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General ϒ-transformations

OLE E. BARNDORFF-NIELSEN∗†, JAN ROSIŃSKI‡

AND STEEN THORBJØRNSEN∗†

Abstract

In this paper we introduce a general class of transformations of (all or most of) the
class ML(Rd), of d-dimensional L évy measures on Rd , into itself. We refer to trans-
formations of this type as ϒ transformations (or Upsilon transformations). Closely
associated to these are mappings of the set I D(Rd) of all infinitely divisible laws on
Rd into itself. In considerable generality, the mappings are one-to-one, regularising
and bi-continuous. Furthermore, in many cases the transformations have a stochastic
interpretation in terms of stochastic integrals with respect to Lévy processes.

1 Introduction
In this paper we associate to any Lévy measure γ on (0,∞) certain transformations, which
we refer to as Upsilon-transformations corresponding to γ . There are (at least) three
natural ways of viewing the Upsilon transformations, namely, listed in decreasing order
of generality,

(a) Transformations of Lévy measures: ϒγ : D→ML(Rd), where the domain D ⊆
ML(Rd) depends on γ .

(b) Transformations ϒγ : ID(Rd)→ ID(Rd) of infinitely divisible probability mea-
sures.

(c) Transformations of infinitely divisible probability measures given in terms of ran-
dom integrals:

µ 7→ L
{∫

fγ(t)dZt

}
,

where L{Y} denotes the law of a random variable Y , fγ is a fixed deterministic
function and (Zt) is a Lévy process, such that L{Z1}= µ .

In the following we briefly describe the main features established in the paper of the above
three points of view.
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(a) Transformations of Lévy measures. For a σ -finite Borel measure ρ on Rd , we
define a new Borel measure ϒγ(ρ) on Rd by the formula:[

ϒγ(ρ)
]
(B) =

∫ ∞

0
ρ(x−1B)γ(dx), (1.1)

for any Borel set B. If
∫ ∞

0 (1∨ x2)γ(dx) < ∞, then formula (1.1) produces a new Lévy
measure ϒγ(ρ) from any Lévy measure ρ , but if

∫ ∞
0 (1∨x2)γ(dx) = ∞, this is only true for

certain Lévy measures ρ , and we refer to the class of such ρ as the the Lévy domain of ϒγ ,
denoted by domLϒγ (cf. Section 3). The mapping ϒγ : domLϒγ →ML(Rd) is termed the
Upsilon transformation of Lévy measures associated to γ . Such transformations generally
have a regularising effect, as we point out in Section 2, and they arise naturally in the
study of random integrals and series representations of infinitely divisible laws (see e.g.
[Ro84]) and [Ro90]). An application of Upsilon transformations to the construction of
Lévy copulas with special properties is discussed in [BNL07]. In the case where d = 1 and
the Lévy measure ρ is concentrated on (0,∞), the measure ϒγ(ρ) equals the multiplicative
convolution ρ~γ of ρ and γ , and this reveals a commutativity of the roles of ρ and γ in the
construction. In addition to domains we also study the ranges and continuity properties
of the mappings ϒγ . In many aspects the derived results turn out to be closely similar to
those of unbounded operators on Banach spaces. Thus, we prove that ϒγ is continuous
on domLϒγ if and only if it is Lévy bounded, that is if and only if

∫ ∞
0 (1∨ x2)γ(dx) < ∞,

which, as mentioned above, is equivalent to having domLϒγ = ML(Rd). In this case we
also show that ϒγ is a closed mapping in the sense that it takes closed subsets of ML(Rd)
to new closed subsets of ML(Rd). This immediately implies that ϒγ is a homeomorphism
whenever it is injective. The topology on ML(Rd), to which the above results refer, is
that of Lévy weak convergence, as introduced in Section 5. The question of injectivity of
ϒγ is delicate. In Section 6 we give some partial results which may be used to establish
injectivity for rather general classes of Upsilon transformations. A more detailed analysis
will be given in a forthcoming paper.

(b) Transformations of infinitely divisible laws. If
∫ ∞

0 (1∨ x2)γ(dx) < ∞, then we as-
sociate to γ a mapping ϒγ : ID(Rd) → ID(Rd), which may be defined in terms of
cumulant transforms by the equality

Cϒγ (µ)(z) =
∫ ∞

0
Cµ(tz)γ(dt), (z ∈ Rd), (1.2)

where e.g. Cµ denotes the cumulant transform of µ . From equation (1.2) it it is easy to
derive that ϒγ preserves the affine structure of ID(Rd), in the sense that

(i) ϒγ(µ1 ∗µ2) = ϒγ(µ1)∗ϒγ(µ2), (µ1,µ2 ∈ID(Rd)),

(ii) ϒγ(TBµ) = TBϒγ(µ), (B ∈Md(R), µ ∈ID(Rd)),

(iii) {ϒγ(δc) | c ∈ Rd} ⊆ {δc | c ∈ Rd},

where TBµ denotes the transformation of µ by the linear mapping TB associated to the
d×d-matrix B, and δc denotes the Dirac measure at c. As a consequence of (i)–(iii), for
any non-zero γ in M02((0,∞)) the range of ϒγ is a subset of ID(Rd), which contains
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all Dirac measures and is closed under convolution and linear transformations. We prove
in addition that the range is closed in the topology of weak convergence. These proper-
ties of the ranges are shared by many important classes of infinitely divisible probability
measures (e.g., for d = 1, the selfdecomposable laws and the Goldie-Steutel-Bondesson
class), and, as we shall indicate, a significant number of such classes are in fact realised
as ranges of Upsilon transformations. If γ is a σ -finite Borel measure on (0,∞) such that∫ ∞

0 (1∨ x2)γ(dx) = ∞, then the integral in the right hand side of (1.2) is generally not
well-defined for all measures µ from ID(Rd), and (1.2) only gives rise to a mapping
on a restricted class of measures µ . Nonetheless, interesting examples of such mappings
with restricted domains have already appeared in the literature. For instance if γ is the
measure with Lebesgue-density t−11(0,1)(t), then (1.2) gives rise to a mapping Φ0, which
was studied (in the case d = 1) in [BNMS06]. The domain of Φ0 is the class of infinitely
divisible laws, for which the Lévy measure has finite logarithmic moment, and the range
of Φ0 is the class of selfdecomposable laws (see Example 7.7 below).

(c) Transformations in terms of random integrals. Under certain restrictions on γ , in-
cluding the condition

∫ ∞
0 (1∨x2)γ(dx) < ∞, the mapping ϒγ described above may be given

a stochastic interpretation via random integrals: ϒγ(µ) may be realised as the distribution
of the random integral ∫

fγ(t)dZt ,

for a suitable deterministic function fγ (depending on γ), and where (Zt) is a Lévy Process
with Z1 having law µ . Mappings of this kind were introduced by Jurek [Ju90] under the
name of λ -mixtures of dilations of measures on Banach spaces. The random integral
point of view is not the focus of the present paper, but it will be discussed briefly at the
end of the paper (Section 9), with reference in particular to extensive recent work of Sato,
[Sa06a],[Sa06b] and [Sa07].

The paper is organised as follows: Section 2 gives the definition of the Upsilon trans-
formations of Lévy measures, discusses their regularising effect and provides some exam-
ples. In that section we also establish the commutativity of the Upsilon transformations
and the relation of this to multiplicative convolution. Questions relating to the domains
of the transformations are discussed in Section 3, partly based on an auxiliary function
ψ , introduced in that section. Section 4 is concerned with composition and ranges of
the transformations, and Section 5 considers their continuity properties. Injectivity is
discussed in Section 6. The two penultimate sections discuss Upsilon transformations
of ID(Rd). In Sections 7 we give their precise definition and establish their algebraic
properties, and Section 8 is concerned with their continuity properties. The final Section 9
discusses how the Upsilon transformations, in somewhat less generality, are representable
as random integrals with respect to Lévy processes.

Acknowledgement. This paper was begun during a research workshop at the Isaac
Newton Institute in February 2005 and have benefited from conversations then and since
with Ken-Iti Sato, Victor Perez–Abreu and Makoto Maejima. We are very grateful to
them for sharing ideas with us and keeping us informed of their ongoing work.
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2 Definition, first properties and examples

2.1 Notation and definition
By M(Rd) we denote the set of all (positive) Borel measures on Rd , and by Mσ f(Rd)
we denote the set of all Borel σ -finite measures ρ on Rd with ρ({0}) = 0. Furthermore,
ML(Rd) stands for the subset of Mσ f(Rd) consisting of the Lévy measures, i.e.

ML(Rd) =
{

ρ ∈Mσ f(Rd)
∣∣ ∫

Rd(1∧‖x‖2)ρ(dx) < ∞
}
,

with ‖ · ‖ the usual Euclidean norm on Rd . The classes M((0,∞)d), Mσ f((0,∞)d) and
ML((0,∞)d) are defined analogously; and we use M+

L ((0,∞)) to denote the class of Lévy
measures for infinitely divisible distributions concentrated on (0,∞), i.e.

M+
L ((0,∞)) =

{
ρ ∈Mσ f((0,∞))

∣∣ ∫ ∞
0 (1∧ x)ρ(dx) < ∞

}
.

Elements of Mσ f(Rd) will be denoted by ρ,σ , or τ , and γ and η will denote members
of Mσ f((0,∞)). Finally, we introduce the class M02(Rd) of finite Borel measures on Rd

with finite second moment:

M02(Rd) =
{

ρ ∈Mσ f(Rd)
∣∣ ∫ ∞

0 (1∨‖x‖2)ρ(dx) < ∞
}
.

2.1 Definition. For any γ ∈Mσ f((0,∞)), let ϒγ : Mσ f(Rd)→M(Rd) be the mapping
determined by

ϒγ(ρ)(A) =
∫ ∞

0
ρ(x−1A)γ(dx),

for all Borel sets A. We refer to ϒγ as the Upsilon transformation with dilation measure γ .

We shall also use ργ as a shorthand notation for ϒγ(ρ), and if γ is absolutely con-
tinuous with a density g we occasionally write ϒg and ρg. Note that a measure γ from
Mσ f((0,∞)) gives rise to an Upsilon transformation for each value of the dimension d.
We shall sometimes use the notation ϒ(d)

γ for this mapping, when it is appropriate to em-
phasise d. In case ρ is a measure on R\{0} then we shall write ρ←− for the transformation
of ρ by the reciprocity mapping x 7→ x−1.

2.2 Commutativity and connection to multiplicative convolution
The proofs of the following two propositions are straightforward, thus omitted. The latter
result indicates that in wide generality ϒγ has a regularising effect.

2.2 Proposition. Let ρ and γ be measures in Mσ f(R) and Mσ f((0,∞)), respectively.
Then for any Borel subset A of R\{0},

ργ (A) =
∫ ∞

0
ρ (yA) γ←−(dy) =

∫
R

γ (yA) ρ←−(dy) . (2.1)

2.3 Proposition. Suppose γ is a measure in Mσ f((0,∞)) which is absolutely continuous
with respect to Lebesgue measure and let g denote the density of γ . Let further ρ be a
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measure in Mσ f(R). Then ργ is absolutely continuous with respect to Lebesgue measure,
and the density rγ is given by

rγ(t) =


∫ ∞

0 g(ty)y ρ←−(dy) , if t > 0,∫ 0
−∞ g(ty) |y| ρ←−(dy) , if t < 0.

(2.2)

2.4 Example. The following examples of Upsilon transformations with dilation density
g(x) = dγ

dx have previously been discussed in the literature (see the papers [BNT04],
[BNT06], [BNT05], [BNMS06] and [BNPA07]). We return to these examples in the
following sections.

(1) Setting
g(x) = e−x, (x ∈ (0,∞)),

produces the Upsilon mapping ϒ0 which was introduced in [BNT04] and studied
further in [BNMS06] and [BNT06]. Proposition 2.3 reveals that for any measure ρ
in Mσ f(R), the density of ϒ0(ρ) is the Laplace transform of the measure y ρ←−(dy).

(2) For α in (0,1) we put

g(x) = α−1x−1−1/ασα
(
x−1/α), (x ∈ (0,∞)),

where σα is the density of the positive α-stable law having Laplace transform e−θ α
.

We write ϒα for the associated Upsilon transformation. In the limiting case α = 0
we recover the mapping ϒ0 from (1) above, for α = 1 the identity mapping, and
the family {ϒα | α ∈ [0,1]} interpolates smoothly between these two cases, see
[BNT06].

For any ρ in Mσ f(R), it follows from Proposition 2.3 that ϒα(ρ) has Lebesgue-
density

rα (t) = α−1t−1−1/α
∫ ∞

0
ξ−2−1/ασα

(
(tξ )−1/α) ρ←−(dξ ) , (t > 0).

(3) For any λ in (−2,∞), let

g(x) = xλ−1e−x (x ∈ (0,∞)).

The corresponding Upsilon mappings ϒλ were introduced and studied in [Sa05]
and [BNPA07]; see also [Sa06a]. For an extension to Upsilon mappings of Lévy
measures on the cone of positive definite matrices, see [BNPA07].

(4) For λ >−2, consider the Lévy density given by

g(x) = xλ−11(0,1)(x), (x ∈ (0,∞)).

We denote the corresponding ϒ-mapping by Φλ . The mapping Φ0 was introduced
and studied in [BNMS06]. In this particular case, it follows from Proposition 2.3
and direct computation that for ρ in Mσ f(R), Φ0(ρ) has Lebesgue-density

r0(t) =

{
t−1ρ((t,∞)), if t > 0,
|t|−1ρ((−∞, t)), if t < 0.
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(5) For an arbitrary α in (0,2), consider the Lévy density of the elemental tempered
stable law, i.e.

g(x) = x−α−1e−x, (x ∈ (0,∞)).

Such a Lévy measure is obtained as the image of the Lévy measure having density

r(ξ ) =
1

Γ(α)
1(0,1)(ξ )ξ−α−1(1−ξ )α−1

under the transformation ϒy−2e−y .

Given two σ -finite measures γ and η on the multiplicative group (0,∞) we consider
their convolution γ~η given by

γ~η(B) =
∫
(0,∞)2

1B(xy)γ(dx)η(dy), (2.3)

for any Borel subset B of (0,∞). Clearly the operation ~ is commutative, i.e., γ ~η =
η~ γ , and the multiplicative convolution ~ is converted into ordinary convolution by log
transformation.

It is easy to verify that

ϒγ(η) = γ~η = η~ γ = ϒη(γ). (2.4)

Moreover, if γ(dt) = fγ(t)dt, then (η~ γ)(dt) = fη~γ(t)dt, where

fη~γ(t) =
∫ ∞

0
fγ(ts−1)s−1 η(ds). (2.5)

If in addition η(dt) = fη(t)dt, then

fη~γ(t) =
∫ ∞

0
fγ(ts−1)s−1 fη(s) ds. (2.6)

2.5 Example. Notice that multiplicative convolution of σ -finite measures need not be
σ -finite. Indeed, let fγ(t) = fη(t) = t−1−α , α ∈ R. Then

fη~γ(t) = ∞ for every t > 0.

Hence η~ γ is infinite on every set of positive Lebesgue measure.

If η and γ are probability measures on (0,∞) and X and Y are independent random
variables with distributions η and γ respectively, then η ~ γ is the distribution of the
product XY . This provides a further link to infinite divisibility, which gives rise to a
concept of “semigroups of Upsilon transformations”, see [BNM07].

3 Discussion of domains.

3.1 Lévy Domain: Definition, examples and first properties
For any Upsilon mapping ϒγ we define its Lévy domain by

domLϒγ =
{

ρ ∈Mσ f(Rd)
∣∣ ργ ∈ML(Rd)

}
,
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where dom stands for domain. In other words, domLϒγ is the set of measures from
Mσ f(Rd) that are mapped to Lévy measures by ϒγ . We also define

dom+
L ϒγ =

{
ρ ∈Mσ f((0,∞)d)

∣∣ ργ ∈M+
L ((0,∞)d)

}
,

so that dom+
L ϒγ is the pre-image for ϒγ of the class of Lévy measures for subordinators.

3.1 Example. We adopt the notation from Example 2.4, and assume for simplicity that
d = 1.

(1) For the mapping ϒ0 we have domLϒ0 = ML(R), as was shown in [BNT04]. This
also follows immediately from Theorem 3.4 below.

(2) For the mappings ϒα it was shown in [BNT06] that domLϒ0 = ML(R). Again, this
may be seen as an immediate consequence of Theorem 3.4.

(3) For the ϒλ -mappings it is easily established [BNMS06] that

domLϒλ =


ML(R), if λ > 0
Mlog(R), if λ = 0
Mλ (R), if λ ∈ (−2,0)

where the classes Mlog(R) and Mλ (R), λ ∈ (0,1), are defined by:

Mlog(R) =
{

ρ ∈M(R)
∣∣ ∫ ∞

1 logyρ(dy) < ∞
}

and
Mλ (R) =

{
ρ ∈M(R)

∣∣ ∫ ∞
1 y−λ ρ(dy) < ∞

}
,

respectively.

(4) For the Upsilon mappings Φλ , it is easy to check that for all λ in (−2,∞) we have

domLΦλ = domLϒλ ,

with ϒλ as in (3).

3.2 Proposition. For any nonzero measure γ in Mσ f((0,∞)), we have

domLϒ(d)
γ ⊆ML

(
Rd) and dom+

L ϒ(d)
γ ⊆M+

L ((0,∞)d). (3.1)

Proof. Let a > 0 be such that γ([a,∞)) = b > 0. Then for every ρ ∈ domLϒγ

∞ >
∫

Rd
(‖x‖2∧1)ργ(dx) =

∫
Rd

∫ ∞

0
(t2‖x‖2∧1)γ(dt)ρ(dx)

≥ b
∫

Rd
(a2‖x‖2∧1)ρ(dx)≥ b(a2∧1)

∫
Rd

(‖x‖2∧1)ρ(dx)

which shows that ρ ∈ML(Rd). The second inclusion follows similarly by replacing
‖x‖2∧1 by ‖x‖∧1 in the argument above. �
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Proposition 3.2 is valid even when Rd is replaced by a Banach space, see Proposi-
tion 2 in Jurek [Ju90]. However, since Lévy measures on a general Banach space are not
determined by an integrability condition, the above simple proof does not apply.

3.3 Remark. (a) Suppose γ and η are σ -finite measures on (0,∞) and consider their
multiplicative convolution γ~η (cf. Subsection 2.2). Then from (2.4) we infer that

γ~η ∈ML((0,∞)) ⇐⇒ η ∈ domLϒγ ⇐⇒ γ ∈ domLϒη . (3.2)

Assuming that γ,η 6= 0, Proposition 3.2 together with (3.2) then asserts that

γ~η ∈ML((0,∞)) =⇒ γ,η ∈ML((0,∞)). (3.3)

(b) Let ρ and γ be measures in ML(Rd) and Mσ f((0,∞)), respectively, and let ‖ρ‖
denote the transformation of ρ under the mapping x 7→ ‖x‖. Using Tonelli’s theorem
we note then that∫

Rd
(‖x‖2∧1)ργ(dx) =

∫
(0,∞)

(∫
Rd

(t2‖x‖2∧1)ρ(dx)
)

γ(dt)

=
∫
(0,∞)

(∫
(0,∞)

(t2s2∧1)‖ρ‖(ds)
)

γ(dt)

=
∫

Rd
(t2∧1)γ‖ρ‖(dt),

(3.4)

so that
ρ ∈ domLϒγ ⇐⇒ γ ∈ domLϒ‖ρ‖. (3.5)

Taking then Proposition 3.2 into account, it follows that

∀γ ∈Mσ f((0,∞)) : domLϒγ 6= {0}=⇒ γ ∈ML((0,∞)), (3.6)

which shows that ϒγ is only interesting as a mapping on the class of Lévy measures
if γ is itself a Lévy measure.

The following theorem has also been noted, independently, by K. Sato (cf. [Sa05]).
In the following section we obtain a proof of the theorem as a result of a comparison of
domains for two ϒ transformations.

3.4 Theorem. (i) Let γ be a non-zero measure from Mσ f((0,∞)). Then for any posi-
tive integer d we have

domLϒ(d)
γ = ML

(
Rd) (3.7)

if and only if γ ∈M02((0,∞)), i.e. if and only if

γ((0,∞)) < ∞ and
∫ ∞

0
t2 γ(dt) < ∞. (3.8)

(ii) Let γ be a non-zero measure from Mσ f((0,∞)). Then for any positive integer d,

dom+
L ϒ(d)

γ = M+
L ((0,∞)d) (3.9)

if and only if ∫
(0,∞)

(1∨ t)γ(dt) < ∞. (3.10)
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3.5 Remark. Combining Theorem 3.4 with (3.5) it follows that

∀γ ∈ML((0,∞)) : domLϒ(d)
γ ⊇M02(Rd) (3.11)

and also that (cf. (3.6))

∀γ ∈Mσ f((0,∞)) : domLϒ(d)
γ 6= {0}=⇒ domLϒ(d)

γ ⊇M02(Rd).

3.2 An auxiliary function: Definition and applications.
For a number of the calculations to follow, it is helpful to introduce an auxiliary function
ψγ by

3.6 Definition. For a measure γ in Mσ f((0,∞)) we define the function ψγ : [0,∞)→ [0,∞]
by

ψγ(s) =
∫ ∞

0
(s2t2∧1)γ(dt), (s ∈ [0,∞)). (3.12)

It follows immediately from the calculation (3.4) that

domLϒγ =
{

ρ ∈ML(Rd)
∣∣ ∫

Rd ψγ(‖x‖)ρ(dx) < ∞
}
. (3.13)

We mention in passing that for a non-zero Lévy measure γ on (0,∞), ψγ is a non-
decreasing continuous function with ψγ(0) = 0 and ψγ(s) > 0, whenever s > 0. Moreover,
lims→∞ ψγ(s) = γ((0,∞)).

3.7 Remark. The characterisation (3.13) of domLϒγ remains valid when Rd is replaced
by a Hilbert space but is invalid for general Banach spaces. Jurek [Ju90] obtained some
characterisations of domLϒγ for Banach spaces in cases where either γ or ρ have restricted
support.

Comparison of domains

3.8 Theorem. Let γ1 and γ2 be measures from Mσ f((0,∞)). Then domLϒ(d)
γ2 ⊆ domLϒ(d)

γ1

for all d, if and only if

∃C > 0: ψγ1(s)≤Cψγ2(s), (s ∈ [0,∞)). (3.14)

Proof. We note first that we may assume that both γ1 and γ2 are Lévy measures. Indeed,
if γ ∈Mσ f((0,∞)), then the inequalities

(1∨ s2)
∫
(0,∞)

(t2∧1)γ(dt)≥ ψγ(s)≥ (1∧ s2)
∫
(0,∞)

(t2∧1)γ(dt)

verify the statement

γ /∈ML((0,∞)) ⇐⇒ ψγ(s) = ∞, for all s in (0,∞).

Moreover, for any γ in Mσ f((0,∞)) we have

domLϒγ = {0} ⇐⇒ γ /∈ML((0,∞)),
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where “⇐” follows from (3.6) and “⇒” follows from the fact that δ1 ∈ domLϒγ for any
Lévy measure γ . From these observations the proposition follows readily if one of the
measures γ1 or γ2 is not a Lévy measure. In a similar manner we may assume that γ1 and
γ2 are both non-zero. Indeed, for γ in Mσ f((0,∞)) we have

ψγ = 0 ⇐⇒ γ = 0 ⇐⇒ domLϒγ = Mσ f(R),

where, in the latter bi-implication, the implication “⇐” is a consequence of Proposi-
tion 3.2.

So assume in the following that γ1,γ2 are both non-zero Lévy measures on (0,∞). It
follows immediately from (3.13) that condition (3.14) implies that domLϒγ2 ⊆ domLϒγ1 .
Conversely, assume that (3.14) is not satisfied. We then construct, for each d in N, a
measure ρ in ML(Rd) such that ρ ∈ domLϒγ2 \ domLϒγ1 . Indeed, since (3.14) is not
satisfied we may, for each n in N, choose a number sn in (0,∞) such that

ψγ1(sn) > nψγ2(sn).

Then choose a fixed unit vector u in Rd and define the measure ρ on Rd by

ρ =
∞

∑
n=1

1
nψγ1(sn)

δsnu.

Note then that ∫
Rd

ψγ2(‖x‖)ρ(dx) =
∞

∑
n=1

ψγ2(sn)
nψγ1(sn)

≤
∞

∑
n=1

1
n2 < ∞.

Thus, by (3.13), ρ ∈ domLϒγ2 , so in particular ρ ∈ML(Rd) according to Proposition 3.2.
Note next that ∫

Rd
ψγ1(‖x‖)ρ(dx) =

∞

∑
n=1

ψγ1(sn)
nψγ1(sn)

=
∞

∑
n=1

1
n

= ∞,

so that ρ /∈ domLϒγ1 . �

Based on Theorem 3.8 we present next the proclaimed proof of Theorem 3.4.

Proof of Theorem 3.4. (i) Suppose first that domLϒγ = ML(R) = domLϒδ1 . Then it
follows from Theorem 3.8 that∫ ∞

0
(1∧ s2t2)γ(dt) = ψγ(s)≤Cψδ1(s) = C(1∧ s2), (s ∈ (0,∞)) (3.15)

for some positive constant C. For s in (0,1), (3.15) says that∫ ∞

0
(s−2∧ t2)γ(dt)≤C,

and letting then s↘ 0, we obtain by monotone convergence that
∫ ∞

0 t2 γ(dt)≤C.
For s in [1,∞), (3.15) says that∫ ∞

0
(1∧ s2t2)γ(dt)≤C,
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and letting s↗ ∞, we obtain by monotone convergence that γ((0,∞)) =
∫ ∞

0 1γ(dt)≤C.
Altogether γ ∈M02((0,∞)). Conversely assume that γ ∈M02((0,∞)). Then

ψγ(s) =
∫ ∞

0
(1∧ s2t2)γ(ds)≤ (1∧ s2)

∫ ∞

0
(1∨ t2)γ(dt) = Cψδ1(s),

where C =
∫ ∞

0 (1∨ t2)γ(dt) < ∞. Hence it follows from Theorem 3.8 that for any d in N,

ML(Rd)⊇ domL(ϒ
(d)
γ )⊇ domL(ϒ

(d)
δ1

) = ML(Rd),

as desired.
(ii) Let ρ be a measure in ML((0,∞)d) and let γ be a measure in Mσ f((0,∞)). Then

we denote by ‖ρ‖2 and
√γ the transformations of ρ and γ by the mappings x 7→ ‖x‖2 and

t 7→ √t, respectively. Note then that∫
(0,∞)

(1∧‖x‖2)ρ√γ(dx) =
∫
(0,∞)

(∫
Rd

(1∧ t2‖x‖2)ρ(dx)
)√

γ(dt)

=
∫
(0,∞)

(∫
(0,∞)

(1∧ ts)‖ρ‖2(ds)
)

γ(dt)

=
∫
(0,∞)

(1∧ s)‖ρ‖2
γ(ds),

which shows that
ρ ∈ domLϒ(d)√γ ⇐⇒ ‖ρ‖2 ∈ dom+

L ϒ(1)
γ . (3.16)

In the case γ = δ1, note that domLϒ(d)√
δ1

= ML(Rd) and that dom+
L ϒ(1)

δ1
= M+

L ((0,∞)),

and therefore (3.16) implies that

{‖ρ‖2 | ρ ∈ML(Rd)}= M+
L ((0,∞)). (3.17)

Indeed, the inclusion “⊆” follows immediately from (3.16). Conversely, let σ be a
measure from M+

L ((0,∞)), and let ρ be the transformation of σ under the mapping
t 7→ √tu : (0,∞)→ Rd for some unit vector u in Rd . Now, ‖ρ‖2 = σ and, by (3.16)
(with γ = δ1), ρ ∈ML(Rd).

Using then (3.16), (3.17), Proposition 3.2 and part (i) it follows that

dom+
L ϒ(1)

γ = M+
L ((0,∞)) ⇐⇒ domLϒ(d)√γ = ML(Rd)

⇐⇒
∫
(0,∞)

(1∨ t2)
√

γ(dt) < ∞

⇐⇒
∫
(0,∞)

(1∨ s)γ(ds) < ∞,

(3.18)

as desired. �
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How small can the domain get?

If ρ ∈ML(Rd)\M02(Rd), or, equivalently, ‖ρ‖ ∈ML((0,∞))\M02((0,∞)), then it fol-
lows from Theorem 3.4 that there is a measure η in ML((0,∞)) such that η /∈ domLϒ‖ρ‖.
This implies by (3.5) that ρ /∈ domLϒ(d)

η , and hence, taking also (3.11) into account, we
may conclude that ⋂

η∈ML((0,∞))

domLϒ(d)
η = M02(Rd).

One may then ask whether there is a single measure η from ML((0,∞)) such that domLϒ(d)
η

= M02(Rd). This will be answered in the negative in Proposition 3.9 below.

3.9 Proposition. For any Lévy measure γ on (0,∞) and for any positive integer d we
have that

domLϒ(d)
γ % M02(Rd).

Proof. Clearly we may assume that γ 6= 0. Since ψγ is continuous and ψγ(0) = 0, we
can choose a sequence (sn) in (0,1) such that

∀n ∈ N : ψγ(sn)≤ 1
n .

Consider the measure ρ on Rd given by

ρ =
∞

∑
n=1

1
n

δsnu,

where u is a fixed unit vector in Rd . Now,∫
Rd

(1∨‖x‖2)ρ(dx) =
∞

∑
n=1

1
n

= ∞,

so that ρ is not in M02(Rd). At the same time∫
Rd

ψγ(‖x‖)ρ(dx) =
∞

∑
n=1

1
n

ψγ(sn)≤
∞

∑
n=1

1
n2 < ∞,

so that ρ ∈ domLϒ(d)
γ (in particular ρ must be a Lévy measure; cf. Proposition 3.2). �

The case of regularly varying tails

In order to characterise domLϒγ we need to know the behaviour of ψγ(s) (defined by
formula (3.12)) at zero and infinity, cf. formula (3.13). This is possible when the tail of γ
is regularly varying in the sense that we can specify the tail behaviours of ψγ in terms of
the behaviour of the tail measure of γ at 0 and infinity.

Recall that a function L : (0,∞)→ [0,∞) is slowly varying at infinity (resp. at 0) if

L(tx)
L(t)

−→ 1, as t→ ∞ (resp. as t→ 0),
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for any positive number x. A function U : (0,∞)→ [0,∞) is regularly varying with index
α at infinity (resp. at 0), if it has the form

U(x) = xαL(x),

with L slowly varying at infinity (resp. at 0). Recall also that for γ in ML((0,∞)) we have

ψγ(s),γ([s−1,∞))−→ 0, as s→ 0

and
ψγ(s),γ((s−1,∞))−→ γ((0,∞)), as s→ ∞.

3.10 Proposition. Let γ be a non-zero Lévy measure on (0,∞), and suppose that the
function γ+(t) = γ([t,∞)) is regularly varying with index −α at zero (infinity, resp.),
where α < 2. Then

ψγ(s)
γ([s−1,∞))

→ 2
2−α

as s→ ∞ (0, resp.). (3.19)

Proof. We have

ψγ(s) = s2
∫
(0,s−1)

x2 γ(dx)+ γ([s−1,∞))

= s2
∫
(0,s−1)

∫ x

0
2t dt γ(dx)+ γ([s−1,∞))

= s2
∫ ∞

0
2tγ([t,s−1∨ t))dt + γ([s−1,∞))

= s2
∫ s−1

0
2tγ([t,∞))dt. (3.20)

We first consider the case of γ([t,∞)) regularly varying at zero. From (3.20) we get

ψγ(s) = 2s2
∫ ∞

s
x−3γ([x−1,∞))dx.

By our assumption we can write γ([x−1,∞)) = xα`(x), where `(x) is slowly varying at
infinity. By Proposition 1.5.10 in [BGT] we have

ψγ(s)
γ([s−1,∞))

=
2
∫ ∞

s xα−3`(x)dx
sα−2`(s)

→ 2
2−α

(3.21)

as s→ ∞.
Now we consider the case of γ([t,∞)) regularly varying at infinity. We can write

γ([t,∞)) = t−α`(t), where `(t) is slowly varying at infinity. Using Proposition 1.5.8
[BGT] and (3.20) we get

ψγ(x−1)
γ([x,∞))

=
2
∫ x

0 t1−α`(t)dt
x2−α`(x)

→ 2
2−α

as x→ ∞. This concludes the proof. �
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3.11 Remark. Suppose γ is a non-zero Lévy measure on (0,∞) and that the function
γ+(t) = γ([t,∞)) is regularly varying at both 0 and infinity with indexes respectively
−α and −β from (−2,0). Then it follows from Proposition 3.10 that there are positive
constants c and C such that

cγ+(s−1)≤ ψγ(s)≤Cγ+(s−1), (s > 0). (3.22)

Indeed, it is a consequence of Proposition 3.10 that there exist positive numbers ε,K,C′
such that

γ+(s−1)≤C′ψγ(s), for all s in [ε,K]c.

Putting then C′′ = γ+(K−1)/ψγ(ε), we have for s in [ε,K] that

γ+(s−1)≤ γ+(K−1) = C′′ψγ(ε)≤C′′ψγ(s).

Thus, the constant c = 1/(C′ ∨C′′) satisfies the first inequality in (3.22), and a similar
argument produces a constant C satisfying the second inequality.

3.12 Corollary. Suppose γ and η are non-zero measures from ML((0,∞)) such that the
functions γ+(s) = γ([s,∞)) and η+(s) = η([s,∞)) are regularly varying at both 0 and
infinity with indexes in (−2,0). Then the following two assertions are equivalent:

(i) domLϒγ ⊆ domLϒη .

(ii) ∃C > 0 ∀s > 0: η+(s)≤Cγ+(s).

Proof. Suppose domLϒγ ⊆ domLϒη . Then by Theorem 3.4 there is a positive constant
C′ such that ψη ≤C′ψγ and combined with Remark 3.11 this provides a constant C such
that η+ ≤Cγ+. The converse implication follows similarly. �

4 Composition and ranges

For two measures γ and η from Mσ f((0,∞)) we may consider the composition ϒ(d)
γ ◦ϒ(d)

η
with Lévy domain defined naturally by

domLϒ(d)
γ ◦ϒ(d)

η =
{

ρ ∈ domLϒ(d)
η
∣∣ ϒη(ρ) ∈ domLϒγ

}
.

4.1 Proposition. Let η and γ be non-zero measures from Mσ f((0,∞)). Then for any d
in N,

domLϒ(d)
γ ◦ϒ(d)

η = domLϒ(d)
γ~η = domLϒ(d)

η ◦ϒ(d)
γ (4.1)

and
ϒ(d)

γ ◦ϒ(d)
η = ϒ(d)

γ~η = ϒ(d)
η ◦ϒ(d)

γ . (4.2)

Proof. For a measure ρ from ML((0,∞)) we note first that by (3.2)

ρ ∈ domLϒ(d)
γ~η ⇐⇒ ‖ρ‖ ∈ domLϒ(1)

γ~η ⇐⇒ (γ~η)~‖ρ‖ ∈ML((0,∞))

⇐⇒ γ~ (η~‖ρ‖) ∈ML((0,∞)) ⇐⇒ η~‖ρ‖ ∈ domLϒ(1)
γ .

(4.3)
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In particular, by virtue of (3.3),

ρ ∈ domLϒ(d)
γ~η =⇒ η~‖ρ‖ ∈ML((0,∞)) ⇐⇒ ρ ∈ domLϒ(d)

η . (4.4)

Moreover, assuming that ρ ∈ domLϒ(d)
η , note that∫ ∞

0

∫
Rd

(1∧ (t2‖x‖2))ϒ(d)
η (ρ)(dx)γ(dt) =

∫ ∞

0

∫ ∞

0

∫
Rd

(1∧ (s2t2‖x‖2))ρ(dx)η(ds)γ(dt)

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
(1∧ (s2t2u2))‖ρ‖(du)η(ds)γ(dt)

=
∫ ∞

0

∫ ∞

0
(1∧ (t2u2))(‖ρ‖~η)(du)γ(dt),

which verifies that

∀ρ ∈ domLϒ(d)
η : ϒ(d)

η (ρ) ∈ domLϒ(d)
γ ⇐⇒ ‖ρ‖~η ∈ domLϒ(1)

γ . (4.5)

Combining now (4.3), (4.4) and (4.5) establishes the first equality in (4.1), and the second
one follows by symmetry.

Turning now to (4.2), assume that ρ ∈ domLϒγ~η , and note then for any Borel subset
B of Rd that

ϒη~γ(ρ)(B) =
∫ ∞

0
ρ(t−1B)η~ γ(dt) =

∫ ∞

0

∫ ∞

0
ρ((st)−1B)η(dt)γ(ds)

=
∫ ∞

0
ρη(s−1B)γ(ds) = [ϒγ ◦ϒη(ρ)](B),

as desired. �

4.2 Example. Adopting the notation from Example 2.4, a direct calculation shows that

Φ0ϒ0 = ϒ0Φ0 = ϒλ |λ=0.

The first of these equalities was noted in [BNMS06]. It is a special case of formula (4.2).

For a measure γ in Mσ f((0,∞)) we define the Lévy range ranLϒ(d)
γ of ϒ(d)

γ by

ranLϒ(d)
γ =

{
ϒγ(ρ)

∣∣ ρ ∈ domLϒ(d)
γ
}
.

4.3 Corollary. Let γ1 and γ2 be non-zero measures from ML((0,∞)). Then the following
assertions are equivalent:

(i) ranLϒ(d)
γ2 ⊆ ranLϒ(d)

γ1 for all d in N.

(ii) ranLϒ(1)
γ2 ⊆ ranLϒ(1)

γ1 .

(iii) γ2 = γ1~ γ = ϒγ1(γ) for some measure γ from ML((0,∞)).
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Proof. Assume first that γ2 = γ1~ γ for some measure γ from ML((0,∞)). Then by
Proposition 4.1 it follows that

ranLϒ(d)
γ2 = ranLϒ(d)

γ1 ◦ϒ(d)
γ ⊆ ranLϒ(d)

γ1 ,

for all d in N. Assume conversely that ranLϒ(1)
γ2 ⊆ ranLϒ(1)

γ1 . Since γ2 ∈ML((0,∞)), the

Dirac measure δ1 ∈ domLϒ(1)
γ2 , so that

γ2 = ϒ(1)
γ2 (δ1) = ϒ(1)

γ1 (ρ)

for some measure ρ in domLϒγ1 . Since γ1 6= 0, ρ ∈ML(R) according to Proposition 3.2.
Moreover, since

0 = γ2((−∞,0)) =
∫ ∞

0
ρ((−∞,0))γ1(dt) = ρ((−∞,0)) · γ1((0,∞)),

and since γ1 6= 0, it follows that ρ((−∞,0)) = 0, so that actually ρ ∈ML((0,∞)). There-
fore

γ2 = ϒγ1(ρ) = γ1~ρ,

as desired. �

4.4 Remark.
(i) Suppose γ1,γ2 are non-zero measures from ML((0,∞)) and that ranLϒγ2 ⊆ ranLϒγ1 .

Then Corollary 4.3 and Proposition 4.1 assert that ϒ(d)
γ2 = ϒ(d)

γ ◦ϒ(d)
γ1 for some mea-

sure γ from ML((0,∞)). By the definition of domLϒ(d)
γ ◦ϒ(d)

γ1 , this in particular
implies that

domLϒ(d)
γ2 ⊆ domLϒ(d)

γ1 ,

for all d.

(ii) Let γ be a non-zero measure from ML((0,∞)). Then by Proposition 4.1 we have
for any positive integer d

domLϒ(d)
γ ⊇ ranLϒ(d)

γ ⇐⇒ ∀ρ ∈ domLϒ(d)
γ : ϒ(d)

γ (ρ) ∈ domLϒ(d)
γ

⇐⇒ domLϒ(d)
γ ◦ϒ(d)

γ = domLϒ(d)
γ

⇐⇒ domLϒγ~γ = domLϒγ .

In other words, the mapping ϒγ may be iterated without precaution on all of its
domain, if and only domLϒγ~γ = domLϒγ .

(iii) Let γ and η be non-zero measures from ML((0,∞)). Then using e.g. (2.3) it is
straightforward to check that

γ~η ∈M02((0,∞)) ⇐⇒ γ,η ∈M02((0,∞)).

This may in fact also be extracted from Proposition 4.1, which, in the affirmative
case, asserts that

ϒγ~η = ϒγ ◦ϒη = ϒη ◦ϒγ ,

on all of ML(Rd).
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5 Continuity Properties of ϒγ

For measures ρ,ρ1,ρ2,ρ3, . . . from ML(Rd), we define Lévy-weak convergence of ρn to
ρ , denoted ρn

lw−→ ρ , as follows:

ρn
w−−−→

n→∞
ρ ⇐⇒ (1∧‖x‖2)ρn(dx) n→∞−−−→

w
(1∧‖x‖2)ρ(dx).

The corresponding topology τL on ML(Rd) is the weakest topology on ML(Rd) making
the mapping

ρ 7→ (1∧‖x‖2)ρ(dx) : ML(Rd)→Mf(Rd)

continuous, when the class Mf(Rd) of finite Borel measures on Rd is equipped with the
topology for usual weak convergence. It is straightforward to check that M02(Rd) is dense
in ML(Rd) with respect to τL, and hence Remark 3.5 asserts that ϒγ is densely defined on
ML(Rd) for any Lévy measure γ on (0,∞). By Theorem 3.4, ϒγ can be defined on all of
ML(Rd) if and only if γ ∈M02((0,∞)).

5.1 Theorem. Let γ be a Lévy measure on (0,∞) and let d be a positive integer. Then the
following statements are equivalent:

(i) γ ∈M02((0,∞)).

(ii) ϒ(d)
γ : domLϒ(d)

γ →ML(Rd) is continuous in the topology for Lévy weak conver-
gence.

(iii) ϒ(d)
γ is continuous at 0 ∈ML(Rd) in the topology for Lévy weak convergence.

Proof. Assume first that γ belongs to M02((0,∞)), and let ρ,ρ1,ρ2,ρ3, . . . be measures
from Rd such that ρn→ ρ Lévy-weakly as n→∞. In order to show that ϒγ(ρn)→ ϒγ(ρ)
Lévy-weakly, we must establish that∫

Rd
f (x)(1∧‖x‖2)ϒγ(ρn)(dx)−−−→

n→∞

∫
Rd

f (x)(1∧‖x‖2)ϒγ(ρ)(dx), (5.1)

for any continuous bounded function f : Rd → R. Note here that∫
R

f (x)(1∧‖x‖2)ϒγ(ρn)(dx) =
∫ ∞

0

∫
Rd

f (sx)(1∧ s2‖x‖2)ρn(dx)γ(ds), (5.2)

and that for a fixed s∫
Rd

f (sx)(1∧ s2‖x‖2)ρn(dx) =
∫

Rd
fs(x)(1∧‖x‖2)ρn(dx)

−−−→
n→∞

∫
Rd

fs(x)(1∧‖x‖2)ρ(dx)

=
∫

Rd
f (sx)(1∧ s2‖x‖2)ρ(dx),

(5.3)

since the function

fs(x) =

{
f (sx)1∧s2‖x‖2

1∧‖x‖2 , if x ∈ Rd \{0},
s2 f (0), if x = 0,

(5.4)
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is continuous and bounded. Note also that for any n∣∣∣∫
Rd

f (sx)(1∧ s2‖x‖2)ρn(dx)
∣∣∣≤ ‖ f‖u(1∨ s2)

∫
Rd

(1∧‖x‖2)ρn(dx),

≤C‖ f‖u(1∨ s2),
(5.5)

where ‖ f‖u = supx∈Rd | f (x)| < ∞ and C = supn∈N
∫
Rd(1∧‖x‖2)ρn(dt) < ∞. Since γ ∈

M02((0,∞)) we have
∫ ∞

0 (1∨s2)γ(ds) < ∞, and hence by dominated convergence in com-
bination with (5.2)-(5.5) we obtain (5.1).

It remains to show that continuity of ϒ(d)
γ at 0 implies that γ belongs to M02((0,∞)).

Consider first the sequence (ρn) of measures from ML(Rd) given by

ρn = εnn2δn−1u, (n ∈ N),

where u is a fixed unit vector in Rd and (εn) is an arbitrary sequence of positive numbers
such that εn↘ 0 as n→ ∞. Note then that∫

Rd
(1∧‖x‖2)ρn(dx) = εnn2(1∧n−2) = εn,

so that ρn
lw→ 0 as n→ ∞. At the same time we have∫

Rd
(1∧‖x‖2)ϒ(d)

γ (ρn)(dx) =
∫ ∞

0
εnn2(1∧ t2n−2)γ(dt) = εn

∫ n

0
t2 γ(dt)+ εnn2γ([n,∞)).

From the calculation above it follows that ϒ(d)
γ (ρn)

lw−→ 0 for all choices of (εn) as pre-
scribed above if and only if

∫ ∞
0 t2 γ(dt) < ∞, which is thus a necessary condition for con-

tinuity at 0 of ϒ(d)
γ . Consider next the sequence (ρn) defined by

ρn = εnδnu, (n ∈ N),

with u and (εn) as above. Then∫
Rd

(1∧‖x‖2)ρn(dx) = εn(1∧n2) = εn,

so that ρn
lw−→ 0 as n→ ∞. Furthermore∫

Rd
(1∧‖x‖2)ϒ(d)

γ (ρn)(dx) =
∫ ∞

0
εn(1∧ t2n2)γ(dt) = εnn2

∫ 1/n

0
t2 γ(dt)+ εnγ([1/n,∞)),

and it follows that ϒγ(ρn)
lw−→ 0 for all choices of (εn) if and only if γ((0,∞)) < ∞. Thus,

γ must also be finite in order for ϒγ to be continuous at 0. This completes the proof. �

5.2 Remark. When dealing with an upsilon transform ϒ(d)
γ : domLϒ(d)

γ →ML(Rd), it is
natural to have in mind the setting of (unbounded) linear operators defined on subspaces
of a Banach space. From this point of view, Theorem 5.1 corresponds to the fact that
a linear, densely defined operator on a Banach space is bounded on its domain if and
only if it has a bounded extension to the full Banach space. In addition, this condition is
equivalent to continuity of the operator at 0 and also to continuity on all of the domain.
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The next theorem is essential for studying the topological properties of ranLϒγ and of
the inverse mapping of ϒγ in case ϒγ is one-to-one.

5.3 Theorem. Let γ be a non-zero measure from ML((0,∞)), and let (ρn)n∈N be a se-
quence of measures from domLϒ(d)

γ such that ϒ(d)
γ (ρn)

lw−→ σ for some measure σ from
ML(Rd). Then there is a subsequence (ρnp)p∈N and a Lévy measure ρ in domLϒ(d)

γ such
that ρnp

lw−→ ρ . Moreover, σ ≥ ϒ(d)
γ (ρ) and these measures are equal when∫

Rd
(1∧‖x‖2)σ(dx) =

∫
Rd

(1∧‖x‖2)ϒ(d)
γ (ρ)(dx). (5.6)

Before the proof, note that if (ρn)n∈N is a sequence of Lévy measures on Rd , then it
is certainly possible that (1∧‖x‖2)ρn(dx) converge weakly, as n→ ∞, to a finite mea-
sure ν on Rd with positive mass at 0. For instance, setting ρn = n2δ1/n, we have that
(1∧x2)ρn(dx)→ δ0(dx) weakly, as n→∞. According to the theorem above, the sequence
(ϒγ(ρn))n∈N does not have any cluster point with respect to the Lévy weak topology.

Proof of Theorem 5.3. We show first that the sequence

νn(dx) = (1∧‖x‖2)ρn(dx), (n ∈ N),

is precompact. By [ADD, Theorem 7.8.7] it suffices to show that (νn)n∈N is tight and that
(νn(Rd))n∈N is bounded. Regarding the latter aspect, note that∫

Rd
(1∧‖x‖2)ϒ(d)

γ (ρn)(dx)

≥
∫

Rd
(1∧‖x‖2)ρn(dx)

∫ ∞

0
(1∧ s2)γ(dt) = νn(Rd)

∫ ∞

0
(1∧ s2)γ(dt). (5.7)

Since (1∧‖x‖2)ϒ(d)
γ (ρn)→ (1∧‖x‖2)σ weakly, the left hand side of (5.7) is bounded in

n, and since γ 6= 0, (5.7) thus implies boundedness of (νn(Rd))n∈N. Regarding tightness
of (νn), we find similarly for l in (0,∞) and ε in (0,1) that∫

{‖x‖>l}
(1∧‖x‖2)ϒ(d)

γ (ρn)(dx) =
∫ ∞

0

∫
Rd

1(l/s,∞)(‖x‖)(1∧ s2‖x‖2)ρn(dx)γ(ds)

≥
∫ ∞

ε

∫
Rd

1(l/ε,∞)(‖x‖)ε2(1∧‖x‖2)ρn(dx)γ(ds)

= ε2γ([ε,∞))νn
({‖x‖> l/ε}).

Choosing then ε so small that γ([ε,∞)) > 0 and using the substitution l = rε , we find that

νn
({‖x‖> r})≤ ε−2γ([ε,∞))−1

∫
{‖x‖>rε}

(1∧‖x‖2)ϒ(d)
γ (ρn)(dx),

and since the sequence (1∧‖x‖2)ϒ(d)
γ (ρn)(dx) is tight by assumption, this implies tight-

ness of (νn).
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Having established precompactness of (νn)n∈N, we may infer the existence of a sub-
sequence (νnp)p∈N and a finite measure ν on Rd such that

(1∧‖x‖2)ρnp(dx) = νnp(dx) w−−→ ν(dx), as p→ ∞.

Let f be a function from Cb(Rd) and note that∫
Rd

f (x)(1∧‖x‖2)ϒ(d)
γ (ρnp)(dx) =

∫ ∞

0

∫
Rd

f (sx)(1∧ s2‖x‖2)ρnp(dx)γ(ds).

For fixed s in (0,∞) consider the continuous bounded function fs : Rd → R introduced
in (5.4). Then by assumption∫

Rd
f (sx)(1∧ s2‖x‖2)ρnp(dx) =

∫
Rd

fs(x)(1∧‖x‖2)ρnp(dx)−−−→
p→∞

∫
Rd

fs(x)ν(dx).

Assuming now that f ≥ 0, it results from Fatou’s lemma that∫ ∞

0

∫
Rd

fs(x)ν(dx)γ(ds)≤ liminf
p→∞

∫ ∞

0

∫
Rd

f (sx)(1∧ s2‖x‖2)ρnp(dx)γ(ds)

= liminf
p→∞

∫
Rd

f (x)(1∧‖x‖2)ϒγ(ρnp)(dx)

=
∫

Rd
f (x)(1∧‖x‖2)σ(dx).

(5.8)

Note next that ν may be decomposed as

ν(dx) = (1∧‖x‖2)ρ(dx)+ν({0})δ0(dx),

with ρ a (uniquely determined) Lévy measure on Rd . Hence∫ ∞

0

∫
Rd

fs(x)ν(dx)γ(ds) =
∫ ∞

0

∫
Rd

fs(x)(1∧‖x‖2)ρ(dx)γ(ds)+
∫ ∞

0
ν({0}) fs(0)γ(ds)

=
∫ ∞

0

∫
Rd

f (sx)(1∧ s2‖x‖2)ρ(dx)γ(ds)+ν({0}) f (0)
∫ ∞

0
s2 γ(ds). (5.9)

According to (5.8), the left hand side of (5.9) is finite, and hence, by considering the first
term in the resulting expression of (5.9) in the case f ≡ 1, it follows that ρ ∈ domLϒ(d)

γ .
Combining this observation with (5.8) and (5.9) we obtain the estimate∫

Rd
f (x)(1∧‖x‖2)σ(dx)≥

∫
Rd

f (x)(1∧‖x‖2)ϒ(d)
γ (ρ)(dx)+ν({0}) f (0)

∫ ∞

0
s2 γ(ds),

(5.10)
which holds for all non-negative f from Cb(Rd). Now choose a sequence (gi)i∈N from
Cb(Rd) such that 0≤ gi ≤ 1 and gi(0) = 1 for all i and such that gi→ 1{0} point-wise as
i→ ∞. Then by dominated convergence∫

Rd
gi(x)(1∧‖x‖2)σ(dx)−−→

i→∞

∫
Rd

0σ(dx) = 0,
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and hence (5.10) implies that

0≥ ν({0})
∫ ∞

0
s2γ(ds),

and since γ 6= 0, we must then have ν({0}) = 0. Consequently, ν(dx) = (1∧‖x‖2)ρ(dx),
which yields ρnp

lw−→ ρ .
Now we will prove the last statement of the theorem. Formula (5.10) with ν({0}) = 0

gives ∫
Rd

f (x)(1∧‖x‖2)σ(dx)≥
∫

Rd
f (x)(1∧‖x‖2)ϒ(d)

γ (ρ)(dx) (5.11)

for any non-negative function f from Cb(Rd), which implies σ ≥ ϒ(d)
γ (ρ). Let M f =

supx f (x), where f is as above. Using (5.11) for M f − f in place of f and (5.6) we get the
reverse inequality in (5.11). Hence σ = ϒ(d)

γ (ρ) and the proof is completed. �

5.4 Corollary. Let γ be a measure from M02((0,∞)), and let d be a positive integer.

(i) The mapping ϒ(d)
γ is closed in the following sense: For any subset F of ML(Rd),

which is closed in the topology for Lévy weak convergence, the same holds for the
range ϒ(d)

γ (F) = {ϒ(d)
γ (ρ) | ρ ∈ F}. In particular the full range ranLϒ(d)

γ is a closed
subset of ML(Rd).

(ii) If ϒ(d)
γ is injective, then it is automatically a homeomorphism with respect to Lévy

weak convergence, i.e. the inverse mapping (ϒ(d)
γ )−1 : ranLϒγ →ML(Rd) is con-

tinuous in the corresponding topology.

Proof. (i) Let F be a subset of ML(Rd), which is closed in the topology for Lévy weak
convergence, and let σ be a measure from the closure of ϒγ(F). Then we may choose
a sequence (ρn) of measures from F , such that ϒ(d)

γ (ρn)
lw−→ σ as n→ ∞. According

to Theorem 5.3, there is a subsequence (ρnp)p∈N converging Lévy weakly to a measure
ρ necessarily in F . Since ϒ(d)

γ is continuous, and since the topology for Lévy weak
convergence is Hausdorff on ML((0,∞)), we may then conclude that

σ = lim
p→∞

ϒ(d)
γ (ρnp) = ϒ(d)

γ (ρ) ∈ ϒ(d)(F),

as desired.
(ii) Suppose that ϒγ is injective. Then (i) informs us that the pre-image of any closed

subset of ML(Rd) by the inverse mapping (ϒ(d)
γ )−1 is again a closed subset of ML(Rd)

and hence of ranLϒ(d)
γ . This means that (ϒ(d)

γ )−1 is continuous on ranLϒ(d)
γ . �

Pursuing further the analogy to operators on a Banach space mentioned in Remark 5.2,
we introduce next the graph graphLϒ(d)

γ of ϒ(d)
γ defined by

graphLϒ(d)
γ =

{
(ρ,ϒγ(ρ))

∣∣ ρ ∈ domLϒ(d)
γ
}
.

We shall view graphLϒ(d)
γ as a subset of ML(Rd)×ML(Rd) equipped with the product

topology.
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5.5 Proposition. For any measure γ from ML((0,∞)), we have the implications:

ϒ(d)
γ is continuous =⇒ graphLϒ(d)

γ is closed =⇒ ranLϒ(d)
γ is closed.

Proof. Since domLϒ(d)
γ = ML(Rd), when ϒ(d)

γ is continuous, the first implication is
straightforward. To prove the second one, assume (without loss of generality) that γ 6= 0
and that graphLϒ(d)

γ is a closed subset of ML(Rd)×ML(Rd). Then let σ be an element of
the closure of ranLϒ(d)

γ in ML(Rd), and choose a sequence (ρn)n∈N from domLϒ(d)
γ , such

that ϒ(d)
γ (ρn)→ σ Lévy weakly as n→ ∞. According to Theorem 5.3, there is a subse-

quence (ρnp)p∈N and a measure ρ from domLϒ(d)
γ such that ρnp→ ρ Lévy weakly as p→

∞. Now (ρnp,ϒ
(d)
γ (ρnp))→ (ρ,σ) in the product topology on ML(Rd)×ML(Rd), and

hence (ρ,σ) ∈ graphLϒ(d)
γ , by our assumption. This means that σ = ϒ(d)

γ (ρ) ∈ ranLϒ(d)
γ ,

as desired. �

5.6 Example. In this example we exhibit a measure γ from ML((0,∞)) such that ranLϒγ
is not closed. By Proposition 5.5 graphLϒ(d)

γ can not be closed either. Specifically, let γ
be the Lévy measure on (0,∞) given by

γ(dt) = t−21[1,∞)(t)dt,

and consider the sequence (ρn)n∈N from M02(R) given by

ρn = nδ1/n, (n ∈ N).

Then it is straightforward to check that ρn→ 0 Lévy weakly as n→ ∞, and that

ϒγ(ρn)(dt) = t−21[1/n,∞)(t)dt.

From the latter expression it is straightforward to check that ϒγ(ρn)(dt)→ t−21(0,∞)(t)dt
Lévy weakly as n→ ∞. Since ϒγ(0) = 0, these observations show that graphLϒγ is not
closed in ML(R)×ML(R). To see that ranLϒγ is not closed (in ML(R)) either, we show
that

σ(dt) := t−21(0,∞)(t)dt /∈ ranLϒγ .

We obtain this by proving that for any measure ρ from domLϒγ supported on (0,∞), we
have that

αϒγ(ρ)((α,∞))→ 0, as α → 0. (5.12)

Since ϒγ(ρ) is supported on (0,∞) if and only if ρ is, and since σ((α,∞)) = α−1 for
all α , the statement asserted above verifies that ϒγ(ρ) 6= σ for all ρ in domLϒγ .

To establish (5.12), we note first that by direct calculation

ψγ(s) =
∫ ∞

0
(1∧ s2t2)γ(ds) = (2s− s2)1(0,1)(s)+1[1,∞)(s),

and hence (cf. (3.13))

domLϒγ =
{

ρ ∈ML(R)
∣∣ ∫

(−1,1)|s|ρ(ds) < ∞
}
. (5.13)
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Now, let ρ be a measure from domLϒγ which is supported on (0,∞). Then for any α
in (0,1),

αϒγ(ρ)((α,∞)) = αϒρ(γ)((α,∞)) = α
∫ ∞

0
γ((s−1α,∞))ρ(ds)

= α
∫ ∞

0

∫ ∞

s−1α∨1
t−2 dt ρ(ds) = α

∫ ∞

0
(sα−1∧1)ρ(ds)

=
∫ α

0
sρ(ds)+αρ([α,∞)) =

∫ α

0
sρ(ds)+αρ([α,1))+αρ([1,∞)).

Here, obviously αρ([1,∞))→ 0 as α → 0, and
∫ α

0 sρ(ds)→ 0 as α → 0 by dominated
convergence (cf. (5.13)). Finally

αρ([α,1)) =
∫ 1

0
α1[α,1)(t)ρ(dt)−→ 0, as α → 0,

again by dominated convergence, since α1[α,1)(t) ≤ t for all t in [0,1]. This completes
the proof of (5.12).

6 Injectivity
We now consider the question of when ϒ(d)

γ is injective for fixed γ ∈ML((0,∞)) and d≥ 1.
It is possible that the answer may depend on the domain on which ϒ(d)

γ is considered. We
are naturally interested in the Lévy domain domLϒ(d), and henceforth the term injectivity
refers to a property of ϒ(d)

γ on that domain. It was established in [BNT04] and [BNT06]
that the injectivity is held by the Upsilon mappings introduced in Example 2.4(1) and (2).
As the following example shows, ϒγ cannot in general be expected to have this property.

6.1 Example. Consider the Lévy measure γ on (0,∞) given by

γ(dt) = t−21(0,∞)(t)dt,

and for any positive number c, consider the measure

ρc = cδ1/c ∈M02(R).

For any Borel subset B of R note then that[
ϒγ(ρc)

]
(B) = c

∫ ∞

0
δ1/c(t

−1B)γ(dt) =
∫ ∞

0
1B(t/c) · (t/c

)−2 · c−1 dt

=
∫ ∞

0
1B(u)u−2 du = γ(B),

so that ϒγ(ρc) = γ for all c. In particular, ϒγ is far from being injective.

The next proposition reduces the problem of uniqueness to d = 1 and measures on (0,∞).

6.2 Proposition. Let γ ∈ML((0,∞)). Then ϒ(d)
γ is one-to-one on domLϒ(d)

γ for all d in
N, if and only ϒ(1)

γ is one-to-one on domLϒ(1)
γ ∩Mσ f((0,∞)).
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Proof. Obviously, we only need to prove the proposition in one direction. Suppose that
ϒ(1)

γ is one-to-one on domLϒγ ∩Mσ f((0,∞)).
First we will show that ϒ(1)

γ is one-to-one on domLϒ(1)
γ . Let ρi ∈ domLϒ(1)

γ , i = 1,2.
Define for a Borel subset A of (0,∞)

ρ+
i (A) = ρi(A∩ (0,∞)), ρ−i (A) = ρi(−A∩ (−∞,0)).

Then ρ+
i ,ρ−i ∈ domLϒ(1)

γ ∩Mσ f ((0,∞)). If ϒ(1)
γ (ρ1) = ϒ(1)

γ (ρ2), then ϒ(1)
γ (ρ+

1 ) =

ϒ(1)
γ (ρ+

2 ) and ϒ(1)
γ (ρ−1 ) = ϒ(1)

γ (ρ−2 ). By the assumption ρ+
1 = ρ+

2 and ρ−1 = ρ−2 . Thus
ρ1 = ρ2.

Now let d > 1 and ρi ∈ domLϒ(d)
γ , i = 1,2. For y ∈ Rd define ρy

i ∈ domLϒ(1)
γ by

ρy
i (A) = ρi({x ∈ Rd | 〈y,x〉 ∈ A\{0}}).

If ϒ(d)
γ (ρ1) = ϒ(d)

γ (ρ2), then for every u ∈ R∫ ∞

0

∫
Rd

(eiu〈y,tx〉−1− iu〈y, tx〉
1+u2〈y, tx〉2 )ρ1(dx)γ(dt)

=
∫ ∞

0

∫
Rd

(eiu〈y,tx〉−1− iu〈y, tx〉
1+u2〈y, tx〉2 )ρ2(dx)γ(dt)

or ∫ ∞

0

∫
R
(eiust−1− iust

1+u2(st)2 )ρy
1(ds)γ(dt)

=
∫ ∞

0

∫
R
(eiust−1− iust

1+u2(st)2 )ρy
2(ds)γ(dt)

Hence ϒ(1)
γ (ρy

1) = ϒ(1)
γ (ρy

2). From the already established case d = 1, we get ρy
1 = ρy

2 for
every y ∈ Rd . We conclude that ρ1 = ρ2. �

According to this proposition, the injectivity property of ϒ(d)
γ is shared by all di-

mensions d. If it holds, we will simply say that ϒγ is injective. The injectivity of ϒγ
is equivalent to the cancellation property of the multiplicative convolution: for every
ρ1,ρ2 ∈ domLϒγ ∩M((0,∞))

γ~ρ1 = γ~ρ2 =⇒ ρ1 = ρ2. (6.1)

If γ has density fγ then the map

t 7→ fγ~ρ(t) =
∫ ∞

0
fγ(ts−1)s−1ρ(ds) (6.2)

can be viewed as a transform of measures ρ ∈ domLϒγ . If this transform is one-to-one on
domLϒγ , then (6.1) holds and ϒγ is injective. We will give a couple of examples where
this method works. First, however, we need to introduce some notation:

In case ρ is a measure on R\{0} recall that we use the notation ρ←− for the transfor-
mation of ρ by the mapping x 7→ x−1.
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6.3 Example. (i) γ(ds) = sλ−11[0,1](s)ds, λ > −2. Adapting the notation from Ex-
ample 2.4(4), recall that

domLΦλ =


ML(R), if λ > 0
Mlog(R), if λ = 0
Mλ (R), if λ ∈ (−2,0)

(see Example 3.1). If ρ ∈ domLΦλ then

fγ~ρ(t) = tλ−1
∫
[t,∞)

s−λ ρ(ds).

Obviously, this type of function determines ρ uniquely from domLΦλ , so that Φλ
is injective. The cases of λ = 0 and λ = 1 are of special interest. Indeed, ranLΦ(d)

λ
equals the class of selfdecomposable Lévy measures when λ = 0 (see [BNMS06]),
and the class of s-selfdecomposable Lévy measures when λ = 1 (see [Ju85]).

(ii) γ(ds) = sλ−1e−s1(0,∞)(s)ds, λ > −2. Recall from Example 3.1 that domLϒλ =
domLΦλ for all λ . We get

fγ~ρ(t) = t−1−α
∫ ∞

0
sαe−t/s ρ(ds) = t−1−α

∫ ∞

0
e−ts s−α ρ←−(ds).

Again, fγ~ρ determines ρ uniquely from domLϒλ , so that ϒ(d)
λ is injective. The

cases of λ = 1, λ = 0 and −2 < λ < 0 are of special importance. When λ = 1,
we get the mapping ϒ0 introduced in Example 2.4(1). In the cases λ = 0 and −2 <

λ < 0, ranLϒ(d)
λ equals the classes of Lévy measures corresponding to Thorin and to

tempered α-stable distributions on Rd , respectively (see [BNMS06] and [Ro07]).

6.4 Remark. For λ in (−2,∞) the mapping ϒ(d)
γ is not injective when γ is given by

γ(dx) = xλ−11(0,∞)(x)dx, which is the Lévy measure of a stable distribution. Indeed,
since

fγ~ρ(t) = tλ−1
∫ ∞

0
s−λ ρ(ds),

γ~ρ is the same measure for all ρ having equal−λ ’th moment. It is also easy to see that
ϒ(d)

γ is non-injective when γ is the Lévy measure of a semistable distribution.

Besides (6.2) we may use other integral transforms to identify Lévy measures. They
are determined by a kernel K : (0,∞) 7→R(or C) as follows. For a measure γ ∈Mσ f((0,∞))
define

Lγ(θ) =
∫ ∞

0
K(θx)γ(dx), (6.3)

where θ ∈ domLγ := {θ | ∫ ∞
0 |K(θx)|γ(dx) < ∞}. Then

Lγ~ρ(θ) =
∫ ∞

0
Lγ(θx)ρ(dx) θ ∈ domLγ~ρ . (6.4)

Below we give three examples of K and of the resulting integral transforms. These trans-
forms each identify measures from ML((0,∞)), but the choice of which one to apply may
depend on the type of measure γ (cf. Example 6.5 below).
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(i) K(x) = 1−cosx, x > 0. Then Lγ(θ) =
∫ ∞

0 (1−cos(θx))γ(dx) is the Lévy exponent
of an infinitely divisible distribution generated by symmetrisation of γ . We will call
it the Lévy transform of γ .

(ii) K(x) = x2 exp(−x), x > 0. Then

Lγ(θ) = θ 2
∫ ∞

0
x2e−θx γ(dx), θ > 0.

(iii) K(x) = exp(−x−q), x > 0, q > 0 (fixed). Then

Lγ(θ) =
∫ ∞

0
e−θ−qx−q

γ(dx) =
∫ ∞

0
e−θ−qx γ←−(dx1/q), θ > 0.

In this case Lγ is expressible as the Laplace transform of another measure.

6.5 Example. Let γ be as in Example 2.4(2). That is,

fγ (s) = α−1s−1−1/ασα
(
s−1/α), s > 0,

where σα is the density of the positive α-stable law having Laplace transform e−θ α
,

0 < α < 1. Take transformation (iii) with q = 1/α . Using (2.5) and (6.4) we get

Lγ~ρ(θ) =
∫ ∞

0
e−θ−1/α t−1/α

∫ ∞

0
α−1(ts−1)−1−1/ασα((ts−1)−1/α)s−1ρ(ds)dt

=
∫ ∞

0

∫ ∞

0
e−θ−1/α s−1/α xσα(x)dxρ(ds)

=
∫ ∞

0
e−θ−1s−1

ρ(ds) =
∫ ∞

0
e−θ−1s ρ←−(ds).

Thus Lγ~ρ identifies ρ . We conclude that ϒγ is injective. This was established in [BNT06]
by a closely similar argument.

A more detailed and deeper study of the injectivity problem will appear in a separate
paper.

7 Upsilon Mappings of I D(Rd)

The Upsilon transformations discussed in the foregoing give rise to regularising mappings
from the class ID(Rd) of infinitely divisible laws on Rd into itself. These mappings are
one-to-one when the corresponding Upsilon transformation of Lévy measures are. The
material discussed in this Section extends results obtained previously in the special case
d = 1 and γ(dx) = e−x dx; cf. [BNT04] and [BNT06].

Before proceeding with the formal definition of the mentioned mappings of ID(Rd),
we recall for convenience the version of the Lévy-Khintchine representation for mea-
sures in ID(Rd) that we shall make use of: A probability measure µ on Rd belongs
to ID(Rd) if and only if its characteristic function fµ can be represented in the form
fµ(z) = exp(Cµ(z)), where the cumulant Cµ of µ is given by

Cµ(z) = i〈z,η〉− 1
2〈Az,z〉+

∫
Rd

(
ei〈z,x〉−1− i〈z,x〉1[0,1](‖x‖)

)
ρ(dx), (z ∈ Rd), (7.1)
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where η is a vector in Rd , A is a symmetric, non-negative definite d×d matrix (with real
entries) and ρ is a Lévy measure on Rd . The triplet (A,ρ,η) is uniquely determined by
µ and is called the characteristic triplet for µ .

7.1 Definition. Assume that γ ∈M02((0,∞)) and consider the mapping ϒγ : ML(Rd)→
ML(Rd). We then define the mapping ϒγ : ID(Rd)→ID(Rd) in the following way:

If µ ∈ ID(Rd) with characteristic triplet (A,ρ,η), then ϒγ(µ) is the measure in
ID(Rd) with characteristic triplet (M2(γ)A,ϒγ(ρ),M1(γ)η̃), where Mi(γ) denotes the
i’th moment of γ (i = 1,2), and where

η̃ = M1(γ)η +
∫ ∞

0

∫
Rd

tx
(

1[0,1](t‖x‖)−1[0,1](‖x‖)
)

ρ(dx)γ(dt). (7.2)

The well-definedness of the vector-valued double integral in (7.2) is ensured by part (i)
of the following:

7.2 Lemma. Let ρ be a Borel measure on R.

(i) For any t in (0,∞) we have∫
Rd

t‖x‖∣∣1[0,1](t‖x‖)−1[0,1](‖x‖)
∣∣ρ(dx)≤ (1∨ t2)

∫
Rd

(1∧‖x‖2)ρ(dx).

(ii) For any vector z in Rd we have∫
Rd

∣∣ei〈z,x〉−1− i〈z,x〉1[0,1](‖x‖)
∣∣ρ(dx)≤ (2+ 1

2‖z‖2)∫
Rd

(1∧‖x‖2)ρ(dx).

Proof. In the case d = 1, (i) may be extracted easily from the proof of Lemma 3.13
[BNT05]. For d ≥ 2 we note then for t in (0,∞) that∫

Rd
t‖x‖∣∣1[0,1](t‖x‖)−1[0,1](‖x‖)

∣∣ρ(dx) =
∫ ∞

0
ts
∣∣1[0,1](ts)−1[0,1](s)

∣∣‖ρ‖(ds),

and hence (ii) follows by applying the case d = 1 to the measure ‖ρ‖.
To prove (ii), we note first that for any x,z in Rd we have the well-known estimate∣∣ei〈z,x〉−1− i〈z,x〉∣∣≤ 1

2 |〈z,x〉|2 ≤ 1
2‖z‖2‖x‖2,

so that ∫
{‖x‖≤1}

∣∣ei〈z,x〉−1− i〈z,x〉∣∣ρ(dx)≤ ‖z‖
2

2

∫
Rd

(1∧‖x‖2)ρ(dx).

Moreover,∫
{‖x‖>1}

∣∣ei〈z,x〉−1
∣∣ρ(dx)≤ 2ρ

({‖x‖> 1})≤ 2
∫

Rd
(1∧‖x‖2)ρ(dx).

Combining the two estimates above, (ii) follows readily. �

The following proposition motivates the choice of the constant η̃ in the definition of ϒγ .
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7.3 Proposition. Assume that γ ∈M02((0,∞)) and consider the mapping ϒγ : ID(Rd)→
ID(Rd) defined above. Then for any µ in ID(Rd) we have the following relation be-
tween the cumulant transforms of µ and ϒγ(µ):

Cϒγ (µ)(z) =
∫ ∞

0
Cµ(tz)γ(dt), (z ∈ Rd). (7.3)

Proof. Let µ be a measure in ID(Rd) with characteristic triplet (A,ρ,η). For any vector
y in Rd we get from (ii) in Lemma 7.2 that

|Cµ(y)| ≤ |〈y,η〉|+ 1
2〈Ay,y〉+

∫
Rd

∣∣ei〈y,x〉−1− i〈y,x〉1[0,1](‖x‖)
∣∣ρ(dx)

≤ ‖η‖‖y‖+ 1
2‖A‖‖y‖2 +

(
2+ 1

2‖y‖2)∫
R
(1∧‖x‖2)ρ(dx).

Since
∫ ∞

0 (1∨ t2)γ(dt) < ∞, it thus follows for any vector z in Rd that∫ ∞

0
|Cµ(tz)|γ(dt)≤ ‖η‖‖z‖M1(γ)+ 1

2‖A‖‖z‖2M2(γ)

+
∫

Rd
(1∧‖x‖2)ρ(dx)

∫ ∞

0

(
2+ 1

2‖z‖2t2)γ(dt) < ∞,

which justifies the following calculations:∫ ∞

0
Cµ(tz)γ(dt)

= i〈z,η〉M1(γ)− 1
2〈Az,z〉M2(γ)

+
∫ ∞

0

(∫
Rd

(
eit〈z,x〉−1− it〈z,x〉1[0,1](‖x‖)

)
ρ(dx)

)
γ(dt)

= i〈z,η〉M1(γ)− 1
2〈Az,z〉M2(γ)

+
∫ ∞

0

(∫
Rd

(
ei〈z,x〉−1− i〈z,x〉1[0,1](‖x‖)

)
ρ(t−1dx)

)
γ(dt)

+
∫ ∞

0

(∫
R

it〈z,x〉(1[0,1](t‖x‖)−1[0,1](‖x‖)
)

ρ(dx)
)

γ(dt)

= i〈z, η̃〉− 1
2〈Az,z〉M2(γ)+

∫
R

(
ei〈z,x〉−1− i〈z,x〉1[0,1](‖x‖)

)
ϒγ(ρ)(dx)

= Cϒγ (µ)(z),

(7.4)

as desired. �

Recall that for a d× d matrix B, we denote by TB : Rd → Rd the corresponding lin-
ear transformation. For a Borel measure µ on Rd , we let furthermore TBµ denote the
transformation of µ by the mapping TB.

7.4 Corollary. Assume that γ ∈M02((0,∞)) and consider the mapping ϒγ : ID(Rd)→
ID(Rd) defined above. Then ϒγ has the following properties:

(i) ϒγ(µ1 ∗µ2) = ϒγ(µ1)∗ϒγ(µ2), (µ1,µ2 ∈ID(Rd)).
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(ii) ϒγ(TBµ) = TBϒγ(µ), (B ∈Md(R), µ ∈ID(Rd)).

(iii) ϒγ(δc) = δM1(γ)c, (c ∈ Rd).

Proof. (i) Assume that µ1,µ2 ∈ID(Rd) and then note that

Cϒγ (µ1∗µ2)(z) =
∫ ∞

0
Cµ1∗µ2(tz)γ(dt) =

∫ ∞

0
Cµ1(tz)γ(dt)+

∫ ∞

0
Cµ2(tz)γ(dt)

= Cϒγ (µ1)(z)+Cϒγ (µ2)(z) = Cϒγ (µ1)∗ϒγ (µ2)(z),

for any vector z in Rd . Clearly this implies (i).
(ii) Let B be a d×d matrix and let B∗ denote the transposed of B. Then for any vector

z in Rd we find that

Cϒγ (TBµ)(z) =
∫ ∞

0
CTBµ(tz)γ(dt) =

∫ ∞

0
Cµ(tB∗z)γ(dt) = Cϒγ (µ)(B

∗z) = CTBϒγ (µ)(z),

which implies (ii).
(iii) Let c be a fixed vector in Rd . Then for any z in Rd we find that

Cϒγ (δc)(z) =
∫ ∞

0
i〈tz,c〉γ(dt) = i〈z,c〉

∫ ∞

0
t γ(dt) = i〈z,M1(γ)c〉= CδM1(γ)c

(z),

which proves (iii). �

7.5 Corollary. Assume that γ ∈M02((0,∞)) and consider the mapping ϒγ : ID(Rd)→
ID(Rd) defined above. We then have

ϒγ(S (Rd))⊆S (Rd) and ϒγ(L (Rd))⊆L (Rd),

where S (Rd) and L (Rd) denote, respectively, the class of d-dimensional stable and
selfdecomposable laws.

Proof. Recall first that S (Rd) is the class of probability measures µ on Rd satisfying
that (cf. [ST94, Definition 2.1.1])

∀α,α ′ > 0 ∃α ′′ > 0 ∃β ∈ R : Dα µ ∗Dα ′µ = Dα ′′µ ∗δβ ,

where Dcµ denotes the scaling of µ by the scalar c, i.e. Dcµ = Tc111n µ . Now, for any µ in
S (Rd) and α,α ′ from (0,∞) it follows by application of (i)-(iii) of Corollary 7.4 that

Dαϒγ(µ)∗Dα ′ϒγ(µ) = ϒγ((Dα µ)∗ (Dα ′µ)
)

= ϒγ(Dα ′′µ ∗δβ
)

= Dα ′′ϒγ(µ)∗δM1(γ)β ,

for suitable α ′′ from (0,∞) and β from R. This shows that ϒγ(µ) ∈ S (Rd) too. The
inclusion ϒγ(L (Rd))⊆L (Rd) follows similarly from (i) and (ii) of Corollary 7.4 by re-
calling that L (Rd) may be characterised as the class of probability measures in ID(Rd)
satisfying that

∀c ∈ (0,1) ∃µc ∈ID(Rd) : µ = Dcµ ∗µc,

(cf. [Sato99, Proposition 15.5]). �
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7.6 Remark. If γ ∈ML((0,∞))\M02((0,∞)), then Definition 7.1 does not make sense,
even if we restrict attention to the class ID0(R) of infinitely divisible laws µ with no drift
and no Gaussian part, i.e. laws with characteristic triplets of the form (0,ρ,0). For one
thing we need to require that ρ be in the Lévy domain domLϒγ , but this generally does
not ensure that the integral in (7.2) is well-defined. To remedy this situation we introduce
the subclass (cf. Proposition 7.3 below)

domIDϒγ =
{

µ ∈ID0(R)
∣∣ ∀z ∈ R :

∫ ∞
0 |Cµ(zt)|γ(dt) < ∞

}
.

For a given γ , Definition 7.1 then makes sense for all µ in domIDϒγ and gives rise
to a mapping ϒγ : domID(ϒγ)→ ID(Rd) with (algebraic) properties similar to those
derived below in the case γ ∈M02((0,∞)). In the present paper we restrict attention
to the mappings ϒγ , where γ is assumed in M02((0,∞)), and we merely indicate by an
example (cf. Example 7.7(4) below) that the more general setting outlined above gives
rise to important and interesting mappings as well.

7.7 Example. We adopt the notation from Example 2.4.

(1) Consider the mapping ϒ0 introduced in Example 2.4(1). The corresponding map-
ping ϒ0 : ID(R)→ID(R) is one-to-one and is related to free probability via the
formula

Cϒ0(µ)(z) = CΛ(µ)(iz), (z ∈ R),

where Λ is the so-called Bercovici-Pata bijection from ID(R) onto the class of
infinitely divisible probability measures with respect to (additive) convolution in
free probability theory. In addition, C is the analog of the cumulant transform in
free probability (see [BNT04] for details). The range of ϒ0 was identified as the
so-called Goldie-Steutel-Bondesson class in [BNMS06]. Furthermore, ϒ0 maps the
class of stable laws onto itself and the class of selfdecomposable laws onto the
so-called Thorin class (see [BNT06]).

(2) For α in [0,1] consider the mapping ϒα introduced in Example 2.4(2). The asso-
ciated mapping ϒα : ID(R)→ ID(R) was introduced and studied in [BNT06].
For all α , ϒα is one-to-one. For α = 0, ϒα agrees with the mapping ϒ0 described
in (1) and ϒ1 is the identity mapping on ID(R). The family (ϒα)α∈[0,1] thus, in
a certain sense, interpolates smoothly between infinite divisibility in classical and
free probability (see [BNT04]).

(3) Consider for λ in (−2,∞) the mapping ϒλ introduced in Example 2.4(3), i.e. the
Upsilon transformations corresponding to the measures γλ (dt) = tλ−1e−t dt. When
λ > 0, γλ ∈M02((0,∞)) and we obtain a mapping ϒλ : ID(R)→ ID(R) via
Definition 7.1. When λ ∈ (−2,0], γλ /∈M02((0,∞)) and Definition 7.1 does not
apply. However, the construction outlined in Remark 7.6 gives rise to mappings
ϒλ : domIDϒλ →ID(R), where

domIDϒλ =
{

µ ∈ID0(R)
∣∣ ∀z ∈ R :

∫ ∞
0 |Cµ(zt)|tλ−1e−t dt < ∞

}
.

Questions related to the random integral representations of these mappings ϒλ have
been studied by Sato in [Sa06a].
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(4) Consider for λ in (−2,∞) the mapping Φλ introduced in Example 2.4(4), i.e. the
Upsilon transformations corresponding to the measures γλ (dt) = tλ−11(0,1)(t)dt.
As in (3) we obtain mappings Φλ : ID(R)→ ID(R) via Definition 7.1 when
λ > 0, and for λ in (−2,0] the construction outlined in Remark 7.6 gives rise to
mappings Φλ : domIDΦλ → ID(R). The particular case λ = 0 was studied in
[BNMS06], where it was established that

domIDΦ0 = {µ ∈ID0(R) | ρ(µ) ∈Mlog(R)},

where ρ(µ) denotes the Lévy measure of µ . Thus, the condition that the integral∫ ∞
0 |Cµ(zt)|γ(dt) be finite for all z, is, in this case, equivalent to the requirement that

ρ(µ) ∈Mlog(R) = domLΦ0, but, as indicated in Remark 7.6, this is not a general
feature. The range of Φ0 is the class of all selfdecomposable laws; cf. for instance
[BNMS06].

We close this section by giving a Lévy-Khintchine type representation of ϒγ(µ).

7.8 Proposition. Assume that γ ∈M02((o,∞)) and consider the mapping ϒγ : ID(Rd)→
ID(Rd) defined above. Then for any z in Rd

Cϒγ (µ)(z) = iM1(γ)〈z,η〉− 1
2M2(γ)〈Az,z〉

+
∫

Rd

(
φγ(〈z,x〉)−M0(γ)− iM1(γ)〈z,x〉1[0,1](‖x‖)

)
ρ(dx),

where φγ(u) =
∫ ∞

0 eiut γ(dt) for u in R, and M j(γ) =
∫ ∞

0 t j γ(dt) ( j = 0,1,2).

Proof. Using the calculation (7.4) from the proof of Proposition 7.3 we find that

Cϒγ (µ)(z) = i〈z,η〉M1(γ)− 1
2〈Az,z〉M2(γ)

+
∫ ∞

0

(∫
Rd

(
eit〈z,x〉−1− it〈z,x〉1[0,1](‖x‖)

)
ρ(dx)

)
γ(dt).

(7.5)

By Lemma 7.2(ii) we may change the order of integration in the double integral, so that∫ ∞

0

(∫
Rd

(
eit〈z,x〉−1− it〈z,x〉1[0,1](‖x‖)

)
ρ(dx)

)
γ(dt)

=
∫

Rd

(
φγ(〈z,x〉)−M0(γ)− iM1(γ)〈z,x〉1[0,1](‖x‖)

)
ρ(dx),

which inserted in (7.5) yields the desired formula. �

8 Continuity properties of ϒγ

In this section we establish continuity results for upsilon transforms ϒγ under the assump-
tion that γ ∈M02((0,∞)). The derived results may be seen as counterparts to the results
accomplished in Section 5.1 for ϒγ , also in the M02((0,∞))-case. We shall need the
following well-known lemma (see e.g. the proof of [BNMS06, Proposition 2.4(v)]).
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8.1 Lemma. Let (µn) be a sequence of measures from ID(Rd), and for each n let
(An,ρn,ηn) be the characteristic triplet for µn. Then (µn) is precompact if and only if
the following four conditions are satisfied:

(a) supn∈N ‖An‖< ∞.

(b) supn∈N
∫
Rd(1∧‖x‖2)ρn(dx) < ∞.

(c) ∀ε > 0 ∃K > 0: supn∈N ρn
({‖x‖> K})< ε .

(d) supn∈N ‖ηn‖< ∞.

8.2 Proposition. For any γ in M02((0,∞)) the mapping ϒγ : ID(Rd) → ID(Rd) is
continuous with respect to weak convergence, i.e. for any sequence (µn) of measures
in ID(Rd) and any measure µ in ID(Rd) we have

µn
w−−−→

n→∞
µ =⇒ ϒγ(µn)

w−−−→
n→∞

ϒγ(µ).

Proof. Let (µn) be a sequence of measures from ID(Rd) such that µn
w−→ µ as n→ ∞

for some measure µ (necessarily) in ID(Rd). Then by [Sato99, Lemma 7.7]

Cµn(y)−−−→n→∞
Cµ(y), for all y in Rd,

and it suffices to establish that

Cϒγ (µn)(y)−−−→n→∞
Cϒγ (µ)(y), for all y in Rd.

By Proposition 7.3 and Lebesgue’s theorem on dominated convergence it suffices to ver-
ify, for each fixed z in R, the existence of a Borel function gz : (0,∞)→ [0,∞) such that

∀n ∈ N :
∣∣Cµn(zt)

∣∣≤ gz(t), (t ∈ (0,∞)), (8.1)

and ∫ ∞

0
gz(t)γ(dt) < ∞. (8.2)

For each positive integer n, let (An,ρn,ηn) be the generating triplet for µn. Combining
then (7.1) with (ii) in Lemma 7.2, we find that

|Cµn(y)| ≤ ‖ηn‖‖y‖+ 1
2‖An‖‖y‖2 +

(
2+ 1

2‖y‖2)∫
Rd

(1∧‖x‖2)ρn(dx),

for any vector y in Rd . Since µn
w→ µ as n→ ∞, it follows that (cf. Lemma 8.1)

H := sup
n∈N
‖ηn‖< ∞, A := sup

n∈N
‖An‖< ∞ and R := sup

n∈N

∫
Rd

(1∧‖x‖2)ρ(dx) < ∞.

Thus, if we put
gz(t) = H‖z‖t + 1

2A‖z‖2t2 +R
(
2+ 1

2‖z‖2t2),
it follows that gz satisfies both (8.1) and (8.2), since γ ∈M02((0,∞)). �
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8.3 Lemma. Let γ be a non-zero measure from M02((0,∞)), and let (µn) be a sequence
of measures from ID(Rd) such that ϒγ(µn)

w−→ ν as n → ∞ for some measure ν in
ID(Rd). Then the sequence (µn)n∈N is precompact.

Proof. We proceed as in the proof of [BNMS06, Proposition 2.4(v)]: Denoting by
(Ãn, ρ̃n, η̃n) the characteristic triplet for ϒγ(µn), let (ã)–(d̃) be the conditions obtained
by replacing (An,ρn,ηn) by (Ãn, ρ̃n, η̃n) in (a)–(d) of Lemma 8.1. Then our assump-
tion implies that (ã)–(d̃) are satisfied. By definition of ϒγ we have that Ãn = M2(γ)An,
ρ̃n = ϒγ(ρn) and

η̃ = M1(γ)η +
∫ ∞

0

∫
Rd

tx
(

1[0,1](t‖x‖)−1[0,1](‖x‖)
)

ρ(dx)γ(dt).

Hence, since γ 6= 0, (a) is an immediate consequence of (ã), and (b) follows from (b̃) and
the estimate ∫

Rd
(1∧‖x‖2) ρ̃n(dx) =

∫ ∞

0

∫
Rd

(1∧ t2‖x‖2)ρn(dx)γ(dt)

≥
∫ ∞

0

∫
Rd

(1∧ t2)(1∧‖x‖2)ρn(dx)γ(dt)

=
∫ ∞

0
(1∧ t2)γ(dt)

∫
Rd

(1∧‖x‖2)ρn(dx),

recalling again that γ 6= 0. To verify (c), note that for any positive numbers L and δ we
have

ρ̃n
({‖x‖> L}) =

∫ ∞

0
ρn
({‖x‖> L/t})γ(dt)≥ γ([δ ,∞))ρn

({‖x‖> L/δ}).
Choosing now δ such that γ([δ ,∞)) > 0 and using the substitution L = Kδ , we find that

ρn
({‖x‖> K})≤ γ([δ ,∞))−1ρ̃n

({‖x‖> Kδ}),
for any positive number K and any n in N. Therefore (c) is a consequence of (c̃). Finally,
to establish (d), note that

sup
n∈N

∫ ∞

0

∫
Rd

t‖x‖
∣∣∣1[0,1](t‖x‖)−1[0,1](‖x‖)

∣∣∣ρ(dx)γ(dt) < ∞,

as a result of Lemma 7.2 in conjunction with (b). Therefore (d) follows from (d̃). �

8.4 Proposition. Let γ be a measure in M02((0,∞)).

(i) The mapping ϒγ : ID(Rd)→ ID(Rd) is closed in the following sense: For any
subset F of ID(Rd), which is closed in the topology for weak convergence, the
same holds for ϒγ(F) = {ϒγ(µ) | µ ∈ F}.

(ii) Assume that the mapping ϒγ : ID(Rd)→ ID(Rd) is injective. Then it is auto-
matically a homeomorphism onto its range ranIDϒγ .
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Proof. (i) We may clearly assume that γ 6= 0. Let F be a closed subset of ID(Rd) and
let ν be a measure from the closure of ϒγ(F). Then we may choose a sequence (µn) from
F such that ϒγ(µn)→ ν as n→ ∞, and by Lemma 8.3 (µn) is necessarily precompact. In
particular there exists a subsequence (µnp)p∈N converging weakly to some µ , which must
belong to F , since F is closed. Now by Proposition 8.2, ϒγ(µnp)

w−→ ϒγ(µ) as n→ ∞, and
since also ϒγ(µnp)

w−→ ν as n→ ∞, we conclude that ν = ϒγ(µ) ∈ ϒγ(F), as desired.
(ii) This follows from (i) as in the proof of (ii) in Corollary 5.4. �

8.5 Corollary. Let γ be a non-zero measure from M02((0,∞)) and consider the full range

ranIDϒγ :=
{

ϒγ(µ)
∣∣ µ ∈ID(Rd)

}
.

This subclass of ID(Rd) has the following properties:

(i) ν1 ∗ν2 ∈ ranIDϒγ , whenever ν1,ν2 ∈ ranIDϒγ .

(ii) TBν ∈ ranIDϒγ , whenever ν ∈ ranIDϒγ and B ∈Md(R).

(iii) δc ∈ ranIDϒγ for all c in Rd .

(iv) ranIDϒγ is a closed subset of ID(Rd) in the topology for weak convergence.

Proof. These properties follow readily from Corollary 7.4 and Proposition 8.4. �

8.6 Example. (1) The Upsilon mapping ϒ0 : ID(R) → ID(R) considered in Ex-
ample 7.7(1) is one-to-one and corresponds to the measure γ(dt) = e−t dt from
M02((0,∞)). Thus, by Corollary 8.4(ii), it is a homeomorphism onto its range (=
the Goldie-Steutel-Bondesson class). This was established directly in [BNMS06].

(2) The Upsilon mappings ϒα : ID(R)→ ID(R) considered in Example 7.7(2) are
also injective and correspond to measures γα from M02((0,∞)). Hence these map-
pings are also homeomorphisms onto their ranges.

(3) For λ > 0 the mappings ϒλ considered in Example 7.7(3) correspond to measures
γλ from M02((0,∞)), and they are injective according to Example 6.3(ii). Thus,
these mappings are homeomorphisms as well.

(4) By virtue of Example 6.3(i), it follows as in (3) that for positive λ the mappings
Φλ : ID(R)→ ID(R) introduced in Example 7.7(4) are homeomorphisms onto
their ranges.

9 Random Integral Representation
In many cases the Upsilon transformations introduced in Section 7 can be represented
as random integrals, in the following sense. (Here we consider only one-dimensional
integrators; for some results on the multivariate case cf. [BNMS06].)

Suppose that γ has finite upper tail measure and let

εγ (ξ ) = γ ([ξ ,∞)).
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Then γ (dξ ) =−dεγ (ξ ). The inverse function of εγ , denoted ε∗γ , is defined by

ε∗γ (t) = inf
{

ξ > 0
∣∣ εγ (ξ )≤ t

}
. (9.1)

Both functions ξ → εγ (ξ ) and t→ ε∗γ (t) are decreasing and càglàd.
Now, given a Lévy measure ρ and an η ∈ R, let Z = {Zt} be the Lévy process for

which the cumulant function of Z1 is given by

Cρ (z) = iηz+
∫

R

(
eizt−1− izt1[−1,1] (t)

)
ρ (dt) , (9.2)

and consider the random integral

Y =
∫ εγ (0)

0
ε∗γ (s)dZs. (9.3)

9.1 Definition. We say that (9.3) is a random integral representation (RIR) of ϒγ at
ρ ∈ domLϒγ provided the integral (9.3) exists as the limit in probability of the Riemann
sums and the random variable Y (which is then necessarily infinitely divisible) has Lévy
measure ργ = ϒγ (ρ) and cumulant function

Cργ (z) = iη̃z+
∫

R

(
eizt−1− izt1[−1,1] (t)

)
ργ (dt) (9.4)

where
η̃ =

∫ ∞

0
x
(

η +
∫

R
y
(
1[−1,1] (xy)−1[−1,1] (y)

)
ρ (dy)

)
γ (dx) .

For ϒγ to have RIR at ρ(∈ domLϒγ) it suffices that γ ∈M02 ((0,∞)) and ε∗γ is contin-
uous. In that case it moreover holds that∫ ∞

0

∣∣Cρ (tz)
∣∣γ (dt) < ∞ (9.5)

and that we have the important relation

Cργ (z) =
∫ ∞

0
Cρ (tz) γ (dt) , (9.6)

which in fact is the same as (7.3).
This result was established for the case γ (dx) = e−x dx in [BNT04], and for the mea-

sures introduced in Example 2.4(2) in [BNT06]. The proofs given in those cases extend
directly to the present setting.

9.2 Remark. The measures γ in Example 3.1(1)–(3) all have second moment and contin-
uous ε∗γ , and thus the RIR.

9.3 Remark. If we take Z to be the Lévy process with characteristic triplet (a,ρ,η) then,
again provided that γ ∈M02 ((0,∞)) and ε∗γ is continuous, we have that (9.5) and (9.6)
hold (cf. Proposition 7.3) and, furthermore, that Y has triplet

(
ã,ργ , η̃

)
with ã = aM2 (γ)

(where M2 (γ) denotes the second moment of γ). Otherwise put, (9.3) is then a random
integral representation of the transformation ϒγ discussed in Sections 7 and 8.

Extensions and ramifications of the original results (in [BNT04] and [BNT06]) are
also discussed in [BNMS06], [Sa06a], [Sa06b] and [Sa07]. The latter three papers de-
velop the theory of integration of deterministic functions with respect to Lévy processes
and related RIR results in great generality and detail.

35



References
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