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LATTICE GAUGE FIELD THEORY AND PRISMATIC SETS

B. AKYAR AND J. L. DUPONT

Abstract. We study prismatic sets analogously to simplicial sets except that realiza-
tion involves prisms, i.e., products of simplices rather than just simplices. Particular
examples are the prismatic subdivision of a simplicial set S and the prismatic star
of S. Both have the same homotopy type as S and in particular the latter we use to
study lattice gauge theory in the sense of Phillips and Stone. Thus for a Lie group
G and a set of parallel transport functions defining the transition over faces of the
simplices, we define a classifying map from the prismatic star to a prismatic version
of the classifying space of G. In turn this defines a G-bundle over the prismatic star.
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1. Introduction

In the study of global properties of locally trivial fibre bundles it is a fundamental
difficulty that the usual combinatorial methods of algebraic topology depends on the
use of simplicial complexes which structure behaves badly with respect to local trivi-
alizations. By a theorem of Johnson [8], the base and total space of a locally trivial
smooth fibre bundle with projection π : E → B can be triangulated in such a way that
π is a simplicial map. But obviously even in this case a general fibre is not a simplicial
complex in any natural way. However such a fibre has a natural decomposition into
prisms, i.e., products of simplices, and the whole triangulated bundle gives the basic
example of a prismatic set, analogous to the notion of a simplicial set derived from a
simplicial complex. Prismatic sets were introduced and used by the second author and
R. Ljungmann in [6] (see also Ljungmann’s thesis [10]) in order to construct an explicit
fibre integration map in smooth Deligne cohomology, see also [5]. But the important

Key words and phrases. Simplicial set, Chern–Simons class, Prism complex, Classifying Space,
Subdivision.
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2 B. AKYAR AND J. L. DUPONT

special case of the prismatic subdivision of a simplicial set was used in Akyar [1] in
connection with “Lattice Gauge Theory” in the sense of Phillips and Stone [14], [15],
[17] and similar constructions have been used in other connections, see e.g. [13]. One
can see [9] for further information about Lattice Gauge Fields.

In this paper we shall give a more systematic treatment of prismatic sets and their
properties but we shall concentrate on the applications to lattice gauge theory extend-
ing the work of Phillips and Stone to arbitrary simplicial sets and all dimensions. For
an arbitrary simplicial set S and a given Lie group G together with a set of parallel
transport functions in their sense, we construct a prismatic set P̄ (S) of the same homo-
topy type as S and a classifying map from P̄ (S) to a prismatic version of the standard
model for BG. This is one of our main results (Theorem 8.1). Geometrically, for S a
simplicial complex, P̄ (S) is closely related to the nerve of the covering by stars of ver-
tices (Theorem 5.1). In turn this gives a principal G-bundle with a connection and thus
in principle gives rise via the usual Chern-Weil and Chern-Simons theory to explicit
formulas for characteristic classes (Corollary 8.2). We shall return to this elsewhere.
One can see [2], [3], [4], [7], [18] for further information about Chern-Simons Theory.

The paper is organized as follows:
In chapter 2, prismatic sets are defined and their various geometric realizations are

studied.
The third chapter introduces the prismatic triangulation of a simplicial map and

in particular of a simplicial set. Furthermore, we comment on the calculation of the
homology of the geometric realization of a prismatic set.

In chapter 4 we study prismatic sets associated to stars of simplicial complexes. It
turns out that the prismatic set P̄.(S) given in this chapter in the case of a simplicial
complex is the nerve of the covering by stars of vertices.

In the fifth chapter, we compare the two star simplicial sets and prove that there is a
natural surjective map p̄ : P̄.(S) → P St S. It turns out that this map is an isomorphism
for S = Ks, where K is a simplicial complex.

In chapter 6, we introduce a prismatic version of the classifying space. This is done by
replacing the Lie group G by the singular simplicial set of continuous maps Map(∆q, G).

In chapter 7, we introduce the notion of “compatible transition functions” similar to
the “parallel transport functions” of Phillips-Stone [15] for a simplicial complex K. We
show how a given bundle on the realization of a simplicial set and socalled “admissible
trivializations” give rise to a set of compatible transition functions and vice versa.
We end the chapter with a remark on the relation between the compatible transition
functions and parallel transport along a piecewise linear path.

Finally in the last chapter we construct the classifying map for a given set of com-
patible transition functions. For this we construct a prismatic map from P̄ (S) to the
prismatic model for the classifying space constructed in chapter 6.

Acknowledgements. We would like to thank Marcel Bökstedt for his interests and
comments during the preparation of this paper.
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2. Prismatic Sets

Prismatic sets are similar to simplicial sets but they are realized by using prisms
instead of only simplices.

Let ∆p = {(t0, . . . , tp) ∈ Rp+1 | ∑i ti = 1, ti ≤ 1} be a standard p-simplex given with
barycentric coordinates. A prism is a product of simplices, that is, a set of the form
∆q0...qp = ∆q0 × · · · ×∆qp.

The motivating example is triangulated fibre bundles:

Example 2.1. Given a smooth fibre bundle π : Y → Z with dim Y = m + n,
dim Z = m and compact fibres possibly with boundary. By a theorem of Johnson
[8], there are smooth triangulations K and L of Y and Z, respectively and a simplicial
map π′ : K → L in the following commutative diagram

|K|
|π′|

��

≈ // Y

π

��
|L| ≈ // Z

and the horizontal maps are homeomorphisms which are smooth on each simplex, here
|K| = ⋃

τ∈Kk
∆k × τ/ ∼, k = 0, . . . , dim K, is the geometric realization.

One can extend a given such triangulation of ∂Y → Z to a triangulation of Y → Z.

ai z ak

bi
j0

bi
j1

bk
j0

bk
j1

Z

Y

π

A simplex τ in K has vertices τ = (b0
0, . . . , b

0
q0
| . . . |bp

0, . . . , b
p
qp

) with σ = (a0, . . . , ap)
such that π′(bi

j) = ai. Here, we give the set of vertices of the total space, the lexico-

graphical order. So geometrically, for an open simplex
◦
σ in L, we have

π−1(| ◦σ|) ≈ | ◦σ| ×
⋃

τ∈π−1(σ)

∆q0...qp × τ.

We collect all these in the formal definition below using simplicial sets. For these we
recall the notation but refer otherwise to Mac Lane [11], May [12].
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Definition 2.2. A simplicial set S. = {Sq} is a sequence of sets with face operators
di : Sq → Sq−1 and degeneracy operators si : Sq → Sq+1, i = 0, . . . , q, satisfying the
following identities:

didj =

{
dj−1di : i < j
djdi+1 : i ≥ j,

sisj =

{
sj+1si : i ≤ j
sjsi−1 : i > j,

and

disj =

 sj−1di : i < j
id : i = j, i = j + 1

sjdi−1 : i > j + 1.

Example 2.3. A simplicial complex K. gives a simplicial set where

Kp = {(ai0 , . . . , aip) | some nondecreasing sequences for a given linear ordering of K0}
is the set of p-simplices.

Example 2.4. Given an open cover U = Ui of Z we have the nerve NU = {NU(p)} of
the covering, where

NU(p) =
⊔

i0,...,ip

Ui0 ∩ · · · ∩ Uip,

and (i0, . . . , ip) is nondecreasing for a given linear order of the index set.
Let us denote Ui0 ∩ · · · ∩ Uip by Ui0,...,ip. NU is a simplicial manifold, where the face

and degeneracy maps come from the followings

dj : Ui0,...,ip → Ui0,...,̂ij ,...,ip

sj : Ui0,...,ip → Ui0,...,ij ,ij ,...,ip

That is, NU(p) is a smooth manifold for each p and the face and degeneracy maps
are smooth. There is also a corresponding simplicial set NdU = {NdU(p)} called the
discrete nerve of the covering. Here NdU(p) is simply the set consisting of an element
for each non-empty intersection of p+1 open sets from U . So there is a natural forgetful
map NU → NdU .

Note. If S. has only face operators, then it is called a ∆-set.

Definition 2.5. Given p ≥ 0, a (p + 1)-multi-simplicial set is a sequence {Sq0,...,qp}
which is a simplicial set in each variable qi, i = 0, . . . , p.

Definition 2.6. A prismatic set P = {Pp,.} is a sequence Pp,. = {Pp,q0,...,qp} of (p + 1)-
multi-simplicial sets, i.e., with face and degeneracy operators

di
j : Pp,q0,...,qp → Pp,q0,...,qi−1,...,qp

si
j : Pp,q0,...,qp → Pp,q0,...,qi+1,...,qp

such that di
j, si

j commute with dk
l , sk

l for i 6= k, and such that di
j , si

j for fixed i satisfy
the identities in Definition 2.2.
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Furthermore there are face operators

dk : Pp,q0,...,qp → Pp−1,q0,...,q̂k,...,qp

commuting with di
j and si

j (interpreting dk
j = sk

j = id on the right) such that {Pp,.} is
a ∆-set.

Definition 2.7. If similarly P has degeneracy operators

sk : Pp,q0,...,qp → Pp+1,q0,...,qk,qk,...,qp

then P is called a strong prismatic set.

Remark. In this case (Pp, dk, sk) is a usual simplicial set.

In general, degeneracy operators given in Definition 2.7 do not exist naturally so in
this case (Pp,., dk) is only a ∆-set.

Example 2.1 continued: A triangulated fibre bundle

π : |K| → |L|
gives a strong prismatic set P.(K/L) by letting

Pp(K/L)q0...qp ⊆ Kp+q0+···+qp × Lp

be the subset of pairs of simplices (τ, σ) so that qi + 1 of the vertices in τ lies over the
i-th vertex in σ. Then we have face and degeneracy operators defined in the obvious
way. It is now straight forward to check that this is a strong prismatic set.

Example 2.8. For a given simplicial set S, consider EpS = S.×· · ·×S., (p+1)-times.
πi : EpS → Ep−1S is the projection which deletes the i-th factor. Similarly, the diagonal
map δi : EpS → Ep+1S repeats the i-th factor. This is a strong prismatic set.

Prismatic sets have various geometric realizations.

Definition 2.9. First, we have for each p the thin (geometric) realization

|Pp,.| =
⊔

q0,...,qp

∆q0...qp × Pp,q0,...,qp/ ∼ (2.10)

with equivalence relation “∼” generated by the face and degeneracy maps

εi
j : ∆q0...qi...qp → ∆q0...qi+1...qp and

ηi
j : ∆q0...qi...qp → ∆q0...qi−1...qp,

respectively. {|Pp,.|} is a ∆-space hence it gives a fat realization

‖ |P.| ‖ =
⊔
p≥0

∆p × |Pp,.|/ ∼ (2.11)

by only using face operators dk.
The face and degeneracy operators dk, sk act on ∆q0...qp as the projection and the

diagonal, respectively so they induce a structure of a simplicial set on |Pp|. In other
words, the projection πi : ∆q0...qp → ∆q0...q̂i...qp deletes the i-th coordinate and the
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diagonal map ∆i : ∆q0...qp → ∆q0...qiqi...qp repeats the i-th factor. Then the further
equivalence relation on |P.| given in (2.11) is generated by

(εit, s, σ) ∼ (t, πis, diσ), t ∈ ∆p−1, s ∈ ∆q0...qp, σ ∈ Pp,q0,...,qp.

If P. is strong then we also have a thin realization

|P.| = ‖|P.|‖/ ∼
given by the above and the further relation

(ηit, s, σ) ∼ (t, ∆is, siσ), t ∈ ∆p+1, s ∈ ∆q0,...,qp, σ ∈ Pp,q0,...,qp.

Similarly, we can define for each p, the fat realization ||P.||, that is

‖Pp‖ =
⊔

q0,...,qp

∆q0...qp × Pp,q0,...,qp/ ∼

with equivalence relation given by only the face maps di
j.

Moreover, we have the very fat realization

‖ ‖P.‖ ‖ =
⊔
p≥0

∆p × ‖Pp,.‖/ ∼

using only face operators.
For a given simplicial set S and EpS as in Example 2.8 we have ‖ |E.S| ‖ as the fat

realization of the space which maps p-th term to |S.| × · · · × |S.|, (p + 1)-times.
Define for a space X, EpX = X. × · · · ×X., (p + 1)-times. Let us say X = |S| then

‖ |E.S| ‖ is contractible.

3. Prismatic Triangulation

Let us return to the case of a triangulated fibre bundle |K| → |L|. In this case the
natural map

Pp(K/L)q0,...qp → Kq0+···+qp+p

induces a homeomorphism

|P.(K/L)|
|π′|

��

≈ // |K|
π

��
|L| = // |L|

In this diagram, the top horizontal map we shall call the prismatic triangulation home-
omorphism

λ : |P.(K/L)| ∼=→ |K|
induced by

λ(t, s0, . . . , sp, (τ, σ)) = (t0s
0, . . . , tps

p, τ) ∈ ∆p+q ×Kp+q, (3.1)

where (t, s, τ, σ) ∈ ∆p ×∆q0...qp × Pp(K/L)q0...qp and q = q0 + · · ·+ qp.
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Note. If
◦
σ is an open p-simplex in L then λ provides a natural trivialization of

|K|σ = π−1(
◦
σ), that is, a homeomorphism

λ :
◦
σ ×|Pp(K/σ)| ≈→ |K|σ.

We can generalize this construction to any simplicial map:

Example 3.2. Prismatic triangulation of a simplicial map. Let f : S. → S̄. be a
simplicial map of simplicial sets and define P.(f) by

Pp(f)q0,...,qp = {(σ, σ̄) ∈ Sq0+···+qp+p × S̄p | f(σ) = µq0,...,qp(σ̄)}
where the corresponding map

µq0,...,qp : ∆q0+···+qp+p → ∆p

is given by

{0, . . . , q0| . . . |q0 + · · ·+ qp−1 + p, . . . , q0 + · · ·+ qp + p} → {0, . . . , p}.
By this, we mean that the basis vectors e0, . . . , eq0 are mapped to e0, and eq0+1, . . . ,
eq0+q1+1 are mapped to e1 and etc. Explicitly

µq0,...,qp = ŝq+p ◦ s(q0+···+qp+p−1)...(q0+···+qp−1+p) ◦ · · · ◦ ŝq0 ◦ s(q0−1)...(0),

where the ŝi are left out and

s(q0+···+qi+i−1)...(q0+···+qi−1+i) = sq0+···+qi+i−1 ◦ · · · ◦ sq0+···+qi−1+i,

i = 0, . . . , p. The boundary maps in the fibre direction

di
j : Pp(f)q0,...,qp → Pp(f)q0,...,qi−1,...,qp

are inherited from the face operators defined on Sq+p. Thus

di
j(σ, σ̄) = (dq0+···+qi−1+i+j−1σ, σ̄).

Similarly the degeneracy maps si
j on Pp(f)q0,...,qp

si
j : Pp(f)q0,...,qp → Pp(f)q0,...,qi+1,...,qp

are inherited from the ones on Sq+p. That is,

si
j(σ, σ̄) = (sq0+···+qi−1+i+j−1σ, σ̄).

The boundary maps

di : Pp(f)q0,...,qp → Pp−1(f)q0,...,q̂i,...,qp

are determined by the boundary maps defined on both Sq+p and S̄p. Thus

di(σ, σ̄) = (dq0+···+qi−1+i−1 ◦ · · · ◦ dq0+···+qi+i−1σ, diσ̄),

here the composition of the face operators can be shortly written as

d(q0+···+qi−1+i−1)...(q0+···+qi+i−1) = dq0+···+qi−1+i−1 ◦ · · · ◦ dq0+···+qi+i−1.

Note. P.(f) is a prismatic set, but in general not a strong one.
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Theorem 3.3. There is a pullback diagram

‖ |P.(f)| ‖
‖f‖

��

λ // |S.|
|f |

��
‖S̄.‖ q // |S̄.|

In particular λ is a homotopy equivalence.

Proof. The map λ : ∆p ×∆q0...qp × Pp(f)q0...qp → ∆q+p × Sq+p is given by λ(t, s, σ, σ̄) =
(t0s

0, . . . , tps
p, σ). The commutativity of the diagram follows from the definition of P.(f)

since

Pp(f)q0,...,qp ⊆ Sq+p × S̄p

consists of pairs (σ, σ̄) ∈ Sq+p × S̄p such that f(σ) = µq0,...,qp(σ̄) ∈ S̄p.
By the commutativity of the diagram, λ factors over the pullback |S.| ×|S̄.| ‖S̄.‖ in

the diagram

|S.| ×|S̄.| ‖S̄.‖
‖f‖

��

pr1 // |S.|
|f |

��
‖S̄.‖ q // |S̄.|

Here elements in the pullback |S.| ×|S̄| ‖S̄.‖ are represented by pairs ((t, σ), (t̄, σ̄)) such

that f(σ) = µq0,...,qp(σ̄) and t̄ = µq0,...,qp(t), where σ ∈ Sq+p, σ̄ ∈ S̄q. Therefore λ×‖f‖ :
‖ |P.(f)| ‖ → |S| × ‖S̄‖ induces Λ in the diagram

‖ |P.(f)| ‖ Λ //

��

|S.| ×|S̄. | ‖S̄.‖ pr1 //

pr2
��

|S.|
|f |

��
‖S̄.‖ id // ‖S̄.‖ // |S̄.|

Now Λ is a homotopy equivalence. Indeed, an argument similar to the note following
(3.1) gives a homeomorphism of the preimage ‖f‖ of an open simplex in ‖S̄.‖. Hence
Λ is shown to by a homeomorphism by induction over skeleton of ‖S̄.‖. �
Example 3.4. Prismatic triangulation of a simplicial set. Let S. be a simplicial set
and S̄. = ∗ the simplicial set with one element in each degree. Here Pp(f) = PpS
is called the p-th prismatic subdivision of S and for each t ∈ ◦

∆p the map λp(t,−) :
|PpS| → |S.| is a homeomorphism. In this case, Theorem 3.3 gives a homeomorphism

Λ : ‖ |P.S| ‖ ≈→ ‖ ∗ ‖ × |S.|, here ‖ ∗ ‖ =
⋃

n ∆n/∂∆n. In particular λ : ‖ |P.S| ‖ → |S.|
is a homotopy equivalence. We shall call P.S the prismatic triangulation of S.

For later use, let us give the explicit construction of the p + 1-prismatic set P.S. and
its realization:

PpSq0,...,qp = Sq0+···+qp+p.

The face operators

dj
(i) : PpSq0,...,qi,...,qp = Sq+p → PpSq0,...,qi−1,...,qp = Sq+p−1
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are defined by

d
(i)
j := dq0+···+qi−1+i+j,

j = 0, . . . , qi. Similarly, the degeneracy operators

sj
(i) : PpSq0,...,qi,...,qp = Sq+p → PpSq0,...,qi+1,...,qi

= Sq+p+1

can be defined by

s
(i)
j := sq0+···+qi−1+i+j ,

j = 0, . . . , qi. The face maps

d(i) : PpSq0,...,qp → Pp−1Sq0,...,q̂i,...qp

are the operators corresponding to

ε(i) : ∆q0+···+q̂i+···+qp+p−1 → ∆q0+···+···+qp+p

take (e0, . . . , eq0+···+q̂i+···+qp+p−1) to (e0, . . . , eq0+···+qp+p), deleting the elements q0 + · · ·+
qi−1 + i, . . . , q0 + · · ·+ qi + i. It deletes (qi + 1)-elements. In contrary to this, there is
no degeneracy operator.

Now we turn to the realizations. For the sequences of spaces {|P.S.|}, we obtain the
fat realization:

|| |P.S.| || =
⊔
p≥0

∆p × |PpS.|/∼,

where

|PpS.| =
⊔

∆q0...qp × Sq0+···+qp+p/∼

and the face operators πi : |PpS.| → |Pp−1S.| are given by πi = proji×d(i) with proji :
∆q0...qp → ∆q0...q̂i...qp beeing the natural projection.

Note that λp : ∆p × |PpS.| → |S.| satisfies

λp ◦ (εi × id) = λp−1 ◦ (id×πi).

Thus λp induces the map λ on the fat realization.

Let ‖ |P.S.| ‖p respectively ‖ |S.| ‖p denote the subcomplexes generated by ∆p×|PpS|
respectively ∆p × |S.|. Then the restriction of Λ to ‖ |P.S.| ‖p is given by

Λp(t, s, σ) = (t, λp(t, s, σ)).

Corollary 3.5. The map Λp induce a homeomorphism

Λ : ‖ |P.S.| ‖ → ‖ |S.| ‖ ≈ ‖ ∗ ‖ × |S.|.
Corollary 3.6. The composition map proj2 ◦Λ = λ

‖ |P.S.| ‖ → ‖ |S.| ‖ → |S.|
is a homotopy equivalence.
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Remark 1. We can calculate the homology of the geometric realization of a prismatic
set as follows:

A prismatic set P.,. has a double complex (Cp,n(PS), ∂F , ∂H). Here

Cp,n(PS) =
⊕

q0+···+qp=n

Cp,q0,...,qp(PS)

is the associated chain complex Cp(PS) generated by Pp,q0,...,qp. The vertical boundary
map is defined by using boundary maps in the fibre direction

∂F
i : PCp,q0,...,qp → PCp,q0,...,qi−1,...,qp

defined by ∂F
i =

∑
(−1)jdi

j, where, if qi = 0 then ∂i
F = 0. The total vertical boundary

map is then
∂V = ∂0

F + (−1)q0+1∂1
F + · · ·+ (−1)q0+···+qp−1+p∂p

F .

There is also a horizontal boundary map

∂H = ∂0 + (−1)q0+1∂1 + · · ·+ (−1)q0+···+qp−1+p∂p,

where

∂k =

{
0 : if qk > 0

dk : if qk = 0,

so that ∂ = ∂V + ∂H is a boundary map in the total complex PC∗ which is the cellular
chain complex for the geometric realization. Hence it calculates the homology. In
the case of P.(f) for f : S → S̄ a simplicial map, the double complex gives rise to a
spectral sequence which for a triangulated fibre bundle is the usual Leray-Serre spectral
sequence.

Remark 2. For each p and each t ∈ ◦
∆p, λp(t)

−1 : |S| → {t} × |PpS| induces a map of
cellular chain complexes

aw : C∗(S) → C∗,∗(PS)

given by

aw(x) =
∑

q0+···+qp=n

sq0+···+qp−1+p−1 ◦ · · · ◦ sq0(x)(q0,...,qp),

where x ∈ Sn.

4. Prismatic Sets and Stars of Simplicial Complexes

For a simplicial set S and the prismatic triangulation P.S there is another closely
related prismatic set P̄pS. which as we shall see for a simplicial complex is the nerve of
the covering by stars of vertices considered as a prismatic set.

Definition 4.1. For S a simplicial set let P̄.S be the prismatic set given by

P̄pSq0,...,qp := Sq0+···+qp+2p+1.

where face and degeneracy operators on P̄pSq0,...,qp are inherited from the ones of Sq+2p+1

as follows:
Let q = q0 + · · ·+ qp, the face operators

d
(i)
j : Sq+2p+1 = P̄pSq0,...,qp → Sq+2p = P̄pSq0,...,qi−1,...,qp
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are defined by

d
(i)
j := dq0+···+qi−1+2i+j, j = 0, . . . , qi but j 6= 2i + 1 +

i∑
k=0

qk.

So P̄pSq0,...,qp has only q+p face operators, i.e., we skip the following p+1 face operators

{dq0+1, dq0+q1+3, . . . , dq+2p+1}.
Similarly the degeneracy operators

s
(i)
j : Sq+2p+1 → Sq+2p+2

can be defined by

s
(i)
j := sq0+···+qi−1+2i+j , j = 0, . . . , qi, but j 6= 2i + 1 +

i∑
k

qk.

Furthermore the face operators are

d(i) : Sq+2p+1 = P̄pSq0,...,qp → Sq+2p−qi−1 = P̄p−1Sq0,...,q̂i,...,qp

corresponding to
ε(i) : ∆q+2p−qi−1 → ∆q+2p+1

which take (e0, . . . , eq0+···+q̂i+···+qp+2p−1) to (e0, . . . , eq+2p+1), by deleting the vectors with
indices (q0 + · · · + qi−1 + 2i, . . . , q0 + · · · + qi + 2i + 1). So it deletes qi + 2 elements.
That is,

d(i) = dq0+···+qi−1+2i ◦ · · · ◦ dq0+···+qi+2i+1, i = 0, . . . , p.

Remark. As P.S, P̄.S is a prismatic set but in general not a strong prismatic set.

Realization of P̄.S.. Notice that

‖ |P̄.S.| ‖ =
⊔
p≥0

∆p ×∆q0...qp × P̄pSq0,...,qp/∼

where the equivalence relation apart from the internal relations in |P̄pS| using d
(i)
j

and s
(i)
j , include the relations

(εit, (s, y)) ∼ (t, πi(s, y)),

with πi = (proji)× d(i) the face operators on |P̄pS.|.
The relation of P̄.S with S. and P.S is as follows:

Proposition 4.2. Let i : ‖S.‖ →֒ ‖ |P̄pS.| ‖ be an inclusion defined for (t, x) ∈ ∆p × Sp

by
i(t, x) = (t, 1, s0 ◦ · · · ◦ spx) ∈ ∆p × (∆0)p+1 × S2p+1 ⊆ ∆p × |P̄pS.|,

and r : ‖ |P̄.S.| ‖ → ‖S.‖ be the retraction defined for (t, s, y) ∈ ∆p ×∆q0...qp × Sq+2p+1

r(t, s, y) = (t, d0...q0 ◦ d̂q0+1 ◦ · · · ◦ d(q0+···+qp−1+2p)...(q+2p) ◦ d̂q+2p+1y),

where the d̂i are left out and d(q0+···+qi−1+2i)...(q0+···+qi+2i) = dq0+···+qi−1+2i◦· · ·◦dq0+···+qi+2i,
i = 0, . . . , p.
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(1) i is a deformation retract with the retraction r.
(2) There is a commutative diagram of homotopy equivalences

||S.|| i //

$$JJJJJJJJJ

��7
77

77
77

77
77

77
77

77
‖ |P̄.S.| ‖

f

��
‖ |P.S.| ‖

Λ
��

‖ |S.| ‖
where f : ∆p ×∆q0...qp × Sq+2p+1 → ∆p ×∆q0...qp × Sq+p takes (t, s0, . . . , sp, x) to
(t, s0, . . . , sp, dq0+1 ◦ dq0+q1+3 ◦ · · · ◦ dq+2p+1x), x ∈ Sq+2p+1.

The proof is straight forward see [1] for details.

For a simplicial complex K there is another prismatic complex defined using the stars
of simplices. That is, let K0 = {ai | i ∈ I}, where I = {1, . . . , N}, be the set of vertices
and let Kn = {σ = (ai0 , . . . , ain) | i0 < · · · < in} be the set of n-simplices such that if
σ ∈ Kn then any face τ = (aij0

, . . . , aijk
) lies in Kk. We shall write τ 4 σ in this case.

Now K ×K is also a simplicial complex with the lexicographical order of the vertices

(ai, bj) < (ai′, bj′) ⇔ either i < i′ or i = i′ and j < j′,

where {(ai0 , bj0), . . . , (ain , bjn)} ∈ K ×K.

Definition 4.3. Let K be a simplicial complex. The Star of K is defined as

St(K) = {(σ, τ) ∈ K ×K | ∃ σ′ such that σ ∪ τ 4 σ′} ⊆ K ×K.

This is equivalent to say that

St(K) = {faces of σ′ × σ′ ⊆ K ×K}.
Remark 3. For each σ ∈ K, ({σ} ×K) ∩ St(K) is the closure of the usual open star
of σ, i.e., the union of the open simplices having σ as a face. Whence the name St(K).
Note that St(K) ⊆ K ×K is a subcomplex.

Let Ks denote the simplicial set associated to the simplicial complex K. That is,

Kn
s = {(ai0 , . . . , ain) | {ai0 , . . . , ain} a simplex of K (with repetitions) i0 ≤ · · · ≤ in}.

St(K)s
n are the following:

Let (σ, τ) ∈ K ×K, where σ = (ai0 , . . . , aip), τ = (bj0 , . . . , bjq). For (σ, τ) ∈ St(K),
let σ′ = σ ∪ τ = (ck0, . . . , ckn). By allowing repetitions in Definition 4.3, i.e., by taking
σ′ ∈ Ks, we can assume n = p+q so that either cks = ait or cks = bju , where t = 0, . . . , p,
u = 0, . . . , q. Also we can assume ckn = aip , and if ait = bju then bju comes before ait .
In other words (σ, τ) is of the form

σ = dν1...νqσ
′, τ = dµ1...µpσ

′,

where 0 ≤ ν1 < · · · < νq < n and 0 ≤ µ1 < · · · < µp ≤ n and µi 6= νj , ∀i, j. Therefore
we introduce for a general simplicial set S the following.
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Definition 4.4. Let St(S) be the simplicial subset of the diagonal δ(S×S) containing
all simplices of the form

(sνq...ν1 ◦ dν1...νqσ
′, sµp...µ1 ◦ dµ1...µpσ

′),

where 0 ≤ ν1 < · · · < νq < n and 0 ≤ µ1 < · · · < µp ≤ n with µi 6= νj, ∀i, j as
above. Here sνq...ν1 = sνq ◦ · · · ◦ sν1 , dν1...νq = dν1 ◦ · · · ◦ dνq , sµp...µ1 = sµp ◦ · · · ◦ sµ1 and
dµ1...µp = dµ1 ◦ · · · ◦ dµp .

Lemma 4.5. For K a simplicial complex, there is a map

st : St(K)s → St(Ks)

which is an isomorphism.

Proof. By the discussion made before, there is a well-defined map st. Indeed, St(K)s is
a simplicial set generated by

{(σ, τ) ∈ K ×K | ∃ σ′ ∈ Ks such that σ = dν1...νqσ
′, τ = dµ1...µpσ

′

and (sνq...ν1σ, sµp...µ1τ) ∈ δ(Ks ×Ks)}.
By Definition 4.4, we can put st(σ, τ) = (sνq...ν1σ, sµp...µ1τ) ∈ St(Ks). Clearly st is an

isomorphism since for (σ, τ) ∈ δ(Ks×Ks) and σ′ as in Definition 4.4, (σ, τ) ∈ Ks ×Ks

determines an element in K ×K by deleting repetitions and this is unique. �

Remark 4. The projection on the first factor π1 : S × S → S gives a simplicial map
π1 : St.(S) → S. Hence, we obtain a prismatic set P. St(S) = P.(π1) as in Example 3.2.
Here with q = q0 + · · ·+ qp and σ = sνq...ν1 ◦ dν1...νqσ

′ = µq0,...,qpσ̄, τ = sµp...µ1 ◦ dµ1...µpσ
′,

we have

Pp St(S)q0,...,qp = {(σ, τ, σ̄) ∈ St(S)q+p × Sp ⊂ δ(S × S)q+p × Sp | σ, τ given above}.
That is, π1(σ, τ) = µq0,...,qp(σ̄), where σ̄ = dν1...νqσ

′ ∈ Sp. So The elements in Pp St(S)q0,...,qp

are of the form (µq0,...,qpσ̄, τ, σ̄), where τ ∈ Sq. Here explicitly

µq0,...,qp = ŝq+p ◦ s(q+p−1)...(q0+···+qp−1+p) . . . ŝq0+q1+1s(q0+q1)...(q0+1)ŝq0s(q0−1)...(0).

5. Comparison of the two Star Simplicial Sets

We shall now prove that this is closely related to the prismatic set P̄S defined in the
previous section.

Theorem 5.1. (1) There is a natural (surjective) map

p̄ : P̄.S. → PSt.(S).

(2) If S = Ks, where K is a simplicial complex, then p̄ is an isomorphism.

Proof. (1) Take an element γ ∈ P̄pSq0,...,qp = Sq0+···+qp+2p+1. Then γ and q0, . . . , qp

determine an element p̄(γ) in Pp St(S)q0,...,qp together with a (p + 1, q + p + 1)-partition
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(i1, . . . , ip, ip+1, j1, . . . , jq+p+1) of n = q + 2p + 1, where q = q0 + · · ·+ qp. Here

i1 = q0 + 1

i2 = q0 + q1 + 3
...

ip = q0 + · · ·+ qp−1 + 2p− 1

ip+1 = q0 + · · ·+ qp + 2p + 1

correspond to the µi’s defined in Definition 4.4 and the j’s correspond to the com-
plement, that is, j1, . . . , jq0+1, jq0+2, . . . , jq0+q1+2, . . . , jq0+···+qp−1+p, . . . , jq0+···+qp+p+1, are
0, . . . , q0, q0 + 2, . . . , q0 + q1 + 2, q0 + q1 + 4, . . . , q0 + · · ·+ qp−2 + 2p− 2, . . . , q0 + · · ·+
qp−1 + 2p, q0 + · · · + qp−1 + 2p, . . . , q0 + · · · + qp + 2p, respectively. Then, in terms of
Remark 4 at the end of Section 4, we define

p̄(γ) = (σ, τ, σ̄) ∈ PpSt(S)q0...qp ⊆ Sq+p × Sq+p × Sp

where

σ̄ = d0...q0 ◦ d̂q0+1 ◦ · · · ◦ d(q0+···+qp−1+2p)...(q0+···+qp+2p) ◦ d̂q+2p+1(γ) = dj1...jq+p+1(γ)

τ = dq0+1 ◦ dq0+q1+3 ◦ · · · ◦ dq0+···+qp+2p+1(γ) = di1...ip+1(γ)

σ = ŝq0+···+qp+p ◦ s(q0+···+qp+p−1)...(q0+···+qp−1+p) ◦ ŝq0+···+qp−1+p−1◦
· · · ◦ ŝq0+q1+1 ◦ s(q0+q1)...(q0+1) ◦ ŝq0 ◦ s(q0−1)...(0)(σ̄)

= s(q+p−1)...(q+p−qp) ◦ · · · ◦ s(q0+q1)...(q0+1) ◦ s(q0−1)...(0)(σ̄)

= µq0,...,qp(σ̄).

Using the above expression for σ̄ in terms of d’s and γ, we get

σ = s(q+p−1)...(q+p−qp) ◦ · · · ◦ s(q0+q1)...(q0+1) ◦ s(q0−1)...0 ◦ dj1...jq+p+1(γ).

Now St(S)q0+···+qp+2p+1 contains the simplex

(sjq+p+1...j1 ◦ s(q+p−1)...(q+p−qp) ◦ · · · ◦ s(q0+q1)...(q0+1) ◦ s(q0−1)...0 ◦ dj1...jq+p+1(γ),

sip+1...i1di1...ip+1(γ)) = (sjq+p+1...j1σ, sip+1...i1τ).

It follows that (σ, τ) ∈ St(S) and hence p̄(γ) = (σ, τ, σ̄) ∈ Pp St(S)q0,...,qp.
Now p̄ is a surjective map: Suppose (σ, τ, σ̄) ∈ Pp St(S)q0,...,qp and we shall find

γ ∈ P̄pSq0,...,qp such that p̄(γ) = (σ, τ, σ̄). Thus (σ, τ, σ̄) ∈ Pp St(S)q0,...,qp ⊂ δ(S × S)q+p

is such that
π1(σ, τ) ∈ Im{µq0,...,qp : Sp → Sq+p}

where σ̄ ∈ Sp.
Again use the partition (p + 1, q + p + 1) as above, put γ = sip+1...i1σ ∈ Sq+2p+1.

Indeed since

(sjq+p+1 ◦ sjq−qp+p−1 ◦ · · · ◦ sjq0+q1+2 ◦ sjq0+1σ, sip+1...i1τ)

is of the required form as in Definition 4.4 and since

(σ, τ) = (dk1...kp+1 × di1...ip+1)(sjq+p+1 ◦ sjq−qp+p−1 ◦ · · · ◦ sjq0+q1+3 ◦ sjq0+1σ, sip+1...i1τ)

here dk1...kp+1 = dq0+1 ◦ dq0+q1+3 ◦ · · · ◦ dq0+···+qp−1+2p−1 ◦ dq+2p+1. So the dK ’s and the
dI ’s are the same, where dI = di1...ip+1 .
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We have (σ, τ) ∈ St(S). Hence p̄(γ) ∈ P. St(S)..

(2) If S = Ks, K simplicial complex then

Pp St(Ks)q0,...,qp = {(σ, τ) ∈ St(Ks)q+p ⊂ δ(Ks ×Ks)q+p

| π1(σ, τ) ∈ Im{µq0,...,qp : Kp
s → Ks

q+p}}.
The map µq0,...,qp : Kp

s → Ks
q+p takes (i0, . . . , ip) to ( i0, . . . , i0︸ ︷︷ ︸

(q0+1)-times

, . . . , ip, . . . , ip︸ ︷︷ ︸
(qp+1)-times

). Then

σ = (ai0 , . . . , ai0 , . . . , aip , . . . , aip) ∈ Ks
q+p,

τ = (bj0 , . . . , bjq0
, . . . , bjq0+···+qp−1+p, . . . , bjq+p) ∈ Ks

q+p.

By the definition P̄p(K
s)q0,...,qp = Pp(K

s)q0+1,...,qp+1. Then γ in Ks
q+2p+1 given by

γ = (c0, . . . , cq0+1| . . . |cq0+···+qp−1+2p, . . . , cq+2p+1) ∈ Ks
q+2p+1 is uniquely determined by

σ and τ .
Explicitly the inverse map p̄−1 : Pp St(Ks)q0,...,qp → P̄pK

s
q0,...,qp is defined by

p̄−1(σ, τ) = γ, where

σ = (ai0 , . . . , aip),

τ = (bj0, . . . , bjq+p) and

γ = (j′0, . . . , j
′
q0

, i0|j′q0+1, . . . , j
′
q0+q1+1, i1| . . . |j′q0+···+qp−1+p, . . . , j

′
q+p, ip)

such that for
∑k−1

i=0 qi + p ≤ s ≤ ∑k
i=0 qi + p

j′s =

 ik−1 : js ≤ ik−1

js : ik−1 < js < ik
ik : ik ≤ js,

k = 1, . . . , p. Hence γ ∈ P̄pK
s
q0,...,qp exists and is uniquely determined by (σ, τ) ∈

St(Ks)q+2p+1.
Therefore p̄ : P̄.K

s → P. St(Ks) is an isomorphism. �

Remark. Note that p̄ is not injective for a simplicial set in general since for constructing
the inverse map P St(S) → P̄ S, there is no unique choice for the element γ in P̄.S.. In
fact, we do not know which degeneracy operators we will use in order to define γ, so in
general the inverse is not well-defined.

6. The Classifying Space and Lattice Gauge Theory

For the definition of a classifying map we need a prismatic version of the standard
construction of the classifying space.

Let G be a topological group and the usual classifying space BG = EG/G which is
constructed as a simplicial space EGp = G. × · · · × G., (p + 1)-times, BGp = (G× · · ·
×G)/G.

In order to make this simplicial set discrete we can replace G by the singular simplicial
set of continuous maps SqG = Map(∆q, G) and E.S.G as in Example 2.8 is a prismatic
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set. However we shall need another model constructed as follows: For a continuous
map a ∈ Map(∆p ×∆q0...qp, Gp+1). Then we define

a(t, s0, . . . , sp) = (a0(t, s
0), a1(t, s

0, s1), . . . , ap(t, s
0, . . . , sp)),

where (t, s0, . . . , sp) ∈ ∆p ×∆q0...qp. S.G acts on this prismatic set and we define

PpEGq0,...,qp = {a : ∆p ×∆q0...qp → Gp+1 | aj(ε
it, s) is independent

of si for all j different from i}.
P.BG = P.EG/S.G, that is,

PpBGq0,...,qp = PpEGq0,...,qp/SpG.

Proposition 6.1. The evaluation maps give horizontal homotopy equivalences in the
diagram

‖ |P.EG .| ‖
‖ |γ| ‖

��

ev // EG

γ

��
‖ |P.BG .| ‖ ev // EG/G

Furthermore the top map is equivariant with respect to the homomorphism ev : |S.G| → G.

Proof. First notice that the evaluation map ev : |S.G| → G is a homotopy equivalence.
Also the equivariance is obvious by the commutative diagram

‖ |P.EG .| ‖ × |S.G|
pr1

��

ev×ev // EG ×G

pr1

��
‖ |P.EG .| ‖ ev // EG

Since ‖ |P.EG .| ‖ and EG are both contractible, the evaluation map induces a homotopy
equivalence on the quotient. �

7. Lattice Gauge Theory, Parallel Transport Function

In Lattice gauge theory in the sense of Phillips and Stone [15] they construct for
a given Lie group G and a simplicial complex K a G-bundle with connection on |K|
associated to a set of G-valued continuous functions defined over the faces of a simplex.
These they call “parallel transport functions” since they are determined by parallel
transport for the connection. In this section we shall introduce similar “compatible
transition functions” for K replaced by a simplicial set S and in the following section
we shall use these to construct a classifying map on the star complex P̄.S.. First we
consider G-bundles over simplicial sets.
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Definition 7.1. A bundle over |S| is a sequence of bundles over ∆p×σ for all p, where
σ ∈ Sp and with commutative diagrams;

Fdjσ

��

ε̄j
// Fσ

��
∆p−1 × djσ

εj
// ∆p × σ

and

Fsjσ

��

η̄j

// Fσ

��
∆p+1 × sjσ

ηj

// ∆p × σ

with the compatibility conditions:

ε̄j ε̄i =

{
ε̄iε̄j−1 : i < j
ε̄i+1ε̄j : i ≥ j,

η̄j η̄i =

{
η̄iη̄j+1 : i ≤ j
η̄i−1η̄j : i > j,

and

η̄j ε̄i =

 ε̄iη̄j−1 : i < j
1 : i = j, i = j + 1

ε̄i−1η̄i : i > j + 1.

Given a G-bundle F → |S|, G a Lie group, since ∆p is contractible, we can choose a
trivialization ϕσ : Fσ → ∆p×σ×G for a non-degenerate σ ∈ Sp. If σ is degenerate, that
is, there exists τ such that σ = siτ , then the trivialization of σ is defined as pullback
of the trivialization of τ , that is, ϕσ = ηi∗(ϕτ ).

Definition 7.2. ( Admissible Trivializations ) A set of trivializations is called admis-
sible, in case ϕσ for σ = siτ is given by ϕσ = si∗(ϕτ ).

Lemma 7.3. Admissible trivializations always exist.

Now, let us construct the transition functions for a simplex σ ∈ Sp before giving the
following proposition:

Definition 7.4. Given a bundle and a set of trivializations, we get for each face τ of
say dim τ = q < p in σ, a transition function vσ,τ : ∆q → G. E.g., if τ = diσ then the
transition function vσ,diσ : ∆p−1 → G is given by the diagram

∆p−1 × (diσ)×G

��

Θ // ∆p × (σ)×G

��
∆p−1 × diσ

εi
// ∆p × σ
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where diσ = τ and Θ = ϕσ ◦ ε̄i ◦ ϕ−1
diσ

. So

{vσ,τ | σ ∈ Sp and τ is a face of σ}
are the transition functions for the bundle over |S|.
Remark. The transitions functions are generalized lattice gauge fields. Classically
Lattice gauge fields are defined only on 1-skeletons but one can extend them to p − 1
simplices for all p, given rise to transition functions on ∆p, as above.

We now list a number of propositions stating the properties of these. The proofs are
straight forward. For details see Akyar [1].

Proposition 7.5. Given a bundle on a simplicial set and admissible trivializations, the
transition function vσ,τ , where τ is a face of σ, satisfies;

(i) σ is nondegenerate: if γ = djσ and τ = diγ then

vσ,τ = (vσ,γ ◦ εi).vγ,τ .

This is called the cocycle condition.
(ii) σ is degenerate: If σ = sjσ

′ and τ = diσ then when i < j for τ = sj−1τ
′ one

gets τ ′ = diσ
′ and when i > j + 1 for τ = sjτ

′ one gets τ ′ = di−1σ
′. For the

other cases, i = j or i = j + 1, τ = σ′. Then the transition functions satisfy:

vσ,τ =

 vσ′,τ ′ ◦ ηj−1 : i < j
1 : i = j, i = j + 1

vσ′,τ ′ ◦ ηj : i > j + 1.

(iii) If τ is a composition of face operators of σ, e.g., τ = d̃p−(i−1)σ, i = 1, . . . , p,

where d̃p−(i−1) = di ◦ · · · ◦ dp then

vσ,τ = (vσ,d̃1σ ◦ (εi)p−i).(vd̃1σ,d̃2σ ◦ (εi)
p−i−1

)

. . . (vd̃p−(i+1)σ,d̃p−iσ ◦ εi).vd̃p−iσ,τ .

Proposition 7.6. Assume that we have a bundle over |S|. Then

(1) There exists admissible trivializations such that the transition function is given
by

vσ,diσ = 1 if i < p.

(2) For τ = d̃p−(i−1)σ, i = 1, . . . , p, we get vσ,τ as product of some transition func-
tions:

vσ,τ = (vσ ◦ (εi)
p−i

).(vd̃1σ ◦ (εi)
p−i−1

).(vd̃2σ ◦ (εi)
p−i−2

)

. . . (vd̃p−(i+1)σ ◦ (εi)
1
).(vd̃p−iσ).

(3) The transition functions vσ,τ satisfy the compatibility conditions:

vσ ◦ εi =

{
vdiσ : i < p− 1

vdp−1σ.vdpσ
−1 : i = p− 1



LATTICE GAUGE FIELD THEORY . . . 19

(4) For a degenerate σ, we have

vσ ◦ ηj = vsjσ

for all j.

Proposition 7.7. Given a bundle, one can find admissible trivializations such that the
transition functions are determined by functions vσ : ∆p−1 → G for σ ∈ Sp nondegen-
erate.

Proposition 7.8. Suppose given a set of functions

vσ : ∆p−1 → G

for σ ∈ Sp for all p, satisfying the compatibility conditions

vσ ◦ εi =

{
vdiσ : i < p− 1

vdp−1σ.vdpσ
−1 : i = p− 1

and
vsjσ = vσ ◦ ηj.

Then one can define for each σ ∈ Sp and each lower dimensional face τ of σ, a function
vσ,τ such that (i) and (ii) in Proposition 7.5 hold and such that

vσ,τ =

{
vσ : i = p
1 : i < p.

Proposition 7.9. Given a set of transition functions vσ,τ satisfying (i) and (ii) in
Proposition 7.5, there is a bundle F over |S| and trivializations with transition func-
tions vσ,τ .

Corollary 7.10. Given a set of functions vσ satisfying the compatibility conditions in
Proposition 7.6, one can construct a bundle F over |S| and the trivializations with the
transition functions vσ,dpσ = vσ and vσ,diσ = 1 when i < p and vsiσ = vσ ◦ ηi for a
degenerate σ.

Definition 7.11. A set of functions {vσ}σ∈S as in Proposition 7.8 are called a set of
“compatible transition functions”.

We end this section by comparing these compatible transition functions with the
“parallel transport functions” (p.t.f.) of Phillips and Stone [15]. For S = Ks these
consist of a set of maps, Vσ : cσ → G for each r-simplex σ of K, r ≥ 1, cσ is the
(r − 1)-cube given by 0 ≤ sa1 ≤ 1, . . . , 0 ≤ sar−1 ≤ 1, where σ = 〈a0, . . . , ar〉 ∈ K with
the compatibility conditions

1. Cocycle condition

Vσ(sa1 , . . . , sap = 1, . . . , sar−1)

= V〈a0,...,ap〉(sa1 , . . . , sap−1).V〈ap,...,ar〉)(sap+1 , . . . , sar−1).

2. Compatibility condition

Vσ(sa1 , . . . , sap = 0, . . . , sar−1)

= V〈a0,...,âp,...,ar−1〉(sa1 , . . . , ŝap, . . . , sar−1).
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Now, suppose we have compatible transition functions {vσ} for a principal G-bundle
E → |K| with triangulated base. Then for σ = 〈a0, . . . , ar〉, the p.t.f. Vσ : cσ → G is
given by the parallel transport Ea0 → Ear along paths determined as follows:

Let σ = 〈a0, . . . , ar〉 ∈ Ks and s = (sa0 , . . . , sar−1) ∈ cσ.
We pick r− 1 points as P1, . . . , Pr−1 so that P1 is on the line segment from a0 to a1,

that is,

P1 = (1− sa1)a0 + sa1a1 = ((1− sa1 , sa1), 〈a0, a1〉) ∈ |K|.
Similarly, P2 is on the line segment from P1 to a2, P2 = (1− sa2)P1 + sa2a2. Then

P2 = ((1− sa2)(1− sa1), (1− sa2)sa1 , sa2 , 〈a0, a1, a2〉).
By continuing in the same way, we get

Pr−1 = (1− sar−1)Pr−2 + sar−1ar−1.

Let α be the piecewise linear path from a0 through P1, . . . , Pr−1 to ar. In other words,
α is determined uniquely up to parametrization by r − 1 numbers sa1 , . . . , sar−1 . For
Pr−1 = (t, drσ) ∈ ∆r−1 ×Kr−1, drσ = 〈a1, . . . , ar−1〉, the element

Vσ(s1, . . . , sr−1) = vσ(t) ∈ G

is to be interpreted as the parallel transport along α.

a0 ar−2

ar−1

ar

p

8. The Classifying Map

The construction of The Classifying Map
For a given set of compatible transition functions (c.t.f.) {vσ} satisfying Proposi-

tion 7.8 we have seen in Proposition 7.9 that there is an associated G-bundle F over |S.|.
Recall that the composite map proj ◦L : ‖ |P̄.S| ‖ → ‖ |S.| ‖ → |S| is a homotopy equiv-
alence, where L = Λ ◦ f is given as in Proposition 4.2. In this section, we construct a
classifying map for the bundle (proj ◦L)∗F over ‖ |P̄.S.| ‖.
Theorem 8.1.

(1) For given c.t.f.’s {vσ}, there is a canonical prismatic map m : P̄.S. → P.BG.
(2) The induced map of geometric realizations

ev ◦ ‖ |m| ‖ = m̄ : ‖ |P̄.S| ‖ ‖ |m| ‖−−−→ ‖ |P.BG| ‖ ev−→ BG

is a classifying map for the G-bundle (proj ◦L)∗F over ‖ |P̄.S.| ‖.
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Proof. (1) The map m : P̄.S. → P.BG is defined as

m(σ) = [(a0, a1, . . . , ap)]

where σ ∈ P̄pSq0...qp = Sq+2p+1, q = q0 + · · · + qp and ai : ∆p × ∆q0...qi → G are given
below. In the following, we use for convenience the interior coordinates (t1, . . . , tp) of
the standard simplex with barycentric coordinates (t′0, . . . , t

′
p).

t1 = 1− t′0, t2 = 1− t′0 − t′1, . . . , tr−1 = 1− t′0 − · · · − t′r−1, tr = t′r

such that 0 ≤ ti ≤ 1, i = 1, . . . , p, 1 ≥ t1 ≥ · · · ≥ tp ≥ 0 and
∑p

i=0 t′i = 1, t′i ≤ 1,
i = 0, . . . , p.

In these terms the map Λ from Section 3 is induced by the maps λp : ∆p ×∆q0...qp →
∆q+2p+1 given by

λp(t, s
0, 0, . . . , 0, sp, 0) =

(
s0
1(1− t1) + t1, . . . , s

0
q0

(1− t1) + t1, t1, t1,

s1
1(t1 − t2) + t2, . . . , s

1
q1

(t1 − t2) + t2, t2, t2,

. . . ,

sp−1
1 (tp−1 − tp) + tp, . . . , s

p−1
qp−1

(tp−1 − tp) + tp, tp, tp,

sp
1tp, . . . , s

p
qp

tp, 0
)
.

For convenience, we drop p in λp(t)(s) and write λ(t)(s). Next, let ρ(i) : ∆q+2p+1 →
∆q0+···+qi−1+2i−1 be the degeneracy map for i = 1, . . . , p defined by

ρ(i) := ηq0+···+qi−1+2i−1 ◦ · · · ◦ ηq+2p

deleting the last qi + · · ·+ qp + 2(p− i + 1) coordinates. So e.g.

ρ(p)λ(t)(s) =
(
s0
1(1− t1) + t1, . . . , s

0
q0

(1− t1) + t1, t1, t1,

s1
1(t1 − t2) + t2, . . . , s

1
q1

(t1 − t2) + t2, t2, t2,

. . . ,

sp−1
1 (tp−1 − tp) + tp, . . . , s

p−1
qp−1

(tp−1 − tp) + tp, tp

)
,

where ρ(p) := ηq−qp+2p−1 ◦ · · · ◦ ηq+2p is deleting the last qp + 2 coordinates. With this
notation, the maps ai : ∆p ×∆q0...qi → G defining the classifying map m(σ) are given
by

ap(t, s
0, 0, . . . , sp, 0) = 1

ap−1(t, s
0, 0, . . . , sp−1, 0) = vσ,d(p)σ(ρ(p)(λ(t)(s)))−1,

ap−2(t, s
0, 0, . . . , sp−2, 0) = vσ,d̃(2)σ(ρ(p−1)(λ(t)(s)))−1

...
a1(t, s

0, 0, s1, 0) = vσ,d(2)...(p)σ(ρ(2)(λ(t)(s)))−1

a0(t, s
0, 0) = vσ,d(1)...(p)σ(ρ(1)(λ(t)(s)))−1.
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Here the boundary operators used above are given as follows:

d(p) : Sq+2p+1 → Sq+2p−qp−1

is defined by d(p) := dq+2p−qp ◦ · · ·◦dq+2p+1, deleting qp +2 elements. On the other hand,

in the formula d̃(1) = d̂(p) = d(p). Let’s denote

d̃(p−i) = d̂(i+1) ◦ · · · ◦ d̂(p)

i = 0, . . . , p− 1, which deletes the elements (q0 + · · ·+ qi + 2i − 1, . . . , q + 2p + 1). It
deletes qi+1 + · · ·+ qp + 2(p− i) = q − (q0 + · · ·+ qi) + 2(p− i) elements. Here

d̂(i) : Sq+2i+1−Pp−i−1
0 qp−j

→ Sq+2i−1−Pp−i
0 qp−j

i = 1, . . . , p. By using the equivalence relations on m we can see that m(d(i)σ) is
independent of si for all j different from i. Take t′0 = 0 then vσ,d̃(p)σ(1, . . . , . . . , 1, 1, 1)

does not depend on s0 where j = 1 6= 0 = i.

(2) For given c.t.f.’s vσ, we now have the map of realizations ‖ |m| ‖ : ‖ |P̄.S.| ‖ →
‖ |P.BG| ‖ given by

‖ |m| ‖(t, s, σ) = (t, s, [(a0, . . . , ap)]).

The associated bundle map is given as follows:
We have a bundle F on |S| by Proposition 7.9 and |P̄pS.| → |S.| is an epimorphism,

so by pulling back we get a bundle F̄ → |P̄pS.|, i.e.,

F̄

��

// F

��
|P̄.S.| // |S.|

Transition functions used to define the classifying map m̃ are taken from the bundle
F → |S|. Let’s take σ ∈ Sq+2p+1 and there is a fibre at (λ(t, s0, 0 . . . , sp, 0), σ), by using
the trivialization ϕσ : Fσ → ∆q+2p+1×σ×G and the projection on the last factor, we get
Fσ → G. Let’s denote this composition by ϕ̄σ(f̃) where f̃ := (λ(t, s0, 0, . . . , sp, 0), σ),

f̃σ ∈ F(λ(t,s0,0,...,sp,0),σ), σ ∈ Sq+2p+1. On the other hand

ϕd(p)σ : Fd(p)σ → ∆q+2p−qp−1 × d(p)σ ×G

gives us

ϕ̄d(p)σ : Fd(p)σ → G.

By the definition,

ϕ̄σ(d̄
(p)f̃σ) := vσ,d(p)σ(ρ(p)λ(t, s0, 0, . . . , sp, 0)).ϕ̄d(p)σ(f̃)d(p)σ

,

where the compatible transition function is

vσ,d(p)σ : ∆q+2p−qp−1 → G.
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The last component in ‖ |m| ‖(t, s, f̃σ) is defined via the trivialization ϕσ(f̃) which is

ϕ̄σ(f̃). By using the compatible transition function vσ,d(p)σ we find the p-th component
as

vσ,d(p)σ(ρ(p)λ(t, s0, 0, . . . , sp, 0))
−1

.ϕ̄σ(f̃).

We can apply the same method several times to get the other coordinates in ‖|m|‖(t, s, f̃σ).
By the definition PEG/SG = PBG, PEG = ‖NḠ‖ and γ : NḠ → NG we can

identify PBG = ‖NG‖. Then the required map m̄ is

m̄(t, s, σ) = [(a0, . . . , ap)]. �
In particular for a simplicial complex K we get the following (c. f. [15])

Corollary 8.2. (Phillips-Stone)

(1) A set of compatible transition functions {vσ} for K a simplicial complex there
is a natural prismatic map

P. St(Ks) → PBG .

(2) The induced map on geometric realization gives a classifying map for the bundle
F pulled back to | St(K)| ⊆ |K| × |K|.

Proof. In the second part of Theorem 5.1, we have showed that p̄ : P̄Ks → P St Ks is
an isomorphism. On the other hand in the previous proposition, we have defined the
classifying map m. This is also valid when S = Ks. So the p.t.f. vσ will determine a
natural map

m : P St Ks → PBG . �
Furthermore π1 : P St(Ks) → K is a homotopy equivalence.

Remark. The point of the corollary is that there is a connection in the prismatic
universal bundle in the simplicial sense (see [6]) which thus pulls back to a connection
in the bundle over the star complex. We shall return to this elsewhere.
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