
Risk Probabilities:

Asymptotics and Simulation

PhD Dissertation

Leonardo Rojas Nandayapa

Advisor: Søren Asmussen

September 2008
Department of Mathematical Sciences

Faculty of Sciences University of Aarhus





To my parents





Contents

Preface v

Summary vii

Chapter 1 Introduction 1

1.1 Basic Concepts and Notation . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Heavy-Tails and Subexponentiality . . . . . . . . . . . . . . . . . . . . . 3

1.3 Rare Event Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 2 Ruin Probabilities in a Finite Time Horizon 23

2.1 Risk/Queueing Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Ruin Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Monte Carlo Estimation of the Ruin Probability . . . . . . . . . . . . . 28

2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 3 Tail Probabilities for the Multivariate Lognormal 41

3.1 Asymptotic Tail Probabilities for Sums of Lognormals . . . . . . . . . . 42

3.2 Monte Carlo Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 4 Tail Probabilities for Log-elliptical Distributions 60

4.1 The Log-elliptical Distribution . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Monte Carlo Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 5 Small Tail Probabilities of Sums of Lognormals 72

5.1 The Laplace Transform of a Lognormal Random Variable . . . . . . . . 73

5.2 Importance Sampling Algorithms . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 6 The Economical Value of Realized Covariance 81

6.1 Cumulative Covariance for the Whole Day . . . . . . . . . . . . . . . . . 82

6.2 Empirical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

iii



Contents

Appendix A Probability Distributions 87

A.1 Univariate Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2 Multivariate Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Appendix B Simulation 95

B.1 Random Number Simulation . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2 Monte Carlo Estimators and Variance Reduction . . . . . . . . . . . . . 97
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Summary

In the material revised in this dissertation the common and main objects of interest
will be tail probabilities of a sum Sn of heavy-tailed random variables. More precisely,

P(Sn > u), u→ ∞.

These probabilities are of a major importance in various branches of Applied Probabil-
ity, such as Risk Theory, Queueing Theory and Financial Management, and are subject
of intense research nowadays. To understand their relevance one just needs to think
of insurance companies facing losses due to natural disasters, banks seeking protection
against huge losses, failures in expensive and sophisticated systems or loss of valuable
information in electronic systems.

The main difficulty when dealing with this kind of problems is the unavailability of
a closed analytic expression for the distribution function of a sum of random variables.
The presence of heavy-tailed random variables complicates even more the problem. The
objective of this dissertation is to provide better approximations by means of sharp
asymptotic expressions and Monte Carlo estimators. By doing so, we will obtain a
deeper insight into how events involving large values of sums of heavy-tailed random
variables are likely to occur.

The objective of the first Chapter is to provide some additional motivation for the
study of stochastic models with heavy-tails and introduce the main tools that will be
used for its analysis. After establishing some basic concepts and notation, two of the key
ingredients in this dissertation are presented and discussed: Heavy-tailed Distributions
and Monte Carlo Methods for Rare Events.

Probabilities of Ruin are studied in the Chapter 2. A brief introduction to Risk
processes and Queueing process is given there making emphasis on how these processes
are related to a sum of random variables. This is followed by a a short revision of the
literature available on the approximation of Probabilities of Ruin – sharp asymptotic
expressions and Monte Carlo estimators. Finally, two novel Monte Carlo estimators are
proposed for approximating the probability of ruin in a finite time horizon in one of the
most important heavy-tailed settings: Regular Variation.

Tail probabilities of sums of correlated lognormal random variables are analyzed in
the Chapter 3. Their joint distribution is derived from an exponential transformations
of the components of a multivariate normal vector. Therefore, it is consider an essential
model for dependent heavy-tailed phenomena. A sharp asymptotic expression is derived
for the tail probability of the sum correlated lognormals – a result which directly relates
them with the class of Subexponential distributions in the i.i.d. setting. Moreover, this
approach will provide a useful insight into the occurrence of large values of the sum.
Two sets of Monte Carlo estimators with excellent numerical and theoretical properties
are given next.
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Summary

Tail probabilities of the sum of the components of a Log-elliptical random vector
are considered in the Chapter 4. These vectors are obtained by an exponential trans-
formation of random vectors with elliptical distributions – a large class of multivariate
distributions which includes the multivariate normal, the multivariate-t, normal mix-
tures and generalized hyperbolics among others. After a brief introduction to this class
of distributions, a Monte Carlo estimator for the tail probability of the sum is proposed
and analyzed. In particular, for the multivariate lognormal case it is shown to have
optimal theoretical properties.

A brief analysis of the small tail probability P(Sn < u) involving i.i.d. lognormal
random variables is presented in the Chapter 5. After some motivation for the study of
this problem, it will be discussed how the Laplace-Stieltjes transform is used to solve
this kind of problems. A sharp approximation for the Laplace-Stieltjes transform is
proposed, analyzed and used for the construction of two Monte Carlo estimators.

The methodology of an empirical study of the economical value of realized covari-
ance in investment decisions can be found in the Chapter 6. A general overview of
realized volatility – a volatility estimator designed for high-frequency data – is provide
first including a discussion of some of the proposals found in the literature to overcome
the problems of non-synchronicity, incomplete data for the whole day and data con-
taminated by noise which are characteristic of high-frequency financial data. Then it
is suggested to merge some of these proposals to obtain a realized covariance for the
whole day and measure its value in investment decisions.

Some relevant, but standard material has been collected in the first three Appen-
dices. Numerical examples of the methods suggested across the dissertation were col-
lected in the last Appendix, while its discussion was kept in the original chapters.

For an easier identification, those pieces of original research obtained during my
time working in this dissertation were labeled either as Theorems, Lemmas or Corol-
laries. Results taken from the literature or deducted from known results were labeled
as Propositions. The following is a summary of these results. The Theorems at the
end of Chapter 1 are corrected versions of the results which appeared first in Asmussen
and Rojas-Nandayapa (2006) and later in Rojas-Nandayapa (2006) (these are exten-
sions of the original work of Asmussen and Binswanger, 1997; Asmussen and Kroese,
2006). The sharp asymptotic expression studied in chapter 2 was derived in Asmussen
and Rojas-Nandayapa (2008). The first set of algorithms proposed in Chapter 3 were
proposed and analyzed in Asmussen et al. (2008). The second set of algorithms is
partly extracted from Asmussen and Rojas-Nandayapa (2006) and represents work in
progress. The material in Chapter 4 is joint work with José Blanchet; this will be
reorganized and submitted for publication soon. An early report on these results can
be found in Blanchet et al. (2008). Chapter 5 is work in progress together with Søren
Asmussen and has not been submitted anywhere. The empirical study in the Chapter
6 represents a joint effort with Henning Bunzel and Bent Jesper Christensen and is also
work in progress.
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Chapter 1

Introduction

The aim of this chapter is to serve as an introduction to the main tools and concepts
used in the analysis of tail probabilities

P(Sn > u), u→ ∞,

involving heavy-tailed random variables.
Basic concepts, general assumptions and common notation adopted all over the

dissertation will be established in the Section 1.1. Basics on asymptotic analysis and
probability theory are the main topics here.

The vague concept of heavy-tailed random variable used so far will be made precise
in the Section 1.2. A motivation for the study of stochastic models with heavy-tails will
be followed by a short discussion of the alternative definitions of heavy-tailed random
variables available in the literature. It will be seen that these apparently different def-
initions lead to almost identical classifications of heavy-tailed distributions. Particular
attention will be paid to the rich class of subexponential distributions and it will be
discussed how its defining property provides a useful insight into the occurrence of large
values of a sum of heavy-tailed random variables.

A general overview of Monte Carlo methods is provided in Section 1.3 with a par-
ticular emphasis in the area known as Rare Event Simulation. In those cases where no
closed analytic expression for the distributions function is readily available, Monte Carlo
methods have become one of the most reliable possibilities so far. The notions of rare
event and efficient estimator will be formalized here to provide the proper framework
for the analysis of Monte Carlo estimators of tail probabilities.

Later on, the most established tool in a light tailed setting (Siegmund, 1976; Bucklew
et al., 1990; Sadowsky and Bucklew, 1990; Sadowsky, 1996) and its limitations in a
heavy-tailed setting (Asmussen et al., 2000) will be discussed. The last part is devoted
exclusively to the heavy-tailed setting; a recount of methods developed in the literature
is given there followed by a more detailed exposition on the conditional estimators
proposed by Asmussen and Binswanger (1997); Asmussen and Kroese (2006) in the
i.i.d. case. Proofs of efficiency in an extended number of case are the first pieces of
original research presented in this dissertation.

1.1 Basic Concepts and Notation

The use of capital letters will be (mostly) reserved for random variables and/or stochas-
tic processes. The cumulative distribution function of any given random variable will be

1



1. Introduction

usually represented by F or G and in some parts abbreviated c.d.f. The tail probability
of a random variable with distribution F is defined as 1 − F (·). The standard practice
is to use the notation F . The tail probability function is also known in other contexts
as survival function.

The use of boldface has been kept to denote matrices and vectors which by con-
vention will be in column form. Besides the standard matrix and vector operations we
will consider functions of a matrix to be entry-wise. For example, log(A) should be
understood as the matrix obtained by taking the logarithm of the individual entries of
the matrix A.

For any given sequence of random variables we will use Sd to represent the d-th
partial sum, Md for the maximum among the first d random variables and X(k) for the
k-th order statistic among the first d (implicit) random variables.

We will adopt the practice of inserting the symbol ̂ for denoting an unbiased
estimator of a given quantity or function, say z. Then, we will understand that ẑ is an
unbiased estimator of z. When we consider more than one estimator we will distinguish
them by adding subindexes.

1.1.1 Laplace-Stieltjes Transform

The Laplace-Stieltjes transform of a function F is defined as the following Lebesgue-
Stieltjes integral

L∗F (θ) :=

∫ ∞

−∞
e−θtdF (t), θ ∈ C.

If F is a distribution function and X ∼ F , then E [e−θX ] = L∗F (θ). The Laplace-
Stieltjes transform is closely related to the Laplace transform in the following way, if
the function F has a derivative f , then LF ∗(θ) = Lf(θ) where

Lf(θ) :=

∫ ∞

−∞
e−θtf(t)dt, t ∈ C,

is the Laplace transform of the function f(·). Note that by dropping the negative sign of
the argument θ in the definition of the Laplace transform we would obtain the moment
generating function of the random variable.

1.1.2 Asymptotic Notation

We will use the Bachmann-Landou asymptotic notation all over the dissertation (cf.
DeBruijin, 1958) which is as follows: Let φ and g real functions such that φ > 0 and
x0 ∈ R ∪ {±∞}.

• We say that f is big Oh of φ as x → x0 and denote it f = O(φ) if there exists
k > 0 such that

lim sup
x→x0

f(x)/kφ(x) < 1.

• We say that F is small oh of φ as x→ x0 and denote it f = o(φ) if

lim
x→x0

f(x)/φ(x) = 0.

• We say that f and φ are asymptotically equivalent as x→ x0, denoted f ∼ φ if

lim
x→x0

f(x)/φ(x) = 1.

2



1.2. Heavy-Tails and Subexponentiality

• We say that f is asymptotically proportional to φ as x → x0 and denote it
f = Θ(φ) if for some fixed positive value L we have

lim
x→x0

f(x)/φ(x) = L.

Note that f ∼ φ is equivalent to write f(·) = φ(·)(1 + o(1)). Since the symbol ∼ is also
used to express that a random variable follows a particular distribution the last notation
will be prefer to avoid confusions. In a similar fashion, f = Θ(φ) is equivalent to write
f(·) = φ(·)(L + o(1)) for some fixed positive value L. This notation is introduced in
this dissertation to simplify some calculations where the value of L is not relevant for
our purposes.

1.1.3 Failure Rate Function

We close this section with another concept widely used in applied probability:

Definition 1.1 (Failure Rate Function). The failure rate function or hazard rate func-
tion of a random variable with distribution function F and density function f is defined

λ(t) := f(t)/F (t).

1.2 Heavy-Tails and Subexponentiality

The notion of heavy-tails arises from those phenomena in nature where considerable
consequences are result of events with small but significative frequencies. The classical
example is that of a natural catastrophe such as an earthquake or a hurricane. The
consequences can be dramatically as shown in the example given in Table 1.1 where the
ten worst natural disasters in terms of fatalities for the past ten years are listed.

Event Place Date Fatalities

Tsunami Indian Ocean Dec 2004 229,866
Cyclone Nargis Burma May 2008 140,000
Kashmir earthquake Pakistan Oct 2005 86,000
Sichuan earthquake China May 2008 69,197
Heat wave Europe Sum 2003 37,451
Bam earthquake Iran Dec 2003 30,000
Vargas mud slide Venezuela Dec 1999 20,006
Gujarat earthquake India Jan 2001 20,000
Hurricane Mitch Central America Oct 1998 18,277
Izmit earthquake Turkey Aug 1999 17,118

Table 1.1: The ten worst natural disasters in the past 10 years in terms of fatalities.

Examples of this type of phenomena abound in areas such as insurance (claim
sizes and amount of claims), finance (portfolio returns) and data networks (file sizes,
transmission rates and transmission durations). Hence, it is crucial to count with the
appropriate framework for the analysis of this kind of phenomena where large amounts

3



1. Introduction

of theoretical results and specialized techniques from applied probability and statistics
are required.

Although this example might provide general guidelines on what a heavy-tailed
distribution should be, there is no general consensus on it. Throughout this section
we will discuss different rules to discriminate heavy-tails which are widely accepted in
the literature as definitions for heavy-tails. Most of them are related to some extent
to the rate of decay of its tail probability. From a practical point of view, these rules
are almost equivalent since they provide similar classifications for the most common
distributions.

Before we move on, we will try to illustrate with an example what should not be
regarded as a heavy-tail. Consider the number of gold medals won by a single athlete
in the same Olympic Games. We may agree than the possibilities of winning more than
one gold medal for any given athlete are very low, so it might reasonable to consider an
extreme event the fact that Michael Phelps won 8 gold medals in Beijing 2008. However,
if we look back in the history of the modern Olympic Games we discover that several
athletes had been close to this mark.

Athlete Sport Games Gold Medals

Michael Phelps Swimming Beijing 2008 8

Mark Spitz Swimming Munich 1972 7

Michael Phelps Swimming Athens 2004 6

Vitaly Scherbo Gymnastics Barcelona 1992 6

Kristin Otto Swimming Seoul 1988 6

Table 1.2: Athletes with most gold medals won in the same Olympic Games

In this example, large outcomes form a cluster around the value 8, a feature which
marks a notable difference with the example of the number of fatalities where large
values are disperse. In fact, the concept of heavy-tail is not simply related with distri-
butions where large values occur with relatively high frequency. More surprisingly, we
will discover that not even large dispersions might be enough to consider a distribution
to be heavy-tailed.

1.2.1 Infinite Moments and Infinite Moment Generating Function

An implicit idea in the concept of heavy-tails is that of infinite support. Here, we
will concentrate exclusively in those distributions with nonnegative values. From the
example of the gold medals we saw that simply large values or high dispersion are not
the only characteristics we are looking in a heavy-tailed phenomenon. However, we will
consider an infinite mean or infinite variance as sufficient conditions for a distribution to
be heavy-tailed. For instance, we will accept that a random variable X is heavy-tailed
if E [Xk] = ∞ for some k ∈ N. Moreover, the class defined by this characteristic is
properly contained in the next definition.

Definition 1.2 (Heavy-tails with infinite m.g.f.). We say that a random variable X is
heavy-tailed if its moment generating function is infinite for any positive value of the
argument. That is

E [eθX ] = ∞, θ > 0.

4



1.2. Heavy-Tails and Subexponentiality

Note that a random variable with an infinite moment of order, say k, is contained in
this class. However, it is not always true that a random variable with infinite moment
generating function possesses an infinite moment. The popular example is that of a
lognormal random variable which has finite moments of every order but its moment
generating function is infinite for any positive value of the argument.

1.2.2 Mean Excess Function

A more intuitive classification is given by means of the excess function for those distri-
bution with finite first moment. More precisely, the mean excess function of a random
variable X is given as

e(u) := E [X − u|X > u], u ∈ supp(X).

The mean excess function can be interpreted as the expected value of the excess of a
random variable over a given threshold u. For a heavy-tail we would expect that this
value increases as u→ ∞. In the example of the gold medals, a heavy-tailed distribution
would imply that the next athlete that exceeds the number of 8 gold medals, most likely
will do it for a fairly large amount. More precisely:

Definition 1.3 (Heavy-tails with infinite mean excess function). We say that a random
variable X is heavy-tailed if its mean excess function tends to infinity as u→ ∞.

An equivalent expression for the mean excess function which is useful for testing
the heaviness of a given distribution is given by

e(u) =
1

F (u)

∫ ∞

u
F (t)dt.

1.2.3 Exponential Decay Rate

Another rule for classification which is easy to verify is given in terms of the rate of
decay of the tail probability. The common practice is to use the exponential function
as a benchmark. That is,

Definition 1.4 (Heavy-tails with low rate of decay). We say that a probability distri-
bution F is heavy-tailed if

lim inf
u→∞

F (u)

e−λu
> 0, ∀λ > 0,

or light tailed if for some λ > 0

lim sup
u→∞

F (u)

e−λu
<∞.

This is one of the easiest criteria for verifying the heaviness of a distribution. In
fact, it also provides a definition for a light tail . It almost immediately follows that the
exponential, gamma and normal distributions are examples of light tails. Note that an
exponential transformation of light tailed random variables might yield to distributions
with heavy-tails. In particular, the Pareto, loggamma and lognormal are the respective
heavy-tailed distributions obtained from an exponential transformation of the light
tailed distributions above.
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1. Introduction

1.2.4 Subexponentiality

Subexponential theory provides an alternative definition for heavy-tails which is almost
equivalent to the previous ones. This class of distributions was introduced in Chistyakov
(1964). In particular, it provides a deep insight into the occurrence of events involving
large values of the sum. Several useful properties can be derived from the definition
making the class of subexponential distribution attractive for applications.

We say that a probability distribution F belongs to the class S of subexponential
distributions S if the tail probability of the convolution of two i.i.d. random variables
with common distribution F is asymptotically equivalent to two times the tail proba-
bility of one of them. More precisely:

Definition 1.5. A probability distribution F is subexponential (F ∈ S) if its support
is contained in (0,∞) and

lim
u→∞

P(X1 +X2 > u)

P(X1 > u)
= 2, (1.1)

where X1 and X2 are independent with common distribution F .

In particular, if a probability distribution F belongs to the class S an equivalent
relation holds for the convolution of an arbitrary number of i.i.d. random variables with
common distribution F . That is,

lim
u→∞

P(X1 + · · · +Xn > u)

P(X1 > u)
→ n.

In the literature, this equivalent property is often preferred as definition for the class
S. In fact, it provides a useful intuition into how large values of the sum are likely to
occur. We illustrate this idea below.

Note that the distribution of the maximum Mn of arbitrary i.i.d. random variables
(not necessarily subexponential) is given by Fn(u). Then, the following asymptotic
equivalent expression is obtained

P(Mn > u) = 1 − Fn(u) = (1 − F (u))
n−1∑

k=0

F k(u) = F (u)
(
n+ o(u)

)
.

The last asymptotic expression follows by noting that F k(u) → 1 for all k ∈ N and the
well known relation

n−1∑

k=0

F k(u) =
1 − Fn(u)

1 − F (u)
.

The conclusion here is that the tail distribution of the maximum of i.i.d. random vari-
ables is determined by the tail of a single random variable. Moreover, if F belongs to
the class S then

lim
u→∞

P(X1 + · · · +Xn > u)

P(Mn > u)
= 1.

This expression can be rewritten so it reads instead P(Mn > u|X1 + · · ·+Xn > u) → 1.
Intuitively it says that the sum becomes large due to the contribution of a single random
variable. This behavior is completely opposite to that of lighted tails where the sum
of i.i.d. random variables becomes large as a consequence of several moderately large

6



1.2. Heavy-Tails and Subexponentiality

contributions. Hence, it turns out that distributions within the class S should be
appropriate for modeling those phenomena which show some stability through time
but eventually are shocked by an extreme event associated with large values.

The property in Definition 1.5 on the preceding page looks rather simple. However
many properties can be derived from it, making S a very flexible class of distributions.
Below we list some of the main properties of the class S which will be useful for our
purposes. For doing so, it will be convenient to establish an order relation among
distributions with infinite support according to the heaviness of its tail.

Definition 1.6. Let Fk and Fℓ be nonnegative distribution functions with support in
(0,∞). Then we say,

a) Fk has a lighter tail than Fℓ (or Fℓ has heavier tail than Fk) if F k = o
(
F ℓ

)
.

b) Fk and Fℓ have proportional tails if Fk = Fℓ(c+ o(1)) for some fixed c ∈ (0,∞).

c) Fk and Fℓ have equivalent tails if Fk = Fℓ(1 + o(1)).

Properties of Subexponential Distributions Let F ∈ S and F1, F2 two nonneg-
ative distribution functions with infinite support. Then

• The following limit holds uniformly on compact sets of (0,∞).

lim
u→∞

F (x− y)

F (x)
= 1.

This property defines a larger class of distributions commonly known as long tailed
distributions which is denoted as L.

• The following property justifies the name of the class S.

lim
u→∞

F (x)

e−λu
→ ∞.

This property indicates that the class of heavy-tailed distributions we define ac-
cordingly to its decay rate is contained in S.

• Let a1, a2 be positive constants. If F1(u) = F (u)(a1+o(1)) and F2(u) = F (u)(a2+
o(1)) as u→ ∞, then

F1 ∗ F2(u) = F (u)(a1 + a2 + o(1)).

• Suppose that F1, F2 ∈ S are such that F2(u) has lighter tail than F1(u). Then,
F1 ∗ F2 ∈ S and

F1 ∗ F2(u) = F1(u)(1 + o(1)).

Intuitively, this property says that the tail probability of the sum is dominated
by the one with the heaviest tail.

More details and examples of distributions with heavy-tails can be found in Em-
brechts et al. (1997). In this dissertation we will concentrate in the lognormal distribu-
tion and the class of regularly varying distributions with index α. In particular, these
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1. Introduction

two distributions fulfill the definitions of each of the classes of heavy-tailed distribu-
tions listed above. A short exposition on the lognormal distribution is given in A.1.1 on
page 87. Since the definition of regularly varying is often regarded to be a definition of
heavy-tails we discuss some relevant aspects next. Further details can be found in A.1.2
on page 88.

1.2.5 Regularly Varying Distributions

Definition 1.7. The class R of random variables with regularly varying tails is defined
as the family of nonnegative random variables whose tail probability can be written as

F (x) =
L(x)

xα
, x, α > 0,

where L(x) is a slowly varying function. That is, L(x) is a measurable function satisfying

lim
x→∞

L(tx)

L(x)
= 1, ∀t ∈ (0,∞).

Equivalently, a distribution is regularly varying if and only if

lim
x→∞

F (tx)

F (x)
= t−α, ∀t ∈ (0,∞).

It is also common to partition the class R accordingly to its index α. Therefore, Rα

represents the class of regularly varying distributions with index α. The notation R0

is reserved for the class of slowly varying functions. The Pareto, Burr, α-stable and
loggamma are typical examples of regularly varying distributions.

The class Rα is often understood as those distributions with a tail behavior similar
to a power function with exponent α where the slowly varying function L(x) acts as a
perturbation factor. This class has been largely studied under the more general theory
of regularly varying functions (cf. Bingham et al., 1987). For now we will just enunciate
a well known result which will be useful in this dissertation.

Proposition 1.8 (Karamata’s Theorem). Let L ∈ R0 be bounded in [x0,∞) and α > 1.
Then ∫ ∞

x

L(t)

tα
dt =

L(x)

(α− 1)xα−1
(1 + o(1)) x→ ∞.

This result says that the integrated tail of a regularly varying function with index
α > 1 will be regularly varying with index α − 1. Even more, it says that the slowly
varying function is preserved after the integration.

Using Karamata’s Theorem it is easy to verify that the mean excess function e(u) of
a regularly varying goes to infinity as u → ∞, recall the alternative representation for
e(u). Similarly, all the moments of order large than the index α of a regularly varying
distribution are infinite while those of smaller order than α are finite. It is trivially seen
that the tail probability decays slower than the exponential and it is also provable that
a regularly varying distribution satisfies the characteristic property of subexponential
distributions. Hence, the class R inherits all the properties of the class S.
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1.3. Rare Event Simulation

1.3 Rare Event Simulation

A rare event is simply a set A ∈ F with such a small probability that severe computa-
tional difficulties arise while trying to calculate it. These are usually characterized by
inaccurate approximations or excessive running times. (cf. Asmussen and Glynn, 2007;
Bucklew, 2004; Juneja and Shahabuddin, 2006). To illustrate this, we consider a set
{Au} of events indexed by u such that

z(u) := P(Au) → 0, u→ u0.

The basic algorithm, named Crude Monte Carlo, simulates an arbitrary number R
of outcomes ω1, . . . , ωR according to the probability measure P, and approximates P(A)
with

ẑ(u) =
1

R

R∑

i=1

I(ωi ∈ Au), ω1 ∈ Ω.

Note that, since I(ωi ∈ A) is a Bernoulli random variable with parameter p = P(Au) its
standard deviation is given by

SD [ẑ(u)] =

√
P(Au)

(
1 − P(Au)

)

R
.

and it converges to z(u) by the law of large numbers Commonly, we would like to
generate an estimation with some degree of precision and for doing so we can use the
language of confidence intervals. More precisely, by the central limit theorem we know
that an approximate confidence interval at (1 − α)% is given by

ẑ(u) ± Φ(1 − α/2)

√
P(Au)

(
1 − P(Au)

)

R
,

where Φ is the cumulative distribution function of a normal standard r.v. This means
that the error of the estimate will be smaller than

Φ(1 − α/2)

√
P(Au)

(
1 − P(Au)

)

R
,

with a confidence of (1 − α)%. This can be conveniently translated into the number of
replications necessary to achieve a particular precision: How many replications would
be necessary to have an error smaller than ǫ with an α confidence level? The answer is

R ≈ Φ2(1 − α/2) P(Au) (1 − P(Au))

ǫ2
.

At first sight, it might appear that the Crude Monte Carlo estimators would deliver
accurate results since the number of simulations required for getting a precision ǫ would
decrease as P(Au) → 0. However, taking a fixed precision ǫ is not the right approach to
rare events. The problem here is that the size of the error might be huge compared to
the size of the estimation, so we need to set ǫ accordingly to the size of the probability
P(Au).

For instance, if we set an error size of the order O(P(Au)) as u → u0 (this simply
means that the size of the error will remain proportional to the size of the estimation)

9
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a few simple operations would indicate that the required number of replications would
be R = Θ

(
1/P(Au)

)
. Clearly, this quantity will go to infinity as P(Au) → 0. The

conclusion is that Crude Monte Carlo easily becomes infeasible for estimating small
probabilities and the necessity of improved estimators becomes evident. In fact, this is
one the main objectives of the area in simulation known as Variance-Reduction Methods
(cf. Asmussen and Glynn, 2007; Rubinstein and Kroese, 2008). For more details see
Appendix B.2 on page 97.

For now, we will just say that a Variance Reduction method is simply an algorithm
which produces an estimator with smaller variance than Crude Monte Carlo. The
quality of a particular method is assessed not only based on the variance reduction itself
but also in the amount of computational resources consumed, the theoretical work and
the implementation effort invested. Hence, for a particular method to be worthwhile,
the variance reduction should be substantial enough to compensate these aspects. It
is obvious from the discussion above that the demand of reduction of variance in the
presence of rare events is huge.

1.3.1 Efficiency Concepts in Rare Event Simulation

It would be desirable to have an estimator which has a variance reduction factor of the
order O(P(Au)) as u → u0. In fact, this is a realistic performance which is known in
the literature as bounded relative error or strong efficiency and is properly defined in
terms of its variance as follows

lim sup
u→∞

Var ẑ(u)

z2(u)
<∞.

Under some settings, bounded relative error is a criterion which turns out to be too
demanding. The reason lies in the difficulty of finding an implementable estimator and
proving that it has bounded relative error. For this reason, it is usually common to work
with a slightly weaker concept known as logarithmic efficiency or simply asymptotic
efficiency which is defined as

lim sup
u→∞

Var ẑ(u)

z2−ǫ(u)
= 0, ∀ǫ > 0.

From this definition is clear that bounded relative error implies logarithmic efficiency.
From a practical point of view, there is no substantial difference between these two
criteria. By contrast, in most applications it is easier to prove logarithmic efficiency in
part due to the following Proposition which provides a more flexible equivalent criterion.

Proposition 1.9. A simulation estimator ẑ(u) is logarithmic efficient if and only if

lim inf
u→∞

∣∣ log Var ẑ(u)
∣∣

∣∣ log z2(u)
∣∣ ≥ 1.

Recently, a stronger efficiency concept has been targeted by several authors. This
criterion is known under several names such as asymptotically zero relative error, asymp-
totically optimal relative error or vanishing relative error and is defined as

lim sup
u→∞

Var ẑ(u)

z2(u)
= 0.

10
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This is clearly much stronger than bounded relative error. In fact, when an estimator
has asymptotically zero relative error it has produced a variance reduction factor of the
order o(P(Au)). It is so strong, that the number of replications necessary to attain an
error of order O(P(Au)) as u → u0 will decrease as the event becomes rarer until the
level where it is only necessary to generate a single replication.

However, it is a difficult task to find an efficient simulation estimator and prove that
it verifies any of the conditions above. Therefore, we have defined an efficiency criterion
which is weaker than logarithmic efficiency. More precisely, for a fixed value δ > 0 we
say that an estimator ẑ(x) is δ-efficient if

lim sup
u→∞

Var ẑ(u)

z2−δ(u)
<∞.

This means that if we keep the number of replication bounded we will get a variance
reduction factor of the order O

(
P

1−δ/2(Au)
)
. The motivation to define this concept is

not merely to fill the gap between bounded relative error and the Crude Monte Carlo
efficiency but also to provide a tool to detect weakness of an estimator which might be
corrected for attaining a stronger efficiency.

L’Ecuyer et al. (2008) introduce new stronger efficiency concepts which take care of
the moments of higher order. Hence, these concepts are named bounded relative error
of order k and logarithmic efficiency of order k.

1.3.2 Rare Event Simulation for Sums of Random Variables.

Variance reduction methods are useful tools for constructing efficient estimators. How-
ever, it often requires a considerable amount of theoretical work and most often they
should be designed for the problem at hand. Therefore, it is relevant to define more
precisely the kind of rare events we are interested in.

Generally speaking, we will be interested in those rare events related to a sum of
random variables with heavy-tails. More precisely,

P(X1 + · · · +XN > u),

where X1,X2, . . . a sequence of random variables and N possibly random. For the rest
of this chapter we will discuss some of methods which produce efficient algorithm for
the sums of a fixed number of non-negative i.i.d. random variables. In future chapters
we will relax these assumptions and specialize in more complex cases which will require
further refinements and improvements of the methods presented in this section.

The most established tool for rare event simulation is Importance Sampling (see
the appendix B.2.2 on page 98). Roughly speaking, for the method to produce a
variance reduction it should simulate from a distribution which produces samples in the
rare event with higher frequency than the original one. Then, an unbiased estimator
comes out as the result of an appropriate weighted average of the outcomes. In fact,
theoretically there exists an importance sampling distribution which can produce a zero
variance estimator. The implementation of such algorithm is typically infeasible since
it often requires the knowledge of the probability of interest P(A). However, it suggests
how to select the importance sampling distribution.

For the light tailed case the standard tool for estimating P(Sn > u) is Importance
Sampling with an exponential change of measure. This simply means that the proposed
distribution Fθ is obtained by normalizing the measure eθyF (dy) for some value θ ∈ R.

11
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The reason being that if we choose θ to be the solution of E θ[X1] = u, then the
distribution associated to the zero variance estimator converges to Fθ as the number
of summands d increases to infinity. Estimators with excellent efficiency properties can
be constructed by choosing a feasible importance sampling distribution which emulates
the optimal change of measure.

However, we have seen before that a heavy-tailed random variable can be charac-
terized by the nonexistence of the moment generating function. Asmussen et al. (2000)
present a number of counterexamples suggesting that different methods should be em-
ployed for this kind of distributions. In recent years, several algorithms have been
proposed for the efficient estimation of a sum of heavy-tailed random variables. The
first logarithmic efficient algorithm was proposed in Asmussen and Binswanger (1997)
for the regularly varying case. This algorithm is based on Conditional Monte Carlo
and uses order statistics. Asmussen et al. (2000) and Juneja and Shahabuddin (2002)
proposed importance sampling algorithms which are logarithmically efficient. A condi-
tional algorithm, similar to that of Asmussen and Binswanger (1997) was proposed in
Asmussen and Kroese (2006). That algorithm exploits a symmetry relation of i.i.d. ran-
dom variables and the conditioning involves the highest order statistic and has bounded
relative error in the regularly case. Dupuis et al. (2006) proposed a state-dependent
algorithm for the regularly varying case which has bounded relative error. Blanchet and
Glynn (2008) proposed the first logarithmically efficient rare-event simulation algorithm
for a GI/G/1 queue for a large class of heavy-tailed distributions.

Here, we will concentrate in the conditional algorithms proposed in Asmussen and
Binswanger (1997) and Asmussen and Kroese (2006). At the end of this section we
include some extended results. Moreover, several algorithms studied in this dissertation
build on these early ideas.

1.3.3 Conditional Monte Carlo Methods Based on Order Statistics

Roughly speaking, a Conditional Monte Carlo estimator is a tool which improves the
efficiency of an estimator by extracting the variability coming from known information.
More precisely,

z(x) = P(Sn > x|F),

where F is a σ-algebra. This estimator is clearly unbiased and by the Rao-Blackwell
Theorem it always provides a variance reduction. The problem is to choose a σ-algebra
F such that it is possible to simulate the events in F and the conditional probability
P(Sn|F) is known in closed form. Obviously it is also desired that the resulting estimator
provides a substantial variance reduction.

Recall that a distribution F belongs to the class S of subexponential distribution if
it has the following property

lim
u→∞

F
d∗

(u)

F (u)
= d,

where F d∗ is defined as the d-fold convolution of F . We also discussed that this expres-
sion has an useful intuitive interpretation of how large values of the sum occur and it
is as follows: the sum of independent subexponential random variables becomes large
as the consequence of a single large contribution, namely the maximum.

The main idea in the algorithms designed by Asmussen and Binswanger (1997) and
Asmussen and Kroese (2006) is to exploit this intuition by using order statistics. The
idea is to calculate the probability that the maximum alone is responsible for the large
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1.3. Rare Event Simulation

value of the sum while the rest of the order statistics behave in a normal way. It was
noted in Asmussen and Binswanger (1997) that by using order statistics instead of the
crude random variables the efficiency was largely improved.

Although the algorithms in Asmussen and Binswanger (1997) and Asmussen and
Kroese (2006) are both based on this idea, they differ significatively in the way of con-
ditioning – these differences will be explained later. The modified version in Asmussen
and Kroese (2006) provided a significatively more efficient and easier to implement
algorithm.

1.3.3.1 Asmussen-Binswanger estimator

The algorithm proposed by Asmussen and Binswanger (1997) suggests to condition with
respect to the order statistics. So, we need to simulate the first d − 1 order statistics
out of d. The procedure requires to simulate X1, . . . ,Xd and simply discard the largest
one. Then we use the conditional probability of the maximum given the rest of the
order statistics to calculate the probability that the sum is larger than u. This comes
out as

P
(
Sd > u

∣∣X(1), . . . ,X(d−1)

)
=

F ((u− S(d−1)) ∨X(d−1))

F (X(d−1))
,

where S(d−1) = X(1) + · · ·+X(d−1). Asmussen and Binswanger (1997) proved that their
algorithm is logarithmically efficient in the i.i.d. regularly varying case. Binswanger
(1997) proved logarithmic efficiency when the random variables are i.i.d. lognormal
distributed.

The algorithm in Asmussen and Binswanger (1997) was proposed for i.i.d. random
variables. However, we can easily drop the identically distributed from the assumptions.
When simulating the order statistics, we just need to keep track of the (random) index
of the largest random variable, say K, then the conditioning will deliver instead

P
(
Sd > u

∣∣X(1), . . . ,X(d−1)

)
=

P(XK > (u− S(d−1)) ∨X(d−1))

P(XK > X(d−1))
. (1.2)

Algorithmically:

Asmussen-Binswanger Algorithm: Independent Nonidentical r.v.’s.

1. Simulate X1, . . . ,Xd. Register the index of K of the largest random variable and
form the order statistics X(1), . . . ,X(d).

2. Return

ẑAB(u) =
FK

(
X(d−1) ∨ (u− Sd−1)

)

FK

(
X(d−1)

) ,

where Fk(·) is the distribution function of the k-th random variable.

The claimed efficiency for independent and nonidentical distributed lognormal random
variables is given in the following Theorem and its proof can be found on page 16.

Theorem 1.10. Let X1, ..,Xn be independent lognormal random variables. Then the
estimator ẑAB(x) is logarithmic efficient.
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1.3.3.2 Asmussen-Kroese estimator

A somewhat similar idea was suggested by Asmussen and Kroese (2006). Instead of
using the order statistics they conditioned with respect to the event where a partic-
ular random variable takes the paper of the maximum. Then, they use the fact that
the random variables are i.i.d. to unbias their estimator using the following symmetry
argument

P(Sd > x) = dP(Sd > x,Xd = Md). (1.3)

So, this estimator is built by conditioning on F = σ(X1, . . . ,Xd−1) and noting that

dP(Sd > x,Xd = Md|X1, . . . ,Xd−1) = dF (Md−1 ∨ (x− Sd−1)) (1.4)

(recall Mk := max{X1, . . . ,Xk}). Asmussen and Kroese (2006) proved that their algo-
rithm has bounded relative error in the regularly varying case. The same conclusion with
lognormal marginals was proved independently by Asmussen and Rojas-Nandayapa
(2006) and Hartinger and Kortschak (2006). In particular, the last paper went further
by noting that it has asymptotically vanishing relative error.

As in the case of the algorithm by Asmussen and Binswanger (1997) we can easily
drop the identically distributed assumption. For doing so we substitute the symmetric
argument with

P(Sd > x) =

d∑

k=1

P(Sd > x,Xk = Md).

This idea was empirically explored in Asmussen and Rojas-Nandayapa (2006). As a
first approach one could try to estimate individually each of this terms conditioning
as above. Although the resulting estimator usually has good efficiency properties it
requires d times more replications. An alternative approach with slightly better results
is described next. Define a random variable K such that under the probability measure
P it is a discrete random variable supported on {1, . . . , d} with P(K = i) = pi, then

P(Sd > x) =

d∑

k=1

P(Sd > x,Xk = Md) = E
[I(Sd > x,XK = Md)

pK

]
.

so, if we condition with respect to F = σ(K,X1, . . . ,XK−1,XK+1, . . . ,Xd) we obtain

P(Sd > x) = E
[FK(M−K ∨ (x− S−K))

pK

∣∣F
]
, (1.5)

where Fk is the distribution of the k-th random variable and M−k and S−k are defined
as the maximum and sum of the Xi’s without considering the k-th random variable.
The convenient election of the pk’s should deliver a significative variance reduction.
Intuitively, this should be minimized if we choose pk := P (Md = Xk|Sd > u). That
is, the probability that the k-th random variable is larger than the rest conditioned to
the rare event. However, this probability is not available beyond the independent case.
Our suggestion is to use

pk(u) =
P(Xk > u)

∑d
i=1 P(Xi > u)

.

In empirical studies we have verified that this proposal is close to the optimal selection
of the pk’s. In the i.i.d. case this yields to the original proposal by Asmussen and Kroese
(2006). In the chapter 3 we will discuss how this estimator looks when we drop the
independence assumption. The algorithm for estimating P(Sn > u) is given next.
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Asmussen-Kroese Algorithm: Independent nonidentical r.v.’s

1. Simulate K.

2. Simulate X1, . . . ,XK−1,XK+1, . . . ,Xd.

3. Return

ẑAK(u) =
F

(
M(−K) ∨ (u− S−K)

)

pK
.

The efficiency for nonidentical and independent random variables in the lognormal and
regularly varying is given in the next two Theorems and their proofs can be found on
pages 19 and 21 respectively.

Theorem 1.11. Let X1,X2, . . . ,Xd be independent lognormal random variables, K
a discrete random variable supported over {1, . . . , d}. Then, ẑAK(u) is an unbiased
estimator of P(Sd > u) with bounded relative error.

Theorem 1.12. Let X1,X2, . . . ,Xd be independent regularly varying random variables
with indexes αi respectively, K a discrete random variable supported over {1, . . . , d}.
Then, ẑAK(u) is an unbiased estimator of P(Sd > u) with bounded relative error.

1.4 Concluding Remarks

1.4.1 Numerical Examples

In our numerical examples we have implemented the Asmussen-Kroese algorithm for
estimating the tail probability of the sum of independent nonidentically distributed
lognormal random variables. The results are shown in Example D.4 on page 107 where
it has been compared against other algorithms designed for the correlated case which
are discussed in the Chapters 3 and 4. A detailed description of the examples can
be found on page 106. For now, we will only concentrate on the results label as AK

corresponding to the Asmussen-Kroese estimator and its stratified version S-AK which
makes use of the strategy proposed in Juneja (2007). This strategy consists in dividing
the event of interest in two parts, namely,

P(Sn > u) = P(Sn > u,Mn < u) + P(Mn > u),

estimate the first term with the method used in Asmussen and Kroese (2006) and
evaluate the second tern in closed form.

The numerical results indicate that the modified version of the Asmussen-Kroese
provides reliable results for estimating the tail probability of a sum of nonidentical
random variables. However, it is noted that the stratification algorithm has variance
equal to zero. The main problem here is that the algorithm is not efficient for estimating
the probability of the event {Sn > u,Mn} as documented in Juneja (2007) while the
other algorithms shown in that example were designed to provide a better estimate of
that region. A logical solution might be to use truncated random variables. However,
this is a limited approach since it can not be generalized to the correlated case.

This example shows indirectly shows that P(Mn > u) provides an excellent approx-
imation of this tail probability (note that the variance of the estimator is zero, so the
estimator is only composed of the term P(Mn > u)). In view of this and the discussion
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on subexponential theory, I have decided to conduct an additional numerical experi-
ment for approximating the tail probability of a sum of independent lognormal random
variables with three different methods:

1. The tail probability of the maximum P(Mn > u).

2. The subexponential approximation.

3. The sum of the tail probabilities of the individual random variables
n∑

i=1

P(Xi > u). (1.6)

In the future we will refer to this as the aggregated tails.

The results are summarized in the Example D.1 on page 103. The subexponential
approximation tends to underestimate the real probability since it ignores all those
random variables with tail behavior only slightly lighter than the heaviest one. This
suggest considering the adjusted approximation in 1.6 which can be easily proved to be
asymptotically equivalent. Moreover, this expression effectively bounds above the tail
probability of the sum.

Notes and comments

Useful references for heavy are tails are Adler et al. (1996); Embrechts et al. (1997);
Resnick (1987, 2006). A full treatment of regularly varying functions can be found
in Bingham et al. (1987). For general topics in simulation we refer to Asmussen and
Glynn (2007); Rubinstein and Kroese (2008); Henderson and Nelson (2006). In the
case of rare event simulation Asmussen and Glynn (2007); Bucklew (2004); Juneja and
Shahabuddin (2006) are useful references.

Theorem 1.8 was proved for the i.i.d. case in Binswanger (1997) and here we have
generalized this result for the nonidentical and independent setting. As mention before,
Theorem 1.11 was independently proved in Asmussen and Rojas-Nandayapa (2006) and
Hartinger and Kortschak (2006). The version suggested here considers the nonidentical
and independent setting and corresponds to a corrected version of the statement given
in Asmussen and Rojas-Nandayapa (2006). Theorem 1.12 was proved in the original
paper by Asmussen and Kroese (2006) and here we have provided an alternative proof
which considers the more general setting of nonidentical and independent random vari-
ables. Juneja (2007) proposed a stratification strategy which improves significatively
the performance of a given algorithm in a subexponential setting.

Recently, Blanchet and Li (2008) proposed an state-dependent importance sampling
which is claimed to be strongly efficient under more general settings, assuming only
subexponentiality of the increments. For the particular case of i.i.d. lognormal random
variables Bee (2008) proposed an importance sampling algorithm based on a mixture of
lognormals. The parameters were adjusted using Cross-Entropy and the result tested
empirically.

1.5 Proofs

Proof of Theorem 1.10. In order to characterize the dominant tail behavior we define

σ2 = max
1≤k≤d

σ2
k, µ = max

k:σ2
k=σ2

µk,
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and let F be the distribution of a lognormal random variable with parameters µ and σ.
Note that the index K is a discrete random variable supported over {1, . . . , d}, so we
can simplify our proof using the following inequality

E
[
ẑ2
AB

]
= E

[F 2
K

(
X(d−1) ∨ (u− Sd−1)

)

F
2
K

(
X(d−1)

)
]
≤

d∑

k=1

E
[F 2

k

(
X(d−1) ∨ (u− Sd−1)

)

F
2
k

(
X(d−1)

)
]
.

The idea is to obtain an asymptotic upper bound for the expectation for a fixed k.
Then we break this expectation in two pieces as follows

E

[
F k

2(
(u− S(d−1)) ∨X(d−1)

)

F k
2
(X(d−1))

]
= E

[
F

2
k

(
(u− S(d−1)) ∨X(d−1)

)

F
2
k

(
X(d−1)

) ;X(d−1) <
u

d

]

+ E

[
F k

2
((u− S(d−1)) ∨X(d−1))

F k
2
(X(d−1))

;X(d−1) >
u

d

]
.

The quotient inside the second expectation is always smaller than 1, so we can bound
the whole expectation with P

(
X(d−1) > u/d

)
. For the first expectation, it will be useful

to note that if X(d−1) < u/d then the following inequalities hold

u− S(d−1) ≥ u− (d− 1)X(d−1) ≥ u− d− 1

d
u = u/d ≥ X(d−1).

This implies that in the event {X(d−1) < u/d}, the following inequality holds true as
well

F k

(
(u− S(d−1)) ∨X(d−1)

)
≤ F k(u/d).

Inserting these bounds in the expectations we arrive at the following upper bound

E

[
F

2
k(u/d)

F
2
k(X(d−1))

;X(d−1) <
u

d

]
+ P

(
X(d−1) > u/d

)
. (1.7)

We concentrate on the expectation in the last term. Since X(n−1) < u/d we can apply
Lemma 1.13 on the next page to get a bound for the quotient in the first expectation
to obtain

cE

[
F

2
(u/d)

F
2
(X(d−1))

;X(d−1) <
u

d

]
= cF

2
(u/d) E

[
1

F
2
(X(d−1))

;X(d−1) <
u

d

]
,

where c is a constant (recall that F was defined as the distribution with the dominant
tail). Letting F(d−1) and f(d−1) be the distribution and density functions of X(d−1)

respectively, we rewrite this expectation in integral form and use partial integration to
obtain

u/d∫

0

f(d−1)(y)

F
2
(y)

dy = −F (d−1)(y)

F
2
(y)

∣∣∣∣
u/d

0

+ 2

u/d∫

0

F (d−1)(y)f(y)

F
3
(y)

dy

= 1 − F (d−1)(u/2)

F
2
(u/2)

+ 2

u/d∫

0

F (d−1)(y)

F
2
(y)

f(y)

F (y)
dy.
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1. Introduction

We get a new upper bound by just ignoring the negative term. For dealing with integral
it will be useful to note that

F (d−1)(t)

F
2
(t)

≤
∑

i6=j F i(t)F j(t)

F
2
(t)

= O(1), (0,∞). (1.8)

This is true since the F has the heaviest tail so it dominates all F k’s, and the quotient
remains bounded as y → ∞. Trivially, the same holds true as y → 0. Then, by a
continuity argument this quotient remains bounded all over (0,∞) by a constant, say
c1 > 0. We use this to obtain a new upper bound

1 + c1

∫ u/d

0

f(t)

F (t)
dy = 1 − c1 logF (u/d).

Inserting this new bound in (1.5) we have obtained a new bound for E ẑ2
AB(u) which

has the following shape

cF
2
(u/d)

[
1 − c1 logF (u/d)

]
+ F (d−1)(u/d) ≤ c2 F

2
(u/d)

[
1 − c1 logF (u/d)

]
,

where the last inequality was obtained by using the argument (1.8). So, to prove
logarithmic efficiency we need

lim
u→∞

E ẑAB(u)

P2−ǫ(Sd > u)
≤ lim

u→∞
c2 F

2
(u/d)

[
1 − c1 logF (u/d)

]

F
2−ǫ

(u)
= 0.

Using Mill’s ratio and some basic calculus it is provable that the last limit is zero for
all ǫ > 0. By doing this the proof is complete.

Lemma 1.13. Let F1 and F2 lognormal distributions such that F2 has a heavier tail
than F1. Then, there exists c ∈ R such that for all y ≤ x it holds that

F 1(x)

F 1(y)
≤ c

F 2(x)

F 2(y)
.

Proof. Let λ1(x), λ2(x) the corresponding failure rate functions of the lognormal dis-
tributions F1 and F2. First we will prove that there exist constants c1 > 0 and y0 > 0
such that the following inequality is true

−λ1(t) ≤ −λ2(t) + c1I[0,y0](t).

For proving this, we will start from the inequality

[λ1(t) − λ2(t)]
+ = λ1(t) − λ2(t) + [λ2(t) − λ1(t)] I{t:λ1(t)<λ2(t)}(t)

≤ λ1(t) − λ2(t) + λ2(t) I{t:λ1(t)<λ2(t)}(t),

from where it follows that

−λ1(t) ≤ −λ2(t) + λ(t)I{t:λ1(t)<λ2(t)}(t).

Since λ2(t) is real-valued on closed intervals of the type [0, y0] it remains bounded in
there by continuity. So, it is just necessary to prove that {t : λ1(t) < λ2(t)} ⊆ [0, y0]
for some y0 ∈ R

+. We consider the two possible cases in which F 1 has heavier tail than
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1.5. Proofs

F 2. In the first of them we consider σ1 < σ2. So we use the tail asymptotic expression
for λ(x) to obtain

lim
x→∞

λ1(x)

λ2(x)
= lim

x→∞
log x/xσ2

1

log x/xσ2
2

=
σ2

2

σ2
1

> 1,

from where the conclusion follows easily. The second case comes when σ1 = σ2 and
µ1 < µ2. For proving that λ2(x) ≤ λ1(x) we will just check that λ(x, µ) is a decreasing
of function of µ. The derivative is given as

d

dµ
λ(x, µ) =

log x− µ

σ2
f(x, µ)F (x, µ) − f(x, µ)

∞∫

x

log t− µ

σ2
f(t, µ)dt

F
2
(t, µ)

=

log xf(x, µ)F (x, µ) − f(x, µ)

∞∫

x

log tf(t, µ)dt

σ2F
2
(t, µ)

.

The last expression is verified to be negative from the observation

∞∫

x

log tf(t, µ)dt > log x

∞∫

x

f(t, µ)dt = log xF (x).

Then we just use this intermediate result to prove that

F 1(x)

F 1(y)
= exp

{
−

x∫

y

λ1(t)dt

}
≤ exp

{
−

x∫

y

λ2(t)dt +

x∫

y

c1I[0,y0](t)dt

}

≤ exp

{
−

x∫

y

λ2(t)dt +

y0∫

0

c1dt

}

= exp

{
log

F 2(x)

F 2(y)
+ c2

}
= c

F 2(x)

F 2(y)
.

Proof of Theorem 1.11. Recall that the condition for asymptotic bounded relative error
is equivalent to

lim
u→∞

E [ẑ2
AK(u)]

P(Sd > u)
<∞.

By subexponentiality we have that P(Xk > u) = O(P(Sn > u)) for all k. Using this
relation and the fact that all pi’s are all larger than 0 it will be enough to prove that

lim sup
u→∞

F
2
k(M−k ∨ (u− S−k))

P2(Xk > u)
<∞ k = 1, . . . , d.

The idea will be to provide an upper bound where we get rid of the random variable
S−k since its distribution is unknown to us. For doing so, we divide the sample space
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1. Introduction

in two events, namely A1 = {M−k ≤ u/2d} and A2 = {M−k > u/2d}, and note that in
A1 the following relations hold

u− S−k ≥ u− nM−k ≥ u− u/2 = u/2 > u/2d ≥M−k.

Using this we can obtain an upper bound in terms of Md only

E [F
2
k(M−k ∨ (u− S−k))]

F
2
k(u)

≤ E

[
F

2
k(u− nM−k)

F
2
k(u)

;M−k < u/2d

]

+ E

[
F

2
k(M−k)

F
2
k(u)

;M−k > u/2d

]
.

So, with a simple change of variables we can rewrite this expression in integral form as
follows

u/2∫

0

F
2
k(u− y)

F
2
k(u)

fM−k
(y/d)dy +

∞∫

u/2d

F
2
k(y)

F
2
k(u)

fM−k
(y)dy.

The advantage of this bound is that the density of M−k is known to us. In fact, this
density is always smaller than the sum of the individual densities as can be seen from
the following expression

fM−k
(·) =

∑

i6=k

fi(·)
∏

j 6=i,k

Fj(·) ≤
d∑

i=1

fi(·).

Inserting this new bound and taking the sum out of the integral we arrive to the
conclusion that the estimator will have bounded relative error if

lim sup
u→∞

u/2∫

0

F
2
k(u− y)

F
2
k(u)

fi(y/d)dy +

∞∫

u/2d

F
2
k(y)

F
2
k(u)

fi(y)dy <∞, i, k = 1, . . . , d. (1.9)

We prove separately that each of this two integrals remain bounded as u → ∞. The
first integral remains bounded due to Lemma 1.14. The second one is the easy since it
can be evaluated directly using L’Hopital Theorem,

lim
u→∞

∞∫

u/2d

F
2
k(y)fi(y)dy

F
2
k(u)

= lim
u→∞

F
2
k(u/2d)fi(u/2d)

4dF k(u)fk(u)
→ 0.

This limit can be easily verified using Mill’s ratio. Putting together these results the
result follows immediately.

Lemma 1.14. Under the hypothesis of the Theorem 1.11 it holds that

lim
u→∞

u/2∫

0

F
2
k(u− y)

F
2
k(u)

fi(y/d)dy <∞.
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1.5. Proofs

Proof. Consider

F k(u) = exp

{
−

u∫

0

λ(t)dt

}
,

where λ(t) is the failure rate of the lognormal distribution and by standard subexpo-

nential theory we know that λ(t) is asymptotically equivalent to log(u)
σ2u

. By choosing

c > 1
σ

2
we obtain that c log t

t is an asymptotic upper bound for λ(t), then

F k(u− y)

F k(u)
= exp

{ u∫

u−y

λ(t)dt

}
< exp

{
c log u

u∫

u−y

1

t
dt

}

= exp

{
c log u(log u− log(u− y))

}
.

Using a first order Taylor expansion of log(·) around (u − y) and the fact that it is a
concave function we have that log u < log(u−y)+ y

u−y , so the last expression is bounded
by

exp

{
c
y log u

u− y

}
.

Take u > 1. Our claim is that the set
{
y : log(2y) > y log u

u−y

}
= (g(u), u/2) for some

function g(u) → 1/2. This is true since both functions are increasing and equal when
y = u/2, but log(2y) is concave and y log u

y−u is convex proving that there exists a smaller
root than u/2. Next we verify that for any value y0 > 1/2 there exists a value u0 such
that for all u > u0 the inequality log(2y0) >

y0 log u
u−y0

is fulfilled and therefore g(u) < y0.
We use this to get

u/2∫

y0

F
2
k(u− y)

F
2
k(u)

fi(y/d)dy <

∞∫

y0

c1 exp{c log y}fi(y/d)dy =

∞∫

y0

c2 y
cfi(y/d)dy.

Since all the moments of a lognormal random variable are bounded we can conclude
that the last expression is also bounded. For y ∈ (0, y0) we simply use the fact that a
lognormal random variable belongs to the class L, so we obtain

y0∫

0

F
2
k(u− y)

F
2
k(u)

fi(y/d)dy <
F

2
k(u− y0)

F
2
k(u)

→ 1.

Proof of Theorem 1.12. Note that in the proof of Theorem 1.11 we did not make use of
the hypothesis about the distribution up to (1.9). Hence, we can retake the proof from
there so it remains to prove that the same holds for regularly varying distributions.
That is

u/2∫

0

F
2
k(u− y)

F
2
k(u)

fi(y/d)dy +

∞∫

u/2d

F
2
k(y)

F
2
k(u)

fi(y)dy <∞,

21
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where Fk is a regular varying distribution function with index αk and fi are densities
of regularly varying random variables with indexes αi. The first integral can be easy
bounded with

F
2
k(u/2)

F
2
k(u)

= 2−2αk + o(1) u→ ∞.

For the second one we can use L’Hopital rule to obtain

F
2
k(u/2d)

F
2
k(u)

fi(u/2d) = (2d)2αkfi(u/2d) = o(1).

Putting together these two expressions we complete the proof.
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Chapter 2

Ruin Probabilities in a Finite
Time Horizon

In this chapter we will study the ruin probability in finite time in risk models and
its relation with sums of heavy-tailed i.i.d. random variables. In particular, the main
objective will be the precise approximation of this probability via Monte Carlo methods.

In the Section 2.1 we provide some motivation for the study of the ruin problem. We
characterize the stochastic processes which will be used as risk models and show how
this problem is related to a tail probability of a sum of random variables. We continue
with a brief exposition on Queueing Theory and comment on how risk processes are
directly associated with a workload process in an M/G/1 queue. This relationship has
been long understood and it will be useful to translate the results from one area into the
other. For the remaining sections we have chosen to adopt the language of risk theory,
but it should be understood that the stated results will also hold for the equivalent
problems in Queueing Theory.

In the Section 2.2 we will consider the ruin problem and review some of the main
results in the literature. In particular, we will focus on asymptotic approximations of
the probability of ruin in infinite time with the purpose of illustrating the differences
between models with light and heavy-tails. Then we will move to the case which interest
us the most: ruin probabilities in a finite time horizon in a heavy-tailed setting. In there
we will comment on the main asymptotic approximations available in the literature for
this particular setting. In particular, the most interesting cases are those where the
time horizon varies together with the level u so the time t(u) will be a function of the
level u.

In Section 2.3 we will study two Monte Carlo estimates proposed in Rojas-Nandayapa
and Asmussen (2007) for estimating the ruin probability in finite time in the presence
of heavy-tails. The key idea of the algorithms will be the conditional Monte Carlo
estimator suggested in Asmussen and Kroese (2006). In particular, we are able to theo-
retically verify good efficiency properties in the most important case of subexponential
distributions: regular variation. The first algorithm will be designed exclusively for
the M/G/1–Cramér-Lundberg setting. The second algorithm applies to general Lévy
processes and we also empirically demonstrate that it has excellent efficiency and prove
bounded relative error under particular conditions on t, though at the moment we have
not been able to come up with variance estimates quite as sharp as for the first algo-
rithm in the general setting. Some general ideas into how to improve this algorithm are
discussed in the section of Notes and Comments as well as some future work.
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2. Ruin Probabilities in a Finite Time Horizon

2.1 Risk/Queueing Processes

2.1.1 Risk Theory

Risk Theory is commonly associated with the mathematical problem faced by an insur-
ance company which has to decide how much the premiums should cost to the insured
in order to cover future claims without falling in bankruptcy. The basic insurance risk
model is based in the following assumptions

• The i-th claim occur at a random times Ti. The times form a sequence of non-
negative random variables satisfying 0 ≤ T1 ≤ T2 ≤ . . .

• The size of the i-th claim is a non-negative random variable Ui. The claim sizes
will form a sequence of independent and identically distributed random variables.

• The size claims Xi and the time claims Ti are mutually independent.

We define the claim arrival process (N(t))t≥0 as the total number of claims occurred
during the time period (0, t), and the total claim amount process (S(t))t≥0 from adding
up the claims derived in the time period (0, t). Formally,

N(s) = sup{n : Tn ≤ s}, Y (s) =

N(s)∑

i=1

Ui,

the last with the understanding that
∑0

i=1 := 0.
In the basic model we assume that the interarrival times τi := Ti − Ti−1 follow an

exponential distribution with parameter λ. In fact this assumption fully characterizes
the claim arrival process N(t) which is turns into the well known homogeneous Poisson
process and the total claim amount process is identified as a compound Poisson process.
We will refer to this as the Cramér-Lundberg risk model . In fact, the more general
model which allows the interarrival times τi = Ti − Ti−1 to be an i.i.d. sequence of
random variables is known as the Renewal risk model . In fact, this can be studied from
the perspective of Renewal theory which is a branch of applied probability concerned
with the probability of events directly associated with sums of independent random
variables (cf. Feller, 1971; Asmussen, 2003).

By including a process Z(s) which describes the dynamics associated with the flow
of premiums and the initial capital u we arrive to the basic risk process

X(s) := u+ Z(s) − Y (s) = u+ Z(s) −
N(s)∑

i=1

Ui.

In the classical Cramér-Lundberg–Renewal setting, the premium process has the form
Z(t) = ct where c > 0 stands for the premium income rate. However, in recent years
there has been a substantial interest in this model perturbed by a Brownian Motion
or an infinite activity jumping part. A Lévy process describe precisely this kind of
dynamics and therefore we partially deal with such extension and we will refer to it
as the Lévy risk model . Our primary object of interest in this chapter will be the
approximation of the ruin probability in finite time defined as

ψ(u, t) := P
(
X(s) < 0, for some s ∈ (0, t)

)
, u, t ∈ R

+.
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2.1. Risk/Queueing Processes

From a theoretical point of view the following definition for infinite time will be also
useful. That is, the ruin probability in infinite time

ψ(u) := P
(
X(s) < 0, for some s > 0

)
, u ∈ R

+.

2.1.2 Queueing Theory

Queueing Theory is the branch of Applied Probability which deals with problems for
waiting lines or Queues. In Kendall’s notation, queues are represented under the form

A/S/NS/NC

where A and S are strings describing the distribution of the interarrivals and service
times respectively and NS and NC are integer numbers corresponding to the number
of servers and the capacity of the queue. The two most common string values for
both interarrival and service times are: M for Markovian referring to the exponential
distribution, G or GI for General an General Independent. By tradition GI is employed
for the interarrival distribution and G for the service times.

The service times U1, U2, . . . will form a sequence of nonnegative i.i.d. random
variables and N(t) will denote the total amount of customers which have joined the
queue until time t. There exist several stochastic processes associated with a queue.
The following ones are among the most studied in the literature.

• The queue length at time t or simply the number of customers at time t. It is
commonly denoted {Q(t)}t.

• The waiting time Wk of the k-th customer or simply the time that a given customer
spends in a queue until the start of its service.

• The workload process {W (t)}t is the total time – counted from t – that the systems
needs to clear the entire queue. In particular, it should be noted that {W (t)} is
not an adapted process for the natural filtration. This simply means that at time
t the workload is not observable since it is equal to the aggregation not only of
the services times of the customers in the queue at that moment, but also those
arriving before the queue is emptied.

Here, we will be interested in the M/G/1 queue. More precisely, customers arrive
at a single service desk (server) according to a Poisson process and have service times
which are independent and identically distributed. In particular, given that the queue
has never been empty in the time interval (0, t) we have the following relation

V (t) =

N(t)∑

i=1

Ui − t,

where N(t) is a Poisson process, say with intensity λ, and the negative drift −t repre-
sents the time passing by as the server deals with the customers.

Asmussen and Petersen (1989) showed the existence of the duality between the
workload of an M/G/1 queue and the probability of ruin in finite time. More precisely,

ψ(u, t) = P(V (s) > u),

25



2. Ruin Probabilities in a Finite Time Horizon

where (V (s))s≥0 is the steady–state workload process of an initially empty M/G/1
queue. This duality will allow us to speak freely of results which are valid for both an
M/G/1 queue and a Cramér-Lundberg risk model.

For more details on Queueing Theory see Asmussen (2003) and Robert (2003).

2.1.3 Conventions and Notation

For the rest of the chapter we will adopt the following notation and conventions. For
an arbitrary process (X(s))s≥0 it will be useful to define the random variable

X(t1, t2) = sup
t1≤s<t2

{X(s) −X(t1)},

that is, the record value of the process during the time period (t1, t2). We will adopt the
common practice of starting the process from 0, reverting the sign, so the new process
will be defined as

X(t) :=

N(s)∑

i=1

Ui − Z(s).

So ψ(u, t) will be equivalent to the probability that the record value in the time period
(0, t) of the new process is larger than u. This modification simplifies the exposition of
the results and makes evident the relation of risk/workload models with large values of
sums of random variables.

We will reserve the use of µF := EUi for the common expectation of the jumps
and let µ be the drift of the process X(t) or equivalently the expected increment of the
process per unit of time. In the renewal model this is

µ := EX(t+ 1, t) = µF λ− c,

where λ := EN(1) and therefore EX(t)/t → µ. In fact, the quantity ρ := λEN(1)
will have a practical significance and it is commonly known as the traffic intensity or
expected claim amount per unit of time. Also note that in the Cramér-Lundberg model,
λ is the intensity parameter of the Poisson process. In order to simplify the notation
we will assume in further sections that the premium income rate is equal to one. For
our purposes this will not be a problem since it can be easily generalized by a simple
time change argument. For instance, in the Cramér-Lundberg model this means that
the parameter λ of the Poisson process should be changed by λ/c.

2.2 Ruin Probabilities

From a practical point of view it should be reasonable to require ψ(u) < 1. This just
says that the insurance company has a positive probability of avoiding bankruptcy.
Then it is obvious that the process should have a negative drift – recall that we have
inverted the sign of the process. Therefore we should have

µ = λµF − c < 0,

or equivalently ρ/c < 1 . This is known as the net profit condition or simply stability
condition. In fact, it is of a major importance for an insurance company to choose the
premium rate c that should be charged to the insured in order to ensure the solvency
of the company. Moreover, most of the results presented below require this condition
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2.2. Ruin Probabilities

to hold. Therefore, we assume for the rest of the chapter that the net profit condition
is satisfied except where noted.

The celebrated Pollaczeck-Khinchine formula provides an equivalent representation
of the probability of ruin in infinite time (cf. Feller, 1971; Asmussen, 2000, 2003). For
instance, in the Cramér-Lundberg case this is given as

ψ(u) = (1 − ρ)
∞∑

n=0

ρnF
n∗
I (u), (2.1)

where Fn∗
I is the n-fold convolution of the distribution defined as

FI(x) = µ−1
F

∫ x

0
F (y)dy.

which is known as the integrated tail distribution. This formula is obtained by means of
the Wiener-Hopf factorization which is a fundamental result in Random Walk Theory.

2.2.1 Ruin in the Light Tailed Setting

The use of the Pollaczeck-Khinchine formula is limited for explicit calculations of the
ruin probability because of the difficulty of evaluating the n-fold convolution. In con-
sequence there are just a few cases where explicit calculations can be done – the ex-
ponential distribution is an example. Nevertheless, the Pollaczeck-Khinchine formula
has been used to provide precise asymptotic expressions for ψ(u). In particular, the so
called Cramér-Lundberg estimates for light-tailed random variables are derived from it.
These are given next.

Definition 2.1 (Lundberg exponent). Let F be a distribution function such that the
Laplace-Stieltjes transform of its integrated tail distribution FI is defined, i.e.

LF ∗
I (θ) := µF

−1

∫ ∞

0
eθtF (t)dt <∞.

The Lundberg exponent γ is defined as the value θ which solves LF ∗
I (θ) = c/ρ.

The following is a classical result in Risk Theory.

Proposition 2.2 (Cramér-Lundberg Theorem). Consider the Cramér-Lundberg model.
If the Lundberg exponent γ exists then

• The following relation known as Lundberg’s inequality holds

ψ(u) ≤ e−γu.

• Moreover, the last result can be refined into the following asymptotic approxima-
tion known as Cramér approximation.

lim
x→∞

ψ(u)

e−γu
= C <∞,

where the value of the constant C is given by

C :=
1 − ρ

γλ
∫ ∞
0 teγtFI(t)dt

.
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2. Ruin Probabilities in a Finite Time Horizon

2.2.2 Ruin in the Heavy-Tailed Setting

The most realistic models are those which involve heavy-tailed random variables. In
Section 1.2 on page 3 we saw that heavy-tailed random variables can be distinguished
for having an infinite moment generating function or equivalently a infinite moment gen-
erating function for positive values of the argument. Therefore, the Cramér-Lundberg
estimates will not be available for this kind of distributions. However, it is precisely the
Pollaczceck-Khinchine formula (2.1) from where we derive precise asymptotic expres-
sions for the class S of subexponential distributions – recall that the defining property
of the class S is given in terms of the n-fold convolution. More precisely:

Proposition 2.3. Let F be a distribution function such that the corresponding inte-
grated tail distribution FI ∈ S is subexponential. Then, in the renewal model it holds
that

lim
u→∞

ψ(u)

F I(u)
=

ρ

1 − ρ
. (2.2)

This results is due to Embrechts and Veraverbeke (1982). However, Mikosch and
Nagaev (2001) showed that the rate of convergence of this estimate is rather slow. So,
Monte Carlo methods appear an appropriate approach.

So far, we have only consider the probability of ruin in infinite time. A detailed
exposition on the probability of ruin in finite time for both light and heavy-tailed
settings can be found in Asmussen (2000). Here, we will show some recent results for
the heavy-tailed set which are valid for the renewal model and even for the more general
case of the Lévy risk model. In particular, the more interesting case is when the time
horizon t varies together with the level u, so we consider instead ψ(u, t(u)) where t(u)
is a function of u.

In Asmussen and Kluppelberg (1996), asymptotic expressions for ψ(u, t(u)) are given
when t(u) is of the same order of the mean excess function e(u) = E [U − u |U > u].
In the regularly varying case this means that t(u)/u → k ∈ (0,∞). When c = 1, the
Corollary 1.6 from the cited reference states that

lim
u→∞

ψ(u, t(u))

ψ(u)
= 1 − (1 + (1 − ρ)k)−α+1 > 0 . (2.3)

The same result holds in a general Lévy process, as can be seen from Klüppelberg et al.
(2004) after some rewriting. If instead t(u)/u → 0, then Foss et al. (2005); Tang (2004)
imply

lim
u→∞

ψ(u, t(u))

λ t(u)F (u)
= 1. (2.4)

This result does not require the stability condition ρ < 1; the given references only
give the result for discrete-time random walks, but it is not difficult to extend it to
the M/G/1–Cramér Lundberg setting and even to a general Lévy process by writing
X = Y + Z and treating Z as a light-tailed perturbation of Y .

2.3 Monte Carlo Estimation of the Ruin Probability

In the light-tailed case, it has long been understood how to perform efficient simulation
of ψ(u) as well as of ψ(u, t). The basic tool is importance sampling (cf. Asmussen,
2000) where the algorithms described there exploit variants of large deviations ideas
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2.3. Monte Carlo Estimation of the Ruin Probability

(cf. Siegmund, 1976; Bucklew et al., 1990; Anantharam, 1989). In the heavy-tailed
case, all algorithms has so far only dealt with the infinite horizon case and the Cramér-
Lundberg setting. Here efficient simulation algorithms for ψ(u) have been developed in
a number of recent papers, in particular Asmussen and Binswanger (1997); Asmussen
et al. (2000); Juneja and Shahabuddin (2002); Asmussen and Kroese (2006); Dupuis
et al. (2006). All of these heavily rely on the Pollaczek-Khinchine formula, expressing
ψ(u) as the tail probability of a geometric sum. Recently Blanchet and Glynn (2008)
proposed an efficient rare-event simulation algorithm for a G/G/1 queue for a large class
of sub-exponential distributions. For the finite horizon problem, the only reference we
know of is Boots and Shahabuddin (2001). For the algorithm in that paper to be
efficient, it is, however, needed that u and t vary together in a specific manner, and
that F is not too far from the heavy-tailed Weibull.

The algorithms proposed here are essentially based on the proposal given in As-
mussen and Kroese (2006). Let us recall that the estimator in that paper is constructed
conditioning to the event that a given random variable takes the maximum and use the
i.i.d. hypothesis to unbias the estimator using the following symmetry argument

P(Sd > x) = dP(Sd > x,Xd = Md), (2.5)

so, the estimator takes the form

zAK(u) = dF (Md−1 ∨ (u− Sd−1)).

In the first algorithm the role of X1,X2, . . . will be taken by the ladder heights (cf.
Asmussen, 2000) and in the second one by the jumps of the compound Poisson part Y .
However, both algorithms need substantial modification. In particular, the difficulty
lies in the presence of the premium process Z(s) which destroys exchangeability. For
example, if Z(s) has negative drift, then an early large jump of Y is more likely to cause
ruin than a late one, because by the late time the negative drift is likely to have taken
X to a smaller value.

For the rest of the chapter we will assume that F is such that its integrated tail
distribution FI belongs to the class of regularly varying distributions R. By Karamata’s
Theorem this just means that if F is regularly varying with index α + 1, then FI is
regularly varying with index α.

2.3.1 Cramér–Lundberg Model

We restrict here our attention to the M/G/1 queue or equivalently the Cramér-Lundberg
risk model, which allows us to use the sample path decomposition of the process {X(s)}
according to ladder steps (cf. Asmussen, 2000). Let the sequence of random vectors
{(T 0

i , Vi,Wi) : i ∈ N} be the lengths of the ladder segments, the ladder heights, and the
deficits before ladder epochs as illustrated in Fig. 2.1.

From the Pollaczeck-Khinchine formula it follows that if ρ < 1, then the number of
ladder steps L is Geometric(ρ), different ladder segments are independent and the joint
distribution of (T 0

i , Vi,Wi) is as described in the following Proposition, where parts (i),
(ii) are classical and part (iii) is from Asmussen and Kluppelberg (1996):

Proposition 2.4. Under P
(0) = P(·|τ(0) <∞), Vi,Wi have the same joint distribution

as the backward and forward recurrence time distribution in a renewal process with
interarrival distribution F . That is,
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Figure 2.1: The ladder structure

1. The marginal distributions of Vi,Wi are both FI .

2. The conditional distribution of (Wi|Vi = v) is the same as the distribution of
(U − v|U > v) where U is a r.v. with distribution F .

Moreover,

3. The conditional distribution of (T 0
i |Wi = w) is the same as the unconditional

distribution of inf{t > 0 : R(t) = w}, where the process R is given by R(t) =

t− ∑N0(t)
i=1 U0

i and is an independent copy of −S.

In the Cramér-Lundberg model ruin does not occur without ladder steps. So, we
can write P(τ(u) < t) = (1− ρ) P(τ(u) < t|L > 0) – recall L ∼Geo(ρ). In fact, ruin will
occur if the aggregated ladder heights surpass the level u. In that case there will be an
index K corresponding to the first partial sum X1 + · · ·+XK which surpassed the level
u. Hence, ruin will happen before time t if the time of the K-th ladder step is smaller
than t. Thus

{τ(u) < t} =
{
V1 + · · · + VL > u, T 0

1 + · · · + T 0
K < t

}
.

Define R(t) = R(0, t) and note that the upward skipfree property of R (cf. Asmussen,
2003), implies that the process of first passage time to different levels has stationary
independent increments so that

P(τ(u) < t) = P
(
V1 + · · · + VL > u, W1 + · · · +WK < R(t)

)
. (2.6)

The estimator I
{
(V1 + · · ·+VL > u, W1 + · · ·+WK < R(t)

}
can be viewed as the crude

Monte Carlo estimator based on Lemma 2.4, and we proceed to develop some ideas
that will reduce this estimator’s variance.

Since we have related the event of ruin to the tail probability of sum of independent
random variables with heavy-tails we can adapt some of the existing ideas for rare event
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2.3. Monte Carlo Estimation of the Ruin Probability

simulation. It is well known, from subexponential theory, that ruin happens as a conse-
quence of a single large claim. The conditional algorithms proposed by Asmussen and
Binswanger (1997); Asmussen and Kroese (2006) were constructed under this premise.
Here we adapt the algorithm proposed Asmussen and Kroese (2006) to the present
setting as follows.

The idea of the algorithm is to induce a large jump by defining J to be an indepen-
dent random variable with a discrete distribution on {1, . . . , L}. The random variable
J is slightly artificial in this setting but it can be interpreted as the (random) index of
the variable which becomes the maximum. In Rojas-Nandayapa and Asmussen (2007)
this random variable was taken to be discrete uniform, but it is clear that a late large
jump could occur out of the time horizon, so it might produce better results to choose
a different configuration for this random variable which favors early larger jumps.

We replace the symmetry argument in (2.5) by

P(τ(u) < t) = E
[
L; τ(u) < t, VJ = max{Vi : i ≤ L}, L > 0

]

and compute our estimator as the conditional probability of (2.6) given

F = σ
(
L, J, {Vj : j 6= J}, {R(s) : s ≤ t}

)
,

the σ-field containing the information on the random variable J , the process {R(s)} up
to time t and the number and sizes of the ladder heights Vi except of the J-th. From
(2.6) this conditional probability comes out as

P
(
τ(u) < t|F

)
= LP

(
W1 + · · · +WK < R(t), VJ > H

∣∣ {Vj : j 6= J}, J),

where
H =

(
u−

∑

j 6=J

Vj

)
∨ sup

{
Vj : j 6= J

}
.

Moreover, since it is easy to simulate random variables conditioned to some interval, we
can use a conditional argument over the event I(VJ > H) to rewrite the last probability
as

LF I(H)P
(
W1 + · · · +WK < R(t)

∣∣ {Vj : j 6= J}, VJ > H). (2.7)

However, since the size of the J-th ladder step is unknown it turns out that the ran-
dom variable K is not measurable with respect the σ-field generated by

{
{Vj : j 6=

J}, I(VJ > H)
}

and therefore (2.7) should be calculated via Monte Carlo. We let Q be
the probability measure under which the variable VJ has the conditional distribution of
VJ |(H,∞) under the original measure and E

Q the corresponding expectation. Then

P
(
W1 + · · · +WK < R(t)

∣∣ {Vj : j 6= J}, VJ > H)

= E
Q[P

(
W1 + · · · +WK < R(t)

∣∣ {Vj : j 6= J}, VJ

)
| {Vj : j 6= J}, J ].

The last step of the algorithm is to reduce the variance coming from the set {Wi} as
follows: Since R(t) < t, we have for i ≤ K that τ(u) ≥ t if Wi ≥ t. So, we let Q̃ to be
the probability measure under which each of the Wi’s have the conditional distribution
of Wi|{Vi,Wi < t} under the measure Q. Then

P
(
W1 + · · · +WK < R(t)

∣∣ {Vj : j 6= J}, V ∗
J

)

= Q̃(W1 + · · · +WK < Rt)

K∏

i=1

P(Wi < t|Vi).
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2. Ruin Probabilities in a Finite Time Horizon

Conditional Algorithm: Ruin in the Cramér-Lundberg setting

1. Simulate L, J , {Vi : i 6= J} with distributions as above (in particular, P(L = n) =
(1 − ρ)ρn−1, n = 1, 2, . . . ). To simulate R, generate M = N0

t as Poisson(λt), the
jumps U0

1 , . . . , U
0
M as i.i.d. with distribution F , and the jump times π1, . . . , πM as

the order statistics from the uniform distribution on (0, t). Let πM+1 = t, U0 = 0
and

R(t) = max
1≤k≤M+1

{
πk −

k−1∑

i=0

U0
i

}
.

2. Calculate H and simulate the random variable VJ |(H,∞).

3. Identify K and simulate the random variables {Wi|{Vi,Wi < t} : i ≤ K}.

4. Return the estimator

ψ̂A(u) = (1 − ρ)LF I(H) I(W ∗
1 + · · · +W ∗

K < R(t))

K∏

i=1

P(Wi < t|Vi).

If we consider the time horizon t to be fixed it is easy to prove that the algorithm
above has bounded relative error. The interesting part comes when we consider a finite
time horizon which goes to infinity together with the level u. That is we assume that
t = t(u) to be a function of u and consider the limit u→ ∞.

Intuitively, if the growth rate of t(u) is large with respect to u, the probability
ψ(u, t(u)) will look more like the ruin probability in an infinite time horizon. By slowing
the growth rate, the event will become rarer and more interesting for our purposes. The
following Theorem establishes the asymptotic efficiency of this estimator and its proof
can be found on page 35.

Theorem 2.5. Assume α > 1 and

P(U − v < t|U > v) = O(1)
t

v
. (2.8)

where the O(1) is uniform in 0 < t < t0 for any t0 < ∞. Then the estimator ψ̂A(u, t)
has bounded relative error when t→ ∞ with u in such a way that t/u→ k ∈ [0,∞).

Note that (2.8) is very weak. It holds, for example, if F has a density f(x) satisfying
f(x) ∼ ℓ1(x)/x

β with ℓ1 slowly varying (integration shows that one must have β = α+1,
ℓ1(x) ∼ (α+ 1)ℓ(x), as is seen by straightforward calculus).

This estimator can in a straightforward way be generalized to a discrete time random
walk XN = Y1 + · · · + YN with increment distribution F . For example, one replaces
Nt by t, Ti by i, X(t1, t2) by maxi1≤i<i2 Xi and supi6=J Ui by maxj≤n,j 6=J Yj. Also the
derivation of the variance estimates is entirely similar.

2.3.2 Lévy Model

Going beyond the M/G/1–Cramér-Lundberg setting, we assume that the process X is
a general Lévy process. As is well known, X can be written as the independent sum of a
Brownian motion and a pure jump part, whose construction may involve compensation.

All that will matter for us is the upper tail, and we use therefore the alternative
decomposition X = Y +Z where Y is compound Poisson with positive jumps bounded
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2.3. Monte Carlo Estimation of the Ruin Probability

below say by 1, so that Y (s) =
∑N(s)

1 Ui, where {Ui : i ∈ N} are i.i.d. with common
distribution F supported over R

+, {N(s)} is an independent Poisson process with rate
λ and interarrival times {Ti : i ∈ N}. In the Cramér-Lundberg risk model, Z(s) =
−cs (here the upward jumps correspond to claims), but it should be noted that the
representation X = Y + Z is completely general and can be achieved for any Lévy
process by just letting Y be the sum of jumps of size, say at least 1 and Z = X − Y
(then Z is the sum of a Brownian component, possibly with drift, and a jump part with
jumps bounded by 1).

When simulating X, the compound Poisson part Y is of course straightforward to
generate. The remaining Lévy component Z may require more sophistication, and we
refer to Asmussen and Glynn (2007) for a survey of methods. Note, however, that Y
and Z need not be simulated separately, but X can be simulated and next Y extracted
as the jumps > 1.

It follows from Asmussen and Kluppelberg (1996); Foss et al. (2005); Tang (2004)
that ruin occurs with high probability as consequence of one big jump. The idea here

U
J

u 

t 

X(0,T
J
) 

X(T
J
−) 

X(T
J
,t) 

Figure 2.2: A sample path of X with a big jump UJ

is similar to that of the previous section in order to adapt the conditional algorithm
in Asmussen and Kroese (2006). First we define a r.v. J which given {N(s)}s≤t has
a discrete uniform distribution over {1, . . . , N(t)}. Then, we replace the symmetry
argument in (2.5) by

P(τ(u) < t) = E [N(t); τ(u) < t, UJ = max{Ui : i ≤ N(t)}, N(t) > 0]

+ P(τ(u) < t,N(t) = 0).

Note that in this case, if no jumps of the Poisson process occur, ruin still can happen
as a consequence of the Lévy process alone as indicated in the last term. Next, we
compute the estimator as the conditional probability of {τ(u) < t} given

F = σ
(
J, {N(s)}s≤t, {Uj : j 6= J}, {Z(s)}s≤t

)
,
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2. Ruin Probabilities in a Finite Time Horizon

the σ-field containing all information about the r.v. J and the process X except the
size of jump J . This conditional probability comes out as

P
(
τ(u) < t

∣∣F
)

=

{
I(Z(0, t) > u) N(t) = 0

N(t) P
(
τ(u) ≤ t, UJ = max{Ui : i ≤ N(t)} |FA

)
N(t) > 0.

If N(t) > 0, ruin occurs typically as consequence of the big jump UJ or possibly if the
value of the process after jump J exceeds u. That is, if

X(TJ−) + UJ +X(TJ , t) > u,

where X(TJ−) is the value of the process just before jump J . However, we also have to
take into account the possibility that ruin occurs before the time of jump J (i.e., that
τ(u) < TJ). These arguments are illustrated in Fig. 2.2. In conclusion,

P
(
τ(u) < t, UJ = max{Ui : i ≤ N(t)} |F

)
= P(UJ > W ),

where

W : = sup{Ui : i 6= J} ∨
[(
u−X(TJ−) −X(TJ , t))I(τ(u) ≥ TJ)

]
.

Here we used the F-measurability of I(τ(u) ≥ TJ), X(TJ , t) andX(TJ−) to compute
the conditional probability P(τ(u) < t|F).

Conditional Algorithm: Probability of Ruin in the Lévy Model

1. Simulate the Poisson process {N(s)}s≤t by generating N(t) = Nt as Poisson(λt)
and given that Nt ≥ 1, the jump times T1 < T2 < · · · < TNt as the order statistics
from the (0, t)-uniform distribution.

2. Simulate the whole of {Z(s) : s ≤ t} (we again refer to Asmussen and Glynn
(2007) for this step). If Nt = 0 return I(Z(0, t) > u), else go to 3.

3. Simulate J as a discrete uniform r.v. over {1, . . . , Nt} and the Ui, i 6= J , from F .

4. Calculate W and return
ψ̂B(u, t) = NtF (W )

We state the main theoretical results on this algorithm where we assume t = t(u)
to be a function of u and consider the limit u→ ∞.

Theorem 2.6. Assume that t/u→ 0. Then for each ǫ > 0, one has

Var ψ̂B(u, t) = t2(α+1)F
2
(u)O(eǫu) .

where f = O(φ) means that |f(x)| < Aφ(x) for some constant A and all x.

The proof of this Theorem can be found on page 36. Note that this result does not
require α > 1 or µ < 0. The result is, however, somewhat weaker than logarithmic
efficiency: then the power of t should have been 2. The bound provided by Theorem
2.6 is sharpest when t grows relatively slowly with u. In particular, if t = uβ with
0 ≤ β < 1, then Theorem 2.6 guarantees that φ̂B provides an improvement over the
crude Monte Carlo algorithm only when β < α/(2α + 1) (but of course, the bound of
Theorem 2.6 could be too rough). However:

Theorem 2.7. Assume α > 1 and t = uβ with 0 < β < α/(1+α). Then the estimator
ψ̂2(u, t) has bounded relative error.

The proof of this Theorem can be found on page 38.
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2.4. Concluding Remarks

2.4 Concluding Remarks

2.4.1 Numerical Examples

In this section, we discuss the numerical examples contained in Examples D.7 to D.10 on
pages 111–114 to illustrate the performance of our algorithms. In the four examples we
considered the M/G/1–Cramér-Lundberg setting taking the jumps Ui of the compound
Poisson process to be Pareto with parameter α. That is, the distribution function is
given by F (x) = (1 + x)−α.

For each of the examples we have tested the two estimators and have included the
asymptotic approximations 2.3 to 2.4 on page 28 for comparison purposes. The param-
eters where chosen in order to test our algorithms in a variety of scenarios involving
short and long time horizons with moderately heavy and very heavy random variables.
The conclusion of the numerical examples is that both algorithms appear to give ex-
cellent results. It is notable, however, that according to the Time-Relative Errors the
algorithm designed for the Lévy model has a substantially better performance than the
one designed for the Cramér-Lundberg model. Of course, this can be implementation-
dependent.

Notes and comments

A further improvement of the algorithms proposed above is to choose a different discrete
distribution for the index random variable of the forced largest jump. The idea is that
early jumps are most likely to cause ruin because in late times the process is more likely
to have smaller values due to the negative drift of the process, but also because the
finite horizon time.

There is a growing interest in adaptive algorithms for estimating the probability of a
rare event. Roughly speaking, an adaptive algorithm is characterized by updating and
learning steps that will improve the efficiency of the final algorithm. Blanchet and Glynn
(2008) proposed the first efficient rare-event adaptive algorithm for a G/G/1 queue for
a large class of subexponential distributions (see also Dupuis and Wang, 2004; Dupuis
et al., 2007; Blanchet et al., 2007). Currently, in a joint effort with Søren Asmussen
and José Blanchet there is work in process to adapt the ideas of such algorithm to the
finite horizon problem described here.

2.5 Proofs

Proof of Theorem 2.5. For an upper bound of the variance of the estimator B we have

Var [ψ̂A(u)] ≤ E [L2F
2
I(H)P2(W < t(u)|V = Vmax)]

= E [L2F
2
I(H)P2(U − Vmax < t(u)|U > Vmax)],

where Vmax is the the largest value among V1, . . . , VK . Next observe that the process
is simulated in such way that ruin occurs with probability 1, then it is not difficult to
verify that H > u/L and Vmax > u/L. Since H > u/L, the stated hypothesis on the
overshoot distribution gives the following upper bound for Var [ψ̂A]

E [L2F
2
I(u/L)P2(U − u/L < t(u)|U > u/L)]

= O(1)
t2

u2
E [L4F

2
I(u/L); L ≤ u] + E [L2;L > u] . (2.9)
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2. Ruin Probabilities in a Finite Time Horizon

Now comparing (2.2) with (2.3) when k > 0 and with (2.4) when k = 0 shows that
ψ(u, t) is always of order t ℓ(u)/uα. Since k < ∞, the second term in (2.9) is therefore
o
(
ψ(u, t)2

)
. Dividing the first term by ψ(u, t)2, we obtain

O(1)u2α−2
E

[
L4F

2
I(u/L)

ℓ(u)2
; L ≤ u

]
= O(1)E

[
L2α+4 ℓ(u/L)2

ℓ(u)2
; L ≤ u

]
. (2.10)

The proof will therefore be completed if we can show that the r.h.s. of (2.10) remains
bounded as u → ∞. Less restrictively, it is easy to see from the above analysis that
it suffices to show this assertion with the qualifier L ≤ u replaced by L ≤ au for some
a > 0. To this end, write

ℓ(u/L)

ℓ(u)
=

ℓ(u/L)

ℓ(u/(L− 1))
· ℓ(u/(L− 1))

ℓ(u/(L− 2))
. . .

ℓ(u/2)

ℓ(u)
.

From the uniform convergence theorem for slowly varying functions (see the Appendix
of Embrechts et al., 1997), it follows that given ǫ > 0, there exists u0 such that

ℓ(ut)

ℓ(u)
≤ 1 + ǫ for all 1/2 ≤ t ≤ 1 and all u ≥ u0 .

For u ≥ u0, the r.v. L2α+4ℓ(u/L)2/ℓ(u)2 ·I{L ≤ u/u0} is therefore bounded by L2α+4(1+
ǫ)2L, which is integrable if ǫ is so small that ρ(1 + ǫ)2 < 1. Since L2α+4ℓ(u/L)2/ℓ(u)2 ·
I{L ≤ u} → L2α+4 a.s. by the definition of a slowly varying function, dominated
convergence therefore gives

E

[
L2α+4 ℓ(u/L)2

ℓ(u)2
; L ≤ u/u0

]
→ EL2α+4 < ∞ ,

and the proof is complete.

Proof of Theorem 2.6. We start with an upper bound for the variance of the estimator.

Var [ψ̂B(u, t)] ≤ E [ψ̂2
2(u, t)] = E

[
ψ̂2

B(u, t) I(Z(0, t) <
√
u)

]

+ E
[
ψ̂2

B(u, t) I(Z(0, t) ≥ √
u)

]
.

Since ψ̂B(u, t) ≤ 1 a.s. the second term is smaller than P(Z(0, t) ≥ √
u) which is

bounded above by e−γ
√

u for some γ > 0 by Lemma 2.8 on page 38. To get an upper
bound for the first term it will be useful to rewrite ψ̂2

B as follows

ψ̂B(u, t) = I(Nt = 0, Z(0, t) > u) + I(Nt > 0, τ(u) < TJ)Nt F (Umax)

+ I(Nt > 0, τ(u) ≥ TJ)Nt F
(
Umax ∨ (u−X(TJ−) −X(TJ , t))

)
,

where Umax = sup{Ui : i 6= J}. The first indicator describes the event where the
process {Y (s) : s < t} has no jumps but the process {Z(s)} reached u before time t.
The second term corresponds to the case when ruin happens before time TJ , however
we still require UJ to be larger than Umax. The third term is the complement of the
other two: ruin should happen after time TJ , so UJ is required both to be larger than
Umax and to make the process reach the level u in the time interval [TJ , t].
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2.5. Proofs

Since the events involved are disjoint, by taking the square of ψ̂B(u, t) we are left
with the sum of the square of each term. Next we multiply by I(Z(0, t) <

√
u) and

analyze each term separately. That is ψ̂B
2 (u, t) I(Z(0, t) <

√
u) is equivalent to

I

(
Nt = 0, Z(0, t) > u, Z(0, t) <

√
u
)

(2.11)

+ I

(
Nt > 0, τ(u) < TJ , Z(0, t) <

√
u
)
N2

t F
2
(Umax) (2.12)

+ I

(
Nt > 0, τ(u) ≥ TJ , Z(0, t) <

√
u
)

×N2
t F

2
(
Umax ∨ (u−X(TJ−) −X(TJ , t))

)
. (2.13)

When u > 1 the events {Z(0, t) <
√
u}, {Z(0, t) > u} are disjoint, so (2.11) is 0. Next,

consider the case where J = 1 and the process {X(s)} reaches level u before the time
of the first jump, then Z(0, t) > u and the corresponding term (2.12) is 0 when u > 1.
Therefore the indicator in (2.12) becomes

I
(
Nt ≥ 1, τ(u) < TJ , Z(0, t) <

√
u
)

= I
(
1 < J ≤ Nt,X(0, TJ ) > u,Z(0, t) <

√
u
)

≤ I
(
1 < J ≤ Nt, Y (0, TJ ) > u−√

u
)

≤ I
(
1 < J ≤ Nt, S−J > u− 2

√
u
)
, (2.14)

where S−J =
∑

i6=J Ui. Now, if J > 1 and S−J > u − 2
√
u there exists at least one

jump larger than (u−√
u)/Nt and the following relation remains true

Umax >
u− 2

√
u

Nt
.

Hence I
(
Umax ≥ (u− 2

√
u)/Nt, Nt > 1

)
is an upper bound of (2.14) and it follows that

(2.12) is smaller than

I
(
1 < Nt, Umax ≥ (u− 2

√
u)/Nt

)
N2

t F
2
(Umax) ≤ I

(
1 < Nt

)
N2

t F
2
((u− 2

√
u)/Nt).

We move to the term (2.13). Observe that if Z(0, t) <
√
u we have that

X(TJ−) +X(TJ , t) ≤ X(0, TJ ) +X(TJ , t) < S−J + 2Z(0, t) < S−J + 2
√
u.

Thus we obtain the following upper bound for (2.13):

I(Nt ≥ 1)N2
t F

2
(
Umax ∨

(
u− 2

√
u− S−J

))
. (2.15)

Now, if Umax < z/Nt for a fixed value z > 0 then it follows that

z − S−J ≥ z − (Nt − 1)Umax > z/Nt.

This relation implies that

Umax ∨
(
u− 2

√
u− S−J

)
>
u− 2

√
u

Nt
.

So, the term (2.13) is bounded above by I(Nt ≥ 1)N2
t F

2(
(u − 2

√
u)/Nt

)
. Taking

expectation and putting all the terms together we have obtained that

Var ψ̂2(u, t) ≤ e−γ
√

u + 2 E

[
N2

t F
2
(
u− 2

√
u

Nt

)
;Nt ≥ 1

]
, u > 1.
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2. Ruin Probabilities in a Finite Time Horizon

Divide the l.h.s. by F
2
(u), take the limit as u→ ∞ and rewrite it as

lim
u→∞

e−γ
√

u

F
2
(u)

+
F

2
(u− 2

√
u)

F
2
(u)

2 E

[
N2

t

F
2(

(u− 2
√
u)/Nt

)

F
2
(u− 2

√
u)

;Nt ≥ 1

]
.

Since F is regularly varying the first limit is 0 and the second is the limit of

lim
u→∞

E

[
N2

t

F (u/Nt)
2

F (u)2
;Nt ≥ 1

]
.

We split this expectation into two parts corresponding to 1 ≤ Nt ≤ u or Nt > u.
Recalling F (x) = ℓ(x)/xα, and since ℓ is slowly varying, ℓ(x) and 1/ℓ(x) are both is
O(xǫ/4), so the first part is bounded by

E

[
N2+2α

t

sup1≤v≤u ℓ(v)
2

ℓ(u)2
; 1 ≤ Nt ≤ u

]
= O(uǫ)EN2+2α

t = O(uǫ)O(t2+2α) .

Using F (x) ≤ 1, the second part is bounded by

E

[
N2

t

u2α

ℓ(u)2
;Nt > u

]
=

u2α

ℓ(u)2
O(e−δu) = O(e−δu/2)

for some δ > 0 where we used t/u → 0 and easy tail estimates in the Poisson distribu-
tion. Putting these estimates together completes the proof.

Lemma 2.8. Let t = t(u) such that t/u → 0 and Z(0, t) = sup{Z(s) : s ≤ t}. Then
P(Z(0, t) ≥ u) ≤ e−γu for some γ > 0.

Proof. Let Z1(t) = Z(t) − bt where u is so large that EZ1(1) < 0. Then Lundberg’s
inequality (Asmussen, 2000) gives that P(Z1(0,∞) ≥ u) ≤ e−γ1u for some γ1 > 0 (note
that all exponential moments of Z1(1) exist). It follows that

P(Z(0, t) ≥ u) ≤ P(Z1(0,∞) ≥ u− bt) ≤ e−γ1(u−bt) .

From this the result follows, since t/u→ 0.

Proof of Theorem 2.7. The idea of the proof will provide new bounds for expressions
(2.12) and (2.13) in the proof of Theorem 2.6. Recall that the indicator function in
(2.12) was bounded by (2.14). Using this we can get the next bound

I
(
S−J > u− 2

√
u
)
N2

t F
2
(Umax) < I

(
S−J >

(
u− 2

√
u
)η

)
N2

t F
2
(Umax)

for all u > 3 + 2
√

2 and any value of 0 < η < 1. We move to the term (2.13). Observe
that for any 0 < η < 1 and u > 3 + 2

√
2 the expression (2.13) – which is an upper

bound for (2.13), can be bounded above by

I

(
S−J ≤

(
u− 2

√
u
)η

)
N2

t F
2(
u− 2

√
u− S−J

)
+ I

(
S−J >

(
u− 2

√
u
)η

)
N2

t F
2
(Umax)

≤ N2
t F

2(
u− 2

√
u− (u− 2

√
u)η

)
+ I

(
S−J >

(
u− 2

√
u
)η

)
N2

t F
2
(Umax).

Taking expectation and putting all the terms together we have obtained that

Var ψ̂2(u, t) ≤ e−γ
√

u + E [N2
t ] F

2(
u− 2

√
u− (u− 2

√
u)η

)

+ 2 E

[
N2

t F
2(
Umax

)
;S−J > (u− 2

√
u)η

]

38



2.5. Proofs

when u > 3 + 2
√

2. Divide the l.h.s. by λ2u2βF
2
(u), take the limit as u → ∞ and

rewrite it as

lim
u→∞

e−γ
√

u

λ2u2β F
2
(u)

+
E [N2

t ]F
2
(u− 2

√
u− (u− 2

√
u)η)

λ2u2β F
2
(u)

(2.16)

+
2 E

[
N2

t F
2(
Umax

)
;S−J > (u− 2

√
u)η

]

λ2u2β F
2
(u)

. (2.17)

Since F is regularly varying the first limit is 0 and the second is 1 (the later also follows
since Nt ∼ Poisson(λuβ)). We claim that the last limit is 0 under the hypothesis of
the Theorem. For proving so we need Lemma 2.9 on the next page and the following
technical condition. Choose k ∈ N and δk in such way that

1

k + 2

(
k
β

α
+ 2

)
< δk < 1 − β.

It is not difficult to verify that the last is equivalent to have β <
(

k+2
k + 1

α

)−1
. Hence,

the existence of δk follows from the hypothesis of the Theorem 0 < β < (1 + 1/α)−1 by
choosing k large enough (observe that (k+2

k + 1
α)−1 ր (1 + 1/α)−1).

Choose δ1 according to Lemma 2.9 on the following page and such that δk < δ1 < 1.
We bound the last term in (2.17) with

lim
u→∞

2 E [N2
t ;Nt ≤ k]

λ2u2β F
2
(u)

+
2 E

[
N2

t F
2(
Umax

)
;Nt > k, S−J > (u− 2

√
u)η

]

λ2u2β F
2
(u)

.

Observe that E [N2
t ;Nt ≤ k] < k2

P(Nt ≤ k) goes to 0 at an exponential rate and
therefore the first term goes to 0. For the second we can break it in several pieces and
bound it as follows

lim
u→∞

2 E

[
N2

t F
2(
Umax

)
;Nt > k,Umax ≥ uδ1

]

λ2u2β F
2
(u)

+
2 E

[
N2

t F
2(
Umax

)
;Nt > k,U(Nt−k+1) ≥ uδk

]

λ2u2β F
2
(u)

+ lim
u→∞

2 E

[
N2

t ;Nt > k, S−J > (u− 2
√
u)η, U(Nt−k+1) < uδk , Umax < uδ1

]

λ2u2β F
2
(u)

.

(2.18)

By Lemma 2.9 on the next page and the choices of k and δk the first two terms are 0. For
the third one observe that if U(Nt−k+1) < uδk and Umax < uδ1 then S−J < Ntu

δk + kuδ1

and therefore

I

(
S−J > (u− 2

√
u)η , U(Nt−k+1) < uδk , Umax < uδ1

)
< I

( (u− 2
√
u)η − kuδ1

uδk
< Nt

)

Remember that the result is valid for any value of η < 1 and we have chosen δk < 1−β.
Hence, we choose η > δ1 and close enough to 1 such that η − δk > β. Then we use the
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2. Ruin Probabilities in a Finite Time Horizon

last argument to bound (2.18) with

lim
u→∞

2 E
[
N2

t ;Nt > uη−δk
]

λ2u2β F
2
(u)

≤ lim
u→∞

2
√

E
[
N4

t

]
P(Nt > uη−δk)

λ2u2β F
2
(u)

= 0.

In the first inequality we have used Cauchy inequality and in the second the fact that
E [N4

t ] ∼ (λt)4 and that P(Nt > uη−δk) goes to 0 at an exponential rate since η−δk > β.

Lemma 2.9. Let k ∈ N. If 0 < δk < 1 is such that 1
k+2

(
k β

α + 2
)
< δk, then

lim
u→∞

E

[
N2

t F
2(
Umax

)
;Nt > k,U(Nt−k+1) ≥ uδk

]

λ2u2β F
2
(u)

= 0,

where U(k) is the k-th order statistic from the set {Xk : k 6= J}.

Proof. Observe that since β/α < 1 it is always possible to choose 0 < δk < 1 as in the
hypothesis. Hence, we bound the given expression with

lim
u→∞

F
2(
uδk

)
E

[
N2

t ;Nt > k,U(Nt−k+1) ≥ uδk

]

λ2u2β F
2
(u)

= lim
u→∞

F
2(
uδk

)
E

[
N2

t P(U(Nt−k+1) ≥ uδk |Nt > k)
]

λ2u2β F
2
(u)

≤ lim
u→∞

F
2+k(

uδk
)
E [N2+k

t ]

λ2u2β F
2
(u)

= lim
u→∞

F
2+k(

uδk
)
(λuβ)2+k

λ2u2β F
2
(u)

.

We used that P(U(N−k+1) > u) ≤ NkF
k
(u) and E [Nk

t ] ∼ (λt)k for k ∈ N. It can be

easily proved that we can rewrite F
2+k

(uδk) = ℓ1(u)/u
δα(2+k) and F

2
(u) = ℓ2(u)/u

2α

with ℓ1(u) and ℓ2(u) slowly varying. Since ℓ1(u) and 1/ℓ2(u) are both O(uǫ/2) for ǫ > 0
the last expression is equivalent to

λk lim
u→∞

ℓ1(u)

ℓ2(u)
u2α+kβ−(2+k)αδk < λk lim

u→∞
u2α+kβ−(2+k)αδk+ǫ.

By the election of δk in the hypothesis of the Lemma it is straightforward to verify that
2α+ kβ− (2 + k)αδk < 0 and therefore it is possible to choose ǫ > 0 small enough such
that the last limit is 0.
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Chapter 3

Tail Probabilities for the
Multivariate Lognormal

We consider the problem of approximating tail probabilities of sums of random variables
which are nonindependent and possess heavy-tails. As a motivating example, one could
consider the problem of computing the probability of large losses or high returns on a
portfolio of correlated asset prices. A very popular model in the financial literature is the
so-called Black-Scholes model in which stock prices follow lognormal distributions which
are usually considered to have significative correlations. Motivated by these types of
financial risk problems, we shall concentrate on the approximation of tail probabilities of
sums of dependent lognormals. The tail probability of sums of lognormals also appears
in other disciplines as physics, electronics and telecommunications (cf. Szyszkowicz and
Yanikomerloglu, 2007; Rossberg, 2008; Vanduffel et al., 2008, and references therein).

More precisely, we are considering a random vector such that its logarithmic trans-
formation log X follows a multivariate normal distribution. Here we are interested in
approximating the probability z(u) = P

(
Sd > u

)
as u → ∞ which will be done via an

asymptotic equivalent expression and complemented by Monte Carlo estimators.
Note that most of the literature has focused on sums of independent random vari-

ables. In contrast, we consider a problem that involves the sum of dependent increments
which makes the available results for estimating the tail probabilities of sums of heavy-
tailed increments difficult to apply in our current setting because they rely heavily on
the i.i.d. assumption.

In the Section 3.1 we present an asymptotic approximation for the tail probabil-
ity P(Sd > u) which was originally given in Asmussen and Rojas-Nandayapa (2008).
In particular, this result shows that the asymptotic behavior of the sum of correlated
lognormal random variables is similar to that of the independent case which is char-
acteristic of subexponential distributions. We further analyze those events where the
sum becomes large under the guidelines of classic subexponential theory. The intuitive
insight gained from it will serve as the key idea for the development of Monte Carlo
estimators.

In Section 3.2 we analyze the Monte Carlo estimators for P(Sn > u) proposed in
Asmussen et al. (2008) and Asmussen and Rojas-Nandayapa (2006). The main idea
of the first set of estimators is Importance Sampling where the change of measure
involves scaling the covariance matrix. Furthermore, Cross-Entropy and Stratification
strategies are used to improve the efficiency of the estimator which can be proved to
have vanishing relative error as shown in Asmussen et al. (2008). In the second part
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3. Tail Probabilities for the Multivariate Lognormal

of Section 3.2, we study a couple of Monte Carlo estimators where the key idea is
Conditional Monte Carlo. This estimators are multivariate extensions of the estimators
proposed by Asmussen and Binswanger (1997); Asmussen and Kroese (2006) and were
empirically studied in Asmussen and Rojas-Nandayapa (2006). Here we extend some of
these results and suggest some strategies for improving the efficiency of these estimators.

We close this chapter with a section of numerical comparisons of both the approxi-
mation and Monte Carlo estimates.

3.1 Asymptotic Tail Probabilities for Sums of

Lognormals

In order to state our results we must introduce some notation. Let X = (X1,X2, . . . ,Xd)
T

be a d-dimensional vector such that log X ∼ Nd(µ,Σ) and set Sd = X1 + · · ·+Xd. We
shall write σ2

i = Σi,i, σi,j = Σi,j for i 6= j and ρi,j = σi,j/(σiσj); these three notions
correspond to the variance of the i-th Gaussian component and the covariance and
correlation between the i-th and j-th components respectively. We define

σ2 = max
1≤k≤d

σ2
k, µ = max

k:σ2
k=σ2

µk, md := #
{
k : σ2

k = σ2, µk = µ
}
.

The parameters σ2 and µ allow to characterize the dominant tail behavior among the
Xj ’s. In order to see this, let us recall the following well known asymptotic relation
often referred to as Mill’s ratio (cf. Resnick, 1992; Mikosch, 2003); if Yi ∼ N(µi, σ

2
i )

then as y → ∞

P(Yi > y) =
σi

(2π)1/2(y − µi)
exp

{
− (y − µi)

2σ2
i

2}
(1 + o(1)). (3.1)

With a simple exponential transformation we can obtain the equivalent asymptotic
expression for a lognormal random variable. Note that, in particular, the approximation
(3.1) indicates that P(Xj > u) = o

(
P(Xi > u)

)
if σ2

i > σ2
j , or σ2

i = σ2
j and µi > µj. We

shall introduce the following assumption:

Assumption A: Suppose that ρkℓ < 1 whenever σ2
k = σ2

ℓ .

The assumption A is equivalent to say that the correlation between any two lognor-
mals is strictly less than 1 which corresponds to a degenerate case. Otherwise, we would
have Xk = aXℓ. If the problem at hand involves Sd we can still fulfill Assumption A
by taking

Xk +Xℓ = (1 + a)Xk.

In the independent case, it is provable that P(Md > u) ∼ md P(µ + σZ > log u) as
u → ∞ where Z stands for a normal standard random variable. Therefore, we obtain
that

P(Xk > u
∣∣Md > u

)
−→

{
1/md σ2

k = σ2, µj = µ

0 otherwise
u→ ∞.

saying that the probability that a specific random variable is large given that the max-
imum is large is significative only if it has the dominant tail. The same holds true for
correlated normal random variables:
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Proposition 3.1. Let Y = (Y1, . . . , Yd) ∼ N
(
µ,Σ

)
, Xj = exp

(
Yj

)
and put Md =

max{Xk : 1 ≤ k ≤ d}. Then

lim
u→∞

P(Md > u)

P(µ+ σZ > log u)
= md.

The previous asymptotic result is a consequence of a basic feature of Gaussian
distributions, namely the tail independence and its proof can be found on page 53. The
following is the main result in Asmussen and Rojas-Nandayapa (2008).

Theorem 3.2 (Asmussen and Rojas-Nandayapa (2008)). Suppose γ(u) → γ∗ ∈ (0,∞)
as u → ∞. Define Y(u) =

(
Y1(u), . . . , Yd(u)

)
∼ N(µ, γ(u)Σ

)
, Xj(u) = exp

(
Yj(u)

)

and put Sd(u) = X1(u) + · · · + Xd(u). Then, if Assumption A on the preceding page
holds, we have

lim
u→∞

P(Sd(u) > u)

P(µ+ σγ(u)Z > log u)
= md,

The previous result in the case in which γ(u) = 1 is proved in Asmussen and Rojas-
Nandayapa (2008). The extension to the situation γ(u) → γ∗ ∈ (0,∞), which is required
in our future development, follows exactly as in that paper and its proof is given on
page 53. In Geluk and Tang (2008) it is claimed that this result is a consequence of
their Theorem 3.2 . However, the hypothesis of that Theorem are not satisfied in the
case of correlated lognormals.

Asymptotically speaking, Theorem 3.2, says that tail probability of the sum is ex-
clusively determined only by the tail probabilities of the random variables with the
heavier marginal tails. In fact, this is an extension of the subexponential property for
sums of i.i.d. lognormal random variables which states that

P(Sd > u) =

d∑

j=1

P(Xj > u)
(
1 + o(1)

)
= dP(Xj > u)

(
1 + o(1)

)
, u→ ∞.

Indeed, it follows from (3.1) that if Y(u) ∼ N(µ, γ(u)Σ), then

d∑

j=1

P
(
Sj(u) > u

)
= mdP

(
µ+ σγ(u)Z > log u

)(
1 + o(1)

)
.

The following Corollary follows trivially from Proposition 3.1 and Theorem 3.2.

Corollary 3.3. Let Y ∼ N
(
µ,Σ

)
, Xj = exp(Yj) and put Md = max{Xk : 1 ≤ k ≤ d},

then

lim
u→∞

P(Md > u)

P(Sd > u)
= 1.

A direct consequence of this corollary is that P(Md > u|Sd > u) → 1. In turn,
we can intuitively interpret just as in the independent case, namely, that the sum of
correlated lognormal is large due to the contribution of a single large increment.

A common intuition is that the result in Theorem 3.2 is a consequence exclusively
of the tail independence of the Gaussian distribution, which in fact is not true. The
proof exploits properties inherent to the Gaussian distribution which cannot be deduced
from the copula exclusively. Moreover, Albrecher et al. (2006) present an example of
a bivariate and tail independent distribution with lognormal marginals which fails to
have this asymptotic behavior.
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3.2 Monte Carlo Estimation

First we will analyze two importance sampling estimators for P(Sn > u) proposed in
Asmussen et al. (2008). The first estimator is closely related to the use of an appro-
priate exponential change-of-measure, not directly the one for the underlying Gaussian
distributions, but to the scaling of the covariance matrix by a factor that grows at a
suitable slow speed as u→ ∞. Since the sampler involves a simple scaling, the estima-
tor is straightforward to implement and it can be shown to be asymptotically optimal
as u → ∞. Furthermore, Cross-Entropy methods are then used for finding the best
tuning for the importance distribution. The second improvement takes advantage of the
fact that the largest of the increments dominates the large deviations behavior of the
sums of correlated lognormals. The strategy is to decompose the tail event of interest
in two contributions, a dominant piece corresponding to the tail of the maximum and a
remaining contribution. The dominant contribution is analyzed by means of an estima-
tor with vanishing relative error for the maximum of multivariate Gaussians and the
remaining contribution is independently handled using the importance sampling strat-
egy utilized in the design of the first estimator. We show that under mild conditions,
this estimator actually possesses asymptotically vanishing relative error.

In the second part of this section we analyze the two estimators which were empir-
ically studied in Asmussen and Rojas-Nandayapa (2006). The key idea is conditional
Monte Carlo based on order statistics. These estimators are multivariate extensions of
the estimators proposed in Asmussen and Binswanger (1997) and Asmussen and Kroese
(2006) respectively. The main feature of these algorithms is that they are applicable to
a wider class of multivariate distributions. The only additional requirement for its im-
plementation is the knowledge of the conditional distribution of every single component
given the rest of the vector. The second algorithm fails to be efficient in its original
form, however we conjecture that this algorithm attains efficiency with a combination
of importance sampling involving an appropriate variance scaling.

3.2.1 Importance Sampling via Variance Scaling

The notion of tail behavior is commonly associated to that of variance, which typically
are two non-related characteristics of a distribution. However, in the case of Gaussian
random variables we can see that the variance, in fact, controls the tail behavior as
discussed in 3.1 by means of the Mill’s ratio. Using this principle a natural impor-
tance sampling strategy to consider for computing P(Sn > u) is one that induces high
variances. This motivates considering as importance sampler a distribution such as

N
(
µ,Σ/(1 − θ)

)
, 0 < θ < 1.

In other words, we just inflate the covariance matrix by the factor 1/(1−θ). We denote
the probability measure induced by the Importance Sampling as Pθ(·) and we use the
notation Eθ(·) for the associated expectation operator. The estimator induced by this
simple strategy is

ẑ1(u) = I(Sd > u)
exp

{
− θ(Y − µ)T Σ−1(Y − µ)/2

}

(1 − θ)d/2
.

The next Lemma summarizes a useful representation for the second moment of ẑ1(u)
under the importance sampling distribution and its proof can be found on page 55.
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3.2. Monte Carlo Estimation

However, in order to state such representation we introduce another family of probabil-
ity measures (in addition to the Pθ’s), which we shall denote by (Qθ : 0 ≤ θ ≤ 1). We
use Qθ(·) to denote a probability measure under which Y is N

(
µ,Σ/(1 + θ)

)
.

Lemma 3.4.

Eθẑ1(u)
2 = (1 − θ2)−d/2Qθ(Sd > u). (3.2)

As an immediate consequence of the previous result we obtain that the estimator
ẑ1(θ) is logarithmic efficient if one chooses θ(u) → 1 at an appropriate speed. We wish
to select θ close to unity because under Qθ(·) the variances are multiplied by the factor
1/(1 + θ) and, to obtain logarithmic efficiency, we need to match the rate of decay of
z(u)2 which is determined by the factor one half times the largest variance parameter.
The proof of the following Theorem is given on page 56.

Theorem 3.5. Suppose that ψ(u) := 1 − θ(u) = o(1), then for ǫ ≥ 0

Eθ(u)ẑ1(u)
2

z(u)2−ǫ
= Θ

(
(log u)1−ǫ ψ(u)−d/2 exp

{
− (ǫ− ψ(u))

(
log u− µ

)2

2σ2

})
. (3.3)

In particular, if 1/ψ(u) = o
(
ep(log u)2

)
for some p > 0, then ẑ1(u) is logarithmically

efficient.

One can choose θ(u) in many ways which are consistent with the condition that
(1 − θ(u))−1 = o

(
ep(log u)2

)
for some p > 0 as u → ∞. One of them involves finding

θ(u) that minimizes the asymptotic expressions for the second moment of the estimator
given by (3.4). A simpler approach is to find the unique positive root θ(u) (which exists
for u large enough) to the equation Eθ(u)Sd = u. This root-finding procedure does not
contribute significantly to the computational cost of the algorithm because it is done
just once. The next lemma, whose proof can be found on page 56 shows that using the
root-finding procedure we obtain 1 − θ(u) = Θ

(
(log u)−1

)
as u→ ∞.

Lemma 3.6. The function θ(u) given as the unique root of the equation

Eθ(u)Sd = eµ1+σ2
1/2(1−θ(u)) + · · · + eµd+σ2

d/2(1−θ(u)) = u

is such that

1 − θ(b) =
σ2

2
+ o(1).

Algorithmically this estimator comes out as.

Algorithm: Importance Sampling via Variance Scaling

1. Find θ := θ(u) which as the root of the equation

Eθ(u)Sd = eµ1+σ2
1/(2(1−θ(u))2) + · · · + eµd+σ2

d/(2(1−θ(u))2) = u.

2. Sample Y ∼ N
(
µ,Σ/(1 − θ)

)
.

3. Return

ẑ1(u) = I(Sd > u)
exp

(
− θ (Y − µ)T Σ−1(Y − µ)/2

)

(1 − θ)d/2
.
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As a corollary to the analysis in Theorem 3.5 and Lemma 3.6 we obtain the following
result whose proof can be found on this page.

Corollary 3.7. The estimator Z1(u) given by Algorithm 1 satisfies

V arθẑ1(u)

z(u)2
= O(u1/4 log ud/2+1).

Although the estimator ẑ1(u) possesses two very convenient features, namely, is very
easy to implement and is asymptotically optimal, it also has the disadvantage that the
premultiplying factor in the asymptotic variance expression (3.5) might grow substan-
tially involving a factor such as O(u1/4 log ud/2+1). So, for moderate values of u and d,
the variance performance of the estimator might degrade in a significant way. To cope
with this problem one can introduce additional variance reduction techniques, such as
stratified sampling or conditional Monte Carlo. Another alternative that takes advan-
tage of the intuitive interpretation given by Corollary 3.3 and that achieves bounded
relative error will be studied later, but first, we shall provide another interpretation of
the change-of-measure behind ẑ1(u) using Cross-Entropy ideas.

3.2.1.1 Cross-Entropy Implementation

The Cross-Entropy can be used to provide an answer on how to select θ(u) within the
class of importance sampling distributions given by Pθ(u) (cf. Rubinstein and Kroese,
2004). The Cross-Entropy method is an iterative procedure which, in principle, im-
proves the estimator in every step. In this section we shall explore an implementation
of Cross-Entropy that starts with a choice of θ(u), based on the solution to the equation
Eθ(u)Sd = u, that, as we saw previously, can be shown to be asymptotically optimal.
Consequently, the application of the Cross-Entropy method is intuitively expected to
improve the variance performance of the corresponding estimator.

For our first algorithm in the previous section, we considered µ ∈ R
d and Σ ∈ R

d×d

fixed and we draw samples from

N
(
µ,Σ/(1 − θ)

)
.

Here we will use instead a larger, but still simple family of parametric multivariate
distributions. Our proposal is to take Σ fixed and consider

N(µ̃, Σ/(1 − θ)) µ̃ ∈ R
d θ ∈ R

+.

Here we provide directly the expression for the parameters omitting the details of the
calculation. For more details on the Cross-Entropy method we refer to Rubinstein and
Kroese (2004).

The parameters for the k-th iteration of the Cross-Entropy method are described
as follows. First, we sample r i.i.d. r.v.’s

(
Yi,k : 1 ≤ i ≤ r

)
such that

Yi,k ∼ N(µ̃k−1,Σ/(1 − θk−1)).

Given Yi,k = yi,k we compute

µ̃k :=

r∑
i=1

wi,k yi,k

r∑
i=1

yi,k

1

1 − θk
:=

r∑
i=1

wi,k (yi,k − µ̃k)
TΣ−1(yi,k − µ̃k)

r
r∑

i=1
wi,k

, (3.4)
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where the weights wi,k are given by

wi,k := (1 − θk)
d/2 exp

(
− (yi,k − µ̃k)

T Σ−1(yi,k − µ̃k)
)

exp
(
− (yi,k − µ̃k−1)

T Σ−1(yi,k − µ̃k−1)
)I(Sd,i > u).

It is an easy calculus exercise to verify that this expressions satisfy the conditions of the
Cross-Entropy method. One could try to choose a larger family of importance sampling
distributions to provide better estimates, however, the expressions can quickly become
complicated and more difficult to implement. We performed numerical experiments
and noted that the algorithm converges in a few iterations suggesting that our initial
distribution is not that far from the optimal distribution within the new family. The
precise description of the algorithm is given below.

Algorithm: Cross-Entropy via Variance Scaling.

1. Let k = 1 and µ̃0 := µ. Define θ0 := θ(u) as the solution of

eµ1+σ2
1θ(u)/2 + · · · + eµd+σ2

dθ(u)/2 = u.

2. Simulate a sequence of random vectors r i.i.d. r.v.’s
(
Yi,k : 1 ≤ i ≤ r

)
with

common distribution Nd(µ̃k,Σ/(1− θk)) and calculate µ̃k+1 and θk+1 as given in
(3.4). If the new parameters satisfy a convergence criteria go to 3 (see our com-
ments below for a convergence criteria that we used in our numerical examples).
Else make k := k + 1 and repeat 2.

3. Return

ẑ1(u) := (1 − θk)
d/2 exp

(
− (Yi,k − µ̃k)

TΣ−1(Yi,k − µ̃k)
)

exp
(
− (Yi,k − µ̃k−1)

TΣ−1(Yi,k − µ̃k−1)
)I(Sd,i > u).

We might choose several criteria in Step 2 above. However, since we are interested
in the relative error we will stop iterating when the absolute difference between the
empirical coefficient of variation between the wk,i’s (for 1 ≤ i ≤ r) and that of the
wk−1,i’s is smaller than α · 100% the empirical coefficient of variation of the wk−1,i’s.

3.2.1.2 Stratification Strategy

In our intuitive discussion leading to Corollary (3.3) we observed that large values of
Sd happen due to the contribution of a single large jump. On the other hand, in
the previous section, we constructed a weakly efficient estimator using an importance
sampler based on the fact that the variances dictate the tail behavior of Sd. The idea in
this section is to combine these two intuitive observations in order to produce a strongly
efficient importance sampling estimator. First, note that

P(Sn > u) = zM
(
u
)

+ zR
(
u
)
,

where

zM (u) = P
(

max
1≤i≤d

Xi > u
)
, zR(u) = P

(
Sd > u, max

1≤i≤d
Xi ≤ u

)
.
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3. Tail Probabilities for the Multivariate Lognormal

In view of Theorem 3.2 on page 43 we must have that zR(u) = o
(
zM (u)

)
as u→ ∞,

so the most important contribution comes from the term zM
(
u
)
. We shall refer to zR(u)

as the residual probability .
The strategy is to design independent and unbiased estimators, say ẑR(u) and ẑM (u).

This idea has been exploited previously in the literature in the context of i.i.d. increment
distributions (cf. Juneja, 2007). The gain comes if ẑM (u) is strongly efficient for zM

(
u
)

even if ẑR(u) has a coefficient of variation of order O
(
z(u)/zR(u)

)
as u→ ∞. In other

words, ẑR(u) may not be strongly efficient for zR(u), but its coefficient of variation
could grow slowly enough so that the combined estimator ẑ2(u) = ẑM (u) + ẑR(u) for
z(u) is strongly efficient.

For zR(u) we propose to use Pθ as our importance sampling distribution, i.e. Y ∼
N

(
µ, ,Σ/(1 − θ)

)
. The corresponding estimator takes the form

ẑR(u) = I

(
Sd > u, max

1≤i≤d
Xi ≤ u

)exp
(
− θ(u)(Y − µ)TΣ−1(Y − µ)/2

)

(1 − θ(u))d/2
.

The reason for using Pθ as importance sampler is that for estimating α2

(
u
)

one must
induce the underlying rare event {Sd > u,max1≤i≤dXi ≤ u} by means of more than
one large component (which might be achieved by inflating the variances) as opposed
to inducing a single large jump as suggested by Theorem 3.2 on page 43. Just as before
we conclude that

Eθ(u)ẑR(u)2 =
(
1 − θ(u)2

)−d/2
Qθ(u)

(
Sd > u, max

1≤i≤d
Xi ≤ u

)
. (3.5)

The following result, whose proof can be found on page ?? provides the necessarily
elements to analyze Eθ(u)Z2,2(u)

2.

Theorem 3.8. Suppose that Assumption A is in force and that ψ(u) := 1−θ(u) = o(1).
Then,

E ẑ2
R(u)

z2(u)
= O

(
ψ(u)−d/2(log u)2

u1−β

)
, u→ ∞.

In particular, if ψ(u)−d/2 = o
(
u1−β/ log(u)2

)
, and we use an unbiased estimator ẑM

for zM (u) then

lim sup
u→∞

Var ẑ2(u)

z(u)2
= lim sup

u→∞

Var ẑR(u)

z(u)2
.

Hence, the estimator ẑ2(u) will inherit the efficiency properties of the estimator
ẑM (u) that we decide to choose. That is, an unbiased estimator for

zM (u) = P

(
max
1≤j≤d

Yj > log u
)
.

Notice that, what we have now is an estimation problem in a setting involving light
tails. A possibility is to use the algorithm proposed in Adler et al. (2008) for estimating
the probability P(Mn > u) which in fact has vanishing relative error. Part of future
work will be to provide an alternative algorithm for estimating the same probability.

3.2.2 Conditional Monte Carlo via Order Statistics

In this section we study the dependent versions of the conditional algorithms proposed
by Asmussen and Binswanger (1997); Asmussen and Kroese (2006). Recall from Sec-
tion 1.3.3 on page 12 that this algorithms were constructed by conditioning with respect
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3.2. Monte Carlo Estimation

to the order statistics. In fact the second algorithm provided an easier implementation
by exploiting a symmetry argument coming from the i.i.d. assumption.

We discussed how to drop the identically distributed assumption. Moreover, we
proved that these algorithm kept their efficiency properties in the lognormal and reg-
ularly varying cases. Moreover, the construction of the dependent version of these
algorithms follows exactly in the same manner. The only difference being the form of
the conditional distribution due to the dependence. We discuss these algorithms below.

3.2.2.1 Asmussen-Binswanger Estimator: Dependent version

For extending the algorithm of Asmussen and Binswanger (1997) to the multivariate
setting we need to calculate the conditional probability that {Sn > u} given the first
d−1 order statistics X(1), . . . ,X(d−1). However, since the random variables are no longer
i.i.d. we also need to know the keep track of the original indexes. If all this information
is contained in the σ-algebra F , then we obtain

P
(
Sd > u

∣∣F
)

=
P(XK > (u− S(d−1)) ∨X(d−1))

P(XK > X(d−1))

=
GK

(
(u− S(d−1)) ∨X(d−1),X−k

)

GK

(
X(d−1),Xk

) ,

where Gk(·,x−k) is the conditional distribution of
(
Xk|X−k = x−k

)
. Algorithmically

we have:

Asmussen-Binswanger Algorithm: Dependent Random Variables.

• Simulate X1, . . . ,Xd. Register the index of K of the largest random variable and
form the order statistics X(1), . . . ,X(d).

• Return

ẑAB(u) =
GK

(
(u− S(d−1)) ∨X(d−1),X−k

)

GK

(
X(d−1),Xk

) .

We discuss the characteristics of this algorithm together with the dependent version
of the algorithm of Asmussen and Kroese (2006) which is explained next.

3.2.2.2 Asmussen-Kroese Estimator: Dependent version

We define a random variable K such that under the probability measure P it follows a
discrete distribution supported on {1, . . . , d} with P(K = i) = pi. So, we make

P(Sd > x) =

d∑

k=1

P(Sd > x,Xk = Md) = E
[I(Sd > x,XK = Md)

pK

]
,

and condition with respect to F = σ(K,X1, . . . ,XK−1,XK+1, . . . ,Xd) to obtain

P(Sd > x) = E
[P

(
XK > M−K ∨ (x− S−K)

)

pK

∣∣F
]

= E
[GK

(
M−K ∨ (x− S−K),X−K

)

pK

]
,
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3. Tail Probabilities for the Multivariate Lognormal

where Gk(·,x−k) is the conditional distribution of
(
Xk|X−k = x−k

)
and M−k and S−k

are defined as the maximum and sum of the Xi’s without considering the k-th random
variable. As before we suggest to use

pk(u) =
P(Xk > u)

∑d
i=1 P(Xi > u)

.

The algorithm is as follows:

Asmussen-Kroese Algorithm: Dependent version.

• Simulate K.

• Simulate X1, . . . ,XK−1,XK+1, . . . ,Xd.

• Return

ẑAK(u) =
G

(
M(−K) ∨ (u− S−K ,X−K)

)

pK
.

These algorithms were empirically studied in Asmussen and Rojas-Nandayapa (2006)
in the case of multivariate lognormal random vectors. In such case the subexponential-
like behavior of the multivariate lognormal distribution could have suggested that these
algorithms are efficient. However, the following counterexample proves this intuition
wrong. We consider a multivariate lognormal random vector with localization vector
and dispersion matrix given by

µ = 0, Σ :=

(
1 ρ
ρ 1

)
,

with ρ > 1/3, then the estimator will have an efficiency which is weaker than logarithmic
efficiency (this example is due to Dominik Kortschak).

The reason is that the values of the random vector X−k affect directly the distribu-
tion Gk(·). Moderately large values of the elements of X and positive correlations will
increase the localization parameter of the conditional distribution of Xk in the tail and
in consequence the probability of large values will be bigger compared to the uncondi-
tional distribution F (·). In the case of the Asmussen-Kroese algorithm it is easily seen
that this increases the variance of the estimator.

This analysis suggested to use importance sampling over the vector X−k before the
conditioning which can reduce variance of the estimator. We show this estimator in
algorithmically shape.

Asmussen-Kroese Algorithm: Dependent version

• Select an appropriate multivariate distribution function H such that it density
function h is known and is possible to simulate from it.

• Simulate K.

• Simulate X1, . . . ,XK−1,XK+1, . . . ,Xd from H.

• Return

ẑAK(u) =
G

(
M(−K) ∨ (u− S−K ,X−K)

)

pK

f−K(X−K)

h−K(X−K)
.
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As in any importance sampling implementation there are two main issues associated
with the election of the change of measure. First, we need to be able to simulate from
the proposed importance sampling distribution and also we need to know the likelihood
ratio. Secondly, the change of measure should deliver a substantial variance reduction
(remember that the implementation of the importance sampling method can in fact
increase the variance). As an illustrative example we show the following result which
was proved in Rojas-Nandayapa (2006).

Theorem 3.9. Let (X1,X2) be a multivariate lognormal random vector with localization
vector and dispersion matrix given by

µ = 0, Σ :=

(
1 ρ
ρ 1

)
,

G(·, x2) ∼ LN(ρ log x2, 1 − ρ2) be the conditional distribution of
(
X1|X2 = x2

)
, Y ∼

LN(ρ log u, 1/(1−ρ)) an independent random variable and f(·) and h(·) be the densities
of X1 and Y respectively. Then

ẑAK := 2G
(
Y ∨ (u− Y ), Y

)f(Y )

h(Y )

is an unbiased estimator of P(X1 +X2 > u) and it has bounded relative error.

This corresponds to a dependent version of the Asmussen-Kroese algorithm using h
as importance density. The set up in the hypothesis of the Theorem are too restrictive
and its proof is rather long, so I have decided to omit it. However, this Theorem works
fine to illustrate some features. We have chosen an importance sampling distribution
with an increased localization parameter and smaller dispersion. The idea of this is to
concentrate the frequency of samples over the region where the function h is larger than
f , so the likelihood ratio is smaller than 1 helping to reduce the variance. The problem
of this approach is that the likelihood ratio becomes difficult to handle when we increase
the dimensions and the efficiency proofs become more complicated. However, we got
the intuition that a good way to control the effect of the lighter conditional distribution
tail of G(·) is to use an importance sampling distribution with smaller likelihood ratios
f(·)/h(·). Intuitively, this might be obtained by choosing a density h(·) with a heavier
tail than f(·).

In the previous section we have suggested to use an importance sampling strategy
by scaling the variance which can be combined with the conditional strategy shown in
this section. This will be investigated in future work.

3.3 Concluding Remarks

3.3.1 Numerical Examples

In the Examples D.1 to D.3 on pages 103–105 we examined numerically the sharp
asymptotic approximation given in Theorem 3.2 on page 43 (subexponential-type) and
the upper bound obtained suggested in on page 16 (aggregated tails). For comparison
purposes we included our best Monte Carlo estimate in terms of smallest variance. The
examples correspond to low, medium and high correlations respectively

The conclusion here is that the subexponential-type approximation provide better
results than the aggregated tails. Moreover, it is also observed that its sharpness im-
proved as the correlation parameter is increased. Recall that the random variables
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3. Tail Probabilities for the Multivariate Lognormal

consider in our examples are nonidentically distributed. An intuitive explanation of
this is that stronger correlations together with different marginal behavior decreases
the probability of observing two or more random variables with large values. A differ-
ent behavior should be expected in the identically distributed case.

The discussion of the numerical examples of the Monte Carlo estimators can be
found in the Subsection 4.3.1 on page 65 where the estimator proposed in the next
chapter has been considered for comparison purposes.

Notes and Comments

In recent years, there has been an intense research on the asymptotic tail behavior of
sums of dependent heavy-tailed random variables. The following are some results which
are related to some extent to the asymptotic approximation given in the Section 3.1.

Several papers have taken the approach of constructing bounds for the tail proba-
bility of the sum of general random variables. Denuit et al. (1999) provided upper and
lower bounds which do not rely on any assumption on the nature of the dependence.
Cossette et al. (2002); Embrechts and Puccetti (2006a); Mesfioui and Quessy (2006)
provided extensions on best possible bounds of the distribution of nondecreasing func-
tions of n dependent risks. Embrechts and Puccetti (2006b) studied the tail distribution
of functions of dependent random vectors having fixed multivariate marginals. The case
n = 2 was studied in Albrecher et al. (2006) where they provided bounds for the sum
of two heavy-tailed random variables in a general copula framework.

More explicit results had been obtained by considering asymptotic approximations
for the tail probability of a sum where it is assumed that the marginals are heavy-
tailed distributions. Albrecher et al. (2006) investigated exhaustively the case of two
dependent random variables. In the more general case of n random variables, Wüthrich
(2003); Alink et al. (2004, 2005) used multivariate extreme value theory to provide
asymptotic bounds P(Sn > u) in the case where the variables are exchangeable with
Archimedean copula. This results were generalized in Alink et al. (2007) for a subclass of
a symmetric copulas. Barbe et al. (2006) gave asymptotic for the tail probability in the
case where the random variables follow a multivariate regularly varying distribution in
terms of a measure associated with the extreme value copula. Foss and Richards (2008)
consider the case where the involved random variables are conditionally independent.

In the nonexchangeable case several results have been developed recently. Kortschak
and Albrecher (2008) generalized some of the results in Alink et al. (2004); Barbe
et al. (2006) for nonidentical and not necessarily positive random variables. Goovaerts
et al. (2004); Tang and Wang (2006) derived asymptotic expressions for a randomly
weighted sum of regularly varying random variables. Wang and Tang (2004); Geluk
and Ng (2006); Tang (2006); Ko and Tang (2008) analyzed tail probabilities of sums of
negatively associated sums of heavy-tailed random variables. In particular in Ko and
Tang (2008); Tang (2006, 2008) dependence structures which do not impact the tail
behavior of subexponential marginals are investigated.

In the lognormal case Vanduffel et al. (2008) obtained approximations for the sum of
conditionally independent lognormal random variables and investigate some links with
the results in Asmussen and Rojas-Nandayapa (2008). Szyszkowicz and Yanikomerloglu
(2008) show that the distribtuion of the sum of correlated exchangeable lognormals can
be well approximated with a lognormal random variable and provide the parameters.

We leave the discussion of Monte Carlo estimates for the Notes and Comments
section in the next chapter.
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3.4 Proofs.

Proof of Proposition 3.1. Note that

lim
u→∞

P(Md > u)

P(µ+ σγZ > log u)
≥ lim

u→∞

∑d
i=1 P(Xi > u) − ∑

j 6=i P(Xi > u,Xj > u)

P(µ+ σγZ > log u)
,

recall Z ∼ N(0, 1). We claim that the last line in the previous display is asymptotically
equivalent to

lim
u→∞

∑d
i=1 P(Xi > u)

P(µ+ σγZ > log u)
= md.

To see this, write

P(Xi > u,Xj > u) =

{
P(Xi > u

∣∣Xj(u) > u)P(Xj > u)

P(Xj > u
∣∣Xi(u) > u)P(Xi > u).

If P(Xk > u) = o
(
P(µ+σγZ > log u)

)
as uր ∞ for k = i or k = j, then the claim holds

immediately, so, the interesting case is obtained when the Xi and Xj are identically
distributed with P(Xk > u) = P(µ + σγZ > log u). However, it is well known (see,
for instance, Joe, 1997; Nelsen, 2006) that if Z1 and Z2 are jointly standard Gaussian
r.v.’s then P(Z1 > u

∣∣Z2 > u) → 0 as u → ∞. A straightforward adaptation of this
result to the case of Gaussian random variables with scaled covariance structure allows
to conclude the previous claim in this case and, in turn, the result.

Proof of Theorem 3.2. We proceed by induction. The case n = 1 is straightforward.
For the induction step, we assume that the Theorem holds for any arbitrary lognormal
random vector with Gaussian copula of size d. Next, we will prove that the Theorem is
true for a random vector of size d+ 1. For the proof, the following assumptions (which
are made w.l.o.g.) are convenient:

A1. X1(u), . . . ,Xd+1(u) are ordered in such way that if ℓ < k then Xk(u) and
Xℓ(u) either have the same marginal distribution, or Xk(u) has lighter tail
than Xℓ(u) . Thus Fµ,σ2(u) = P(X1(u) > u).

A2. µ = 0. If not, replace Xk(u) and u by Xk(u)e
−µ and ue−µ in P(Sd+1(u) > u).

Choose β as in Lemma 3.10 on the following page and consider the following relations

P(Sd+1(u) > u)

= P(Sd+1(u) > u,Sd(u) ≤ uβ) + P(Sd+1(u) > u,Sd(u) > uβ,Xd+1(u) ≤ uβ)

+ P(Sd+1(u) > u,Sd(u) > uβ,Xd+1(u) > uβ)

≤ P(Xd+1(u) > u− uβ) + P(Sd(u) > u− uβ) + P(Sd(u) > uβ,Xd+1(u) > uβ).

From the same Lemma it follows that

lim sup
u→∞

P(Sd+1(u) > u)

P(X1(u) > u)
≤ lim sup

u→∞

P(Xd+1(u) > u− uβ)

P(X1(u) > u)
+ lim sup

u→∞

P(Sd(u) > u− uβ)

P(X1(u) > u)
.

Here assumption A1 and the induction hypothesis guarantee that the two limsup’s on
the r.h.s. are actually limits, so that the r.h.s. becomes

lim
u→∞

P(Xd+1(u) > u)

P(X1(u) > u)
+ lim

u→∞
P(Sd(u) > u− uβ)

P(X1(u) > u− uβ)
= lim

u→∞
P(Xd+1(u) > u)

P(X1(u) > u)
+m∗

d,
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where the first step uses assumption A1 and the second step the induction hypothesis
with m∗

d denoting the number among X1(u), . . . ,Xd which have the same tail as X1(u).
From assumption A1 the limit in the r.h.s. is 0 if Xd+1(u) has lighter tail than X1(u),
or 1, if Xd+1(u) and X1(u) have the same distribution. Observe that by A1, X1(u)
cannot have lighter tail than Xd+1(u). We have proved

lim sup
u→∞

P(Sd+1(u) > u)

P(X1(u) > u)
= lim sup

u→∞

P(Sd+1(u) > u)

P(µ+ σγZ > log u)
≤ md+1, (3.6)

for the appropriate value of md+1. Together with Proposition 3.1 on page 43 (which
provides a lower bound) this establishes the induction step and completes the proof.

Lemma 3.10. Under the hypothesis of Theorem 3.2 on page 43, if A1 and the induction
hypothesis hold, then there exists 0 < β < 1 such that

lim sup
u→∞

P(Sd(u) > uβ,Xd+1(u) > uβ)

P(X1(u) > u)
= 0.

Proof. If σd+1 < σ choose σd+1/σ < β < 1. Then

lim sup
u→∞

P(Sd(u) > uβ ,Xd+1(u) > uβ)

P(X1(u) > u)
≤ lim sup

u→∞

P(Xd+1(u) > uβ)

P(X1(u) > u)

= lim
u→∞

P(Xd+1(u)
1/β > u)

P(X1(u) > u)
.

But the last limit is 0 since Xd+1(u)
1/β ∼ LN

(
µd+1/β, γ(u)σ

2
d+1/β

2
)

has lighter tail
than X1(u) because of σ2

d+1/β
2 < σ2.

If σ = σd+1 define η = maxk=1,...,d{σk(d+1)/σ
2}. By A1, we have that σ2

k = σ2 for
k = 1, . . . , d + 1. Then η is the maximum among the correlations between Xk(u) and
Xd+1(u) and by the hypothesis of the Theorem 3.2 on page 43 it should take values η ∈
[−1, 1). Therefore, we can choose β close enough to 1 to obtain max{1/2, η} < β2 < 1
and (β − η/β)2 + β2 > 1 (observe that (1 − η/1)2 + 12 > 1). Consider

lim sup
u→∞

P(Sd(u) > uβ,Xd+1(u) > uβ)

P(X1(u) > u)

= lim sup
u→∞

P(Xd+1(u) > u1/β)

P(X1(u) > u)
+ lim sup

u→∞

P(Sd(u) > uβ, u1/β > Xd+1(u) > uβ)

P(X1(u) > u)
.

Here the first limit is 0 since Xd+1(u)
β ∼ LN

(
βµd, γ(u)(βσ)2

)
has lighter tail than

X1(u) because of β < 1. For the second limit, we define

(Xc
1(u, y), . . . ,X

c
d(u, y)) = (X1(u), . . . ,Xd(u)|Xd+1(u) = y) , Sc

d(u, y) =

d∑

i=1

Xc
i (u, y) .

So,

lim sup
u→∞

P(Sd(u) > uβ, u1/β > Xd+1(u) > uβ)

P(X1(u) > u)

= lim sup
u→∞

1

P(X1(u) > u)

u1/β∫

uβ

P(Sc
d(u, y) > uβ)fXd+1(u)(y)dy.
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Standard formulas for the conditional mean vector and conditional covariance matrix
in the multivariate normal distribution yield

Xc(u, t) ∼ LN({µi +
σi(d+1)

σ2
(log t− µd+1)}i, γ(u){σij − uij}ij), uij =

σi(d+1)σj(d+1)

σ2
.

We can restrict to consider values of t > 1 since

Xc
i (t)

d
= Xc

i (1) exp
{σi(d+1)

σ2
log t

}
.

Then it follows that Xc
i (u, t) is smaller than Xc

i (u, 1)e
η log t in stochastic order. So,

Sd(u)
c(t) ≤ Sd(u)

c(1)tη in stochastic order, and the last limit above can be above
bounded by

lim sup
u→∞

1

P(X1(u) > u)

u1/β∫

uβ

P(Sc
d(u, 1) > uβ/yη)fXd+1(u)(y)dy. (3.7)

If η ≤ 0, the integral in (3.7) is bounded by P(Sc
d(u, 1) > uβ)P(Xd+1(u) > uβ)

which by the induction hypothesis is asymptotically equivalent to mc
dP(Xc

k(u, 1) >
uβ)P(Xd+1(u) > uβ) with the appropriate integer value mc

d and index k. Now, from the
form of the distribution of Xc(u, y) and A1 it follows that Xk(u)

c(u, 1) and Xd+1(u)
have lighter or equivalent tails than X1(u) , so bounding mc

d by d we have proved that

lim sup
u→∞

P(Sd > uβ, u1/β > Xd+1(u) > uβ)

P(X1(u) > u)
≤ lim sup

u→∞

dP2(X1(u) > uβ)

P(X1(u) > u)
.

The last limit is 0 because of the choice 2β2 > 1 and A1. In the case where η > 0, the
integral in expression (3.7) can be bounded by P(Sc

d(u, 1) > uβ−η/β)P(Xd+1(u) > uβ).
Observe that β − η/β > 0 since we took β2 > η; so we can use the same argument as
above to conclude that

lim sup
u→∞

P(Sd(u) > uβ, u1/β > Xd+1(u) > uβ)

P(X1(u) > u)

≤ lim sup
u→∞

dP(X1(u) > uβ−η/β)P(X1(u) > uβ)

P(X1(u) > u)
,

which is again 0 because of the choice (β − η/β)2 + β2 > 1 and the asymptotic relation

P(X1(u) > uβ−η/β)P(X1(u) > uβ)

=
σ2

2π log uβ−η/β log uβ
exp

{
− [(β − η/β)2 + β2] log2 u

2σ2γ∗

}(
1 + o(1)

)
.
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3. Tail Probabilities for the Multivariate Lognormal

Proof of Lemma 3.4 on page 45.

Eθẑ1
(
u
)2

=

∫
I(ey1 + · · · + eyd > u) exp

{
− 2θ(y − µ)TΣ−1(y − µ)/2

}

(1 − θ)d

× exp
{
− (1 − θ)(y − µ)T Σ−1(y − µ)/2

}

(2π)d/2 det
(
Σ/(1 − θ)

)1/2
dy1 . . . dyd

=

∫
I
{
ey1 + · · · + eyd > u

}

× exp
{
− (1 + θ)(y − µ)TΣ−1(y − µ)/2

}

(1 − θ)d/2(1 + θ)d/2(2π)d/2 det(Σ/(1 + θ))1/2
dy1 . . . dyd

= (1 − θ2)−d/2Qθ(Sd > u).

Proof of Theorem 3.5. Theorem 3.2 applied with γ(u) = 1/
(
1 + θ(u)

)
together with a

straightforward extension of approximation (3.1) in the case of scaled variances yields

Qθ(u)(Sd > u) = Θ
(
P(µ+ σ(1 + θ(u))−1/2N(0, 1) > log u)

)

= Θ

(
P

(
Z >

log u− µ

σ(1 + θ(u))−1/2

))

= Θ

(
1

log u− µ
exp

{
− (log u− µ)2(1 + θ(u))

2σ2

})

= Θ

(
1

log u
exp

{
− (log u− µ)2(2 − ψ(u))

2σ2

})

Since we have that

z(u)2−ǫ = Θ

(
1

(log u)2−ǫ
exp

{
− (log u− µ)2(2 − ǫ)

2σ2

})
,

the result follows by noting that

(
1 − θ(u)2

)−d/2
= Θ

(
(ψ(u))−d/2

)

and plugging in this estimate together with that of Qθ(u)(Sd > u) into representation
(3.4).

Proof of Lemma 3.6. First, we note that existence and uniqueness for sufficiently large
u follows easily by virtue of a monotonicity argument. Note that

eµ+σ2/2(1−θ(u)) ≤ Eθ(u)Sd ≤ deµ+σ2/2(1−θ(u)).

Let θ+(u) be the solution to the equation

eσ2/2(1−θ+(u)) = ue−µ/d.

We must have that 1 − θ(u) ≤ 1 − θ+(u). However,

σ2

2
(
1 − θ+(u)

) = log u− µ− log d.
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3.4. Proofs.

Moreover, we also have that

1 − θ(u) ≥ 1 − θ−(u) =
σ2

2(log u− µ)
.

These observations imply the statement of the lemma.

Proof of Corollary 3.7. Since 1− θ(u) = log(u)−1σ2/2
(
1 + o(1)

)
by Proposition 3.7 we

get

exp

{
− (1 − θ(u))

(
log u− µ

)2

2σ2

}
= u1/4

(
1 + o(1)

)
.

Inserting this in (3.3) the result follows.

Proof of Theorem 3.4. Note that

Qθ(u)

(
Sd > u, max

1≤i≤d
Xi ≤ u

)
=

d∑

k=1

Qθ(u)

(
Sd > u,Xk = max

1≤i≤d
Xi ≤ u

)
.

So, we choose β as in Lemma 3.11 and consider the following decomposition

d∑

k=1

Qθ(u)

(
Sd > u, Xk = max

1≤i≤d
Xk < u

)

=

d∑

k=1

Qθ(u)

(
Sd > u, Xk = max

1≤i≤d
Xk < u, Sd,−k > uβ

)

+Qθ(u)

(
Sd > u, Xk = max

1≤i≤d
Xk < u, Sd,−k < uβ

)

≤
d∑

k=1

Qθ(u)

(
Sd,−k(u) > uβ,Xk(u) > uβ/d

)
+Qθ(u)

(
u− uβ < Xk(u) < u

)
. (3.8)

We take γ = 1 − β in Lemma 3.11 and together with Lemma 3.12 on page 59 yields

Qθ(u)

(
Sd > u,max1≤i≤dXi ≤ u

)

α(u)2
= O

(
(log u)2

u1−β

)
,

Finally, the result follows by inserting this in representation 3.5 and noting that

(
1 − θ(u)2

)−d/2
= Θ

(
ψ(u)−d/2

)
.

Lemma 3.11. There exists β ∈
(
0, 1

)
such that for any γ ∈ R it follows that

Qθ(u)(Sd,−k > uβ,Xk > uβ/d)

uγz(u)2
= o(1), k = 1, . . . , d,

where
Sd,−k := X1 + · · · +Xk−1 +Xk+1 + · · · +Xd.

Proof. For the proof we will consider two cases. The first when σk < σ and the second
when σk = σ (cf. assumption A1).
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3. Tail Probabilities for the Multivariate Lognormal

Case 1. If σk 6= σ take βk := σk/σ and observe that

Qθ(u)(Sd,−k > uβk ,Xk > uβk/d) ≤ Qθ(Xk > uβk/d)

= P

(
µk + σk(2 − ψ(u))−1/2N(0, 1) > βk log u− log d

)

= P

(
N

(
µk + log d

βk
,

σ2
k

βk
2(2 − ψ(u))

)
> log u

)
.

By Mill’s ratio the last term is dominated by the tail of z2(u) even after premultiplying
by a power term bγ = eγ log b. The assertion of the Lemma follows from here.

Case 2. If σk = σ define η = max{σℓ.k/σ
2 : ℓ 6= k}. By assumption, we have that

σ2
k ≤ σ2 for k = 1, . . . , d, and thereover

1 >
∣∣∣ max

ℓ 6=k

{
ρkℓ

}∣∣∣ =
∣∣∣ max

ℓ 6=k

{ σℓ,k

σℓσk

}∣∣∣ ≥
∣∣∣ max

k=1,...,d

{σℓ,k

σ2

}∣∣∣ ≥ η.

Therefore η ∈ [−1, 1), so we can choose βk close enough to 1 such that max{1/2, η} <
β2

k < 1 and (βk −η/βk)
2 +β2

k > 1; note that such βk can always be chosen by continuity
since (1 − η/1)2 + 12 > 1. Consider

Qθ(u)

(
Sd,−k > uβk ,Xk > uβk/d

)

≤ Qθ(u)

(
Sd,−k(u) > uβk , uβk/d < Xk < u1/βk

)
+Qθ(u)

(
Sd,−k > uβk , u1/βk < Xk

)

≤ Qθ(u)

(
Sd,−k(u) > uβk , uβk/d < Xk < u1/βk

)
+Qθ(u)

(
u1/βk < Xk

)
. (3.9)

Define Q′
θ(u),t(·) the probability measure under which

Y ∼ Nd

(
µ + Σ·,k

t− µk

σ2
, (1 + θ2)

(
Σ− Σ·,kΣk,·

σ2

))
,

or equivalently the conditional distribution of Y|Yk = t. Moreover, since Y has the
same distribution under the measure Q′

θ(u),t than Y + Σ·,k t/σ2
k under the measure

Q′
θ(u),0 and η was chosen in such way that η ≥ Σ·,k/σ2

k, then if u > 1 it holds that

Qθ(u)(Sd,−k > uβk , u1/βk > Xk > uβk/d)

= EQθ(u)
(
Q′

θ(u),Yk
(Sd,−k > uβk) ; βk log u < Yk < log u/βk

)

≤ EQθ(u)
(
Q′

θ(u),0(Sd,−k e
ηYk > uβk) ; βk log u < Yk < log u/βk

)
. (3.10)

If η ≤ 0, the previous expectation is bounded by

Q′
θ(u),0

(
Sd,−k > uβk

)
Qθ(u)

(
Xk > uβk/d

)
.

The previous two factors have lognormal tails due to Theorem 3.2. In fact, since the
covariances of the Gaussian conditional random variables are never larger than the
unconditional ones we obtain the following relation

Q′
θ(u),0

(
Sd,−k > uβk

)
Qθ(u)

(
Xk > uβk/d

)
= o

(
Pθ(u)(Xk > uβk)Pθ(u)(Xk > uβk/d)

)
,

and in turn we have

Pθ(u)(Xk > uβk)Pθ(u)(Xk > uβk/d) = o
(
P

2
θ(u)(Xk > uβk/d)

)
.
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3.4. Proofs.

By Mill’s ratio we obtain that the last expression is equivalent to

Θ

(
1

log(u)2
exp

{
− 2β2

k(1 + θ(u))(log(u) − (µk + log(d))/d)2

2σ2

})
.

Since we choose 2β2
k > 1 the last expression is dominated by the tail of z2(u) and this

result result holds after multiplying by a power term uγ = exp
(
γ log u

)
.

In the case where η > 0, the expression (3.10) can be bounded by

Q′
θ(u),0

(
Sd,−k > uβk−η/βk

)
Qθ(u)

(
Xk > uβk/d

)

Observe that βk − η/βk > 0 since we took βk
2 > η – otherwise uβk−η/βk → 0 and the

first term will go to 1, so we can use a similar argument as above to conclude that

Q′
θ(u),0

(
Sd,−k > uβk−η/βk

)
Qθ(u)

(
Xk > uβk/d

)

= o

(
1

log(u)2
exp

{
− 2

(
(βk − η/βk)2 + βk

2
)
(1 + θ(u))(log(u) − µk)

2

2σ2

})

which again is dominated by z2(u) because of the choice (βk −η/βk)
2 +βk

2 > 1. Again,
multiplying by a power function will not alter the result of the Theorem. We conclude
the proof by selecting β such that

max{β1, . . . , βd} < β < 1.

Lemma 3.12.

Qθ(u)(u− uβ < Xk < u)

α(u)2
= O

((log u)2

u1−β

)
, k = 1, . . . , d,

for any 0 < β < 1.

Proof. Take

Qθ(u)(u− uβ < Xk < u)

= Qθ(u)

(
Xk > u(1 − uβ−1)

)
−Qθ(u)(Xk > u)

∼
(

1 + θ(u)√
2πσk log(u− uβk)

exp

{
− (log(u− uβk) − µk)

2

2σ2
k/(1 + θ(u))

}
−Qθ(u)(Xk > u)

)

=

(
Qθ(u)(Xk > u)

[
exp

{
− 2(log u− µk) log(1 − uβ−1) + log2(1 − uβ−1)

2σ2
k/(1 + θ(u)2)

}
− 1

])

Using basic calculus we can verify that the expression in the brackets is

Θ
( log u

u1−βσ2

)
.

Inserting this expansion in the limit we prove the lemma.
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Chapter 4

Tail Probabilities for
Log-elliptical Distributions

In this chapter we will consider the class of multivariate distributions obtained via an
exponential transformation of the so called elliptical distributions. The motivation is the
analysis of a more general class of multivariate distributions with heavy-tailed marginal
distributions.

The class of elliptical distributions has gained some attention during the last few
years since it allows to analyze under the same framework a large class of multivariate
distributions which share similar properties. Several well known multivariate distri-
butions belong to this class: the multivariate normal, the multivariate t, the normal
mixtures and generalized hyperbolic distributions.

A further attractive characteristic of this class of distributions is its relative flexi-
bility for modeling the marginal behavior. It will be explained later how the particular
choice of a radial random variable will lead to different marginal behaviors. However,
this freedom is quite limited compared to that of a copula. For instance, not every
marginal behavior can be obtained and the marginal distributions of the elements of
an elliptical distribution belong to the same parametric class of distributions. One may
raise some concerns as those in Mikosch (2006) for this class of multivariate distribu-
tions. However, our main interest in this chapter will be to suggest an efficient Monte
Carlo algorithm for the sum of the elements of correlated lognormal random variables,
and analyze it from the more general perspective of elliptical distributions.

The rest of the chapter is organized as follows. In the Section 4.1 we will briefly
study the class of distributions obtained by an exponential transformation of an elliptical
distribution. We will refer to this class of multivariate distributions as log-elliptical
distributions.

In the Section 4.2 we will propose and analyze a Monte Carlo algorithm for esti-
mating the tail probability

P(X1 + · · · +Xd > u), u→ ∞,

where the Xi’s have a log-elliptical distribution. Besides a general description algorithm
we provide some general guidelines to prove that the algorithm proposed is efficient.
Moreover, we prove that in the particular case of a multivariate lognormal distribution
the algorithm can achieve zero relative error.

Finally, in the Section 4.3.1 we provide some discussion and references of recent
research related to the material presented in the chapters 3 and 4.
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4.1. The Log-elliptical Distribution

4.1 The Log-elliptical Distribution

A more detailed description of the class of elliptical distributions and its properties can
be found in A.2.3 on page 93. Here we will just limit ourselves to provide the definition
of a log-elliptical distributions together with some useful details for the implementation
of the Monte Carlos estimator in the next section.

For the rest of this chapter we will define the set in R
d

Sǫ(y) := {x ∈ R
d : ‖x− y‖ = ǫ},

and refer to it as the spheroid of radius ǫ centered in y. When ǫ = 1 we will simply say
unit spheroid. In a similar fashion, we define

Bǫ(y) := {x ∈ R
d : ‖x− y‖ ≤ ǫ}

and refer to it as the ball of radius ǫ centered in y.

Definition 4.1 (Log-elliptical distribution). We say that a random vector X follows a
log-elliptical distribution if it has the stochastic representation

log X
d
= µ +RAC, (4.1)

where C is a random vector uniformly distributed over the unit spheroid S1(0), R is a
random variable which takes values in [0,∞), µ ∈ R

d and A ∈ R
k×d.

We denote X ∼ Ed(µ,Σ, ψ) where µ is known as the localization parameter, Σ =
ATA as the dispersion matrix and ψ is the characteristic generator of the distribution
(see the Section A.2.2 in the appendix part) . It should be noted that the stochastic
representation (4.1) is not unique. A random vector X with log X ∼ Ed(µ,Σ, ψ) will
also have the alternative stochastic representation

log X
d
= µ +RBC,

where B is any other square matrix such that BT B = Σ. Another important feature
of the stochastic representation is that if R has no point mass at the origin then

R
d
=

√
(X− µ)′Σ−1(X − µ), C

d
=

Σ−1/2
(
X − µ

)
√

(X− µ)′Σ−1(X− µ)
.

From this expression it can be easily seen that in the multivariate normal case the square
of the radial random variable R2 will follow a χ2

d chi-square distribution with d degrees
of freedom. We show the method to simulate from an elliptical Ed(µ,Σ, ψ) distribu-
tion. The simulation of log-elliptical random vectors follows by a simple exponential
transformation of an elliptical random vector (see page 96).

4.2 Monte Carlo Estimation

We want to obtain a Monte Carlo estimate of the tail probability

P(X1, . . . ,Xd > u), u→ ∞.
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4. Tail Probabilities for Log-elliptical Distributions

where log X ∼ Ed(µ,Σ, ψ). Here the main idea will be to use the stochastic representa-
tion (4.1) and condition over the random vector C which is uniformly distributed over
the unit sphere. This will come out as

P(Sd > u) = P(h(R,C) > u) = E [P(h(R,C) > u|C)],

where we have simplified our notation by taking

h(r, c) := er(A1,1c1+···+A1,dcd)+µ1 + · · · + er(Ad,1c1+···+Ad,dcd)+µd , (4.2)

where Ai,j correspond to entries of the matrix A. The algorithm should determine the
region {r ∈ R : h(r, c) > u) for every possible outcome c, calculate its probability and
return it as an unbiased estimator of P(Sd > u).

By taking the second derivative it is easily verified that h(r, c) is strictly convex, so
the problem h(r, c) = u should have at most two solutions, say ΨL(u, c) and ΨU(u, c).
Therefore, the aforementioned region should be the union of at most two intervals of
the form (−∞,ΨL(u, c)) and (ΨU (u, c),∞) (where the subindexes stand for lower and
upper). First we should note that for any given outcome c there exist three possible
scenarios listed below.

S1. The function h(r, c) is strictly decreasing. In such case there exist at most one
solution ΨL(u, c) which tends to minus infinity as u → ∞ (if no solution exists
we define ΨL(u, c) := −∞). We set ΨU (u, c) := ∞.

S2. The function h(r, c) is both decreasing and increasing. In such case there exist at
most two solutions ΨL(u, c) and ΨU(u, c) tending to ±∞ respectively as u→ ∞.
In the cases where only one or none solutions exists we set ΨL(u, c) = ΨU (u, c) =
∞.

S3. The function h(r, c) is strictly increasing. In such case there exist at most one
solution ΨU (u, c) which tends to infinity as u→ ∞ (if no solution exists we define
ΨU(u, c) = ∞). We set ΨL(u, c) = −∞.

Then, we obtain the final shape of our estimator

ẑB(u) := P
(
R < ΨL(u, c)

)
I
(
ΨL(u, c) > 0

)
+ P

(
R > ΨU(u, c)

)
,

where the indicator function has been added since the random variable R should take
values only on (0,∞). Algorithmically:

Conditional Monte Carlo Algorithm.

1. Simulate C uniformly over the unit spheroid in R
d.

2. Find (numerically) the values ψL = ΨL(u,C) and ψU = Ψ(u,C) (see the discus-
sion on the current page).

3. Return

ẑ1(u) := P
(
R < ψL

)
I
(
ψL > 0

)
+ P

(
R > ψU

)
.

The efficiency of this estimator is established in the following Theorem whose proof
can be found on page 66.

62



4.2. Monte Carlo Estimation

Theorem 4.2. Let log X have a elliptical distribution Ed(µ,Σ, ψ) with Σ a nonsingular
positive definite matrix, C a random vector uniformly distributed over the unit spheroid
in R

d and ΨL(·) and ΨU (·) as defined in S1–S3. If

lim sup
u→∞

P
2

(
R >

log u−µ1+
√

(log u−µ)2−4σ1

2σ1

)

P2−ǫ(Sd > u)
<∞, ǫ > 0.

Then the estimator

ẑ1(u) := P
(
R < ΨL(u,C)

)
I
(
ΨL(u,C) > 0

)
+ P

(
R > ΨU (u,C)

)

is an unbiased and logarithmic efficient estimator of P(Sd > u). Moreover, if the limit
holds for ǫ = 0 then the estimator has bounded relative error.

The next corollary can be easily proved from the results of the last Theorem and it
proof is given in on page 68.

Corollary 4.3. Let log X have a multivariate normal distribution Nd(µ,Σ) with Σ a
nonsingular positive definite matrix, C a random vector uniformly distributed over the
unit spheroid in R

d and ΨL(·) and ΨU(·) as defined in S1–S3. Let

ẑ1(u) := P
(
χ2

d < ψ2
L(u,C)

)
I
(
ΨL(u,C) > 0

)
+ P

(
χ2

d > ψ2
U (u,C)

)

where χ2
d is a chi-square distribution with d degrees of freedom. Then ẑ1(u) is an

unbiased and logarithmic efficient estimator of P(Sd > u).

Usually, the problem of finding the solution of a fixed point problem of the type
h(r, c) = u is an easy task. However, we need to implement an algorithm which sys-
tematically solves a random problem at the time for each replication. A careless im-
plementation of this problem may yield to a slow algorithm or even wrong solutions,
so we need to do some analysis of it. Recall that Newton-Raphson is a method for
finding roots of a differentiable function which provide reliable results if the derivative
of the function is not very close to zero in large regions (similar problems arise for other
algorithms for finding roots). In fact, in our numerical implementations it has been
observed cases where one of the solutions lie in a region where the derivative is close to
zero and the methods implemented with arbitrary initial values become slow and deliver
poor solutions of the problem. The solution is provide an initial value which is close to
the real solution; generally speaking, a root-finding algorithm becomes faster and more
accurate as the initial value is chosen closer to the real solution of the problem.

Remember that in the previous chapter we found that for the case of correlated
lognormals it holds that P(Sd > u) = P(Md > u)(1 + o(1)). This relation will not
necessarily hold for the general case of log-elliptical random vectors, however it provides
an excellent approximation for the problems we are interested here. For the general
case it should be investigated whether or not this is an appropriated choice. So, our
suggestion is to use the solutions involving the maximum as initial values. Let c ∈ S1(0)
and define

hi(r, c) := erαi(c)+µi := er(Ai1c1+···+Aincd)+µi . (4.3)

Hence, hi(r, c) is convex and monotone as function of r and therefore there exist at
most one solution to the problem hi(r, c). We consider two possible scenarios:
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4. Tail Probabilities for Log-elliptical Distributions

S1’. The function hi(r, c) is decreasing. We define Υ−
i (u, c) to be the solution of the

problem hi(r, c) = u (if no solution exists we let Υ−
i (u, c) = −∞). We define

Υ+
i (u, c) = ∞.

S2’. The function hi(r, c) is increasing. We define Υ+
i (u, c) to be the solution of the

problem hi(r, c) = u (if no solution exists we let Υ+
i (u, c) = ∞). We define

Υ−
i (r, c) = ∞.

By defining

Υ−(u, c) := max
i=1,...,d

{Υ−
i (u, c)}, Υ+(u, c) := min

i=1,...,d
{Υ+

i (u, c)} (4.4)

The root-finding algorithm is given next.

Root-finding algorithm.

1. Given h(r, c) determine the regions where the function is either increasing or
decreasing (see scenarios S1-S3). An easy way to do this is to check the signs of
the functions αi(c) defined in (4.3).

2. If h(r, c) is decreasing in some region use Newton-Raphson to find ΨL(r, c) taking
as initial value Υ−(u, c). Otherwise set ΨL(u, c) = −∞.

3. If h(r, c) is increasing in some region use Newton-Raphson to find ΨU (r, c) taking
as initial value Υ+(u, c). Otherwise set ΨU (u, c) = ∞.

4.2.1 Estimation of the Residual Probability via Conditional Monte
Carlo

As in the previous chapter we can improve substantially our algorithm by using a
stratification strategy as the one suggested in Juneja (2007). That is we can rewrite

P(Sd > u) = P(Sd > u,Md < u) + P(Md ≥ u).

Here we deal with the estimation of the residual probability P(Sd > u,Md < u) via
the conditional Monte Carlo method suggested before. From the discussion for the
root-finding algorithm and the stochastic representation 4.1 it follows easily that

ẑR(u) := P
(
Υ−(u, Z̃) < R < ΨL(u, Z̃)

)
+ P

(
ΨU(u, Z̃) < R < Υ+(u,C)

)

is an unbiased estimator of the residual probability P(Sd > u,Md < u).
In the following we will restrict ourselves to the case of correlated lognormals. In

fact, we prove that the resulting estimator will have vanishing relative error. The more
general case will depend on the construction of an efficient algorithm for P(Md > u)
and the generalization of the proof presented here. This is still work in progress.

The following Theorem, whose proof can be found on page 68, shows that the
contribution to the variation coefficient of the estimator for the residual part will vanish
as u→ ∞.
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Theorem 4.4. Let (X1, . . . ,Xd) have a LN(µ,Σ) distribution such that Σ is nonsin-
gular positive definite matrix, C a random vector uniformly distributed over the unit
spheroid S1(0), ΨL(·), ΨU (·) defined as in S1–S3 and Υ−(·), Υ+(·) defined as in (4.4).
Then

ẑR(u) := P

(
Υ−(u,C) <

√
χ2

d < ΨL(u,C)
)

+ P
(
ΨU(u,C) <

√
χ2

d < Υ+(u,C)
)

is an unbiased of the residual probability P(Sd > u,Md < u) and is such that

lim sup
u→∞

E ẑ2
R(u)

P2(Sd > u)
= 0 .

Hence, by using an estimator as the one suggested in Adler et al. (2008) for es-
timating the second term P(Md > u) we obtain an algorithm with vanishing relative
error.

4.3 Concluding Remarks

4.3.1 Numerical Examples

We implemented the estimators described in Chapters 3 and 4 in three examples cor-
responding to low (Example D.4 on page 107), medium (Example D.5 on page 108)
and high correlations (Example D.6 on page 109). A more detailed description of the
setting used in the examples can be found on page 106. The estimators analyzed were:
the Importance Sampling via the Scaled Variance (SV) and its Cross-Entropy version
(SVCE); the dependent version of the Asmussen-Kroese algorithm (AK) and the con-
ditional algorithm based on the radial random variable (RE). The conclusion is that the
four algorithms analyzed show excellent numerical results in our experiments. However:

The estimator AK appears to be favored over the other proposed algorithms. How-
ever, Juneja (2007) indicated that this algorithm is inefficient for estimating the prob-
ability P(Sn > u,Mn < u) and in consequence the estimator of the variance shown in
the numerical examples might not be reliable. Note for example in the left graph of
figure D.6 on page 109 that the non stratified AK algorithm shows the largest Variation
Coefficient. However, after an entirely similar improvement via the stratification in all
algorithms, the AK shows the smallest Variation Coefficient. A possibility could be to
analyze this problem using the efficiency concepts suggested in L’Ecuyer et al. (2008).

Leaving aside the estimator AK, the RE estimator outperform significatively the
other two algorithms in terms of the Variation Coefficient. However, since it requires
a find-rooting procedure for each iteration it is not that efficient in terms of Time-
Relative Error – a more fair measure of the performance of an algorithm (cf. Asmussen
and Glynn, 2007). Moreover, the Cross-entropy based estimator SVCE provides the
best results for estimating the probability P(Sn > u,Mn < u).

It also should be noted that our initial guess of the value θ in the scaling variance
algorithm, chosen as E [Sn] = u, gives excellent numerical results. This a fundamental
feature for the Cross-Entropy estimator since it provides a close initial point to the
optimal parameter. Although we have used a very demanding criterion to stop the
iteration in the Cross-Entropy, it was observed that few iterations are enough. This is
a relevant observation since it translates in an improvement in the Time-Relative Error
criterion.
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The conclusion here is that the Stratified Importance Sampling via a Scaled Variance
plus a few iterations of the Cross-Entropy method provides excellent results in every
regime. In fact, the modifications – stratification and Cross-Entropy – are cheap in
terms of cpu time and implementation effort. However, the value of the conditional
algorithm based on the radial random variable lies on its stronger theoretical properties
and the flexibility to be generalized to a wider class of dependent distributions.

Notes and Comments

Glasserman et al. (2000) developed an importance sampling estimator based on a
quadratic approximation which can be used to estimate the tail probability of a sum
of correlated lognormal random variables. In Rojas-Nandayapa (2006), some numerical
comparisons were performed against some of the algorithms contained in this disser-
tation. Also Glasserman et al. (2002) develop importance sampling estimators based
on a quadratic approximation for calculating the Value-At-Risk when the underlying
risk factors follow a t distribution. More details of the quadratic approximation can be
found in Glasserman (2000).

A somehow related model was studied in Glasserman and Li (2005) where an effi-
cient simulation method based on importance sampling was proposed to estimate the
probability of large losses resulting from a number of defaults in a portfolio. The model
analyzed there was the so called normal copula model. However, it has been argued that
this model fails to capture some of the behavior observed in financial variables. Also
recent work shows that the Student t-copula provides a better fit (see e.g. Bassamboo
et al., 2008, and references therein). In recent work, Bassamboo et al. (2008); Chan
and Kroese (2008) suggested algorithms for the t based model which are claimed to be
efficient. The first set of estimators is based on importance sampling strategies while
the second on conditional Monte Carlo. Moreover, Chan and Kroese (2008) also explore
the case of a skew t-copula.

4.4 Proofs

Proof of Theorem 4.2. Observe that there exists u1 > 0 such that for all u > u1 we get

I
(
ΨL(u, c) > 0

)
= 0.

This follows from the observation ΨL(u, c) → −∞ made in S1 and S2. Hence, for
u > u0 we get

E [ẑ2
1(u)] = E [P2(R > ΨU(u,C))].

Moreover, it is observed that the solution ΨU (u, c) <∞ exists only for those c ∈ S1(0)
such that h(r, c) is ultimately increasing in r (otherwise the probability is 0 since we
have defined ΨU (u, c) = ∞). From this observation and Lemma 4.5 on the facing page
we deduce that there exists a value u0 (which depends on r0) such that for all u > u0

the following inequality is fulfilled

E [P2(h(R,C) > u)|C] ≤ P
2(eRσ1+µ1+1/R > u).
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Hence, we can easily solve the equation eRσ1+µ1+1/R = u for R and use the larger root
for making to obtain

lim sup
u→∞

E
[
ẑ2
1(u)

]

P2−ǫ(Sd > u)
= lim sup

u→∞

P2

(
R >

log u−µ1+
√

(log u−µ)2−4σ1

2σ1

)

P2−ǫ(Sd > u)
.

By hypothesis the last lim sup is bounded, so the result of the Theorem follows.

Lemma 4.5. Let h(r, z) be defined as in (4.2). Then there exists a value r0 > 0 such
that for all r > r0 the following inequality is satisfied

h(r, c) ≤ erσ1+µ1+1/r, ∀ c ∈ S1(0)

Proof. Our aim is to prove that there exist 0 < δ < 1 such that

max
‖y‖=1

h(r, c) <
(
erσ1+µ1 + erσ1δ+c1

)
, r > 0, (4.5)

with c1 a fixed constant. To simplify some of the notation used in this proof we define

hi(r, c) := erαi(c)+µi := er(Ai1c1+···+Aincd)+µi , ∀ c ∈ S1(0).

Using Lagrangian multipliers we can easily verify that

max
c∈S1(0)

{hi(r, c)} = er
√

A2
i1+···+A2

in+µi (4.6)

and the solution of every individual maximization problem is given by the vector

c∗i := argmax
c∈S1(0)

{hi(r, c)} =

(
Ai1, . . . , Ain

)

σi
.

That is the i-th row vector of the matrix A divided by σi. Moreover, the solution is
unique and do not depend on r. If we let K := #{i : σ1 = σi} it follows that

max
c∈S1(0)

{h(r, c)} ≤ max
c∈S1(0)

{h1(r, c) + · · · + hK(r, c)} + erσK+1+µK+1 + · · · + erσd+µd .

In fact, a single vector c ∈ S1(0) cannot be the solution of more than one of the first
K maximization problems given in (4.6). The reason lies in the nonsingularity of the
matrix Σ which implies that we cannot have (Aiℓ)ℓ=1,...,d = (Ajℓ)ℓ=1,...,d with i 6= j for
i, j < K. Hence, we can choose ǫ > 0 small enough in such way that the following sets
are disjoint

Bǫ(c
∗
i ) := {c : ‖c − c∗i ‖ ≤ ǫ}, i = 1, . . . ,K,

(balls of radius ǫ centered in c∗i ). Furthermore, since the solutions are unique and the
functions hi(r, c) are continuous we can take a value α∗ close enough to σ1 such that

max
i=1,...,K

sup {hi(r, c) : c ∈ Bǫ(c
∗
i )

c ∩ S1(0)} < erα∗+µ1 , ∀r > 0.

Since an arbitrary vector c can be at most in a single set Bǫ(c
∗
i ) it follows that

sup
c∈S1(0)

{h(r, c)} ≤ erσ1+µ1 + (K − 1)erα∗+µ1 + erσK+1+µK+1 + · · · + erσd+µd

≤ erσ1+µ1 + (K − 1)erδ+µ1 + erδ+µK+1 + · · · + erδ+µd

= erσ1+µ1 + erσ1δ+k1 ,
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4. Tail Probabilities for Log-elliptical Distributions

with max{α∗, σK+1, . . . , σd}/σ1 < δ < 1 and k1 the appropriate constant. We rewrite
this bound as

exp
{
rσ1 + µ1 + log

(
1 + e−rσ1(1−δ)+c1−µ1

)}
.

The proof is completed by noting that

lim
r→∞

log
(
1 + e−rσ1(1−δ)+k1−µ1

)

1/r
= lim

r→∞
r2σ1(1 − δ) e−rσ1(1−δ)+ki−µ1

1 + e−rσ1(1−δ)+k1−µ1
= 0.

We have used L’Hopital Theorem to solve the limit.

Proof of Corollary 4.3. The result will follow immediately from Theorem 4.2 on page 63
if we prove that the following limit remains bounded for all ǫ > 0

lim sup
u→∞

E
[
ẑ2
1(u)

]

P2−ǫ(Sd > u)
= lim sup

u→∞

P
2

(
R >

log u−µ1+
√

(log u−µ)2−4σ1

2σ1

)

[
mdF µ,σ2(u)

]2−ǫ

= lim sup
u→∞

P
2

(
R2 > (log u−µ)2

σ2
1

)

[
mdF µ,σ2(u)

]2−ǫ

= lim sup
u→∞

k

(
log u− µ

)d−2
exp

{
−

(
log u−µ

)2

σ2
1

}

exp
{
−

(
log u−µ

)2

σ2
1

(
1 − ǫ/2

)}
/u2−ǫ

.

All constants have been grouped in k. Hence, it follows that the last limit goes to 0 for
all ǫ > 0 showing that the estimator is logarithmically efficient.

Proof of Theorem 4.4. The notation will become rather complicated in parts. So to
simplify things we take c ∈ S1(0) and define

hi(r, c) := erαi(c)+µi = er(Ai1c1+···+Aincd)+µi H(r,C) := max
i=1,...,d

{
hi(r,C)

}

So, we will start by expanding the second moment of the estimator ẑ2
RB(u) as follows

E
[
ẑ2
1(u)

]
= E P

2
(
h(R,C) > u, H(R,C) < u

∣∣∣C
)

= E

( d∑

k=1

P

(
h(R,C) > u, hk(R,C) = H(R, C̃) < u

∣∣∣C
))2

.

We choose β, γ and k as in Lemma 4.6 and use the same argument as in (3.8) to obtain
the following upper bound for the previous expression

E

[( d∑

k=1

P

(
h(R,C) − hk(R,C) > uβ, hk(R,C) > uβ/d

∣∣∣ C
)

+ P

(
u− uβ < hk(R,C) < u|C

))2]
.
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From Lemmas 4.6 and 4.7 we have that for all u > (u0 ∨ u′0) the last expectation is
bounded above by

d2

[
P

(
χ2

k >
(log u− k)2

γ

)
+ P

(
(log(u− uβ) − µk)

2

σ2
k

< χ2
k <

(log u− µk)
2

σ2
k

)]2

.

Notice that we have removed the expectation since these results apply for all z ∈ S1(0).
Hence, it just remains to prove that

lim sup
u→∞

P

(
χ2

k >
(log u−k)2

γ

)
+ P

(
(log(u−uβ)−µk)2

σ2
k

< χ2
k <

(log u−µk)2

σ2
k

)

Fµ,σ2(u)
= 0

(notice that we have taken the square root of the relative error). For the first term we
use L’Hopital to get

lim sup
u→∞

P

(
χ2

k >
(log u−k)2

γ

)

Fµ,σ2(u)
= lim sup

u→∞

k0(log u)
d−1 exp

{
− (log u−k)2

2γ2

}

exp
{
− (log u−µ)2

2σ2

} = 0

where we have grouped all constants in k0 and we have used the fact that γ < σ.
Similarly, we obtain for the second term that

lim sup
u→∞

P

(
(log(u−uβ)−µk)2

σ2
k

< χ2
d <

(log u−µk)2

σ2
k

)

Fµ,σ2(u)

= lim sup
u→∞

k1(log u)
d−1

exp
{
− (log u−µk+log(1−uβ−1))2

2σ2
k

}
− exp

{
− (log u−µk)2

2σ2
k

}

exp
{
− (log u−µ)2

2σ2

} .

Since we have chosen 0 < β < 1 we can reduce the last expression to

lim sup
u→∞

k1(log u)
d−1

exp
{
− (log u−µk)2

2σ2
k

}

exp
{
− (log u−µ)2

2σ2

}
[
exp

{
− log u log(1 − uβ−1)

σ2
k

}
− 1

]
. (4.7)

Using Taylor expansions of log(1 − x) and ex around x = 0 we deduce that

lim
u→∞

exp
{
− log u log(1−uβ−1)

σ2
k

}
− 1

log u
u1−β

= lim
u→∞

exp
{

log u
u1−βσ2

k

}
− 1

log u
u1−β

= 1

From this result it is easily seen that the limit (4.7) goes to 0 and the result follows.

Lemma 4.6. Under the hypothesis of Proposition 4.4 there exists values β ∈ (0, 1),
γ ∈ (0, σ1), u0 > 0 and k ∈ R such that the following set of inequalities is satisfied

P
(
h(R, c) − hk(R, c) > uβ, hk(R, c) > uβ/d

)
< P

(
χ2

d >
(log u− k)2

γ2

)
, k = 1, . . . , d

for all c ∈ S1(0) and u > u0.
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Proof. Observe that if c ∈ S1(0) is such that either:

i) αk(c) ≤ 0. Therefore hk(r, c) is a decreasing function in r.

ii) αℓ(c) < 0 for all ℓ 6= k. Therefore h(r, z) − hk(r, z) is a decreasing function in r.

Hence, we conclude that in any of the cases above there exists uk > 0 which does not
depend on c and such that for all u > uk it holds that

P
(
h(R, c) − hk(R, c) > uβ, hk(R, c) > uβ/d

)
= 0

and the inequality is trivially satisfied. Thus, we consider only those vectors c ∈ S1(0)
such that αk(c) > 0 and αℓ(c) > 0 for at least one ℓ 6= k. Let K := #{i : σi = σ1}. We
verify

max
c∈S1(0)

{hi(r, c)} = erσi+µi , c∗i := argmax
c∈S1(0)

{hi(r, c)} =

(
Ai1, . . . , Ain

)

σi
,

where the c∗i ’s are unique and do not depend on r. Moreover, we can choose ǫ > 0 and
α∗ ∈ (0, σ1) such that the sets

Bǫ(c
∗
i ) := {c : ‖c − c∗i ‖ ≤ ǫ}, i = 1, . . . ,K,

are disjoint and

max
i=1,...,K

sup {hi(r, c) : c ∈ Bǫ(c
∗
i )

c ∩ S1(0)} < erα∗+µ1 (4.8)

for all r > 0 (for details see the proof of Lemma 4.5). We consider the three following
cases.

Case 1. Suppose that k > K. Hence it follows that

P
(
h(R, z) − hk(R, c) > uβk , hk(R, c) > uβk/d

)

≤ P
(
hk(R, c) > uβk/d

)
= P

(
eRαk(c)/βk+(µk+log d)/βk > u

)

≤ P
(
eRσk/βk+(µk+log d)/βk > u

)
= P

(
eRγk+ck > u

)
,

where γk := σk/β and ck := (µk + log d)/β. So, we choose βk such that σk/σ1 < β < 1
to ensure γk < σ1.

Case 2. Suppose that k ≤ K and c ∈ Bc
ǫ(c

∗
k) ∩ S1(0). Hence, it follows by (4.8) that

P
(
h(R, c) − hk(R, c) > uβk , hk(R, zy) > uβk/d

)

≤ P
(
hk(R, c) > uβk/d

)
= P

(
eRαk(c)/βk+(µk+log d)/β > u

)

≤ P
(
eRα∗/βk+(µk+log d)/β > u

)
= P

(
eRγk+ck > u

)
,

where γk := α∗/β and ck := (µk +log d)/βk. So, we choose βk such that α∗/σ1 < β < 1
to ensure γk < σ1.
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Case 3. Suppose that k ≤ K and c ∈ Bǫ(c
∗
k) ∩ S1(0). We define

δσ := max{α∗, σK+1, . . . , σd} and δµ := max{µ1, . . . , µd}.
Hence it follows by (4.8) that

P
(
h(R, c) − hk(R, c) > uβ′

k , hk(R, c) > uβ′

k/d
)

≤ P
(
h(R, c) − hk(R, c) > uβ′

k
)
≤ P

(
d(1/β′

k)eRδσ/β′

k+δµ/β′

k > u
)

= P
(
eRγ′

k+c′k > u
)
,

where γ′k = δσ/β
′
k and ck = (δµ + log d)/β′k . So, we choose β′k such that δσ/σ1 < β′k < 1

to ensure γ′k < σ1. The result follows easily by choosing

u0 := max{u1, . . . , ud}
β := max{β1, . . . , βd, β

′
1, . . . , β

′
K}

γ := max{γ1, . . . , γd, γ
′
1, . . . , γ

′
K}

c := max{c1, . . . , cd, c′1, . . . , c′K}.

Lemma 4.7. Under the hypothesis of Proposition 4.4 there exists u′0 > 0 and c′ ∈ R

such that for all u > u′0 it holds true that

P

(
u− uβ < hk(R, c) < u

)
< P

(
(log(u− uβ) − c′)2

σ2
1

< χ2
d <

(log u− c′)2

σ2
1

)

for any β ∈ (0, 1) and all c ∈ S1(0).

Proof. Observe that for all c such that αk(c) ≤ 0 there exists a fixed value u′k which
does not depend on c and such that for all u > u′k the probability on the l.h.s. of
the expression in Lemma (4.6) is 0 and the inequality is trivially satisfied. Hence, we
consider only those vectors c ∈ S1(0) such that αk(c) > 0.

Next observe that

P

(
u− uβ < hk(R, c) < u

)
< P

(( log(u− uβ) − µk

αk(c)

)2
< χ2

d <
( log u− µk

αk(c)

)2
)
.

To simplify notation we let g1 = (log(u− uβ)− µk)
2, g2 = (log u−µk)

2 and α := α2
k(c)

to obtain

P

(
g1
α
< χ2

d <
g2
α

)
.

So, we just need to prove that for large u the last expression is increasing in α. So, the
first derivative with respect to α will be positive if and only if

g1
α2
fχ2

d

(g1
α

)
>
g2
α2
fχ2

d

(g2
α

)
.

Note that we can complete the density of a χ2
d+2 random variable on both sides

fχ2
d+2

(g1
α

)
> fχ2

d+2

(g2
α

)
,

and it is clear that this inequality holds for 0 ≪ g1 < g2 and all α > 0 or equivalently,
for all u > u′′k for some u′′k > 0. Since σk ≥ αk(y) for all y ∈ S1(0) the result of the
Lemma follows by taking

u′0 := max{u′1, . . . , u′d, u′′1 , . . . , u′′d}.
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Chapter 5

Small Tail Probabilities of Sums
of Lognormals

In this chapter we study the tail probability P(Sn < nx) as x → 0 in the case of
independent lognormal random variables.

The results in this chapter will be centered around the existence of the Laplace-
Stieltjes transform of a lognormal distribution function for negative values of the ar-
gument. In fact, the implementation of a importance sampling algorithm using the
optimal change of measure will be possible due to this feature (cf. Siegmund, 1976;
Bucklew et al., 1990; Sadowsky and Bucklew, 1990; Sadowsky, 1996). Moreover, some
results form large deviations and saddlepoint approximations which make use of the
Laplace transform–moment generating function will be available for this tail proba-
bility. However, the main difficulty lies in the calculation of the moment generating
function itself. An analytic solution is not available, so it will be necessary to construct
some approximations.

The rest of the chapter is divided as follows. In the Section 5.1 we study the Laplace
transform of a lognormal random variable. We will introduce some concepts and give a
large deviations-kind result as a first approximation to the tail probability P(Sn < nx).
Then we illustrate how this result can be used to design efficient Monte Carlo algorithms
based on importance sampling ideas. Later, based on a saddlepoint approximation
we will construct an approximation for the Laplace transform of a lognormal random
variable as well as for the moments of the distribution generated by the exponential
change of measure.

In the Section 5.2 we propose two importance sampling algorithms for estimating
the probability P(Sn < nx) as x → 0. The first of them will be based in the opti-
mal exponential change of measure where we use the approximations obtained in the
previous section. From a theoretical point of view this algorithm should be efficient,
however it will be shown that the final estimator depends directly on approximations
so the resulting algorithm will turn to be biased. For the second algorithm we derive
the parameters of a lognormal distribution in order to approximate the distribution
generated by the optimal exponential change of measure and use it to implement an
importance sampling algorithm. Finally, the two algorithms are combined with a strati-
fication strategy which can produce theoretical efficient algorithms. Finally, we conduct
an empirical test of the two algorithms.
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5.1. The Laplace Transform of a Lognormal Random Variable

5.1 The Laplace Transform of a Lognormal Random
Variable

Let F be the distribution function of a random variable X defined on a probability
space (Ω,F ,P). Then the Laplace-Stieltjes transform of F is defined as

L∗F (θ) = E [eθX ] =

∫
eθxF (dx).

Note that the previous definition correspond in fact to the moment generating function
and not to the Laplace-Stieltjes transform itself. However, with some slightly abuse of
notation we will suppress the negative sign for computational convenience, adopt the
notation ϕ(θ) and for the rest of this chapter we will refer to it as the Laplace-Stieltjes
transform of the distribution F .

The domain of the transform is defined as Θ = {θ ∈ R : ϕ(θ) < ∞} and the
cumulant transform as κ(θ) = logϕ(θ). Then for each θ ∈ Θ we can define a new
distribution function which is as follows

Fθ(dx) := eθx−κ(θ)F (dx), θ ∈ Θ.

This set of distributions is known as the exponential family generated by F and its
members will be denoted with Fθ. The following, which is a large deviations-kind
result, will be useful for the construction of the algorithms (see for instance Dembo and
Zeitouni, 1998).

Proposition 5.1. Let X1,X2 be a sequence of i.i.d. random variable with second mo-
ment finite, x ∈ R such that x < E(X) and θ ∈ R the solution of x = E θ[X] (assuming
that it exists). Then

P(Sn < nx) ∼ 1

|θ|
√

2πσ2
θn

e−nxθ+nκ(θ), n→ ∞.

Usually, this type of asymptotic result are stated for the probabilities P(Sn > nx).
The proof of this Proposition follows entirely in a similar way (see for instance Asmussen,
2003). The following heuristic argument is useful for illustrating that an exponential
distribution generated by F is appropriate distribution for rare event simulation. Recall
that the distribution associated to the zero-variance estimator is obtained by taking
the original measure and conditioning with respect to the rare event {Sn < nx}. So,
for a sequence X1, . . . ,Xn of nonnegative i.i.d. random variables we will have

P(Xn ∈ dx|Sn < nx) =
P(Sn ≤ nx|Xn ∈ dx)P(Xn ∈ dx)

P(Sn < nx)

=
P(Sn−1 ≤ (n− 1)x)P(Xn ∈ dx)

P(Sn < nx)
.

So if x ≤ E [Xi], the Xi’s have second moment finite and θ is the solution of E θ[X] = x,
then the hypothesis of the Proposition (5.1) are satisfied and we will have

P(Xn ∈ dx|Sn < nx) ≈ exθ−κ(θ)
P(Xn ∈ dx), n→ ∞.

In fact, this says that the zero-variance importance sampling converge to Fθ which mo-
tivates its use. Asmussen and Rubinstein (1995) proved that an importance sampling
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5. Small Tail Probabilities of Sums of Lognormals

distribution taken from the exponential family generated by F (also referred as expo-
nential change of measure or exponential twisted distribution) will be logarithmically
efficient if and only if θ is the solution of E θX = x, that is, the expectation take with
respect to the probability measure induced by Fθ.

However, the implementation of this importance sampling algorithm depends upon
an explicit expression of ∫ ∞

0
e−θxF (dx),

which is clearly not available in closed analytical form. Even in the case that we could
approximate precisely the solution θ of E θ[X] = x and the value of κ(θ) we would obtain
a biased estimator due to the approximations. We provide an alternative method which
consists in finding a lognormal distribution which approximates precisely the optimal
exponential change of measure described above. However, the result in Asmussen and
Rubinstein (1995) exclude it from being efficient.

The approximation of the Laplace transform of a lognormal distribution we propose
here makes use a saddlepoint approximation and exploits the properties of the function
LambertW – also called Omega function (cf. Corless et al., 1996). This function is
defined as the multivalued inverse of the function f(W ) = W eW , so it satisfies the
relation

LambertW(x) eLambertW(x) = x, x ∈ C. (5.1)

In particular, if x is real the function LambertW(x) is defined for x ∈ [−e−1,∞) with
two possible solutions in [−e−1, 0) and one solution in [0,∞) defining two real branches.
The principal branch is defined in [−e=1,∞) and satisfies LambertW(x) ≥ −1. The
second branch will be denoted LambertW−1(x) is defined in the interval [−e−1, 0) and
satisfies LambertW−1(x) ≤ −1. For the remaining of the chapter we will consider the
principal branch of the LambertW(x). More details can be found in Corless et al.
(1996).

The property 5.1 turns out to be of great value for our purposes. It will allow
us to get simplifications of long and complicated expressions. This function can be
easily evaluated in the software Maple. In fact, this software can manipulate easily this
function saving us a lot of work. In the following lines some of the stated equivalences
are far from being obvious. To prove them formally it would take many pages and a
lot of effort that will contribute little to our knowledge. Since our main interest is to
get the final approximation we rely on Maple to do the tedious work for us.

Let X ∼ LN(µ, σ2) with distribution function F , so the k-th moment of the expo-
nential distribution generated by F X after the change of variable y = log t is given
by

E [XkeθX ] =
1√
2πσ

∞∫

−∞

exp
{
θey + ky − (y − µ)2

2σ2

}
dy. (5.2)

The first important observation is that we have no means to solve this integral analyti-
cally. So our objective in the next paragraphs will be to provide a good approximation
of it.

Note that the Laplace-Stieltjes transform of a lognormal random variable is finite
only if the argument θ is not positive – recall that we have dropped the sign form the
argument in the definition. Then, if θ < 0 the function inside the brackets is convex.
Even more, we can easily verify that this function goes to minus infinity if we let the
y → ±∞. This observation is important because of the exponential transformation the
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5.1. The Laplace Transform of a Lognormal Random Variable

main contribution to the total value of the integral will come from the region around
the value ρ that maximizes the function inside the brackets, that is

θey + ky − (y − µ)2

2σ2
.

By making the first derivative equal to zero and using the definition of the function
LambertW given in (5.1) we can easily obtain that this is given by

ρ := −LambertW(−θσ2ekσ2+µ) + µ,

(Maple is not really necessary here). Recall that the main contribution for the integral
comes around this value. So, the idea is to take the second order Taylor expansion
around ρ of the function ey an insert it in the integral (5.2) to obtain the following
approximation

1√
2πσ

∞∫

−∞

exp
{
θeρ

[
1 + (y − ρ) +

(y − ρ)2

2

]
+ ky − (y − µ)2

2σ2

}
dy. (5.3)

There were several reasons for choosing this approximation. The first one, is that by
substituting the term ey for a polynomial of second order we will be left with the kernel
of a normal distribution, so we just need to complete its distribution to get rid of the
integral. In fact this will yield to an approximation via a lognormal distribution which
will be explained later. Secondly, the functions inside the brackets in expressions 5.2
and 5.3 are both convex functions which tend to minus infinity as → ±∞. Since these
functions differ significatively only in regions away from the value ρ, the exponential
transformation will yield a small error of the approximation. These kind of methods
are known as saddlepoint approximation.

We proceed to complete the density function of a normal random variable and leave
all constants outside the integral. This is a tedious work and the expressions become
more complicated. In order to simplify the notation we define ν = (1 + |θ|eρσ2)−1.
Making the necessary algebra and substitutions we get

exp
{
θ eρ(1 − ρ+ ρ2

2 ) + [k+µ/σ2−|θ|eρ(1−ρ)]2σ2

2(1+|θ|eρσ2)
− µ2

2σ2

}

√
1 + |θ|eρσ2

(5.4)

×
∞∫

−∞

exp
{
−

(
y−[k+µ/σ2−|θ|eρ(1−ρ)]νσ2

)2

2νσ2

}

√
2πνσ2

dy. (5.5)

The integral vanishes form the previous expression, so we are left only with the expres-
sion (5.4) which still depends on ρ. However, this is where we can take advantage of the
function LambertW and a software like Maple to see that after a large simplification
we will obtain

E [XkeθX ] ≈
exp

{
− LambertW2(|θ|σ2ekσ2µ)+2LambertW(−θσ2ekσ2µ)

2σ2

}

√
LambertW(−θσ2eµ) + 1

. (5.6)

By taking k = 0 in the last expression we obtain and approximation for ϕ(θ) which
will be denoted ϕ̃(θ).. Hence, we may use this to approximate the distributions in the
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exponential family generated by a lognormal random variable. As discussed previously,
this is given by

dPθ(ω) =
eθX

ϕ(θ)
dP(ω) ≈ eθX

ϕ̃(θ)
dP(ω).

This clearly will not integrate to 1 due to the approximation. However, if we consider
the probability Pθ(X < x) we could follow exactly the same procedure as before to
show that

Pθ(X < x) =

∫ x

0

eθx

ϕ(θ)
F (dx) ≈ 1

ϕ̃(θ)

∫ x

0
eθxF (dx)

≈ ϕ̃(θ)

ϕ̃(θ)

log x∫

−∞

exp
{
−

(
y−[µ/σ2−|θ|eρ(1−ρ)]νσ2

)2

2νσ2

}

√
2πνσ2

dy.

Recall 5.5. So, the most relevant feature of the previous approximation was that the
second order Taylor expansion allowed us to identify the kernel of a lognormal distribu-
tion, so we could have safely ignored the real value of ϕ(θ) since it was going to cancel
itself in the next approximation. Moreover, the function LambertW will allow us to
obtain further simplifications of the localization and dispersion parameters. That is

exp
{
−

(
y−[µ/σ2−|θ|eρ(1−ρ)]νσ2

)2

2νσ2

}

√
2πνσ2

=
exp

{
−

(
y−µ+LambertW(−θσ2eµ)

)2

2σ2(1+LambertW(−θσ2eµ))−1

}

√
2πσ2(1 + LambertW(−θσ2eµ))−1

.

Hence, we have approximated the elements in the exponential family generated by a
random variable X ∼ LN(µ, σ2) with a lognormal distribution LN(µθ, σ

2
θ) where

µθ := µ− LambertW(−θσ2eµ), σ2
θ =

σ2

1 + LambertW(−θσ2eµ)
.

To emulate the optimal exponential change of measure we will need to find the value
θ such that E θX = x. Recall that the expectation of a lognormal random variable
with localization parameter µθ and dispersion parameters σ2

θ is given by E θ[X] =
exp

{
µθ + σ2

θ/2
}
. So, for this approximation we just need to insert the expressions we

found previously, set E θ[X] = x and solve for θ. In fact, if x < 1 then there exist two
solutions which are implicit given by

LambertW(−θσ2eµ) =
−1 + µ− log x±

√
(1 − µ− log x)2 + 2σ2

2
. (5.7)

Inserting this in the expression for the parameters µθ and σ2
θ we arrive to

µθ :=
1 + µ+ log x∓

√
(1 − µ− log x)2 + 2σ2

2
,

σ2
θ :=

2σ2

1 + µ− log x±
√

(1 − µ− log x)2 + 2σ2
.

The value of θ can be obtained using the properties of the function LambertW and it
is given by

θ = − γeγ

σ2eµ
, γ :=

−1 + µ− log x±
√

(1 − µ− log x)2 + 2σ2

2
.
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Note that if we let x → 0 then | log x| → ∞. If we choose the negative root in (5.7),
then as we let x→ 0 we will obtain

µθ → µ, σ2
θ → σ2, θ → 0,

while if we choose the positive root, the limits will be instead

µθ → −∞, σ2
θ → 0, θ → −∞,

which is in accordance with our intuition. That is, the value of θ should become smaller
as we let x→ 0.

5.2 Importance Sampling Algorithms

Next we will implement importance sampling algorithms for estimating the rare event
probability P(Sn < nx) as x→ 0 in the case of i.i.d. lognormal random variables using
the results from the discussion above.

First, with the approximation of the Laplace transform. Recall that the only member
of the exponential family generated by F which yields to a logarithmically efficient
algorithm is the distribution Fθ such that θ is the solution of E θ = x. Therefore,
since the implementation depends on several approximation we have no warranty that
this estimator will inherit the logarithmic efficiency. The second idea is to use the
approximated lognormal distribution of the optimal Fθ.

However, the following simple algorithm can be easily implemented together with
any of the strategies implemented above and it is easily proved to have logarithmic
efficiency for a fixed n. We discuss it next.

Recall that the optimal importance sampling is obtained as the distribution of the
random vector (X1, . . . ,Xn) conditioned to the rare event {Sn < nx}. In particular if
the Xi’s are nonnegative random variables it follows in a straightforward way that the
random variable (Xi|Sn < nx) should be supported over the interval (0, nx). Then,
if we apply importance sampling using a truncated lognormal random variable we will
obtain a significative variance reduction. For instance, we can see this strategy either
as an importance sampling or a stratification: just divide the probability of interest in
two components, namely

P(Sn < nx) = P(Sn < nx,Mn < nx) + P(Sn < nx,Mn > nx) = P(Sn < nx,Mn < nx).

Denote Q the probability measure under which theXi’s are truncated lognormal random
variables restricting its support over the interval (0, nx) and let FQ be its distribution
function. Then

P(Sn < nx,Mn ≤ nx) = P(Sn < nx|Mn < nx)P(Mn < nx)

= Q(Sn < nx)P(Mn < nx).

So, if define X̃1, . . . , X̃n ∼ FQ in the probability space (Ω,F ,P) we will have that

ẑ(x) = P(Mn < nx)I(X̃1 + · · · + X̃n < nx)

is an unbiased estimator of P(Sn < nx) with second moment given by

E [ẑ2(x)] = P
2(Mn < nx)Q(Sn < nx) = P(Mn < nx)P(Sn < nx).

From this expression, we can prove the efficiency of this estimator.
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Theorem 5.2. Let X1, . . . ,Xn be a sequence of i.i.d. lognormal random variables and

X̃i
d
= (Xi|Xi < ny). Then

ẑ(x) = P(Mn < nx)I(X̃1 + · · · + X̃n < ny)

is an unbiased estimator of P(Sn < ny) which is logarithmically efficient.

Proof. For ǫ > 0 we have

lim sup
x→0

E ẑ2(x)

P(Sn < nx)2−ǫ
= lim sup

x→0

P(Mn < nx)P(Sn < nx)

P2−ǫ(Sn < nx)

= lim sup
x→0

P(Mn < nx)

P1−ǫ(Sn < nx)

≤ lim sup
x→0

( P(X1 < nx)

P1−ǫ(X1 < x)

)n
.

By Mill’s ratio we have that

P(X1 < x) ∼ σ√
2π| log x|

exp
{
− log2 x

2σ2

}
, x→ 0.

So it can be easily verified that

P(X1 < nx)

P1−ǫ(X1 < x)
∼ | log x|

| log nx|
exp

{
− log2 nx

2σ2

}

exp
{
− log2 x

2σ2 (1 − ǫ)
} → 0, x→ 0

with n fixed. The last proves that the estimator ẑ(x) is logarithmically efficient.

Trivially, this algorithm has zero variance for n = 1 and its efficiency will decrease
as n → ∞. Numerically, it provides a modest variance reduction, but its significance
is that it attains logarithmical efficiency. Moreover, the exponential change of measure
was inspired by a large deviation result which means that the importance sampling
estimator based on it should improve its efficiency as n → ∞. So by implementing an
algorithm which incorporates these two features we expect to obtain a solid algorithm
for both large and small values of n.

For the rest of the discussion we will assume that θ(x) solves E θ[X] = x where
X follows a LN(0, σ2) distribution. The assumption that µ = 0 is made without lost
of generality since we can substitute Xi and x by Xie

−µ and xeµ respectively in the
expressionX1+· · ·+Xn < nx. We denote f the common density function ofX1, . . . ,Xn.

Importance Sampling via approximated exponential change of measure.

Since we are considering i.i.d. random variables the discussion will be centered in the
marginal distributions. The first strategy is to use the following importance sampling.

f̃(t) :=
eθtf(t)I(t ∈ (0, nx))

E [eθX ; (0, nx)]
.

Hence, if V1, . . . , Vn are i.i.d. random variables with density function as above, the
importance sampling estimator will be given by

I(V1 + · · · + Vn < nx)
E

n[eθX ; (0, nx)]

eθ(V1+···+Vn)
,

We give the estimator in algorithmic form. A discussion of steps 1 and 2 is given later.
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1. Simulate V1, . . . , Vn from f̃ .

2. Approximate E [eθX ; (0, nx)].

3. Return

ẑ1(x) = I(V1 + · · · + Vn < nx)
E

n[eθX ; (0, nx)]

eθ(V1+···+Vn)
.

The expression E [eθX ; (0, nx)] in the step 2 is unknown. We can approximate it using
the expression in (5.6). However, this will introduce some bias which cannot be mea-
sured so far. Hence, we choose instead to approximate it via Monte Carlo estimates
using truncated lognormal random variables to estimate it. To generate the Vi’s from
f̃ in the step 1 we suggest to use an Acceptance-Rejection strategy. An algorithm with
good results is given next.

1. Simulate V ∼ LN(0, σ2) restricted to (0, nx).

2. Simulate U ∼ U(0, 1).

3. If U > eθX reject X and go back to Step 1. Else accept X.

This algorithm can be improved significatively and this will be part of future work. For
now it has shown good performance in our numerical examples.

Theoretically this estimator should be logarithmically efficient. However, recall that
we have used an approximation for θ, so it is uncertain if it remains logarithmically
efficient even if we have used truncated lognormal random variables. This will be part
of future work.

Moreover, for implementing this algorithm we should also be able to simulate from
F̃ which can be easily accomplished by implementing a acceptance-rejection algorithm.
Note also that we do not have an analytic expression for E [eθX ; (0, nx)]. One way to
sort this problem is to follows the procedure described in Section 5.1 to provide an
approximation. Another option is to estimate it via Monte Carlo. But this procedure
will introduce another source of variability in the estimator. The next alternative
estimator avoids these two problems.

Importance Sampling via an approximated distribution of the optimal ECM.

The second proposal is to use the approximated distribution of the optimal exponential
distribution generated by F that we found in the Section 5.1. That is a LN(µθ, σ

2
θ)

distribution where

µθ =
1 − | log x| −

√
(1 − | log x|)2 + 2σ2

2

σ2
θ =

2σ2

1 + | log x| +
√

(1 − | log x|)2 + 2σ2
.

We define fθ as the common density function of the Z̃i’s. Algorithmically

1. Simulate Z̃1, . . . , Z̃n from LN(µθ, σ
2
θ). and restricted (0, nx).

2. Return

ẑ1(x) = I(Z̃1 + · · · + Z̃n < nx)
f(Z̃)

fθ(Z̃)
P

n(Z̃1 < nx).
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Clearly this algorithm is unbiased and much simpler to implement than the previous
one. The results in Asmussen and Rubinstein (1995) do not exclude it from been
logarithmically efficient but so far we have not found either a proof of it or a counterex-
ample. In the subsection of numerical examples we make an empirical study of these
two algorithms.

5.3 Concluding Remarks

5.3.1 Numerical Examples

We have implemented the suggested Monte Carlo estimates to approximate the proba-
bility P(Sn < nu) in the case of i.i.d. lognormal random variables with common distri-
bution LN(0, 1). The results are summarized in the Example D.11 on page 116.

The conclusion is that both algorithms provide good numerical results. It is, how-
ever, somewhat surprising that the Importance sampling estimator based on a Log-
normal distribution shows a substantial better performance than the one suggested
by means of the approximated optimal exponential change of measure. This will be
investigated in future work.

Notes and Comments

Recently, Rossberg (2008); Rossberg et al. (2008) proposed a method for approximating
the moment-generating function of a lognormal random variable. Part of future research
might include some numerical comparison of that method against the one proposed here.
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Chapter 6

The Economical Value of
Realized Covariance

The variances and covariances of assets returns are of major importance in the study
of option pricing, portfolio and risk management. Recently a new model which exploits
high-frequency information has been proposed in Andersen et al. (2001); Barndorff-
Nielsen and Shephard (2002). The main idea of the model is that if the log prices
are generated by a multivariate continuous stochastic process and a sample path of
the process is observed, then the theory of quadratic variation implies that the covari-
ance becomes in fact observable. Hence, increasing the sampling frequency will yield
to arbitrarily precise estimates which are usually called realized volatility or realized
covariance.

In this chapter we analyze empirically the economical value of realized covariance
in investment decisions. Our study is conducted within the framework developed by
Fleming et al. (2001, 2003) where it is consider an investor who rebalances his portfolio
daily following a volatility-timing strategy. This means that the weights in his portfolio
vary only with with changes in his estimates of the conditional covariance matrix of
daily returns. Our contribution is to provide a similar evaluation using alternative
estimation of the covariance matrix than the one employed in Fleming et al. (2003).
The reason being that for most high-frequency the prices are observed at discrete times
in a non-synchronous manner (cf. Epps, 1979) and available only for part of a day, so
the information unfolded during the inactive period is lost.

The first issue was addressed in Hayashi and Yoshida (2005) where they proposed
an alternative estimator to the realized covariance named cumulative covariance. In
there, they consider the problem of estimating the covariance of two diffusion processes
observed at discrete non-synchronous times which is free of bias in the absence of
noise. For the second issue, Hansen and Lunde (2005) proposed a realized variance
for the whole day by means of an optimal combination of the realized variance for
the active period and the squared overnight return. A further issue which affects the
quality of the estimator is that the data is contaminated by noise. This problem has
been largely studied in the literature (see for instance Hansen and Lunde, 2006, and
references therein). In particular two methods have been proposed to address this
problem: subsampling and realized kernels proposed in Zhang et al. (2005); Barndorff-
Nielsen et al. (2008a) respectively. A mixed approach is given in Barndorff-Nielsen et al.
(2008b). Furthermore, Voev and Lunde (2007) prove that the cumulative covariance
estimator is biased and inconsistent in the presence of noise and propose a noise bias-
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correction based on realized kernels and subsampling.
The objective here is unify the ideas of Hayashi and Yoshida (2005) and Hansen

and Lunde (2005). That is, to construct a realized covariance matrix for the whole
day based on high-frequency non-synchronous data and analyze its economical value
in investment decisions using stock data from the NYSE. The rest of the chapter is
divided as follows. In the Section 6.1 we described the proposals by Hayashi and
Yoshida (2005); Hansen and Lunde (2005) in order to provide the guidelines on how to
construct a realized covariance matrix for the whole day. In Section 6.2 we described
the empirical framework following the work by Fleming et al. (2001, 2003) to measure
the economical value of realized covariance in investment decisions. The material in
this chapter is work in progress; further details, empirical results and conclusions will
be reported elsewhere. Noise corrections will also be investigated.

6.1 Cumulative Covariance for the Whole Day

6.1.1 Cumulative Covariance

We describe the methodology given in Hayashi and Yoshida (2005) for estimating
the covariance of two processes recorded at random times not necessarily regularly
spaced. Here we are interested in the covariation of two diffusion process X(s) and
Y (s) (continuous-time Itô semimartingales) which will be denoted

V (X,Y ) := 〈X(s), Y (s)〉.

In the case where the two process are observed at discrete times, say, s0 s1, . . . , sm, the
following estimator

Vπ(m)(X,Y ) :=
m∑

i=1

(
X(si) −X(si−1)

)(
Y (si) − Y (si−1)

)
, π(m) := max

1≤i≤m
,

is known as the realized covariance and is such that if π(m) → 0 then Vπ(m) → V
in probability. This statistic has been largely studied and it has been proved to have
significative advantages over other volatility models. However, the statistic Vπ(m) has
limited practical use since financial data is usually registered at random times and that
implies that the processes X(s) and Y (s) are not observed at the same time. Hayashi
and Yoshida (2005) document on the methods available for synchronizing the data by
means of an interpolation or an imputation of the prices. Hence, the resulting estimator
will have a serious bias.

They proposed a new estimator completely different which makes uses of the original
data exclusively, do not depend on interpolations or imputations so it is free of bias
typically caused by non-synchronous observation.

For a continuous process X(s) and a semiopen interval I=(a,b] we let ∆X(I) :=
X(b)−X(a). For a given time interval (0, S] we consider two partitions I := {(ik, ik+1] :

k = 1, . . . , n} and J := {(jk, jk+1] : k = 1, . . . ,m}. That is, I and J are sets of disjoint
intervals of the form (a, b] whose respective union is equal to the set (0, S]. Then we
define.

Definition 6.1 (Cumulative Covariance). The Cumulative Covariance Estimator among
two non-synchronous processes X and Y observed at the times determined by the par-
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titions ΠX and ΠY is given by

VI,J(X,Y ) =
∑

k,ℓ

∆X
(
(ik, ik+1]

)
∆Y

(
(jℓ, jℓ+1]

)
I
(
(ik, ik+1] ∩ (jℓ, jℓ+1] 6= ∅

)
.

That is, the product of any pair of increments ∆X(Ii) and ∆Y (Jj) will make a
contribution to the summation only when the respective observation intervals are over-
lapping. Moreover, Hayashi and Yoshida (2005) provide an estimator for the correlation
given by

CI,J(X,Y ) =

∑
k,ℓ

∆X
(
(ik, ik+1]

)
∆Y

(
(jℓ, jℓ+1)

)
I
(
(ik, ik+1] ∩ (jℓ, jℓ+1] 6= ∅

)

[∑
k

∆X
(
(ik, ik+1]

)2]1/2[∑
ℓ

∆Y
(
(jℓ, jℓ+1]

)2]1/2
.

These estimators are unbiased and consistent in the absence of noise. Voev and
Lunde (2007) propose a bias-corrected estimator and ultimately a subsampling version
of the bias-corrected version which improves efficiency. However, it is not clear that
this corrected estimator yields to a positive-definite covariance matrix.

6.1.2 Variance for the Whole Day

A second concern is to obtain a covariance estimator for the whole day. I am not
aware of any paper dealing with this problem. However, Hansen and Lunde (2005)
propose an estimator for the realized variance for the whole day using and optimal
combination of the realized variance and squared overnight return. A naive solution
to this problem could be combine this estimator with the correlation matrix given in
Hayashi and Yoshida (2005).

Recall that the main concern here is that high-frequency data is only available
during the trading period which just represents a fraction of the day, and therefore
a substantial part of the daily volatility which unfolds during the inactive period is
lost. Hansen and Lunde (2005) propose to approximate this lost information by using
the square of the return registered during the whole inactive period of the t-th day,
say r2t (X), and determine the weights ω1 and ω2 which yield to the optimal linear
combination

Vt(X) := ω1r
2
t + ω2VIt(X),

where Vt(X) stands for the realized variance for the whole t-th day, VIt(X) the realized
variance for the active period of the t-th day and It the corresponding partition. Here
we have defined VIt(X) with some abuse of notation instead of Vπ(m)(X,X) as could
be denoted from the discussion above. In future work we will come with a more ap-
propriated notation for this. The realized covariance for t whole days is implicit in the
following definition for the weights.

Definition 6.2. Let µ1 := E (r2t ) η
2
1 := Var (r2t ), µ2 := E (VIt(X)) η2

2 := Var (VIt(X))
and η12 := Cov (r2t , VIt(X)) and define

ω1 := (1 − ϕ)
µ0

µ1
, ω2 := ϕ

µ0

µ2
,

where µ0 := E [VIt(X)] and ϕ is a factor defined by

ϕ :=
µ2

2η
2
1 − µ1µ2η12

µ2
2η

2
1 + µ2

1η
2
2 − 2µ1µ2η12

.
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This solution is straightforward to implement since the mean and variances can be
estimated by averages.

Hence our proposal is to estimate independently pairwise realized correlations and
scale them by the realized variance for the whole day obtained previously to obtain the
realized covariance for n = 30 stocks of the Dow Jones Industrial Average. With these
estimates we will construct a realized covariance matrix for the t-th day which we will
denote Vt ∈ R

n×n. Further improvements may include subsampling for removing noise
from the suggested estimate.

6.2 Empirical Framework

In this section we describe the empirical framework proposed in Fleming et al. (2001,
2003) where it is consider two cases of an investor allocating funds across the set of 30
stocks of the Dow Jones Industrial Average plus cash using conditional mean-variance
analysis. We explain the details in the rest of the section.

Our investor requires one-step-ahead estimates of the conditional means and the
conditional covariance matrix. So, we denote Xt(s) as the multivariate process of
prices comprising exclusively the day t. Let Ft the information available until day t−1.
It is assumed that conditional mean vector µ := E [Xt|Ft] is constant since there is
little variability during one day. We construct the conditional covariance matrix Σt :=
Var [Xt|Ft] of daily returns using rolling estimators. Fleming et al. (2003) point out that
this approach is advantageous since it avoids parametric assumptions, it nests a variety
of GARCH and stochastic volatility models as special cases and it is computational
efficient. The optimal weighting scheme is of the form

Σ̂t = exp(−α)Σ̂t−1 + α exp(−α)Vt−1,

where Vt−1 is the covariance matrix for the whole t-th day proposed previously. This
estimator is optimal in the sense that it produces the smallest asymptotic MSE. It
guarantees that Σ̂t is positive-definite, and a single parameter α controls the rate at
which the weights decay with the lag length. This approach should be more efficient
since realized variances and covariances provide better estimates of the daily return
innovations.

With these estimates, our risk-averse investor wishes to allocate his funds across
the 30 stocks of the Dow Jones Industrial Average and cash rebalancing his portfolio
daily. In order to avoid restrictions on short selling and transaction costs he trade future
contracts over the risky assets. Before we continue, a few notes of futures are included
(for more details see Björk, 2004).

Definition 6.3 (Forwards). Consider a contingent claim X. A forward contract on X,
contracted at time s with time of delivery S and forward price f(s, S,X) is defined by
the payment scheme:

1. The holder of the forward receives X at time S and pays f(s, S,X).

2. The forward price f(s, S,X) is determined at time s and in such way that the
price at time t (when the contract is made) is 0.

The main difference between a futures and a forward contract lies in the way the
payments are made:
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6.2. Empirical Framework

Definition 6.4 (Futures). Consider a contingent claim X. A futures contract on X,
with time of delivery S is a financial asset with the following properties:

1. At any point s in (0, S] there exists in the market an object F (s, S,X) known as
the futures price for X at time s, for delivery at T .

2. During an arbitrary time interval (s1, s2], the holder of the contract receives the
amount F (s2, S,X) − F (s1, S,X).

3. At time S of delivery the holder receives X and pays F (S, S,X) .

4. The spot price, at any time s prior the deliver, of obtaining the futures contract
is by definition 0.

One of the reasons to trade futures over markets is the difficulty of trading or hedging
directly in the underlying object particularly with commodities where it is not allowed
to go short. We must have F (S, S,X) = X, so there is no reason to deliver X at the
time S. The only contractual obligations is the stream of payments described above.
There is no cost or gain of entering or closing a futures contract at any time. Most
futures contracts are closed before the delivery date. Forward and futures prices are
the same when interest rates are deterministic. There is a difference when interest rates
are stochastic. The forward price is a martingale under the forward measure, whereas
the futures price is a martingale under the risk neutral measure.

Going back to our investor, he decides to use conditional mean-variance analysis to
make his allocation decisions. Two strategies are possible:

• He targets a specific expected portfolio return µ∗ while minimizing the variance.
The following portfolio weights delivers the solution to this optimization problem

wµ(t, µ∗) =
(µ∗ −Rf )Σ−1

t µ

µ′Σ−1
t µ

, (6.1)

where Rf the return of the risk free asset.

• He targets a specific portfolio variance σ∗ while maximizing the expected return.
The solution is given by

wσ(t, σ∗) =
σ∗Σ

−1
t µ√

µ′Σ−1
t µ

. (6.2)

The optimization is carried out using Lagrangian multipliers. The solutions of both
problems differ just by a scalar term. The weight in cash is one minus the sum of the
weights of the assets.

Finally we want to measure the performance associated with the use of the proposed
realized covariance for the whole day and compare against other approaches as the ones
discussed in Fleming et al. (2001, 2003). For doing so, they propose the use of the
quadratic utility . The quadratic utility function is defined as

Expected return - Risk Aversion × Expected Variance / 2.
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6. The Economical Value of Realized Covariance

Such function can be seen as a second-order approximation of the investor’s true utility.
The investor’s quadratic realized utility in period t+ 1 is given by

U(Wt+1) = Wt+1 −
aW 2

t+1

2
= WtRt+1 −

aW 2
t

2
R2

t+1, (6.3)

where Wt is the investor’s wealth at time t, a is his absolute risk aversion (coefficient)
and

Rt+1 = Rf + w′Xt+1.

Consider R1 and R2 the vector or returns for two different strategies, then the
measure of comparison of the performance of the two strategies will be given by the
value ∆ which solves

U(R1 − ∆1) = U(R2).

Such value is reported as annualized fee in basis points (.01%).
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Appendix A

Probability Distributions

A.1 Univariate Distributions

A.1.1 The Lognormal Distribution

Definition A.1 (Lognormal Random Variable). A random variable X is said to have
a three parameter lognormal distribution if there exist µ ∈ R, σ2 ∈ R

+ and γ ∈ R such
that

log(X − γ) − µ

σ2
∼ N(0, 1).

In particular, if we take γ = 0 the resulting random variable X is said to have two pa-
rameter lognormal distribution or simply lognormal distribution (Johnson et al., 1994).

It is easily deduced that X only takes values over (γ,∞). Moreover, since it has
been defined as a transformed distribution it is possible to use many of the properties of
the normal standard distribution. For instance its probability density function is given
by

f(t;µ, σ2, γ) :=
1√

2πσ2(t− γ)
exp

{
−

(
log(t− γ) − µ

)2

2σ2

}
, t ≥ γ. (A.1)

and its cumulative distribution function can be evaluated as

F (t;µ, σ, γ) := Φ

(
log(t− γ) − µ

σ

)
,

where Φ is the normal standard cumulative distribution function. From this expression
it is possible to observe that γ is a localization parameter. That is, changes on its value
will only affect the localization of the distribution but not its shape. Hence if we fix
the value of γ most of the properties of this distribution can be easily transferred to
the general case.

A relevant feature of the lognormal distribution is that

E [eθX ] = ∞, θ > 0,

meaning that the moment generating function does not exist. However, all the moments
of the lognormal distribution exist and can be calculated explicitly. In fact, the moment
of order k is given by

E [Xk] = ekµ+k2σ2/2, k ∈ N.
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A. Probability Distributions

from where its mean and variance are easily obtained and given by

E [X] = eµ+σ2/2, (A.2)

Var [X] = e2µ+σ2(
eσ2 − 1

)
. (A.3)

Define F (t) = 1−F (t) to be the tail probability of a lognormal random variable. The
following is an asymptotically equivalent expression as t→ ∞ of the tail probability of
a lognormal random variable

F (t) ∼ σ√
2π(log t− µ)

exp
{
− (log t− µ)2

2σ2

}
. (A.4)

Although this is based in a well-known asymptotic expression for the normal distribu-
tion, this fact can be proved in a straightforward way using L’Hopital rule:

lim
t→∞

σ√
2π(log t−µ)

exp
{
− (log t−µ)2

2σ2

}

F (t)
= lim

t→∞

f(t) log2 t−2 log tµ+µ2+σ2

(log t−µ)2

f(t)
= 1.

The failure rate function λ(t) is defined to be the ratio among the pdf and the tail
probability of a random variable. For the lognormal random variable we employ the
expression (A.4) to obtain an asymptotic expression for λ(t) as t→ ∞:

λ(t) =
f(t)

F (t)
=

log t− µ

σ2t

(
1 + o(1)

)
=

log t

σ2t

(
1 + o(1)

)
,

which clearly goes to 0 as t → ∞. A useful fact about the lognormal failure rate
function is that it remains bounded in the set [0,∞). To prove this it is just necessary
to observe that λ(t) → 0 when t→ 0 as well. The assertion follows from the continuity
of the function and the two limits.

A.1.2 Regularly Varying Distributions

Definition A.2 (Slow Variation). A function L with values in (0,∞) is said to be
slowly varying at infinity if

lim
x→x0

L(tx)

L(x)
= 1, t > 0.

The family of slowly varying functions is commonly denote R0.

Functions with limits at x0 are typical examples of slowly varying functions. Note
however, that while convergence is a sufficient condition it is not necessary. In fact
a slowly varying function can be oscillatory at x0. The next function, taken from
Embrechts et al. (1997), is an example of a slowly varying function at ∞ with an
oscillatory behavior

L(x) = exp
{√

log(1 + x) cos
(√

log(1 + x)
)}
.

Definition A.3 (Regular Variation). A function h with values in (0,∞) is said to be
regularly varying at infinity with index α if

lim
x→x0

h(tx)

h(x)
= tα, t > 0.

The family of regularly varying functions with index α is commonly denoted R0.
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Remark A.4. It is often useful to see the family Rα through its close relation with
the power function xα and the family R0. More precisely, a function h ∈ Rα can be
written as xαL(x) with L ∈ R0.

A.2 Multivariate Distributions

A.2.1 Multivariate Normal Distribution

Definition A.5. A random vector Y := (Y1, . . . , Yd)
T is said to have a Multivariate

Normal (or Gaussian) distribution if

Y = µ + AZ,

where Z := (Z1, . . . , Zk)
T is a vector of i.i.d. normal standard random variables, µ ∈ R

d

and A ∈ R
k×d.

Since Y is a linear transformation of the random vector Z we can easily calculate
its mean vector and covariance matrix. That is

E [Y] = µ, Cov [Y] = Σ,

where Σ := AA′ is a positive (semi)definite matrix. Since the multivariate normal
distribution is fully characterized by µ and Σ we will use the notation Y ∼ Nd(µ,Σ)
and refer to it as multivariate normal distribution with parameters µ and Σ.

An alternative (and equivalent) definition is stated in terms of the characteristic
function. A random vector Y is said to be a multivariate normal with parameters µ

and Σ if its characteristic function can be written as

φY(t) = eiµ t′− 1
2
tΣ t

′

,

where µ, t ∈ R
d and Σ ∈ R

d×d positive (semi)definite matrix.
Under the assumption that rank(A) = d, the variance-covariance Σ has full rank

and therefore it is non-singular and positive semi-definite. In such case, its joint density
function is given by

fµ,Σ(t) =
1

(2π)d/2|Σ|1/2
exp

{
− (t − µ)′K(t − µ)

2

}
, (A.5)

where K = Σ−1 is known as the concentration matrix of the distribution. From the
form of the joint density it is observed that the level sets do form ellipsoids.

Let X1 ∼ Nd(µ1,Σ1) and X2 ∼ Nd(µ2,Σ2) be independent multivariate normal
vectors. Several important properties of the multivariate distribution are listed below.

1. Convolution. The class of multivariate normal distributions is closed under
convolutions. In particular

X1 + X2 ∼ Nd(µ1 + µ2,Σ1 + Σ2).

2. Linear transformations. If A ∈ R
k×d and u ∈ R

d, then

AX1 + u ∼ Nk(Aµ1 + u,AΣ1A
′).

In particular
u′X1 ∼ N(u′

µ1,u
′Σu).
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3. Transformation to the Normal Standard. Let U−1ΛU be the eigenvalue
decomposition of Σ . Then

Λ−1/2UX1 ∼ Nd(0, I).

Partition X1 into XA ∈ R
r and XB ∈ R

s with r + s = d. Consequently

µ1 =

(
µA

µB

)
, Σ1 =

(
ΣAA ΣAB

ΣBA ΣBB

)
.

4. Marginal distributions. XA ∼ Nr(µA,ΣAA) and XB ∼ Ns(µB,ΣBB).

5. Conditional Distributions. XA|XB ∼ Nr(µA|B,ΣA|B) where

µA|B = µA + ΣABΣ−1
BB(XB − µB) and ΣA|B = ΣAA −ΣABΣ−1

BBΣBA.

A.2.2 Elliptical Distributions

Elliptical distributions constitute a large class of multivariate distributions which pro-
vide a natural generalization of the multivariate normal distribution. The material
presented here follows the exposition of McNeil et al. (2005) and Fang et al. (1987). We
start by defining the subclass of spherical distributions which will be useful for giving
a full characterization of the elliptical distributions.

Definition A.6 (Spherical Distribution). We say that a random vector X has an
elliptical distribution if it has the stochastic representation

X
d
= RS,

where S is a random vector uniformly distributed over the unit sphere S and R is an
independent random variable supported over [0,∞) (radial random variable).

The following definition will be useful to characterize the class of elliptical distribu-
tions.

Definition A.7 (Characteristic generator). Let X be a random vector with an elliptical
distribution. The characteristic generator ψ(t) of X is defined as the characteristic
function of ‖X‖.

Then we denote X ∼ Sd(ψ). In particular, the characteristic function φ(t) of a
spherical distribution is equivalent to the characteristic generator of X evaluated at
‖t‖. That is,

φ(t) = ψ(‖t‖).
Spherical distributions have uncorrelated components (not necessarily independent)

and their distributions are invariant under rotations. However, it is relevant to stress
that the only spherical distribution with independent components is the multivariate
normal distribution.

90



A.2. Multivariate Distributions

Definition A.8 (Elliptical distribution). We say that a random vector X follows an
elliptical distribution if it has the stochastic representation

X = µ +RAS,

where S is a random vector uniformly distributed over the unit sphere S, R is a random
variable which takes values in [0,∞), µ ∈ R

d and A ∈ R
k×d.

We denote X ∼ Ed(µ,Σ, ψ) where µ is known as the localization parameter, Σ =
A′A as the dispersion matrix and ψ is the characteristic generator of the distribution.

A practical feature of the stochastic representation X
d
= RS is the fact that if R

has no point mass at the origin then

R =
d
=

√
(X − µ)′Σ−1(X− µ), S

d
=

Σ−1/2
(
X − µ

)
√

(X − µ)′Σ−1(X − µ)
,

and for details about the joint density function see McNeil et al. (2005); Fang et al.
(1987). Below are listed some of the properties of the class of spherical distributions.

Let X1 ∼ Sd(µ1,Σ, ψ1) and X2 ∼ Sd(µ2,Σ, ψ2) have independent spherical distri-
butions with common dispersion matrix Σ, then

1. Convolutions.

X1 + X2 ∼ Sd(µ1 + µ2,Σ, ψ1 ψ2).

However, the convolution of two independent spherical distributions with non-
identical dispersion matrices will not necessarily be elliptical.

2. Linear transformations. If A ∈ R
k×d and u ∈ R

d, then

AX1 + u ∼ Ek(Aµ1 + u,AΣ1A
′, ψ).

In particular

u′X1 ∼ E1(u
′
µ1,u

′Σu, ψ).

3. Relation with the Spherical distributions

X1 ∼ Ed(µ,Σ, ψ) ⇐⇒ Σ−1/2
(
X1 − µ

)
∼ Sd(ψ).

Partition X1 into XA ∈ R
r and XB ∈ R

s with r + s = d. Consequently

µ1 =

(
µA

µB

)
, Σ1 =

(
ΣAA ΣAB

ΣBA ΣBB

)
.

4. Marginal distributions. XA ∼ Sr(µA,ΣAA, ψ) and XB ∼ Ss(µB ,ΣBB , ψ).

5. Conditional Distributions Conditional Elliptical Distributions are also ellip-
tical, but not necessarily with the same characteristic generation function ψ.
For more details see Fang et al. (1987).
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A.2.2.1 Normal Variance Mixture Distributions

We will introduce the class of Normal Mixture Distributions which constitutes an im-
portant subclass of Elliptical Distributions.

Definition A.9. A random vector Y is said to have a normal variance mixture distri-
bution if it has the stochastic representation

X
d
= µ +

√
WAZ,

where Z := (Z1, . . . , Zk) is a vector of i.i.d. normal standard r.v.’s, A ∈ R
k×d, µ ∈ R

d

and W is a random variable supported over (0,∞) and independent of Z.

This type of multivariate distributions are named variance mixtures since the con-
ditional distribution of X given W = w has a Nd(µ, wΣ) distribution where Σ = AA′.
Hence, we may think of such distribution as a multivariate normal distribution with a
random covariance matrix. Notice however that this is just an heuristic intuition since
the resulting distribution will not be multivariate normal.

Its mean and covariance are given by

E [X] = µ, Cov (X) = E [W ]Σ

and its characteristic function

φX(t) = ei tµ Ĥ
(1

2
t′Σt

)
,

where Ĥ is the Laplace transform of the distribution of W and the notation X ∼
Md(µ,Σ, Ĥ) is adopted. Furthermore, if X ∼ Md(0, Id, Ĥ), it follows that its char-
acteristic function φ(t) = Ĥ(t′t/2) is indeed a characteristic generator of a spherical
distribution. Moreover, since an elliptical distribution is obtained by a linear transform,
it follows that the family of distributions Md(µ,Σ, Ĥ) is a subclass of the elliptical dis-
tributions.

For instance, if X ∼ Nd(0, Id) it immediately follows that R2 ∼ χ2
d. Furthermore,

we can use this result to obtain the distribution of the radial random variable R2

for an uncorrelated normal mixture vector X ∼ Md(0, Id,H). Given the stochastic
representation X =

√
W Y with Y ∼ Nd(0, Id) we obtain

R2 d
= X′X

d
= W Y′Y

d
= W χ2

d.

If Σ is non-singular and provided that W has no point mass in the origin., the joint
density function is given by the following expression

f(t) =

∫
ω−d/2

(2π)d/2|Σ|1/2
exp

{
− (t − µ)′Σ−1(t − µ)

2ω

}
dH(ω),

where H is the distribution function of W .

Example A.10 (Multivariate k-point mixture distributions). If the support of the
random variable W is finite, say with cardinality k then we say that the random vector
X has a k-point mixture model. Obviously, when k = 1 this is simply the multivariate
normal distribution.
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A random variable W has an inverse gamma distribution, denoted as IG (α, β) if

1/W ∼ Gamma(α, β), α, β > 0.

Its mean and variance are given by E [W ] = β/(α−1) (α > 1) and Var (W ) = β2/((α−
1)2(α− 2)) (α > 2).

Example A.11 (Multivariate t Distribution). If we take W ∼ IG (ν/2, ν/2), or equiv-
alently ν/W ∼ χ2

ν ( chi square distribution with ν degrees of freedom) then we say that
the random vector X has a multivariate t distribution with ν degrees of freedom and
denote it as X ∼ td(ν, µ,Σ). Then it follows that R2/d ∼ F (d, ν), an F distribution
with d and ν degrees of freedom, its covariance is given by

Cov [X] =
ν

ν − 2
Σ, ν > 2

and its joint density function by

f(t) =
Γ
(
(ν + d)/2

)

Γ(ν/2) (πν)d/2 |Σ|1/2

(
1 +

(t − µ)′Σ−1(t − µ)

ν

)−(ν+d)/2

.

A.2.3 Log-elliptical Distributions

Definition A.12. A random vector X := (X1, . . . ,Xd) is said to have a log-elliptical
distribution if

log X := (logX1, . . . , logXd) ∼ Ed(µ,Σ, φ),

with µ ∈ R
d, Σ ∈ R

d×d a positive (semi) definite matrix and φ a characteristic gener-
ator. We denote it X ∼ LEd(µ,Σ, φ) where µ is known as the localization parameter,
Σ as the dispersion matrix and φ as the characteristic generator.

In particular a log-elliptical distribution will not be elliptical by itself. However, it
inherits many properties of the elliptical distribution which make attractive this class
of distributions. If log X ∼ Ed(µ,Σ, φ) has a joint density function, say f(t), then it
follows that the joint density of X will be given by

f(log t)

( d∏

i=1

ti

)−1

.

For more details details on properties of log-elliptical distributions see Fang et al. (1987).

Example A.13 (Multivariate Lognormal Distribution). We say that a vector has a
multivariate lognormal distribution with localization vector µ and dispersion positive
(semi)-definite matrix Σ if

log X ∼ Nd(µ,Σ).

We will denote X ∼ LNd(µ,Σ). If the matrix Σ is nonsingular, then the joint density
function of X is explicitly given by

fµ,Σ(t) =
1

(2π)d/2|Σ|1/2
∏d

i=1 ti
exp

{
− (log t − µ)′Σ−1(log t − µ)

2

}
.

Moreover, its mean and covariance matrix are calculated as

E [X] = eµ+diag(Σ)/2, Cov [X]ij = eµ1+µj+(σ2
i +σ2

j )/2(eσij − 1
)
. (A.6)

To make emphasis in the marginal behavior, we will refer to the elements of X ∼
LNd(µ,Σ) as lognormal random variables with Gaussian copula.
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A.2.4 Copulas

The multivariate normal random distribution is considered the natural extension to a
non-independent multidimensional setting of the normal distribution in the sense that
the marginal distributions remain normal. However, in the general case there is not such
a natural way to define a dependent version for a random variable. Copulas provide a
method to create multivariate distributions with a rather general structure dependence
and specific marginal distributions.

The idea is to separate the dependence structure from the univariate marginal be-
havior and represent it with a non-independent vector of uniform standard random
variables. More precisely, let F be a multivariate distribution with univariate marginal
distributions F1, . . . , Fn. The copula associated with F is defined as a distribution
function C : [0, 1]n → [0, 1] that satisfies

F (x) = C(F1(x1), . . . , Fn(xn)). (A.7)

This result is usually known as Sklar’s Theorem. Moreover, if F−1
1 , . . . , F−1

n are the
right-continuous inverse functions of F1, . . . , Fn, then

C(u) =
(
F−1

1 (u1), . . . , F
−1
n (un)

)

satisfies (A.7) and if F is continuous the solution is unique. This follows from the
following Proposition:

Proposition A.14. Let X be a random variable with cdf F and right-continuous inverse
function F−1 and U a uniform standard random variable, then

a) F−1(U) has c.d.f. F .

b) If F is continuous, then F (X) is a uniform standard r.v.

A couple of basic examples of copulas are the completely positively dependent copula
where U1 = · · · = Un and the completely negatively dependent copula with n = 2 where
U1 = 1−U2. Two slightly more complicated (but still basic) examples of copulas are the
multivariate normal or Gaussian copula and the multivariate t copula which are defined
as follows. Let Z = (Z1, . . . , Zn) be a multivariate normal (or multivariate t) random
vector and Φi(·) the marginal cdf of Zi. The copula is defined as the distribution of the
transformed vector

Φ(Z) := (Φ1(Z1), . . . ,Φn(Zn)),

where Φi(Zi) are non-independent uniform standard variables. These two copulas are
widely used since they posses many useful properties which make them very flexible to
work with. For more examples of copulas look at Joe (1997); Nelsen (2006).

The tail dependence coefficient describes the amount of dependence in the upper-
quadrant tail or lower-quadrant tail of a bivariate distribution. The definition is given
in terms of copulas because of the property of invariance to increasing transformations.
Consider a bivariate copula C. Define the Upper tail dependence coefficient as

λ U := lim
t→1

C(t, t)

1 − t
= lim

t→1
P(U1 > t|U2 > t).

A similar definition is given for the Lower tail dependence coefficient λ L]. Note that
λ U , λ L ∈ [0, 1]. Then it is said that C has upper (lower) tail dependence if λ U ∈ (0, 1]
(λ L ∈ (0, 1]), and no upper (lower) dependence or tail independent if λ U = 0 (λ L = 0).
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Appendix B

Simulation

B.1 Random Number Simulation

A pseudo-random number generator is a deterministic algorithm whose output is a
stream of numbers that mimic the properties of a sequence of i.i.d. uniform standard
r.v.’s. The efficient simulation of random variables from diverse distributions involve a
set of methods and techniques based on transformations of these streams.

Many software packages such as Matlab, S-plus or Maple already contain large
libraries for generating a wide variety of random numbers with great efficiency. The
aim of this section is to describe some general algorithms for generating random numbers
which are particularly useful when it is necessary to generate random numbers from
less common distributions (usually not contained in these software packages).

B.1.1 Univariate Distributions

The most common methods used to generate independent random variables are Inver-
sion and Acceptance-Rejection. For the Inversion method it is assumed that the right-
continuous inverse F−1 of the c.d.f. is explicitly known, meanwhile, for the acceptance-
rejection it is required the knowledge of the density function f plus a similar density g
from which can be easily simulated. Both methods are sketched below.

Inversion. The way of simulate a random variable whose right-continuous inverse is
known is to generate a uniform random variable and apply the right-continuous inverse.
So, by part (a) of Proposition A.14, F−1(U) has the desired distribution. Note that
almost every known discrete random variable can be generated with this method.

Acceptance-Rejection. Roughly speaking, by similar it is understood a random
variable with density g(·), such that the minimum value of c such that f(t) ≤ cg(t) for
all t in the support of X is close to 1. The inverse of the value that maximizes the
ratio f(t)/g(t) is the optimal value of c. The method is better understood from the
algorithm itself.

Step 1. Generate Y .

Step 2. Generate a uniform standard U .

Step 3. If U ≤ f(Y )cg(Y ), let X := Y . Otherwise return to Step 1.
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B. Simulation

The following argument shows that X has the right density f or equivalently that the
algorithm produces random variables with the desired distribution. Let {Yn} a sequence
of i.i.d. random variables with density g(·) and pA = P(Accept), then

P(X ≤ x) =
∞∑

n=0

P(Yn ≤ x|Accept)pA(1 − pA)n

= P(Y1 ≤ x|Accept)

∞∑

n=0

pA(1 − pA)n = P(Y1 ≤ x|Accept)

=
P(Y1 ≤ x; Accept)

P(Accept)
=

∫ x
−∞ P(Accept|Y1 = t)g(t)dt
∫ ∞
∞ P(Accept|Y1 = t)g(t)dt

=

∫ x
−∞ f(t)cg(t)g(t)dt

∫ ∞
−∞ f(t)cg(t)g(t)dt

=
1
c

∫ x
−∞ f(t)dt

1
c

∫ ∞
−∞ f(t)dt

=

x∫

−∞

f(t)dt.

From this argument it is observed that pA = 1/c. The speed of this algorithm is based
in the rate of acceptance. Then, it is desirable to find a density g whose optimal value
of c is as close as 1 as possible or intuitively that it looks as much alike to f as possible.

B.1.2 Multivariate Distributions

For realistic simulation it is more useful to generate non-independent random vari-
ables. However, many difficulties arise from the dependence structure and this problem
becomes more difficult: The inversion method cannot be generalized to simulate de-
pendent random variables. If the joint density is available then it is possible to use
acceptance-rejection. However, it becomes very inefficient in large dimension settings
due to the high probability of rejection. Also the choice of a similar density becomes
less obvious.

In a few cases the properties of the distribution allow to make only a few transfor-
mations and operations with independent random variables to simulate from the desired
distribution.

Spherical and Elliptical Distributions The algorithm for simulating an elliptical
random vector is given next.

1. Simulate Z := (Z1, . . . , Zd) where the components are independent normal stan-
dard random variables. Simulate the radial random variable R with representation
ψ.

2. Find a square matrix A such that ATA = Σ.

3. Return

µ +RA
Z

‖Z‖ .

The last random vector has the correct distribution since C
d
= Z/‖Z‖ is uniformly

distributed over the unit spheroid S1(0) – recall that the level curves of a multivariate
normal random vector with marginal distributions N(0, 1) form spheroids in R

d.
In the case of the multivariate normal and multivariate t distributions we can avoid

the normalization of the normal vector. For the multivariate normal the new radial
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B.2. Monte Carlo Estimators and Variance Reduction

random variable is taken to be a constant while in the case of the multivariate t, it an
inverse gamma distribution is used.

Copulas A wide variety of dependent random variables can be generated using cop-
ulas. Since the copulas separate the dependence structure from the marginal behavior
it is necessary to be able to simulate from the copula (acceptance-rejection could be
used) and also from the marginal distribution.

A simple example is to export the dependence structure from the multivariate nor-
mal or multivariate t to other marginal distributions. The following method generates
random variables with copula C and marginal distributions Gi(·). It is assumed that
a method for simulating from C is readily available. Simulate (X1, . . . ,Xn)T from a C
and apply the transformation

(
G−1

1 (X1), . . . , G
−1
n (Xn)

)

where G−1
i (·) is the right-continuous inverse of Gi(·).

B.2 Monte Carlo Estimators and Variance Reduction

B.2.1 Crude Monte Carlo

Let X be a random variable with cdf F . Suppose that it is of interest to calculate

θ = E [h(X)] =

∫
h(t)F (dt)

for some specific function h with domain in the support of X. It is often the case, that
this integral has not a closed analytic form, so, we turn to simulation to approximate
the value θ. The idea is to generate a sequence X1, . . . ,Xn of i.i.d. random variables
and estimate θ with

θ̂ =
1

n

n∑

i=1

h(X1).

This estimator is called crude Monte Carlo (CMC). It is unbiased by independence
and by the strong law of large numbers it is strongly consistent. Let θ(x) be a func-
tion defined in R. An algorithm is defined to be a family of estimators {Z(x)} such
that EZ(x) = θ(x) for all x. Monte Carlo estimators are useful to approximate the
probability of an event A. In particular, if h(x) = IA(x), then

P(A) ≈ 1

n

n∑

i=1

IA(Xi).

The variance of the CMC estimator is given by

Varh(Xi)

n
.

It is desirable to obtain an alternative estimator with smaller variance than the one
produced by the CMC method. Variance reduction methods have this purpose, but
usually require extra theoretical work and programming effort, so it is only worthwhile
if it provides a substantial variance reduction. Among the most common methods are
Importance Sampling, Stratification and Conditional Monte Carlo. These are briefly
described below.

97



B. Simulation

B.2.2 Importance Sampling

The following is a well-known consequence of the Radon-Nykodym Theorem: Let ν be
a finite and absolutely continuous measure with respect to σ-finite measure µ, and h is
any integrable function with respect to ν, then

∫
hdν =

∫
h
dν

dµ
dµ,

where the function dν/dµ (written in Leibnizian notation) is the Radon-Nykodym
derivative of ν with respect to µ. When ν and µ are probability measures and the
densities are available, say f(·) and g(·), the last equality becomes

∫
h(t)F (dt) =

∫
h(t)

f(t)

g(t)
G(dt),

with the condition that the support of g is contained in the support of f . The idea is to
simulate from a density g instead of f which concentrates more mass around the real
value of the expected value than f and, in consequence, obtain a variance reduction.
The estimator is given by

h(X)
f(X)

g(X)
,

where X is simulated from the density g. By the arguments shown above it is seen that
such estimator is unbiased but it is not evident if it provides a variance reduction and
the main problem becomes to make an efficient choice of g.

B.2.3 Stratification

Let Z be a random variable defined in a probability space (Ω,F ,P). The stratification
method for estimating z := EZ consists in defining a partition of the sample space Ω,
say Ω1, . . . ,Ωs (strata), such that the probabilities pi := P(Ωi) are known and we can
build estimators ẑi for every zi := E [Z|Ωi]. The stratification estimator comes out as

ẑS :=

s∑

i=1

piẑi.

The idea of the stratification method consists in eliminating the variance among the
strata. In principle, it always produces a variance reduction if we use proportional
allocation. That simply means that the number of replications Ri used to generate
every ẑi should be taken such that Ri/

∑
Ri is proportional to pi. In such case

Var ẑS =

s∑

i=1

piVar (Z|Ωi).

A further characteristic of the stratification method is that, since

E ẑS =

s∑

i=1

E (Z|Ωi),

the variance coming from a set Ωi can be completely removed if E (Z|Ω1) is known in
closed form.
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B.2. Monte Carlo Estimators and Variance Reduction

B.2.4 Conditional Monte Carlo

Suppose that we want to estimate a quantity z and for doing so we already count with
a random variable Z defined on a probability space (Ω,F ,P) such that z = E (Z).
Conditional Monte Carlo is a tool which improves the efficiency of a given estimator
by conditioning it to a particular σ-algebra G ⊂ F . That is,

ẑ = E (Z|G),

This estimator is clearly unbiased and by the Rao-Blackwell Theorem it follows that

Var (ẑ) = Var (E (Z|G)) ≤ Var (Z).

Therefore, it always provides a variance reduction. As discussed before the problem is
to choose a a σ-algebra F such that it is possible to simulate the events in F and the
conditional expectation E (Sn|F) is known in closed form. Obviously, it is also desired
that the resulting estimator provides a substantial variance reduction.
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Appendix C

Lévy Processes

In this appendix we give the basic definition of a Lévy process plus some fundamental
characterizations and properties which are considered to be enough for the needs of this
dissertation. It also may serve as illustrative of the richness of the class of Lévy process.
Standard references for Lévy processes are Bertoin (1996); Sato (1999); Kyprianou
(2006).

Definition C.1 (Lévy Process). A stochastic process X(t) defined in a probability
space (Ω,F ,P) is said to be a Lévy process if

1. The process X(t) is càdlàg. That means that it has sample paths which are right
continuous with left limits a.s.

2. The process is started at 0 with probability 1.

3. The process is stationary. That is, X(t− s)
d
= X(t) −X(s) for all 0 < s < t.

4. The process has independent increments. This means X(t)−X(s) is independent
of {X(u) : u ≤ s}.

The two basic examples of a Lévy process are the Poisson process and the Brownian
motion. Some other well known processes which are Lévy processes are the compound
Poisson processes, Gamma processes, Normal Inverse Gaussian processes and Stable
processes. The following definition will be useful to characterize Lévy processes and
relate them to the class of infinitely divisible distributions which are defined later.

Definition C.2 (Characteristic exponent of a Lévy process). For a Lévy process X(t)
we define

Ψ(θ) := − log E [e−iθX(1)],

and say that Ψ(θ) is the characteristic exponent of the process X(t).

The following Theorem provides a characterization of Lévy process in terms of its
characteristic exponent.

Theorem C.3 (Lévy-Khinchine Theorem for Lévy processes). Let a ∈ R, σ ∈ R
+ and

Π a measure with no point mass in the origin and such that

∫

R

(
ǫ ∧ t2

)
Π(dt) <∞,
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for some arbitrary value ǫ > 0 and define

Ψ(θ) := iaθ +
1

2
σ2θ2 +

∫

R

(1 − eiθt + iθtI(|t| < ǫ))Π(dx).

Then there exists a Lévy process X(t) whose characteristic exponent is given by Ψ(θ).

The choice of ǫ can be rather arbitrary but in the literature is commonly taken to
be 1. The class of Lévy processes it is closely related with the class of infinitely divisible
distributions which are defined as follows.

Definition C.4 (Infinitely Divisibility). We say that a random variable Y has an
infinitely divisible distribution if for all n ∈ N there exist a set of i.i.d. random variables,
say Y1,n, . . . , Yn,n, such that Y admits the stochastic representation

Y
d
= Y1,n + · · · + Yn,n.

In terms of the characteristic function Φ(θ), this just means that for all n there
exist a characteristic exponents Φn(θ) such that Φ(θ) = nΦn(θ). Moreover, a similar
Lévy-Khinchine Theorem can be proved for infinitely divisible distributions. In fact, this
shows that the the increments of a Lévy process follow an infinitely divisible distribution.
Conversely, for any given a Lévy process can be constructed from any infinitely divisible
distribution.

We close this appendix with the Lévy-Ito decomposition which identifies the three
key ingredients of any Lévy process. We can use the Lévy-Khinchine formula to rewrite
the characteristic exponent of any Lévy process as the sum of the following three terms

Ψ1(θ) := iaθ +
1

2
σ2θ2,

Ψ2(θ) :=

∫

|t|>ǫ
(1 − eiθt)Π(dt),

Ψ3(θ) :=

∫

0<|t|<ǫ
(1 − eiθt + iθt)Π(dt),

The Lévy-Ito decomposition shows that each of these functions can be identified as
the characteristic exponent of three different types of Lévy processes. The function Ψ1

corresponds to the characteristic exponent of a Brownian motion with drift. After some
rewriting, Ψ2 is identified as the characteristic function of a compound Poisson process
with jumps bounded below by ǫ. The remaining element Ψ3 is a very interesting one.
In fact, here we have chosen to take an arbitrary value ǫ (rather than the common
practice of taking it equal to one) to give an heuristic argument of the nature of this
process. Note that similar decompositions are obtained by choosing taking different
values of ǫ in the Lévy-Khinchine formula. The idea is to take a decreasing sequence
of values ǫ1, ǫ2, . . . such that ǫi → 0. Therefore, the function Ψ3 can be interpreted as
the characteristic exponent of the superposition of a countable number of independent
compound Poisson processes with jumps sizes in [ǫi+1, ǫi). Formally speaking, this
process is a square integrable martingale with an almost surely countable number of
jumps on a finite time interval which are bounded above by ǫ.
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Appendix D

Numerical Examples

The numerical results of the methods discussed in this dissertation had been collected
in this appendix. It has been divided in sections where a brief description is included.
The main discussion of the results was kept in the corresponding chapters.

D.1 Tail Probabilities of Sums of Lognormal Random
Variables

The Subsection D.1.1 contains the aymptotic approximations while the Subsection D.1.2
on page 106 contains the Monte Carlo estimates developed throughout the dissertation.

D.1.1 Asymptotic Approximations

The following set of examples show the numerical results of the asymptotic approxima-
tions discussed in Section 3 on page 41. These are:

1. The subexponential-type (ST) approximation.

2. The approximation via the aggregated tails (AT).

For comparison purposed we have taken the best Monte Carlo estimate in terms of the
lowest variance. As a comparison measure I have included the absolute relative differ-
ence which is defined as the absolute value of the difference between the approximation
and the Monte Carlo estimate divided by the Monte Carlo estimate. The idea is to
measure the speed of convergence of the approximations.
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D.1. Tail Probabilities of Sums of Lognormal Random Variables

Example D.1. For this example we have used n = 10 independent lognormal random
variables such that the i-th random variable has a LN(−i, i) distribution.

Method Approximation Relative Difference

Monte Carlo estimate 1.021341e-03
Subexponential type 9.448482e-04 7.489502e-02
Aggregated tails 1.107537e-03 8.439438e-02

Table D.1: P(S10 > 20000).

Method Approximation Relative Difference

Monte Carlo estimate 6.457905e-04
Subexponential type 6.025234e-04 6.699864e-02
Aggregated Tails 6.967287e-04 7.887727e-02

Table D.2: P(S10 > 30000).

Method Approximation Relative Difference

Monte Carlo estimate 4.624322e-04
Subexponential type 4.339349e-04 6.162468e-02
Aggregated Tails 4.972447e-04 7.528137e-02

Table D.3: P(S10 > 40000).
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Figure D.1: Asymptotic approximations for the tail probability of a sum of independent lognormal
random variables.
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D. Numerical Examples

Example D.2. For this example we have used n = 10 correlated lognormal random
variables such that the i-th random variable has a LN(−i, i) distribution and common
correlation parameter ρ = 0.4.

Method Approximation Relative Difference

Monte Carlo estimate 2.140006e-03
Subexponential type 1.970454e-03 7.922999e-02
Aggregated Tails 2.369424e-03 1.072044e-01

Table D.4: P(S10 > 20000).

Method Approximation Relative Difference

Monte Carlo estimate 1.014621e-03
Subexponential type 9.448482e-04 6.876803e-02
Aggregated Tails 1.107537e-03 9.157635e-02

Table D.5: P(S10 > 30000).

Method Approximation Relative Difference

Monte Carlo estimate 6.421017e-04
Subexponential type 6.025234e-04 6.163859e-02
Aggregated tails 6.967287e-04 8.507537e-02

Table D.6: P(S10 > 40000).
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Figure D.2: Asymptotic approximations for the tail probability of a sum of correlated lognormal
random variables (medium correlation).
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D.1. Tail Probabilities of Sums of Lognormal Random Variables

Example D.3. For this example we have used n = 10 correlated lognormal random
variables such that the i-th random variable has a LN(−i, i) distribution and common
correlation parameter ρ = 0.9.

Method Approximation Relative Difference

Monte Carlo estimate 1.021341e-03
Subexponential type 9.448482e-04 7.489502e-02
Aggregated tails 1.107537e-03 8.439438e-02

Table D.7: P(S10 > 20000).

Method Approximation Relative Difference

Monte Carlo estimate 6.457905e-04
Subexponential type 6.025234e-04 6.699864e-02
Aggregated Tails 6.967287e-04 7.887727e-02

Table D.8: P(S10 > 30000).

Method Approximation Relative Difference

Monte Carlo estimate 4.624322e-04
Subexponential type 4.339349e-04 6.162468e-02
Aggregated Tails 4.972447e-04 7.528137e-02

Table D.9: P(S10 > 40000).
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Figure D.3: Asymptotic approximations for the tail probability of a sum of correlated lognormal
random variables (high correlations).
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D. Numerical Examples

D.1.2 Monte Carlo Estimates

The following set of examples show numerical comparisons of the Monte Carlo estima-
tors discussed across the dissertation. These are:

1. The modified Asmussen-Kroese algorithm (AK) which have been described in
subsections 1.3.3 on page 12 and 3.2.2 on page 48.

2. The Importance sampling algorithm based in the Scaling of the Variance (SV)
and its Cross-Entropy version (SVCE) discussed in subsection 3.2.1 on page 44.

3. The conditional algorithm designed for Log-elliptical distributions based on the
radial random variable (RE) which was discussed in Section 4.2 on page 61.

4. Finally every estimator was improved by using the stratification strategy described
in Subsection 3.2.1.2 on page 47 which are distinguished by adding S- before the
abbreviation of the names of the algorithms. In the case of the graphs and ∗ had
been added to the style of the line.

The results are displayed in tables as well as in graphs. The tables show the estimates
for every estimator, the standard deviation, the variation coefficient and the cpu time
needed to generate the total number of replications. We have used R = 50, 000 with
the purpose of obtaining better estimates of the variance of the estimates, however, it
should be noted that fairly precise estimates might be obtained with less replications.
The figures show the variation coefficient of every algorithm plus the Time-relative error
which is consider to be a more fair measure of the performance of an algorithm since
it takes into account the time needed for generating a single replication. It is simple
obtained by multiplying the variation-coefficient by the cpu time.
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D.1. Tail Probabilities of Sums of Lognormal Random Variables

Example D.4. For this example we have used n = 10 independent lognormal random
variables such that the i-th random variable has a LN(−i, i) distribution.

Method Estimator Standard Deviation Variation Coefficient Time

SV 1.084545e-03 1.752382e-02 1.615775e 01 0.2380
SVCE 1.030550e-03 9.121518e-03 8.851113e 00 3.3669
AK 1.023973e-03 1.611999e-05 1.574258e-02 0.1460
RE 9.922026e-04 9.050250e-03 9.121372e 00 0.2219
S-SV 1.024992e-03 4.046023e-04 3.947370e-01 0.3249
S-SVCE 1.022912e-03 4.982704e-05 4.871095e-02 0.2850
S-AK 1.021341e-03 0.000000e-00 0.000000e 00 0.1460
S-RE 1.023783e-03 3.561371e-05 3.478635e-02 3.3730

Table D.10: P(S10 > 20000).

Method Estimator Standard Deviation Variation Coefficient Time

SV 5.205030e-04 9.924635e-03 1.906739e 01 0.2379
SVCE 4.110338e-04 4.557306e-03 1.108742e 01 3.3549
AK 4.632485e-04 9.821872e-06 2.120216e-02 0.1400
RE 4.845668e-04 7.215657e-03 1.489094e 01 0.2190
S-SV 4.625195e-04 1.402947e-05 3.033271e-02 0.3469
S-SVCE 4.629841e-04 3.125797e-05 6.751413e-02 0.2749
S-AK 4.624322e-04 0.000000e-00 0.000000e 00 0.1409
S-RE 4.630605e-04 1.066126e-05 2.302347e-02 3.3740

Table D.11: P(S10 > 40000).
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Figure D.4: Monte Carlo estimates for the tail probability of a sum of independent lognormal random
variables.

107



D. Numerical Examples

Example D.5. For this example we have used n = 10 correlated lognormal random
variables such that the i-th random variable has a LN(−i, i) distribution and common
correlation parameter ρ = 0.4.

Method Estimator Standard Deviation Variation Coefficient Time

SV 9.838832e-04 1.544085e-02 1.569378e 01 0.2400
SVCE 1.132847e-03 9.824999e-03 8.672837e 00 3.1170
AK 1.044250e-03 3.649722e-03 3.495064e 00 0.1520
RE 1.052730e-03 5.787320e-03 5.497438e 00 0.2200
S-SV 1.053528e-03 2.850599e-03 2.705765e 00 2.1970
S-SVCE 1.042666e-03 6.258719e-04 6.002610e-01 2.1590
S-AK 1.014621e-03 3.923703e-05 3.867159e-02 2.0320
S-RE 1.049404e-03 4.191588e-04 3.994253e-01 5.0560

Table D.12: P(S10 > 20000).

Method Estimator Standard Deviation Variation Coefficient Time

SV 5.475374e-04 1.142151e-02 2.085979e 01 0.2630
SVCE 4.663640e-04 5.075465e-03 1.088305e 01 3.1490
AK 4.744569e-04 1.928983e-03 4.065665e 00 0.1520
RE 4.742387e-04 3.310505e-03 6.980673e 00 0.2200
S-SV 4.696919e-04 5.916554e-04 1.259667e 00 2.2970
S-SVCE 4.768497e-04 5.454482e-04 1.143857e 00 2.2580
S-AK 4.606356e-04 1.368913e-05 2.971791e-02 2.1310
S-RE 4.720674e-04 1.812297e-04 3.839063e-01 5.1550

Table D.13: P(S10 > 40000).
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Figure D.5: Monte Carlo estimates for the tail probability of a sum of correlated lognormal variables
(medium correlation).
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D.1. Tail Probabilities of Sums of Lognormal Random Variables

Example D.6. For this example we have used n = 10 correlated lognormal random
variables such that the i-th random variable has a LN(−i, i) distribution and common
correlation parameter ρ = 0.9.

Method Estimator Standard Deviation Variation Coefficient Time

SV 1.056406e-03 1.770722e-02 1.676176e 01 0.2210
SVCE 1.103081e-03 1.010449e-02 9.160247e 00 2.5140
AK 1.296232e-03 2.414212e-02 1.862484e 01 0.1450
RE 1.118677e-03 5.263256e-03 4.704890e 00 0.2270
S-SV 1.112304e-03 9.385298e-03 8.437705e 00 2.2250
S-SVCE 1.141068e-03 2.945288e-03 2.581167e 00 2.1900
S-AK 9.021938e-04 1.515841e-04 1.680173e-01 2.0530
S-RE 1.137749e-03 2.258961e-03 1.985465e 00 4.3380

Table D.14: P(S10 > 20000).

Method Estimator Standard Deviation Variation Coefficient Time

SV 8.891581e-04 1.731132e-02 1.946933e 01 0.2380
SVCE 7.326583e-04 7.435824e-03 1.014910e 01 2.4210
AK 7.206390e-04 1.596332e-02 2.215162e 01 0.1430
RE 7.143845e-04 3.607646e-03 5.050006e 00 0.2180
S-SV 7.667911e-04 8.964689e-03 1.169117e 01 2.4220
S-SVCE 7.337671e-04 1.959899e-03 2.671010e 00 2.3850
S-AK 5.762806e-04 9.371145e-05 1.626142e-01 2.2430
S-RE 7.365516e-04 1.699989e-03 2.308037e 00 4.5300

Table D.15: P(S10 > 40000).

1 2 3 4 5

x 10
4

10
−1

10
0

10
1

10
2

Variation Coefficient

u

Scaled Variance (SV)
Cross−Entropy (SVCE)
Asmussen−Kroese (AK)
Radial−Elliptical (RE)
Stratified (S−)

1 2 3 4 5

x 10
4

10
−1

10
0

10
1

10
2

Time−Relative Error

u

Figure D.6: Monte Carlo estimates for the tail probability of a sum of correlated lognormal random
variables (high correlations).
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D. Numerical Examples

D.2 Ruin Probabilities in a Finite Time Horizon

The following set of examples show some numerical results of the methods for approxi-
mating the ruin probability in a finite time horizon which where discussed in the chapter
2. These are:

1. The Asmussen-Klüppelberg approximation (AK) given in 2.3 on page 28.

2. The Foss-Palmowski-Zachary approximation (FPZ) given in 2.4 on page 28.

3. The conditional Monte Carlo estimate designed for the Cramér-Lundberg risk
model (CL) discussed in 2.3.1 on page 29.

4. The conditional Monte Carlo estimate designed for the Lévy risk model (L) dis-
cussed in 2.3.2 on page 32.

The results are displayed in tables and graphics. The tables show the value of the
approximations and in the case of the estimators it also shows the standard devia-
tion, the variation coefficient and the cpu time used to generate the whole amount of
replications. Here we have used R = 5000.

We have chosen a Cramér-Lundberg risk model where the intensity of the compound
Poisson process is λ and the claims follow a Pareto distribution with parameter α.
Therefore the stability condition is translated into

λ

α− 1
< 1.

In the first two examples we have considered medium time horizon, so we have taken
t(u) = u while in the third and fourth examples we consider a shorter time horizon and
we have chosen t(u) = uγ where γ = α/(1 + α). We made this choice accordingly to
the restriction in Theorem 2.7 on page 34 where we proved that the proposed estimator
has bounded relative error if γ < α/(1 + α).

Also, in the first and third example we have experimented with a very heavy-tail,
while in the second and fourth we have taken a moderately heavy-tail. Recall that
Pareto distributions becomes heavier as long as α gets smaller.
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D.2. Ruin Probabilities in a Finite Time Horizon

Example D.7. In this example we choose the intensity of the Poisson process λ = 1/3,
a Pareto distribution with index α = 3/2 and a time horizon t(u) = u.

Method Estimator Standard Deviation Variation Coefficient Time

AK 8.473255e-04
FPZ 1.054076e-05
CL 8.757389e-04 5.757320e-03 6.574242e 00 102.6180
L 8.496901e-04 1.235509e-04 1.454071e-01 164.0500

Table D.16: Ψ(100000, 100000).

Method Estimator Standard Deviation Variation Coefficient Time

AK 6.918395e-04
FPZ 7.315562e-06
CL 7.215334e-04 5.158963e-03 7.149999e 00 154.5790
L 6.950262e-04 1.000262e-04 1.439172e-01 260.6370

Table D.17: Ψ(150000, 150000).

Method Estimator Standard Deviation Variation Coefficient Time

AK 5.991511e-04
FPZ 5.649756e-06
CL 5.788303e-04 4.352878e-03 7.520129e 00 219.7720
L 5.984339e-04 8.338152e-05 1.393328e-01 384.7240

Table D.18: Ψ(200000, 200000).
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Figure D.7: Approximation for the ruin probability in a medium time horizon for a Cramér-Lundberg
risk model with very heavy Pareto claims.
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D. Numerical Examples

Example D.8. In this example we choose the intensity of the Poisson process λ = 3/2,
a Pareto distribution with index α = 3 and a time horizon t(u) = u.

Method Estimator Standard Deviation Variation Coefficient Time

AK 4.152249e-04
FPZ 2.148494e-04
CL 5.472923e-04 1.775701e-03 3.244521e 00 0.6540
L 5.103081e-04 3.593041e-04 7.040925e-01 0.7700

Table D.19: Ψ(50, 50).

Method Estimator Standard Deviation Variation Coefficient Time

AK 1.869806e-04
FPZ 8.542608e-05
CL 2.281770e-04 8.409871e-04 3.685677e 00 0.8650
L 2.166948e-04 1.313529e-04 6.061655e-01 1.1950

Table D.20: Ψ(75, 75).

Method Estimator Standard Deviation Variation Coefficient Time

AK 1.058719e-04
FPZ 4.658832e-05
CL 1.097071e-04 4.627397e-03 4.217953e 00 1.0190
L 1.181029e-04 5.551590e-04 4.700637e-01 1.5310

Table D.21: Ψ(100, 100).
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Figure D.8: Approximation for the ruin probability in a medium time horizon for a Cramér-Lundberg
risk model with moderately heavy Pareto claims.
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D.2. Ruin Probabilities in a Finite Time Horizon

Example D.9. In this example we choose the intensity of the Poisson process λ = 1/3,
a Pareto distribution with index α = 3/2 and a time horizon t(u) = u3/5.

Method Estimator Standard Deviation Variation Coefficient Time

AK 1.198293e-03
FPZ 1.967680e-05
CL 1.899330e-05 4.342040e-05 2.286089e 00 0.7140
L 1.963627e-05 1.402237e-06 7.141056e-02 1.0970

Table D.22: Ψ(100000, 1000).

Method Estimator Standard Deviation Variation Coefficient Time

AK 8.473255e-04
FPZ 1.054076e-05
CL 1.011332e-05 2.432811e-05 2.405551e 00 1.0260
L 1.052123e-05 5.809919e-07 5.522087e-02 1.4760

Table D.23: Ψ(150000, 1275).

Method Estimator Standard Deviation Variation Coefficient Time

AK 6.918395e-04
FPZ 7.315562e-06
CL 6.999786e-06 1.889320e-05 2.699111e 00 1.2850
L 7.300557e-06 3.554226e-07 4.868431e-02 1.8030

Table D.24: Ψ(200000, 1516).
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Figure D.9: Approximation for the ruin probability in a short time horizon for a Cramér-Lundberg
risk model with very heavy Pareto claims.
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D. Numerical Examples

Example D.10. In this example we choose the intensity of the Poisson process λ = 3/2,
a Pareto distribution with index α = 3 and a time horizon t(u) = u3/4.

Method Estimator Standard Deviation Variation Coefficient Time

AK 4.152249e-04
FPZ 2.148494e-04
CL 2.225946e-04 4.817529e-04 2.164260e 00 0.3200
L 2.142031e-04 1.095131e-04 5.112580e-01 0.2940

Table D.25: Ψ(50, 19).

Method Estimator Standard Deviation Variation Coefficient Time

AK 1.869806e-04
FPZ 8.542608e-05
CL 8.195059e-05 1.866049e-04 2.277042e 00 0.4090
L 8.282271e-05 2.866981e-05 3.461587e-01 0.4150

Table D.26: Ψ(75, 25).

Method Estimator Standard Deviation Variation Coefficient Time

AK 1.058719e-04
FPZ 4.658832e-05
CL 4.596047e-05 1.268075e-04 2.759056e 00 0.4490
L 4.480293e-05 1.447567e-05 3.230965e-01 0.4980

Table D.27: Ψ(100, 32).
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Figure D.10: Approximation for the ruin probability in a short time horizon for a Cramér-Lundberg
risk model with moderately heavy Pareto claims.
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D.3. Small Tail Probabilities

D.3 Small Tail Probabilities

The following is a numerical example of the Monte Carlo estimators for the small tail
probability P(Sn < nu) developed in the Chapter 5. The results are displayed in a
similar fashion as in the previous sections of this Appendix. As for the setting, n
was set equal to 20 and the Xi’s are i.i.d. lognormal random variables with common
distribution LN(0, 1). The estimators displayed are:

1. The Importance Sampling based on the approximated optimal exponential change
of measure (ECM-A) developed on page 78.

2. The Importance Sampling based on the lognormal distribution which was chosen
as an approximation of the optimal exponential change of measure developed on
page 79
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D. Numerical Examples

Example D.11. In this example we choose the intensity of the Poisson process λ = 3/2,
a Pareto distribution with index α = 3 and a time horizon t(u) = u3/4.

Method Estimator Standard Deviation Variation Coefficient Time

ECM-A 7.259476e-05 1.375445e-04 1.894689e 00 2.5020
LN-A 8.118687e-05 1.626060e-04 2.002861e 00 0.6820

Table D.28: P(S20 < 12).

Method Estimator Standard Deviation Variation Coefficient Time

ECM-A 8.227712e-04 1.405558e-03 1.708322e 00 2.0010
LN-A 8.233487e-04 1.560080e-03 1.894799e 00 0.6880

Table D.29: P(S20 < 14).

Method Estimator Standard Deviation Variation Coefficient Time

ECM-A 4.278660e-03 6.769241e-03 1.582093e 00 1.7070
LN-A 4.435283e-03 7.609912e-03 1.715766e 00 0.6800

Table D.30: P(S20 < 16).

Method Estimator Standard Deviation Variation Coefficient Time

ECM-A 1.564343e-02 2.186577e-02 1.397760079696e 00 1.5280
LN-A 1.545749e-02 2.398020e-02 1.551365031917e 00 0.6770

Table D.31: P(S20 < 18).
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Figure D.11: Approximation for the ruin probability in a short time horizon for a Cramér-Lundberg
risk model with moderately heavy Pareto claims.
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δ-efficiency, 11

absolute relative difference, 101
adaptive algorithm, 34
aggregated tails, 15
algorithm, 96

Asmussen-Binswanger estimator, 12
Asmussen-Kroese estimator, 13
asymptotic notation

O symbol, 2
Θ symbol, 3
o symbol, 2

∼ symbol, 2
asymptotically zero relative error, 10

Bachmann-Landou notation, see asymp-
totic notation

bounded relative error, 10

of order k, 11

càdlàg process, 99
characteristic exponent of a Lévy pro-

cess, 99

characteristic generator
elliptical distribution, 90
log-elliptical distribution, 92

claim arrival process, 23
conditional mean-variance allocation, 84
conditional Monte Carlo, 12, 98

copulas, 93
Cramér-Lundberg estimates, 26
Cramér-Lundberg risk model, 23
Cramér-Lundberg Theorem, 26
crude Monte Carlo, 96
cumulant transform, 72

cumulative correlation, 82
cumulative covariance, 80, 81

decay rate, 5

dispersion matrix

elliptical distribution, 60, 90
log-elliptical distribution, 92

domain of the transform, 72

efficiency concepts, 10
delta-efficiency, 11
asymptotically zero relative error, 10

bounded relative error, 10
bounded relative error of order k, 11
logarithmic efficiency, 10
logarithmic efficiency of order k, 11
vanishing relative error, 10

elliptical distribution, 90

conditional distribution, 90
convolution, 90
linear transformation, 90
marginal distribution, 90

expected claim amount per unit of time,
25

exponential change of measure, 11

exponential family generated by F , 72
exponentially twisted, 11, 73

failure rate function, 3

forward contract, 83
futures contract, 83

properties, 83

Gaussian copula, 93

hazard rate function, 3
heavy-tails, 3

definition

infinite m.g.m., 4
infinite moments, 4
mean excess function, via the, 5
rate of decay, via the, 5
subexponential, 6

phenomena, 3

high-frequency data, 80
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importance sampling, 97
infinitely divisible distributions, 100

Lévy-Khinchine Theorem, 100
integrated tail distribution, 26
interarrival time, 24
inverse gamma distribution, 92

Karamata’s Theorem, 8

Lévy risk model, 23
Lévy process, 99

characteristic exponent, 99
Lévy-Khinchine Theorem, 99

Lévy-Ito decomposition, 100
Lévy-Khinchine Theorem

infinitely divisible distributions, 100
Lévy process, 99

ladder step decomposition, 28
Lambert W function, 73

real branches, 73
Laplace transform, 2
Laplace-Stieltjes transform, 2
light tails

definition, 5
localization parameter

elliptical distribution, 60, 90
log-elliptical distribution, 92

log-elliptical distribution, 60
definition, 92
density, 92
multivariate lognormal, 92
simulation, 95

logarithmic efficiency, 10
of order k, 11

lognormal random variable
cumulative distribution function, 86
definition, 86
density function, 86
Gaussian copula, with, 92
mean, 87
moments, 86
three parameter distribution, 86
variance, 87

long tailed distribution, 7
Lundberg exponent, 26
Lundberg’s inequality, 26

M/G/1 queue, 24
mean excess function, 5
Mill’s ratio, 41

Monte Carlo estimation, 96
crude Monte Carlo, 9

multivariate k-point mixture distribution,
91

multivariate t distribution, 92

joint density function, 92
variance, 92

multivariate lognormal
covariance matrix, 92
joint density function, 92

mean, 92
multivariate normal distribution

characteristic function, 88
conditional distribution, 89
convolutions, 88

definition, 88
joint density function, 88
linear transformation, 88
marginal distribution, 89
mean, 88

variance-covariance matrix, 88

net profit condition, 25
non-synchronous data, 80
normal variance mixture, 91

characteristic function, 91

definition, 91
joint density function, 91
mean, 91
variance, 91

optimal change of measure, 11

Pollaczeck-Khinchine formula, 26
premium income rate, 23

premium process, 23
proportional allocation, 97
pseudo-random numbers, 94

quadratic utility, 84
queues, 24

length, 24

M/G/1 queue, 24

Rao-Blackwell Theorem, 98
rare event, 8

simulation, 8
efficiency concepts, 10

realized kernels, 80

realized volatility, 80
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covariance, 80, 81

covariance for the whole day, 83

optimal variance, 82

variance for the whole day, 82
regular variation, 87

definition, 87

distribution, 8

Renewal risk model, 23

right-continuous inverse, 93

risk model, 23

ruin probability
infinite time, 24

finite time, 23

saddlepoint approximation, 74

service time, 24

simulation, 94
acceptance-rejection, 94

copulas, 96

inversion, 94

Sklar’s Theorem, 93

slow variation, 8, 87

spherical distributions

definition, 89
stability condition, 25

stationary process, 99

strata, 97

stratification, 97

with proportional allocation, 97

subexponential distribution, 6
definition, 6

properties, 7

subsampling, 80

survival function, 2

t copula, 93

tail dependence coefficient, 93
tail probability, 1, 2

total claim amount process, 23

traffic intensity, 25

vanishing relative error, 10

variance reduction, 9, 10, 96
conditional Monte Carlo, 98

importance sampling, 97

stratification, 97

volatility

realized volatility, 80

volatility-timing strategy, 80

waiting time, 24
Wiener-Hopf factorization, 26
workload process, 24

zero variance estimator, 11
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