0) and p3

4 := (0, 0,−1)

of this configuration. The support of h(B3,W 3) is a spherical quadrilateral with ver-
tices

v3
1 :=

1√
3

(1, 1, 1), v3
2 :=

1√
2

(1, 0, 1), v3
3 :=

1√
2

(1, 1, 0), v3
4 := (1, 0, 0).

In order to determine the maximum m3 of h(B3,W 3) we first consider the function
h′ : S2 → R, u 7→ min{〈−p3

1, u〉+, 〈−p3
2, u〉+, 〈−p3

3, u〉+}. The maximum is attained
at points u ∈ S2 where 〈−p3

1, u〉 = 〈−p3
2, u〉 = 〈−p3

3, u〉 > 0. There is a unique
solution to this system of equations; the maximum 1/

√
6 is attained in the direction

m3 := 1√
6
(2, 1, 1). As 〈−p3

4, ·〉+ takes the same value in m3, this is the maximum

of h(B3,W 3). Roughly, each p3
l , l ∈ {1, 2, 3, 4}, contributes an arc in the boundary

of supp(h(B3,W 3)) with endpoints v3
i , v

3
j , where i, j ∈ {1, 2, 3, 4}. On the spherical
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Type i pi1, . . . , p
i
k vi1, . . . , vik mi CP Number

1
(−1, 0, 0)
(0,−1, 0)
(0, 0,−1)

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

1√
3
(1, 1, 1) yes 8

2

(−1, 0,−1)
(0,−1,−1)
(−1, 0, 1)
(0,−1, 1)

1√
3
(1, 1,−1)

(0, 1, 0)
(1, 0, 0)
1√
3
(1, 1, 1)

1√
2
(1, 1, 0) yes 12

3

(−1, 0, 1)
(−1, 1, 0)
(0,−1, 0)
(0, 0,−1)

1√
3
(1, 1, 1)

1√
2
(1, 0, 1)

1√
2
(1, 1, 0)

(1, 0, 0)

1√
6
(2, 1, 1) yes 24

4

(−1,−1,−1)
(−1, 1,−1)
(−1,−1, 1)
(−1, 1, 1)

1√
2
(1, 0,−1)

1√
2
(1,−1, 0)

1√
2
(1, 1, 0)

1√
2
(1, 0, 1)

1√
6
(2, 1, 1) no 6

5
(1,−1,−1)
(−1, 1,−1)
(−1,−1, 1)

1√
2
(0, 1, 1)

1√
2
(1, 0, 1)

1√
2
(1, 1, 0)

1√
3
(1, 1, 1) no 8

Table 1. Support and maxima of the h-functions for a typical example of
each configuration type. A type of configurations has the covering property
(CP) if the union of all supports of the h-functions of this type covers S2.
In the column labeled Number we give the number of configurations of each
type identifying twins.

triangle with vertices m3, v3
i , v

3
j the function h(B3,W 3) coincides with 〈−p3

l , ·〉. For
an illustration see Figure 1. Figure 2 helps to clarify the relative positions of the
supports of a configuration of type one, three and five. The support of the config-
uration of type three is depicted in dark gray, the support of the configuration of
type five in light gray and the support of the configuration of type one is not shaded.
There are two (five if we also consider their twins) more configurations of type three,
such that the supports of their h-functions lie inside the support of the considered
configuration of type one. The twins with three black points all have a black point
at (0, 0, 0); see Figure 3. Hence, in total, there are 24 configurations of type three,
which can be grouped (into eight groups) such that the supports of the h-functions
of the three configurations in each group cover the support of a configuration of
type one.

Now we can give the proof of Proposition 3.4.

Proof of Proposition 3.4. Suppose we are given the configuration (B1,W 1) as in
Table 1. Then we choose (B5,W 5) to be the configuration of type five as given in
Table 1 and (B3

j1
,W 3

j1
), (B3

j2
,W 3

j2
), (B3

j3
,W 3

j3
) as given in Figure 3. The support of
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v3
1

v3
2

v3
3

v3
4

m3

p3
1

p3
2

p3
3

p3
4

Figure 1. Support of configuration of type three.

v1
1 = v3

4

v1
2

v1
3

m1 = m5 = v3
1

p1
1

p1
2 = p3

3

p1
3 = p3

4

v5
1

v5
2 = v3

2

v5
3 = v3

3

p5
1

p5
2

p5
3

m3

p3
1

p3
2

Figure 2. Support of configurations of type one, three and five.

Figure 3. Configurations of type three used in the proof of Proposition 3.4.

h(B1,W 1) can be split into twelve small spherical triangles such that on each triangle
all five functions h(B1,W 1), h(B5,W 5), h(B3

j1
,W 3

j1
), h(B3

j2
,W 3

j2
) and h(B3

j3
,W 3

j3
) are linear. By

symmetry it suffices to check equation (6) on the two triangles numbered I and II
in Figure 4. In triangle I only two of the considered h-functions are not equal to
zero; these are h(B1,W 1) = 〈−p1

2, ·〉 and h(B3
j1
,W 3

j1
) = 〈−p3,j1

3 , ·〉 = 〈−p1
2, ·〉. Hence, we

obtain the desired identity on triangle I. On triangle II we have h(B1,W 1) = 〈−p1
2, ·〉,

h(B5,W 5) = 〈−p5
1, ·〉, h(B3

j1
,W 3

j1
) = 〈−p3,j1

2 , ·〉 and h(B3
j2
,W 3

j2
) = h(B3

j3
,W 3

j3
) = 0. Going

back to the respective definitions we see that

−p5
1 + (−p3,j1

1 ) = (1,−1,−1) + (−1, 0, 1) = (0,−1, 0) = −p1
2,

hence we obtain the claim. �

We included Figure 5 to visualize the relative positions of the supports of config-
urations of type one, two and four. The support of the configuration of type four is
depicted in middle gray, the one of type two in light gray.

Summarizing the analysis of the supports of the different h-functions, we obtain a
triangulation of the sphere with 12 · 8 = 96 triangles. We call this triangulation the
support triangulation of S2 by 2× 2× 2 configurations and each individual triangle
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p1
1

p1
2

p1
3

p5
1

p5
2

p5
3

p3,j1
3

p3,j1
4

p3,j1
1

p3,j1
2I

II

Figure 4. Proposition 3.4.

v1
1 = v2

3 = m4

v1
2 = v2

2

v1
3

m1 = v2
4

v2
1

m2 = v4
3

v4
1

v4
2

v4
4

p4
1 p4

2

p4
3 p4

4

Figure 5. Support of configurations of type one, two and four.

a support triangle. Any of the h-functions restricted to a support triangle is of the
form h(B,W ) = 〈p, ·〉 for some suitable p ∈ R3.

Proof of Proposition 3.3. Proposition 3.4 shows that the dimension of H2×2×2 is at
most

58−#{ h-functions arising from configurations of type one } = 50.

In order to see that the dimension is in fact 50, it suffices to note that the maximum
of any h-function of type two, three, four or five is not contained in the interior of the
support of any other h-function of type two, three, four or five, i.e. if we evaluate the
50 h-functions of type two, three, four and five at the 50 maxima of the h-functions
of type two, three, four and five, we obtain a regular diagonal (50 × 50)-matrix,
which obviously has rank 50. �

4. Estimation of surface area

In this section we discuss the estimation of the surface area of Z ⊂ R3 from counts
of 2 × 2 × 2 configurations. The relative worst case error of the estimator can be
determined asymptotically, independently of the shape of the considered object.

As explained in the introduction any linear combination of h-functions close to
one can be used to estimate the surface area of a compact gentle set Z ⊂ R3 by
configuration counts. For a configuration (Bj,Wj) we abbreviate h(Bj ,Wj) by hj.
Let Nt,j be the number of occurrences of configurations of class j in the digitized
image of Z. Define a vector n = (n1, . . . , n58) ∈ {1, 2}58 such that nj = 1 if
there is only one configuration in class j ∈ {1, . . . , 58} (the configuration in this
class is coinciding with its twin) and nj = 2 otherwise. The estimation procedure
works as follows. First we omit all counts of configurations of type one as they
are asymptotically redundant. Of course this is a loss of information, but apart
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from using these counts for a check on sufficient accuracy it does not seem sensible
to incorporate them in the estimation procedure; see Section 4.2. For a vector of
weights Λ := (λ1, . . . , λ50) ∈ R50 define HΛ(u) :=

∑50
j=1 λjhj(u). By Theorem 2.1

Ŝ(Z) := t2
50∑
j=1

λj
nj
Nt,j (7)

is an asymptotically unbiased estimator for
∫
S2 H

Λ(u)S2(Z, du). The overall goal is
to find a weight vector Λ ∈ R50 such that

HΛ(u) :=
50∑
j=1

λjhj(u) ≈ 1 for all u ∈ S2. (8)

This is motivated by the trivial estimates

HΛ
mS(Z) ≤

∫
S2

HΛ(u)S2(Z, du) ≤ HΛ
MS(Z),

with HΛ
M := maxu∈S2 HΛ(u) and HΛ

m := minu∈S2 HΛ(u), which imply

HΛ
m ≤

∫
S2 H

Λ(u)S2(Z, du)

S(Z)
≤ HΛ

M . (9)

The inequalities in (9) state that the relative worst case error is asymptotically
bounded by

max{|1−HΛ
m|, |1−HΛ

M |} = ‖HΛ − 1‖∞, (10)

where ‖f‖∞ = maxu∈S2 |f(u)| denotes the maximum norm of a real bounded func-
tion f on the sphere. We will determine the minimum Λ0 of the function Λ 7→
‖HΛ− 1‖∞. Using this optimal weight vector, (9) will imply that the relative worst
case error is asymptotically less than 4%. Although the error bound of 4% is an
asymptotic result, simulations suggest that it is also realistic for positive lattice dis-
tances t > 0, as the deviation of Ŝ(Z) from

∫
S2 H

Λ(u)S2(Z, du) is typically much
smaller than 4%.

4.1. Construction of the coefficient vector. Recall that we omit configurations
of type one, and therefore the notion configurations is used in this section as a short
term for configurations of type two, three, four or five. Recall from Section 3.2 that
the support triangulation of 2×2×2 configurations consists of 96 support triangles,
such that any h-function restricted to a support triangle is linear. For each support
triangle T there are exactly three h-functions which do not vanish on T ; see Figure 6
for illustration. Minimizing the function in (10) does not uniquely determine the
coefficient vector Λ. To be precise, the coefficients for configurations of type two,
three and four are determined uniquely, whereas we are left with some choice for
the coefficients for configurations of type five. First we will calculate the optimal
coefficients for the restrictions of HΛ to single support triangles. Using symmetry
arguments this is then extended to determine the set of optimal coefficients for HΛ.

As one can check with the help of Figure 6 there are only two types of support
triangles in the sense that all other support triangles can be obtained from these two
by rotation and reflection. Any support triangle that is obtained as intersection of
supports of configurations of type two, three and four will be called support triangle
of the first type. Support triangles of the second type are obtained as intersection of
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supports of configurations of type two, three and five. HΛ restricted to a support
triangle T := {n ∈ S2 | 〈pi, n〉 ≥ 0 for i = 1, 2, 3} is of the form

Hλ(n) := λ1〈p1, n〉+ λ2〈p2, n〉+ λ3〈p3, n〉 = Hλ(a)(n) = 〈a, n〉, n ∈ T,
where λ = (λ1, λ2, λ3) ∈ R3 is a subvector of Λ, a = λ1p1 + λ2p2 + λ3p3 and
λ(a) = (λ1, λ2, λ3) iff a = λ1p1 + λ2p2 + λ3p3. This is a slight abuse of notation as,
strictly speaking, λ is a subvector of Λ of the form (λi1 , λi2 , λi3). However, for the
following arguments, the indices are irrelevant. Set g1(a) := minn∈T Hλ(a)(n) and
g2(a) := maxn∈T Hλ(a)(n). We are looking for the minimum over all a ∈ R3 of

max
n∈T
|Hλ(a)(n)− 1| = max{|g1(a)− 1|, |g2(a)− 1|}

≥ max{1− g1(a), g2(a)− 1} =: G(a).

In this vein, we first determine the functions g1 and g2 explicitly, and show that G
attains a unique minimum on the positive cone D :=

⋃
α≥0 αT spanned by T .

Lemma 4.1. Let W be the 3× 3 matrix, which has the vertices w1, w2, w3 of T as
columns. Then

g1(a) = min
n∈T

Hλ(a)(n) = min
i=1,2,3

〈a, wi〉.
If a ∈ D, then

g2(a) = max
n∈T

Hλ(a)(n) = ‖a‖, (11)

otherwise

g2(a) = max
{i,j,k}={1,2,3}

(
fi cosϕ∗i +

(
fk − fj cosϕi

sinϕi

)
sinϕ∗i

)
.

Here f := W Ta, the angles between the vertices of T are denoted by ϕi, i = 1, 2, 3,
and

ϕ∗i = min

{
ϕi,

(
arctan

fk − fj cosϕi
fj sinϕi

)+
}
.

The function G is convex on R3 and attains a unique minimum on D.

Proof. To determine the minimum of Hλ(a) on T , consider an arbitrary point n in T .
It can be written as a linear combination n = ν1w1+ν2w2+ν3w3, where ν1, ν2, ν3 ≥ 0
and ν1 + ν2 + ν3 ≥ 1. This shows

Hλ(a)(n) = 〈a, n〉 ≥ min
i=1,2,3

Hλ(a)(wi).

Hence
g1(a) = min

n∈T
Hλ(a)(n) = min

i=1,2,3
Hλ(a)(wi) = min

i=1,2,3
〈a, wi〉,

which holds for all a ∈ R3. As

2Hλ(a)(n) = −‖n− a‖2 + ‖a‖2 + 1,

the maximum of Hλ(a) on T is attained in the point ã ∈ T with minimal distance
from a. If a ∈ D, then ã = 1

‖a‖a and

g2(a) = max
n∈T

Hλ(a)(n) = Hλ(a)(ã) = ‖a‖.
This shows (11). If a 6∈ D, then ã is contained in a side of T , say in the arc with
endpoints wj and wk, j 6= k ∈ {1, 2, 3}. Thus, for i ∈ {1, 2, 3} \ {j, k}, we have

ã = cos(ϕ)wj + sin(ϕ)w, 0 ≤ ϕ ≤ ϕi
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with ϕi = arccos〈wj, wk〉, and

w =
wk − 〈wj, wk〉wj
‖wk − 〈wj, wk〉wj‖ =

wk − (cosϕi)wj
sinϕi

.

Elementary calculation gives that

Hλ(a)(ã) = fj cosϕ+

(
fk − fj cosϕi

sinϕi

)
sinϕ

attains its maximum at ϕ∗i as given in the lemma.
It remains to show the claimed properties of G. The convexity of G follows

immediately from the convexity of −g1 and g2. A standard compactness argument
shows that G attains a minimum a∗ ∈ D. As the functions g1 and g2 are positive
homogeneous, we have

G(a∗) = 1− g1(a∗) = g2(a∗)− 1. (12)

Suppose that a1 6= a2 are two minima of G in D. By convexity, G is constant
(minimal) for all points in [a1a2] ⊂ D. Applying (12) to a1, a2 and (a1 +a2)/2 yields

‖a1 + a2‖ = ‖a1‖+ ‖a2‖
and ‖a1‖ = ‖a2‖. This implies that a1 = a2, which is a contradiction. �

We numerically minimized G over D for a support triangle T1 of first type and T2

of second type using [12]. In both cases it turns out that the unique minimum of G
on D lies in the interior of D and is therefore a strict global minimum of G on R3

by convexity. Furthermore,

max
n∈T
|Hλ(a∗)(n)− 1| = G(a∗) (13)

in both cases, which implies that λ = λ(a∗) is the unique minimum of λ 7→
maxn∈T |Hλ(n)− 1| on R3.

The numerical values are

min
a∈D(T1)

GT1(a) = 0.0398 and min
a∈D(T2)

GT2(a) = 0.0241.

It is clear that the value 0.0398 is a lower bound for the asymptotic relative error
minΛ‖HΛ − 1‖∞. For the first type of support triangles the optimal coefficients are
λ2 = 1.3579, λ3 = 2.3519 and λ4 = 0.9602, where the upper index indicates the
type of configuration the coefficient is associated to. By symmetry it follows that
choosing all coefficients for configurations of type two, three and four like this, we
obtain maxT1 |HΛ−1| = 0.0398, where T1 is the union of all support triangles of first
type. The uniqueness of the minimum shows that any other choice of coefficients
will increase the error.

For the coefficient λ5 for configurations of type five we have some choice. Consider
the function g1 as given by Lemma 4.1 for a support triangle of second type with λ2,
λ3 fixed. Solving this function for λ5 yields the lower bound 1.6631 for the possible
values of λ5 that we can choose without increasing the asymptotic relative error.
Solving also the expression for g2 for λ5 given in Lemma 4.1 one can check that for
all λ5 ∈ [1.6631, 1.7452], we have 1− g1(a(λ)) = 0.0398 and 0.0076 ≤ g2(a(λ))− 1 ≤
0.0398. Summarizing, the weights that lead to a minimal asymptotic worst case
error of 0.0398 are

λ2 = 1.3579, λ3 = 2.3519, λ4 = 0.9602, λ5 ∈ [1.6631, 1.7452]. (14)
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m3

v2
1

m5v2
2

Figure 6. Support triangles and corresponding configurations.

Therefore we suggest to estimate the surface area of Z using Ŝ(Z) as given in (7)
with weights Λ = (λ1, . . . , λ50), where λj = λτ(j) for j = 1, . . . , 50.

4.2. Configurations of type one. The above considerations attribute weight zero
for configuration counts of type one. Alternatively, the dependence properties of h-
functions can be used to assign positive weights to configurations of type one while
correcting for this by decreasing some of the other weights. This gives rise to a one-

parametric family (λ
1
(r), . . . , λ

5
(r)), r ∈ [0, 1], of weights, with the property that

the maximal relative error of the corresponding estimator is asymptotically minimal
(and independent of r). Proposition 3.4 yields

λ5h(B5,W 5) + λ3
(
h(B3

j1
,W 3

j1
) + h(B3

j2
,W 3

j2
) + h(B3

j3
,W 3

j3
)

)
= λ5rh(B1,W 1) + λ5(1− r)h(B5,W 5)

+ (λ3 − λ5r)
(
h(B3

j1
,W 3

j1
) + h(B3

j2
,W 3

j2
) + h(B3

j3
,W 3

j3
)

)
for all r ∈ [0, 1]. Hence,

λ̄1(r) = λ5r, λ̄2(r) = λ2, λ̄3(r) = λ3 − λ5r

λ̄4(r) = λ4, λ̄5(r) = λ5(1− r) (15)

yield the same asymptotic relative error for all r ∈ [0, 1], where λ2, λ3, λ4 and λ5

are given by (14). In Table 2 we give all the weights that lead asymptotically to a
minimal relative worst case error.

Type of configuration Weight

one λ
1

= sr

two λ
2

= 1.3579

three λ
3

= 2.3519− sr
four λ

4
= 0.9602

five λ
5

= s(1− r)

Table 2. Weights for surface area estimator that minimize the asymptotic
relative worst case error. The two parameters obey 0 ≤ r ≤ 1 and 1.6631 ≤
s ≤ 1.7452. The asymptotic relative error does not depend on the choice of
r, but it may depend on s. However, its worst case bound is independent
of s.



18 J. ZIEGEL AND M. KIDERLEN

The dependence of the surface area estimator on r and s in a simulation example
is illustrated in Figures 7 and 8. The first figure shows the estimated surface area
of a unit ball, calculated from a random digitization with lattice spacing 0.1. (This
means that approximately 4200 black points represent the digitized ball). For the
estimation we use λ̄1(r, s), λ̄2(r, s), λ̄3(r, s), λ̄4(r, s), λ̄5(r, s) and alternatingly fix r ∈
[0, 1] or s ∈ [1.6631, 1.7452]. The experiment is repeated 10 times with a randomized
location of the digitizing lattice. The horizontal black line shows the true surface area
4π of the unit ball. Figure 8 is obtained in the same way, but digitizing a cylinder
with radius 1 and height 2, which is not aligned with any coordinate direction.
The lattice spacing is 0.055, which translates to approximately 38000 black points.
For the ball the optimal choice for (r, s) appears to be (0, 1.6631), whereas for the
cylinder it is rather some value close to (1, 1.7452). It is an interesting open question,
whether there is a link between the accuracy of the estimate of the surface area and
its variation for different values of (r, s).

4.3. Isotropic objects and comparison with known weights. Other
approaches to surface area estimation based on weighted counts of 2 × 2 × 2 con-
figurations can be found in [10], [13] and [11]. In contrast to our method they also
assign positive weights to certain non-informative configurations. These are negli-
gible asymptotically and often also in practical applications. For instance, 97.13%
of the 319,223 observed boundary configurations in a 3D rendering of a binarized
MR-image of a human brain (in [10]) were informative. Hence, the weights for
non-informative configurations are comparably immaterial, at least for sufficiently
high resolution. It is therefore sensible to compare the weights for the five types
of informative configurations. Both [10] and [13] determine the weights such that
the estimator is asymptotically unbiased for isotropic objects. We can adapt our
weights to fulfill this assumption by dividing them by

C(r, s) :=

∫
S2 H

Λ(r,s)(u)S2(B2, du)

S(B2)
,

where B2 = {x ∈ R3|‖x‖ ≤ 1} is the unit ball. By Proposition 3.4, the function
C(r, s) = C(s) only depends on s. We obtain for example

C(1.6631) = 1.0066, C(1.7036) = 1.0094, C(1.7452) = 1.0123.

We denote the weights published in [10] by λiL, the ones in [13] by λiS, and the ones
published in [11] by λiN ; see Table 3. The considerable differences for certain types
of configurations between the weights published in [10] and in [13] can mostly be
explained by Proposition 3.4. Repeating the arguments that lead to the weights
in Table 2, one can show that for � ∈ {L, S,N} the weight tuple (λ1

�, . . . , λ
5
�)

belongs to a two-parameter family (λ1
�(r, s), . . . , λ5

�(r, s)) of weights with the prop-
erty that the estimator’s asymptotic error is independent of r ∈ [0, 1] and its worst
case behavior does not depend on s. Using Lemma 4.1 it would be possible to de-
termine the admissible range of values for s, but it is immaterial for comparison
purposes, so we omitted this calculation. The parametric class is of the form as
given in Table 2, but with different numerical constants. These constants and the
parameters r and s are uniquely determined by the weights λ1

�, . . . , λ
5
� and shown

in Table 3. In order to put the weights in [11] into perspective, one has to note
that here the authors do not require asymptotic unbiasedness for spherical shapes,
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Figure 7. Estimation of surface area of a unit ball from a random dig-
itization with lattice spacing 0.1. The surface area estimator is based on
the weights λi(r, s) with r = 0, r = 0.5 and r = 1 as a function of s in
the graphs on the left. Then s = 1.6631, 1.7036, 1.7452 are fixed and the
results for all r ∈ [0, 1] are displayed. The second value chosen for s is
simply the mean of the upper and lower boundary of the interval. The
horizontal black line shows the true value of surface area 4π. Note that
maximal relative errors observed in 10 simulations for the different graphs
are 0.9%, 1.2%, 1.5%, 1.0%, 1.2%, 1.5% respectively.

in fact (1/S(B2))
∫
S2 H

ΛN (u)S2(B2, du) = 1.0880 =: CN , which implies an asymp-
totic bias of more than 8% in the isotropic case. Table 3 shows that the weights
for configurations of type two and four, the values of s and the constant part of
the weight for configurations of type three are fairly similar in [10], [13] and the
approach presented in this paper. It is remarkable that although the weights in [11]
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Figure 8. Estimation of surface area of a cylinder with radius 1 and height
2 (not aligned with any coordinate direction) from a random digitization
with lattice spacing 0.055. As above, the surface area estimator is based on
the weights λi(r, s) and the results are displayed for different fixed values
of r and s. Again the horizontal black line shows the true value of surface
area 6π. The maximal relative errors observed in 10 simulations were 0.4%,
0.3%, 0.2%, 0.4%, 0.3%, 0.2% respectively.

were obtained by a fairly simple approximation method, they are still close to the
other three approaches.

The maximal asymptotic relative error for general shapes is 7.3% for the weights
suggested in [10] and also for the weights suggested in [13], whereas it is 12.8% for the
weights in [11]. In the first two cases the lower error bound is HΛL

m = HΛS
m = 0.927,

whereas the upper bounds differ; they are HΛL
M = 1.0205 and HΛS

M = 1.0230 using the

notation as in (9). For the set of weights λiN we have HΛN
M = 1.1281 and HΛN

m = 1.
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i 1 2 3 4 5 r s

λ
i

sr 1.358 2.352− sr 0.960 s(1− r) [0, 1] [1.663, 1.745]

λiL
1.272
= sr

1.338
1.108

= 2.380− sr 0.927
0.421

= s(1− r) 0.751 1.693

λiS
0.752
= sr

1.318
1.678

= 2.430− sr 0.927
0.914

= s(1− r) 0.451 1.666

C−1
N λiN

0.399
= sr

1.300
2.114

= 2.513− sr 0.919
1.194

= s(1− r) 0.251 1.593

Table 3. Comparison of weights for surface area estimator suggested in
[10], [13] and [11].

We proposed a two-parameter family of weights, which leads to an asymptotic
minimal worst case error. As we are only assigning (positive) weights to informative
configurations, one has to be aware that our results only hold for digitizations with
good or very good resolution. If there is no a priori information on the shape of
the objects considered, there is currently no natural choice for the parameters (r, s).
Or, positively formulated, all choices of (r, s) yield good results. If, instead, some
knowledge of the shape of the objects is available, it might be advisable to run
simulations with similarly shaped objects with known surface area to find the best
values for (r, s) in this particular setting.

5. Estimation of the surface area measure

Let Z ⊂ R3 be a compact gentle set and (B,W ) a 2× 2× 2 configuration. Let Nt

be the number of occurrences of (B,W ) observed in the digitized set Z ∩ t(U + Z3).
Recall that t2Nt is an asymptotically unbiased estimator of the integral∫

S2

h(B,W )(n)S2(Z, dn) (16)

by Theorem 2.1. If (B,W ) runs through the family of all informative 2 × 2 × 2
configurations, (16) yields at most 50 non-trivial different integrals of S2(Z, ·), due to
Proposition 3.4. Clearly, 50 integrals do not determine S2(Z, ·) uniquely. Therefore,
a model will be imposed: We assume that S2(Z, ·) belongs to some class of measures
parametrized by θ ∈ Θ, where Θ ⊂ R50. The surface area measure with parameter
θ will then be denoted by Sθ2(Z, ·). Recall that we identified twins and ordered the
obtained 58 classes of configurations according to the following scheme:

(B1,W1), . . . , (B8,W8)︸ ︷︷ ︸
type five

, (B9,W9), . . . , (B14,W14)︸ ︷︷ ︸
type four

, (B15,W15), . . . , (B38,W38)︸ ︷︷ ︸
type three

,

(B39,W39), . . . , (B50,W50)︸ ︷︷ ︸
type two

, (B51,W51), . . . , (B58,W58)︸ ︷︷ ︸
type one

.

Writing hj for h(Bj ,Wj) we define

Ij(θ) :=

∫
S2

hj(n)Sθ2(Z, dn) (17)

for j = 1, . . . , 58.
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5.1. Two simple models for the surface area measure. The two models con-
sidered here are natural extensions of the models in the two-dimensional case dis-
cussed in [4]. Throughout this section configurations of type one are not considered
as they are asymptotically redundant. For a further discussion of this matter see
Sections 5.2 and 5.3.

A discrete model. Let M be the set of all maxima of h-functions. As the maxima
of the h-functions of type one coincide with the maxima of the h-functions of type
five, we have M = {m1, . . . ,m50}. The 50 directions contained in M are those direc-
tions where we can expect an outer tangent normal of Z with the highest probability
given that the corresponding configuration has been observed. We therefore assume
that Sθ2(Z, ·) is a discrete measure supported by the set M , i.e. it belongs to the
model class

D(M) :=
{ 50∑
j=1

θjδmj
| θ ∈ Θ

}
,

where δv denotes the Dirac measure at v ∈ R3 and θ = (θ1, . . . , θ50) ∈ Θ = R50
+ .

Assuming this model, (17) reads

Ij(θ) = θjh̄jj, (18)

with h̄jj := hj(mj), j = 1, . . . , 50. As all scalars h̄jj are positive, θ is identifiable in
Θ (θ is uniquely determined by the 50 integrals in (18)), and

Sθ2(Z, ·) =
50∑
j=1

Ij(θ)

h̄jj
δmj

.

A model with piecewise constant density. For this alternative model we as-
sume that the surface area measure Sθ2(Z, ·) has a piecewise constant density with
respect to the ordinary surface area measure σ2(·) on the sphere S2. More precisely,
we assume that the density is constant on each Tj ⊂ S2, where {Tj} is a suitable
partition of S2, i.e.

Sθ2(Z, ·) =
50∑
j=1

θjσ2(· ∩ Tj).

The partition is constructed by associating to each configuration (Bj,Wj) of type
τ(j) 6= 1 a set Tj ⊂ S2, such that {Tj}j=1,...,50 forms a non-overlapping partition
of S2. The parameter space for this model is again Θ = R50

+ . For a configuration
(Bj,Wj) consider the super-level set

T̄j := {u ∈ S2 | hj(u) ≥ 1
2
hj(mj)}.

If this configuration is observed, then with high probability the set Z has an outer
tangent normal in a direction where hj takes a high value, hence it is sensible to
assume that the normal lies in T̄j. The interiors of the sets T̄j, j = 1, . . . , 50, are
disjoint, but unfortunately {T̄j}j=1,...,50 is not a partition of S2; see Figure 9 for
illustration.

Of course, one could restrict the support of Sθ2(Z, ·) to ∪jT̄j and work with the
resulting model. As we want the model to include multiples of σ2 (corresponding
to isotropic sets Z), this is not an option though. We suggest to enlarge the sets
T̄j for configurations of type τ(j) = 3 only, and to set Tj = T̄j for configurations of
type τ(j) ∈ {2, 4, 5}. For a configuration (Bj,Wj) of type three, we define Tj as the
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m4

m5

m2

m3

Figure 9. Sublevel sets {T̄j} and partition {Tj}.

spherical convex hull of the midpoints of the arcs that are the edges of its support
quadrilateral. Figure 9 illustrates this definition. Similarly to the discrete case we
define h̃jl :=

∫
Tl
hj(n)σ2(dn), j = 1, . . . , 50. We obtain

Ij(θ) =
50∑
l=1

θlh̃jl.

The so defined linear map from Θ = R50
+ to R50, θ 7→ (Ij(θ))

50
j=1 is injective as can

be shown by an explicit calculation of the rank of the matrix (h̃jl)j,l=1,...,50, hence θ
is identifiable in Θ.

5.2. Statistical considerations. This section describes how to estimate the sur-
face area measure of Z ⊂ R3 from observations of 2 × 2 × 2 configurations. The
surface area measure is assumed to belong to one of the parametric classes intro-
duced in Section 5.1, so S2(Z, ·) = Sθ

0

2 (Z, ·) with θ0 ∈ Θ = R50
+ . The parameter

will be estimated by counting informative boundary configurations. Suppose that
we have observed Nt,j configurations of class j ∈ T := {1, . . . , 58} in the digitization
of Z. Due to Theorem 2.1 we have, for j ∈ T ,

t2Nt,j ≈ njIj(θ) = nj

∫
S2

h(Bj ,Wj) dS
θ
2(Z, ·), (19)

for sufficiently small t > 0. Recall that the vector n ∈ {1, 2}58 is defined in Sec-
tion 4. Relations (19) suggest to estimate θ based on counts of all informative
configurations. We will, however, not include configurations of type one in the esti-
mation procedure. This is motivated by the following facts. Firstly, counts of type
one configurations are asymptotically redundant. The right hand side of (19) for
τ(j) = 1 is a linear combination of corresponding integrals from other classes due to
Proposition 3.4. Secondly, the asymptotic linear dependence just mentioned even
holds for positive t in certain special cases. For flat surfaces a careful analysis of the
arguments in [10] shows that Proposition 3.4 actually holds for the observed Nt,j:
for each class of configurations j1 of type one, there is a configuration j5 of type five
and three classes of configurations j31, j32, j33 of type three such that

n−1
j1
Nt,j1 = n−1

j5
Nt,j5 + n−1

j31
Nt,j31 + n−1

j32
Nt,j32 + n−1

j33
Nt,j33 . (20)

If we work with the discrete model for the surface area measure, then Z is a polyg-
onal set, and (20) holds approximately for sufficiently high resolution. Finally, the
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simulation studies in Section 5.3 give evidence that type one configurations do not
contribute decisively, even for a model of a piecewise constant density.

As configurations of type one are collected in classes 51 to 58, we define the
reduced index set Tr := {1, . . . , 50}, which contains all indices for configurations of
type five, four, three and two. (19) implies that the vector ŵ := (Nt,j)j∈Tr is an
empirical approximation for w(θ) = (wj(θ))j∈Tr with

wj(θ) := t−2njIj(θ), j ∈ Tr.
To determine θ, we therefore minimize an appropriately chosen distance of ŵ and
w(θ). Following [5] we chose the I1-divergence from ŵ to w(θ), which plays an
important role in information theory. Recall that the I1-divergence of two vectors
p̂ = (p̂1, . . . , p̂k) and p = (p1, . . . , pk) in Rk

+ (where p has non-zero components) is
given by

I1(p̂, p) =
k∑
i=1

(
p̂i log

p̂i
pi
− p̂i + pi

)
.

If p̂ and p are probability vectors, I1(p̂, p) coincides with the Kullback-Leibler diver-
gence of p̂ and p. Further details on this pseudo-distance can be found in [9] and
[5]. Similar to [4], we set

L(θ) :=
∑
j∈Tr

(
Nt,j log Ij(θ)− t−2njIj(θ)

)
(21)

and use the fact that minimization of I1(ŵ, w(θ)), θ ∈ Θ, is equivalent to solving
the problem

maximize L(θ)
subject to θ ∈ Θ.

(22)

Note that the I1-divergence is positive definite. Hence, if there is a θ̂ ∈ Θ such
that ŵ = w(θ̂), then θ̂ is a solution of (22). The condition ŵ = w(θ̂) is equivalent to

Ij(θ̂) =
t2

nj
Nt,j, j ∈ Tr. (23)

For the proposed model of a discrete measure (see Section 5.1) equation (23) yields

the unique solution θ̂ = (θ̂1, . . . , θ̂50) ∈ Θ = R50
+ with

θ̂j =
t2

njh̄jj
Nt,j, j ∈ 1, . . . , 50.

An estimator of the true surface area measure Sθ
0

2 (Z, ·) is therefore given by

S θ̂2(Z, ·) =
50∑
j=1

t2Nt,j

njh̄jj
δmj

.

The vector θ̂ depends linearly on the configuration counts, so Theorem 2.1 implies

that Eθ̂ converges to θ0, as t → 0+. Hence, S θ̂2(Z, ·) is asymptotically unbiased for

the true surface area measure Sθ
0

2 (Z, ·), in the sense that

lim
t→0+

ES θ̂2(Z,A) = Sθ
0

2 (Z,A), for all measurable A ⊂ S2. (24)
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All measures involved here have a finite prescribed support, so (24) is equivalent to

the statement that ES θ̂2(Z, ·) converges weakly to the mean normal measure of Z,
as t→ 0+.

For the model of a piecewise constant density, let H̃ := (h̃jl)j,l∈Tr . Equation (23)
yields the linear system

(H̃θ̂)j =
t2

nj
Nt,j, j ∈ Tr,

which does not necessarily have a positive solution for all possible values of
(Nt,j)j∈Tr . Therefore it may be necessary to solve the given convex optimization
problem (22) numerically.

Under both models, the obtained estimator S θ̂2(Z, ·) need not satisfy the centroid
condition ∫

S2

nS θ̂2(Z, dn) = 0, (25)

even though the true surface area measure does satisfy it; see (2). If S θ̂2(Z, ·) is the
estimator in the discrete model, this condition holds asymptotically in mean,

lim
t→0+

E
∫
S2

nS θ̂2(Z, dn) = 0,

due to (24). In certain situations it is desirable that also S θ̂2(Z, ·) satisfies the centroid
condition. If, for instance, the set Z is to be analyzed by Monte Carlo simulations,
one seeks to find a (random) set whose (specific) surface area measure coincides with

the estimated S θ̂2(Z, ·). Equation (2) shows that this is only possible, if the centroid
condition holds. The suggested estimation procedure can easily be modified to yield
an estimator satisfying (25). The optimal parameter θ̂ is again obtained solving (22),
but now with

Θ := {θ ∈ R50
+ |
∫
S2

nS θ̂2(Z, dn) = 0}.
In both models, this introduces a linear constraint in (22). In general, even for
the discrete measure, (22) must now be solved numerically. We do not include the
centroid condition in the following simulation studies.

5.3. Simulation results. Detection of anisotropy. For detecting anisotropy
or isotropy of particles we model the surface area measure Sθ2(Z, ·) by a piecewise
constant density as proposed above. The unit ball B2 has surface area measure
Sθ

0

2 (B2, ·) with parameter θ0
j = 1 for all j ∈ {1, . . . , 50}. We cannot expect equation

(20) to hold even approximately for any positive resolution as B2 is not locally
flat. In order to justify the approach that omits configurations of type one in the
estimation procedure we do the estimation twice: once like in the previous section,
once including type one configurations. In this particular example the inclusion of
type one configurations even worsens the estimator.

The lattice spacing was t = 0.02 in all simulations. We maximized L(θ) as given

in (21) and obtained parameters θ̂1. Including type one configurations, we also min-

imized the I1-divergence between Ŵ = (Nt,j)j∈T and W (θ) = (wj(θ))j∈T and ob-

tained parameters θ̂2. For both optimizations [12] was used. The largest deviations

from the true value 1 are maxj∈{1,...,50} θ̂1
j = 1.0741 and minj∈{1,...,50} θ̂1

j = 0.9495,
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Figure 10. Surface area measure estimates of an oblate spheroid (left) and
a unit sphere (right) based on the model of a piecewise constant density.
The spheroid has half axis a = 0.9, b = c = 1.1. It is not aligned with the
coordinate axis. The lighter the color the larger the value of the coefficient
estimated for the corresponding spherical triangle or quadrangle.

but maxj∈{1,...,50} θ̂2
j = 1.0886 and minj∈{1,...50} θ̂2

j = 0.7686. The maximal overesti-
mations are comparable in both cases, but the underestimations differ substantially.
25 components of θ̂2 are less than 0.95 and nine are larger than 1.05, whereas only
three components of θ̂1 are larger than 1.05 and one is smaller than 0.95. We ob-
tained similar results for all simulated digitizations of balls. Therefore we suggest
excluding the counts of configurations of type one for the estimation procedure.

We consider a spheroid which might be misjudged as isotropic, if only examined by
eyesight. The estimated parameters of its surface area measure based on the model
of a piecewise constant density clearly show its anisotropy though. We simulated an
oblate spheroid with half axis a = 0.9 and b = c = 1.1. To avoid alignment with the
coordinate axis, it was rotated around (1, 1, 1)T by an angle of 2π/7. The coefficients
for the surface area measure were obtained by maximizing L(θ). The anisotropy of
Z is clearly visible in Figure 10. Dark color of a spherical polygon corresponds to
a small associated parameter value. The maximal component of θ̂ for the spheroid
is 1.7391, the minimal one is 0.7373. Strictly speaking, the surface area measure
of a spheroid with different half axis is not in the model of a piecewise constant
density, but for the purpose of anisotropy detection this model yields a reasonable
approximation. Naturally these simulation results on the detection of anisotropy are
not very general. We mention them here as we think that they can be extended to
systematic tools for detecting, quantifying or even statistically testing for anisotropy.
There are many important applications of the discrete model as well. We omit a
detailed discussion here as they are similar to the 2D case, which is described in [3].
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