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Abstract

Progesterone is a hormone linked to the reproductive status of dairy cows.
Hence, with the increasing availability of on-line records of the concentration
of progesterone in cow milk, there is a need for new tools to analyse such data.
The aim is to find techniques for better determination of the time when cows
are in oestrus to increase the rate of succesful inseminations. In this paper
we propose a state space model for data with a continuous and cyclic trend
in the mean. Furthermore a matching Kalman filter is developed. The model
is tested on progesterone data from 112 cow-lactations with the purpose of
evaluating the use of progesterone for detection of oestrus.

Keywords: cyclic model, dairy cow, Kalman filter, oestrus detection.

1 Introduction

Data from many biological processes exhibit a clear cyclic nature. A classical example
is the yearly number of lynx in Canada (Elton and Nicholson, 1942) where the cyclic
nature is caused by a predator-prey relationship. The example of main interest to
us in this paper is one where the oestrus cycle in cows generates a cyclic behavior of
the concentration of progesterone in cow milk. A short presentation of the biology
behind this process is given in Section 2. In models for such data it is often natural to
introduce hidden variables which have certain biological or physical interpretations.
We study a state space model which generates a cyclic behavior with continuous
and piecewise linear mean of the univariate observations. The continuity and cyclic
nature implies that a period of increase in the mean must at some point be followed
by a decrease in the mean. It can be useful to think of a model with four stages,
where the four stages correspond to an increase in the mean, a high level of the
mean, a decrease in the mean and finally a low level of the mean. However, this
does not exhaust the variety of possible cyclic models. In this way the time axis
will be divided into segments where all observations within a segment belong to
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the same stage. The hidden variables will include one variable holding the current
stage and two variables holding the time points for the beginning and end of the
current stage. The inference concerning time points at which paramters change is
known as changepoint detection, a subject on which Page (1954) wrote one of the
first papers. The state space model we consider can be seen as a modification of
the model of Fearnhead and Liu (2007) and Fearnhead and Vasileiou (2008). The
precise mathematical formulation of the model is given in Section 3. In Section 4
we present an approximate filter for the hidden variables of the state space model,
leaving the detailed derivation of this filter to Appendix B. In Section 5 we discuss
how to estimate the parameters of the model. In Section 6 we show how a model of
the class presented in Section 3 can be used to describe the level of progesterone in
cows. Also in Section 6 we describe an algorithm for finding the optimal time point
for insemination and we study how well the algorithm works in practice. Finally, in
Section 7 we discuss the results of this analysis in the perspective of creating better
tools to assess the optimal time point for artificial insemination.

2 Biological background

The main motivation for this work is to detect oestrus in cows by modelling the
progesterone concentration in cow milk. Oestrus is usually defined to be the period
of low progesterone in the cyclic pattern of the hormone (Peters and Ball, 1995).
When we apply the cyclic model to the progesterone data we therefore are specif-
ically interested in determining when a cow is in the stage corresponding to low
progesterone measurements. Only during oestrus can the cow be succesfully insem-
inated and then produce a calf. Cows in oestrus usually exhibit physiological signs
of sexually receptive behavior. However, the traditional, visual, detection of oestrus
signs (i.e. not using progesterone) is becoming more difficult as genetic selection of
cows for high milk yields has reduced the intensity of the oestrus (Dobson et al.,
2008). Also, in modern dairy cow herds there is a growing need for automated man-
agement of the cows due to the large herd sizes. Therefore, detection of the time the
cow is in oestrus is one such problem where a farmer could benefit from improved
techniques.

The reproductive cycle of dairy cows is approximately 21 days (ranging from 18
to 26 days), and for maximal chance of success insemination should take place 12-24
hours before ovulation (Roelofs et al., 2006). Though several indicators exist for de-
termining when cows are in oestrus (Fulkerson et al., 1983; Xu et al., 1998; Cavalieri
et al., 2003) there is still a need for better prediction of the time when cows are
most susceptable for insemination. Progesterone, which can now be measured auto-
matically in the milk, is the accepted gold standard for assessing the reproductive
status (Peters and Ball, 1995; Cavalieri et al., 2001; Roelofs et al., 2006).

The oestrus cycle in a cow is initiated by the creation of a follicle in the ovary.
The follicle grows in size until ovulation where the follicle ruptures and releases the
egg which is tranported down the oviduct toward the uterus. After the ovulation the
remains of the follicle, called the corpus luteum, stay in the ovary. The cells of the
corpus luteum begin to secrete progesterone approximately 4 days after ovulation.
Progesterone is required for the maintance of pregnancy (Peters and Ball, 1995).



The presence of a fertilized egg (embryo) blocks regression of the corpus luteum
which then continue to secrete progesterone throughout pregnancy. If the egg is not
fertilized the corpus luteum will regress and stop producing progesterone approxi-
mately 17 days after ovulation. The following drop in progesterone then causes a
new follicle to grow and the cycle repeats itself.

Progesterone can be measured in the milk throughout lactation which is the
period in time where a cow produces milk following a calving. In this paper we
define the term cow-lactation to be the statistical term of the cross factor of cow
and parity, where parity is the number of calves a cow has given birth to. That
is, a cow of first parity has just had its first calf and so on. The concentration
of progesterone in the milk is measured in ng/ml and varies in the range from 0 to
30 ng/ml. An example showing the development of the concentration of progesterone
in milk from a cow is seen in Figure 1. In this example the cyclic behavior of the
hormone is observed through several cycles.
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Figure 1: Progesterone measurements through a cow-lactation showing a cyclic behavior
through several cycles. The model apply to data only when the cow is in its oestrus
cycle. Therefore observations in the beginning and the end of lactation are excluded in the
analysis. This is indicated by the vertical lines.

3 Cyclic model

In the following, the model we consider in this paper is defined. We use a state
space model incorporating the idea of several different stages each describing a linear
development in the mean of the observations, such that the mean as a function of
time is continuous. The number of different stages is denoted by m. The m stages
follow each other in the same order, so that one round of the m stages constitute a
cycle of the process. More specifically, a time segment of stage ¢ = 1 will be followed
by a segment of stage ¢ = 2, and so forth, until a segment of stage ¢ = m is again



followed by stage ¢ = 1. An illustration of a possible development in the mean of the
observation is shown in Figure 2. In this illustration the number of stages is m = 4,
which is the value we use for modeling the progesterone data in Section 6.
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Figure 2: Example of possible development in the mean of the observations.

3.1 Hidden variables

The model has five hidden variables. The hidden process is considered in discrete
time, t € Z. In applications these discrete times will constitute a scaling of real time.
To each time point ¢t these hidden variables contain information about the position
of the change points separating the stages, and infomation on the mean level of the
observations. The five hidden variables are:

R; : the point in time prior to ¢ with the most recent change of stage, (R; < t).
S; : the stage entered at time R; with value in {1,2,... m}.

N; : the point in time for the next change of stage after Ry, (IN; > t).

a; : the mean of an observation at time R;.

b; : the mean of an observation at time V.

3.2 Stochastics of the state (R, Sy, Ny, az, by)

The starting point of describing the stochastics governing the state variables is to
find the positions of the changepoints. Given that there is a change to stage ¢ at t,
the distribution of the waiting time for the next change depends on ¢ only. This



distribution is denoted W;, where ¢ is the new stage. The only restriction we put on
W, is that it has finite support. Formally, we write

(Nt—l—l — Nt|Nt = t, St+1 = q) ~ Wq. (31)

Throughout the paper we use the notation Wy(r) = P(w = r) if w ~ W,. Thus (3.1)
describes the dynamics of the three discrete hidden variables (R;, Sy, Ny). In terms
of one step transition probabilities we have that

P(Riy1 = 381 =¢, Ny = ll|Rt =75 =q, Ny =1)
Wy(l'—t) ifl=tandj =t ¢ =q+ 1(mod m),
=<1 ifil>tand j'=j<t ¢ =ql =1, (3.2)
0 otherwise.

The triple (R; — t, Sy, Ny — t) as defined above constitutes by itself a Markov chain.
In Appendix A it is shown that the stationary distribution for (R, —t, Sy, Ny —t) is

©(j.q.l) = Wq%_i(j)M),

where

M = max{r | 3¢ : W,(r) > 0} (3.3)

is the maximal possible waiting time between two consecutive changepoints and
v(q) = > 5, iW,(7) is the mean of the waiting time distribution W,. The stationary
distribution can be used as a prior when no information about the state variables is
at hand at the time of the first recording.

Next, the stochastic behavior of the continuous hidden variables a; and b; is
described. These two variables hold information about the mean of the observations
within a stage. For each changepoint ¢, let z(¢) denote the hidden mean of a possible
observation y;. If the stage of a time interval beginning at time ¢ is ¢, then we assume

(2(t)[ Ny = £, Sipr = @) ~ N(j1g, ), (3.4)

where 11, and wg are parameters. The hidden variables a; and b; are then defined to
be
a; = x(R;) and by = (V). (3.5)

That is, a; is the mean at the beginning and b; the mean at the end of the stage
entered at time R;. This means that if there is no change point at time ¢ then
(ag11,bi41) = (ag,b). On the other hand if there is a change of stage at time ¢, then
ary1 = by and by = x(Nyyq).

3.3 Stochastics of observations

The mean at any time point s € R we define by linear interpolation using the mean
at the end points of the stage. That is,
by — a

$(8):at+m(S—Rt)7 SeR,t: I_S-I,



where [s] is the smallest integer greater than or equal to s. In this way the underlying
mean z(s) of the observation given the hidden variables is continuous and piecewise
linear.

Data {(y:,s:)|i = 1,...,n} consist of a set of observations y; recoded at time
points s;, where n is the number of observations. To define the distribution of data,
assume that we have an observation y; at time s; € R. Note that we do not restrict
the observations to occur at time points that are multiples of the time unit. If the
stage at time s; is ¢, that is, Sp,,1 = ¢, we assume

(vil(R,S,N,a,b)s1) ~ N(z(s;),02),

q

where a ,q=1,2,...,m are parameters.
To summarlze the parameters of the model are

g : the mean of the hidden stochastic mean at a time point where the stage changes
to q,

w? : the variance of the hidden stochastic mean at a time point where the stage
changes to ¢,

o> : residual variance of observations within stage g,

forq =1,2,..., m. Please note that the waiting time distributions W,,¢ =1,2,...,m
may depend on an unknown parameter 6.

4 An approximate filter

An approximate filter for the state space model presented in Section 3 is described
below. By using the notation y* = {y; | s; < s} and y¥ = {y; | r < s; < s} our goal
is to determine the filter densities which we write as

p(R: = 4,5 = ¢, Ny = 1, ay, bt|yt) =pi(J, 4,1, ar, ) for all t € N. (4.1)
We use the approximation

pt(j7 q, la Q, bt) = pt(ja q, l)(b(ata bt; Nt(ja q, l)v Et(jv q, l))v (42)

where p(-, -, ) on the right hand side of (4.2) is the marginal density of (R;, S;, Ny)
and ¢(-,+; i, %) is the normal density with mean p and variance . Therefore the
filter densities (4.1) are specified by (4, ¢, 1), (7, q,1) and 3,(j, q,1). Here we only
state the recursions for updating the filter. A detailed derivation of the filter is given
in Appendix B.

Let 3, (and J];)) denote the sum (and the product) over the set of observations
{y;} in the time interval from ¢ to t + 1. When j = R;;1 < t the filter recursions are
given as follows:

Pt+1 (.]7 q, l)

t . 0; (g, q,1 Et )
el i ey L 0.0 43




with
Et+1(j>Q7l)7l
N (1—s5)*  (si—5)(1—s)
=200 Ty ® ((a—jw—s» (50— )2 > Y

and

Y1 (0, D) e (G, a0 1)
e LN (- s/ )
= Et(]>Q7 l) Mt(]a%l) + ) (s: — ] 4 . (45)
Uq%(yz( 1 j)/(l .]) )

The constant of proportionality ¢;.1(y'™') is found from (4.3) and (4.6) below to-
gether with the condition Zj,q,zptﬂ(j» q,l) = 1.
When R,;,; =t the recursions are

Pt g 1) = coa (YW, (1 — ) H d(yi; 0, 02) Zpt(j’, q,t)
®)

jr<t
G005 pe(5' 4 )2, Be (5 ¢ 1)22) P(0; pag, w3)

- = , 4.6
50 107 1.0, 5 0 60) 40
,U/t—l—l(tu q, l) = Z at(j,7 q,7 tu l)ﬁt(jla q/7 7(“-7 l)u (47)
j'<t
and
E754»1(167 q, l) = Z Oét(jla qu tv l)[it<.7/7 qu tv l) + ﬂt(jla qlv ta l)ﬂt(jl7 q/7 t? Z)T]
j'<t
— pesr (6, @ D (8, g, 1) (4.8)

where ¢ = ¢ + 1(mod m) and where ji;(j', ¢, t,1), (5", ¢, t,1) and ay(5', ¢, t,1) are
given in Appendix B.

5 Parameter estimation

Maximum likelihood can be used to estimate the residual variances ag, qg=1,...,m.
This estimation procedure is described in Section 5.1. The waiting time distributions
can be estimated using an EEE-algorithm as described in Section 5.2. We do not
suggest any general procedures for estimation of the parameters p, and wg, q =
1,...,m, but in Section 6 we describe how to find crude estimates of these parameters
to use for the modelling of the progesterone data.

5.1 Estimation of the residual variance

The residual variance parameters 02, qg = 1,...,m are estimated using maximum
likelihood. The constant of proportionality c;y1(y**!) in (4.3) and (4.6) can, from
the derivation of the filter in Appendix B, be seen to be
Yy ply) 1

p(y™)  ply Ny

7

Ct+1 (y



Therefore, using the approximate filter, we can calculate an approximation to the
likelihood function

L(ot,.. . o0) = p(y™) = [ [ p(wi™19"),
t

which can be maximized using numerical techniques to find estimates 63 of the
residual variances.

5.2 Estimation of the distribution of waiting times

Given M as defined in (3.3) and a model for the waiting time distributions W,
qg=1,...,m, we can estimate the parameter 6 of this model using an EEE algo-
rithm which is proposed and discussed in e.g. Heyde and Morton (1996), Rosen et al.
(2000) and Elashoff and Ryan (2004). Fundamentally, an EEE algorithm works sim-
ilar to an EM algorithm (Dempster et al., 1977). The difference is that the M-step
of maximizing the likelihood is replaced by a step where an estimating equation is
solved. In the special case where the estimating equation is the likelihood equation
the EEE algorithm is an EM algorithm. For a parameter 8 of the waiting time dis-
tribution we use an estimating function of the form Y} v;, where ¢); = ¥(2;, z;_1; 0)
for a function v, and where z; = (R;, S;, V;). The E (expectation) step is to calculate

E(i ¢i|yn),

where n is the number of observations. In Appendix C it is shown that (Zlf wz\yk)
can be calculated iteratively in k£ using the filter probablities of Section 4. As an
example consider the case where the waiting time probabilities are modelled with
no other restriction than Zf\il W,(l) = 1 for all g. We can then use the estimating
functions

V(21 20-15 ¢, 1)
== 1(Rt:t—1,St=q,Nt=t—1+l) _Wq(l)].(Rt :t_].7St:q),

where 1(-) is the indicator function. In the EE (estimating equation) step the new
value of W, () becomes

_ E(Z’fl(Rt=t—175t=q7Nt=t—1+l)ly?)
EQ 1Ry =t—1,5=q)|y}) ’

where the nominator and denominator have been found in the E step.

W (1)

6 Application

6.1 Progesterone data

The objective of this part of the study is to test the ability of the model to pre-
dict the time of oestrus in cows from on-line progesterone concentration measure-
ments. We consider a data set where progesterone measurements were made on milk
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samples taken from all milking cows in one research herd (Danish Cattle Research
Centre) during the period 12 Sept. 2002 to 30 Sept. 2006. In the this dataset 123
cow-lactations included an oestrus that was identified as a confirmed oestrus, i.e.
an oestrus at which insemination resulted in a confirmed pregnancy. A detailed
description of the collection of data can be found in Friggens et al. (2008).

Parts of the dataset were collected before the cows had entered their oestrus cycle
or after the cows had succesfully been inseminated as seen in Figure 1. Because only
data collected when the cows are in their oestrus cycle are of interest, we excluded
parts of the data at the beginning and at the end of each cow-lactation. For a small
number of cows no data was left by this reduction of data. This was primarily the case
when the cow was succesfully inseminated at the first oestrus which is not preceeded
by a high progesterone stage. This reduction left us with 112 cow-lactations.

6.2 Model for progesterone data

The concentration of progesterone in milk has a cyclic nature with an average cycle
length of about 21 days (ranging from 18 to 26 days). There is from cycle to cycle
a small variation in the cycle length within cows. Roughly the cyclic nature of the
progesterone content can be described in the following way. In each cycle we see
four different stages for the concentration of progesterone. Each with a different
time length. The four stages we enumerate as follows: 1. Low level of progesterone,
2. Slow increase in progesterone, 3. High level of progesterone, 4. Rapid decrease in
progesterone.

It seems reasonable to assume that the mean level at the beginning and at the
end of a low stage or a high stage is roughly the same. According to the model
specification in (3.4) we can formulate this as the restriction p; = o and puz = puq.
Also we let w} = w3 and wi = wj. The parameters p, and w?, ¢ = 1,2,3,4 will be
the same for all cows and we estimate them as described in Section 6.3.1.

We model the waiting time distributions W,,q = 1,2, 3,4 as discretized gamma
distributions truncated at M. The gamma distributions are parameterized with
parameters «, and (3, such that the means and variances are a,/f3, and «,/ ﬁg,
respectively. The waiting time distributions are also asumed to be the same for all
cows. To estimate the ay’s and 3,’s we use the estimating functions

M«
wl(ztaztfl) = 1(Rt =t—-1,5= CJ) logﬁq - 1(Rt =t—1,5= Q) ( q)
F(qu)
+3 log(l) - 1Ry =t— 1,8, =q Ny =t—1+1) (6.1)
l
and
Qq
¢2(Zta Zt—l) = 1(Rt =t—-1,5 = Q)—
By
Y 1 1(Ry=t—1,8=q N =t—1+1) (6.2)
!

chosen so as to resemble the likelihood equations for a sample from a gamma distri-
bution.



Finally we take the residual variances to be the same for all four stages, but
specific for each cow. The cow specific variances are estimated as described in Sec-
tion 5.1.

6.3 Result of analysis
6.3.1 Estimation of parameters

We estimate the parameters p, and 02, g =1,...,4 in the following way. For each
cow-lactation we find the 85 percent quantile of all observations in that cow-lactation
and regard this as an outcome of a N (us3,w?)-distributed variable. Similarly, we re-
gard the 15 percent quantile as an outcome of a N(uy,w?)-distributed variable. In
Figure 3, the 15 percent and the 85 percent quantile of all progesterone measure-
ments for the cow-lactation of Figure 1 is indicated by horizontal lines. Calculating
the mean and variance of these quantiles from all cow-lactations we obtain estimates
for the p1,’s and the wg’s. These estimates will then be used as inputs when we make

inference using the filter. The estimates are given in the second and third column of
Table 1.
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Figure 3: In this plot the 15 percent and the 85 percent quantile of all measurements are
indicated by the horizontal lines. These two quantiles are used to create crude estimates
of the parameters j, and wg, q=1,2,3,4.

The procedure for estimating the residual variances are carried out for fixed
values of the parameters o, and 3, of the waiting time distributions and vice versa.
Therefore an iterative procedure is used for the simultaneous estimation where each
of the two sets of parameters (ay, 3;,¢ = 1,2,3,4) and (02 specific for every cow-
lactation) are updated one at a time. To speed up the computations we take the unit
of time to be one day during the estimation of the parameters. Furthermore, the
maximal length of the waiting time is set to M = 12 days. The estimates for the four
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Table 1: Estimates of those parameters of the cyclic model that are the same for all
cow-lactations.

q Hq Wq E(Wq) V(Wq)
(ng/ml)  (ug/ml)  (days)  (days)
71 3.122 1.170 012 2.27
2 8.25 1.81
i 20.929 2.074 0.82 2.80
4 2.74 0.98

gamma distributions defining the waiting times are given in Table 1 summarized as

means («/3) and standard deviations (y/«a/3?).

The result of estimating the residual variances is summarized in a histogram of
the standard deviations shown in Figure 4.
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Figure 4: Histogram of the estimates of the cow-lactation specific standard deviation o.

6.3.2 Prediction of oestrus

For each cow-lactation in our data the day (but not the exact hour) at which an
artificial insemination resulted in a confirmed pregnancy is known. The filter was
run with a 6-hour interval between the updates. In Figure 5 the development of
the filter probability of being in the low stage, P(S=1), is shown for nine cow-
lactations. In each plot a vertical line is drawn at noon on the day of succesful
artificial insemination.

Knowing the day for the confirmed succesful inseminations we have the possibility
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Figure 5: Filter probabilities (full drawn curve) of being in the low stage plotted against
time for nine cow-lactations. The probability scale is shown on the right vertical axis. The
vertical line shows the time of an insemination resulting in a confirmed pregnancy.

of evaluating how well our model can predict the time point when a cow enters
oestrus. A possible way of constructing an alarm telling the farmer that a cow is
about to go into oestrus is to say that when the probability of being in the low stage
increases to a certain level the alarm should go off. For most of the cow-lactations
the alarm goes off more than once because we observe more than one cycle for most
cows. In this case we take the time of alarm ¢,eqict to be the time point closest to the
stipulated time of confirmed succesful insemination t;,s, which we in all cases define
to be at noon. The difference #ins — tpredict indicates how much time in advance the
farmer is given to observe the cow in detail. For 7 out of the 112 cow-lactations, the
time point for insemination was placed outside the time range of the observations
(which in Figure 1 is outside the two vertical lines) and therefore no tpeqict-value
was found. With a threshold probability of 0.5 of P(S = 1) we observed that the
this probability did not exceed the threshold in the cycle including the time of
insemination for 3 of the remaining 105 cow-lactations. This leave 102 values of
tins — predict- In Figure 6 a histogram of these values are shown. The observed mean
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and standard deviation of this sample was 1.431 days and 1.556 respectively meaning
that on average the alarm will tell the farmer to look for signs of oestrus a little less
than one and a half day before oestrus actually occurs. In 88 of the 102 cases the
alarm went off prior to the actual insemination of these cows.
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Figure 6: Histogram of the time from alarm goes off to known time for artificial insemi-
nation tins — fpredict- The observed mean of this sample is 1.431 meaning that on average
the alarm will tell the farmer to look for signs of oestrus a little less than one and a half
day before oestrus actually occurs.

All analysis was performed using R (R Development Core Team, 2008). The speed
of running the whole filter is proportional to the cube of the number of updates per
day. If for a cow-lactation the filter is updated each hour with M = 288 hours (12
days) an update takes approximately 200 seconds on a standard laptop.

7 Conclusions

The first objective of this study was to develop a state space model with a cor-
responding Kalman filter to model data with a cyclic nature. This has been done
as described in Section 3 and Section 4. Furthermore in Section 5 we discussed
techniques for estimation of some of the parameters in the model.

In Section 6 we analysed the progesterone data using the state space model
developed in this study. We discussed how the model was able to provide an alarm
for oestrus in cows. Because the aim was to evalute the use of progesterone for
detection of oestrus, the time difference ti,s — ?predict has to be positive so that the
farmer is told to look for signs of oestrus before oestrus occurs. To be an efficient
mechanism for detection of oestrus the variance of ting — tpredgict must be as small
as possible. In Section 6 we found the mean of #i,s — tpreqict to be positive fulfilling
the first requirement of a possible alarm. To judge if the corresponding variance
is small enough, for this study to prove the usefulness of progesterone in oestrus
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detection, two issues with the data need to be mentioned. Firstly, only the day for
succesful insemination is given for each cow-lactation. Secondly, the time point of the
succesful insemination is not the optimal measure to evaluate an alarm. We would
rather wish to know the time at which an insemination has the highest probability of
being succesful. In biological terms, this is related to the time of ovulation, which has
been shown to be a rather variable time interval after the onset of oestrus. Onset
of oestrus can not be measured by progesterone. The confirmed inseminations in
our data are spread around this time of highest probability of success with some
variation. Both of these issues contribute to a certain variance that no alarm based
on any progesterone model can remove.
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A Stationary distribution of (R;, S;, N;)
Lemma 1. The stationary distribution of (Ry —t, Sy, Ny — t) is
: Wo(l —j)
m(j,q,0) = S o)
Proof. With
P(j,q, 15", ¢", 1) = P(Riy1 = J, S = ¢, Nepn = l|Ry = §', Sy = ¢/, Ny = 1)
we must show that
> 7 d PG a1l ¢ ) = 7(j,q,D),
v

for all j,q and [. We split the proof in two cases. Firstly we consider the case of
no changepoint at time ¢ which means j < —1. Then by (3.2) P(j,q¢,1|7’,¢',I') =0
unless j'=j+ 1,0’ =1+ 1 and ¢’ = ¢. Also by (3.2) we find that

T+ 1L, ¢l + )P, q,llj+1,¢,1+1) =7(j,q,1).

In the other case where 7 = —1 corresponding to a changepoint at time ¢ we have
that P(j,q,1|7’,¢',!") = 0 unless ¢ = ¢ — 1(mod m) and I’ = 0. Here we find that

> 7(j',g = 1(mod m),0)P(~1,q,1|j',q — 1(mod m),0)

5/

J

_ Z qu(gd ZZS) —J) W,(1+1)
= ﬁWq(l —J)

to complete the proof of the lemma. O

B Mathematical description of updating equations

In section 4 we presented an approximate filter for the state variables of our model.
Here we give a detailed derivation of the filter recursions. That is, we derive p(Ryy1 =
7,8t = ¢, Ney1 = 1 ager, b1 [y = pei1(d, ¢, 1, age1, biq) from py, the transition
density and the likelihood of y/™, using standard updating formulas. Because we
use the approximation (4.2), at each time point ¢ we have to update the quantities
pe(J,q,0), (4, q,1) and 3:(j,q,1) for all j,q and [. Therefore we now assume that
all the quantities are known at time ¢ and in the following we will prove that the
updating equations given in Section 4 are valid.

We first consider the case where j < ¢, that is, there is no change of the stage at
time ¢. In this case according to (3.2), Ry = Riv1, S¢ = Sir1 and Ny = Nyi1. Then
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by (3.5), a; = a1 and by = byyq. Therefore only one transition is possible and we
get directly
pt+1(j7 q, lu a, b)
= o (¥ e, a, D la, bs ,Ut(] g,

)727&(] q, ))

o ab=2+12=2.02)
(®)

)

l—J
¢(Oa ,Ut(j7Q> ) Zt(] q, )
X ¢(a7 ba ﬂt(j>q7 Et 37Q7 H¢ ylv (Bl)

= (4,0, 1)

with 3(4,¢,1)~" and fi,(j, ¢, 1) given by the right hand sides of (4.4) and (4.5). The
normalizing constant ¢y 1(y*™1) is p(y')/p(y'™). Integrating (B.1) with respect to
(a,b) the ¢(a,b;-) term disapear, and the formula (4.3) for p,y1(j, g, 1) is obtained.
Next dividing (B.1) by (4.3) we see that the filtering distribution of (a;41, bit1) is
the normal distribution with mean fi,(j,¢,1) and variance 34(j,q,1) which proves
(4.4) and (4.5).

We next consider the case where j = ¢, that is, there is a change of the stage at
time ¢. In this case Ny = t, R; can be any value j' < t, S; = ¢ = ¢ — 1(mod m), and
by = asy1 = a. Letting ¢ = g+ 1(mod m) using the transistion density (3.2) we find

prea(t.q lab) = e (YW= 1)) pili' ')
jr<t

X / ¢(a/7a; :ut(jlaq/?t)vZt(jlaqlat))(b(b; ,Udeg)
H [ — s, Ss;—t
/L" 3 b 3 2
X(t)qu’al_tJr g

-t 1

= Wq(l - t) Zpt(jla qla t)¢(a, /’Lt(jla qla t)?v Et(jla qla t)22)

Jj'<t
— S; Si—t 2
o(b; pg,w Haﬁy@, — b))
Wyl =) [[ o 0,69 (i, d' 1)
(t) Jr<t

(05 (5, 4", t)2, Be(5', @' 1) 22) 0(0; uq,wé’)
¢(0; (', ¢ st 1), Ze(5', ¢, t,1))
x ¢la,b; (5, q',t,0),5(5' ¢, t,1)), (B.2)
with

S - (5 d s 0
I 1 t y4 9 V)22
Zt(] , 4 7t7 l) - ( 0 (wg)—l

i [(1—s;)/(1—1)]? (si — )1 — ;) /(1 — 1)
0'3 % ( _t l - S@)/<l — t)g [(Sz N t)/(l o t)]g ) (BB)
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and

Se(id 6 0 g g 1)
i3 @5 0)2/2(7 0 )22 1 yi(l —s) /(1 — 1)
( Ha/ws ) t o % ( il — DI — 1) ) (B.4)

Integrating (B.2) with respect to (a,b) the ¢(a, b;-) term disappear, and the formula
(4.6) is obtained. Dividing (B.2) by (4.6) we see that the density of (a¢y1,biy1) 1S

Z O5t(j/7 qu ta l)¢(a7 b? ﬂt(j/7 q/7 t? l)7 Et(j/7 q/7 t? l))? <B5)
j'<t
where .
Oét(j,,q,,t,l)z Vt(j>q~.> ) )
Z;<t /Yt(.]7 qu tu l)
with

P05 (5", q' )2, Be(J', ¢, ) 22)

¢(Oa ,at(jla q/> ta l)? it(jla q/> t? l)) .

We approximate the Gaussian mixture in (B.5) by a single Gaussian density with
the same mean and variance. This gives the formulas (4.7) and (4.8).

Pyt<jla qu ta l) = pt(j/7 q/7 t)

C Estimation of waiting time distributions

When we estimate the waiting time probabilities W, (/) as described in Section 5.2

we need to calculate E(3F 4;|y¥) iteratively. Now let 1 = (2, 2_1) be a general
estimation function where z; = (R;, S;, N;). Using the approximation

P(Zkt1, Ykt |Zf7 yf) ~ (2t 1, Yt1 | 28 yf)

we have the following updating rule

k+1
E(Z Vil 211, yf“)
1

k k
2kt 1, 2k, z
Z( szpk’yl ¢k+1) P(Zht15 Ynt1] 2, Y1) 0( k|§h)
k2

szp(zk+17yk+1|zk7y1) (Zklyr)

We next specialize this formula. First we consider the case j = Ry < k for which
we find

(%W (4,1 k“) = E(i%l(j, qJ),yf) + (4, ¢, 1), (4, ¢,1))-

For the case j = k we use ¢ = ¢ — 1(mod m) and get

k+1
(Zwl L q’ k-H)

_ Zj’<k{E(Zl ¢z|(jla qlv k)? ylf) + w((ka q, l)’ (j/a qla k))}7t(j/7 q/7 ta l)
Zj/<k ’yt(jlaqlatv l) '
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Finally, we find

k+1 k+1
E(Z mwf”) = pealkq. Z)E(Z il (k, q,1), yf“).
1 1

k,q,l
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