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Abstract: Let (T,B,u) be a measure space and ¢t R x 7T — R
be a function. Then we say thaf is an increasing:-partition of unity if
f(z,t) is increasing in z , measurable int and [ f(z,t) p(dt) = z
for all x € R . Increasing partitions of unity have a variety of applications
which will be explored in the paper. For instance, applications include the
Fubini-Tonelli theorem for upper and lower integrals and Fubini-integrals,
measurability or upper (lower) semicontinuity of integral transforms, and
construction of functions with a prescribed integral transform and satisfying
a given set of (in)equalities.

1. Introduction  Recall that (X, <) is aprosetif X is a non-empty set
equipped with a relatior< satisfyingrz <z Veze X andx <y, y<z = z<z2.
Let (M,=) be a proset and let® : M — R be an increasing function where
R := [~o0,00] denotesthe extended real linavith its usual ordering. Then we let
my = infeens S(€) and m* :=supgeyy L(€) denote the two extreme values of .
If S isanon-empty setand : S — M is a given function, we le®¢(s) := S(¢(s))
denote thet-transform of ¢ forall s € S . We say thatf : R — M is anincreasing
Y-partition of unityif f is increasing andXf(z) =« for all my < 2 < m> or
equivalently, if f is increasing andXf(z) = m™ A (z Vmy) foral =z € R . In
Section 2, we shall apply the Hausdorff maximality principle to construct increasing
partitions of unity satisfying a prescribed set of (in)equalities. Increasing partitions of
unity have a variety of applications and in Section 3 and 4, we shall explore some of
these applications.

Let (T,B,1) be a measure space. Then we Rt denote the set of all functions
f:T — R, welet M(T,B) denote the set of allf € RT which are B-measurable,
and we let L'(T,B, ) denote the set of all functionsf € M (T,B) which are
p-integrable. If f,h:c RT , we write f < h if f(t) < h(t) forall t T and
we write f <, h if f(t) < h(t) forpaa teT . If feR", welet [ fdu
and [, fdp denotethe upper and lowep-integralof f . If f:RxT — R is
a given function, we say thatf is anincreasingu-partition of unityif f(z, -) is
B-measurable for allz € R and f(-,t) is increasing onR forall t € T and
we have f(z,-) € LYT,B,u) and [, f(z,t)p(dt) = = forall = € R . Note



(M(T,B),<,) is a proset and we say that : M(T,B) — R is ap-integral if %
is increasing with respect to the preordering, and satisfies

(1.1) X(f)=[pfdu YVfeLNT,B,p) andif fe M(T,B) and |S(f)] < o,
then we have f € LY(T, B, u)

Let (S,A,v) be a measure space. f and p are sum-finite (see [3; p.171]), then
the product measurer @ 1 exists and we havel{e Fubini-Tonelli theoren

[.6d(v & ) < [u(ds) [, 6(s, Du(dt) < [*v(ds)[* 6(s, Oyu(dt) < [*od(v & p)

for all ¢ € R°*T . In Section 3, we shall how increasing partitions unity can be used
to establish equality whem(s, ¢t) is measurable i and increasing ins with respect
some linear ordering onS . Moreover, we shall establish a Fubini-Tonelli inequality
for the so-called Fubini integral:

Let S be a given set, let2° denote the set of all subsets of and let
p:25 —[0,00] be an increasing set function satisfying®) =0 . If f:S — [0, 0]
is a non-negative function, we lef” f dp := [;° p(s | f(s) > =) dz denotethe Fubini
integral of f ; see [5]. Let A C 2° be an algebra onS and let v : A — [0, o]
be a finitely additive content. Then we setl® := {A € A | v(4) < oo} and if
C C S, we define v*(C) :=infaea | aoc V(A) and vi(C) :=supaeca , acc V(A)
and vo(C) :=supeqo | acco v(A) . We let L1(v) denote the set of all-integrable
functions in the sense of [1; Def.l1.2.17 p.112] and we |€tf dv and [, f dv denote
the upper and lower-integrals for all f € R ; see [4]. If h: S — [0,00] is a
non-negative function, we have (see [5]):

(1.2) ["hdv= ["hdv* and [, hdv= [' hdvs

If 2,y € R are extended real numbers, we let+y denote the usual extension
of the addition with the conventioreo + (—oc0) := co and we let z + y denote the
usual extension of the addition with the conventien + (—o0) := —oo . We define
r—y:=x+(—y) and v —y:=x+ (—y). If f:S5— R is an arbitrary function,
we let f (s):= f(s)v0 and f_(s):= f(s) A0 denotethe positive and negative
partsof f forall s € S. Then we have (see [5]):

(13) [“fdv=["fodv+ [Tfodv, [ fdv= [ fodv+ [, fdv

If £C2%,welet W(S,£) denote the set of alipper£-functions that is, the set of
all f:S — R such that for all —c < z < y < 0o, there exists L, € LU {0, S}
satisfying {f > y} € L,y € {f >z} . If L is ac-algebra on S , we have
W(S,£)=M(S,L) . If S istopological space and is the set of all open (closed)
subsets of S , then W(S, £) is the set of all lower (upper) semicontinuous functions
f:S—R. Let (T,B,u) be ameasure space and let: S x T — R be a given
function such that¢(s,t) is an upperC-function in s and B-measurable int . In
Section3, we shall see that increasjmgartitions can used to establish criteria for the
integral transforms ~ [ ¢(s,t) u(dt) to be an uppeil-function.



Let (S,<) and (M,=) be prosets and letS : M — R be an increasing
function. In Section 4, we shall see that increasing partitions unity can used to solve
the following problem:

(IP) Let w & M be agivenelementandleff : S — R and ¢: S — M be
increasing functions. Find necessary and/or sufficient conditions for the existence
of a an increasing functiony) : S — M satisfying ¢(s) < ¥(s) = w and
Yu(s) = H(s) VseS

Let me at this point recall the concepts concerning prosets, needed for our objective:

Let (X,<) be a proset and letr,y € X be given. Then we writex < y if
r<y and y £ x,we write x ~y if r <y and y < z , and we introduce
the following intervals

ko] ={uveX|u<z} , [v,¢]={ve X |u>zx} , [z,y] =[x, *] N[y

Let A,B C X be a given sets. Then we writel < B if x <y forall z € A
and all y € B, and we introduce the followingtervals

[, Al ={ue X |u<A} , [Ax]={ue X |u>A} , [A B]=[Ax|N]x B|

We say that A is alower interval resp. anupper interva) if [x,u] C A, resp.
[u,x) C A, forall ue A. Welet VA denote the set of aBupremaof A ; that is
the setofallz € A satisfying A <z and x <y forall y € X satisfying A <y,
and we define the seinA of all infimaof A similarly. We say that A is cofinal
in (B,<) if AC B C Uyeal*,u] and we say that(A, <) is countably cofinalf
(A, <) admits a countable, cofinal subset. We say th&t <) is alatticeif =Vvy # ()
and z Ay #0 forall z,y € X, and we say that(X, <) is ac-latticeif vA #0
and AA # () for every non-empty countable set C X . We say thatA is linear if
forall =,y € A we have eitherz <y or y <z, and we say thatd is amaximal
linearly ordered seif A is linear and A = B for every linear setB O A . By
Hausdorff’s maximality principle (see [6; p.248]), we have that every linearset X
is contained in some maximal linearly ordered set, and observe that we have

(1.4) If AC X is a maximal linearly ordered set, then we haveB C A and
AB C A forall BC A

Let x,x1,29,... € X begiven elements. Thenwe writg, Tz, if 21 <x9 <--- and
r € V{x,|n>1},and we writex,, | z,if x; > 29 >--- and z € A{z,, |n > 1}.

2. Smoothness and the Darboux property Let (M,=) be a proset and
let ¥: M — R be an increasing function. Then we letsy, := infeeys S(¢) and
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m* := supgc )y B(€) denote the two extreme values af and we define

L(Z)={¢eM|—00 < B(§) < o0}
L) = {¢ € M|S(§) = —c} , L*(X) = {& € M|Z(€) = 00}
SvB =infeeipy B(E) , TAB =supgep,p B(€) VBC M
sup DB = supgep L(€) . inf¥B =infeep () VB C M
with the usual conventionsnf () := oo and sup () := —oo . Then we have
(2.1) supSB < SyB and SyB = S(§) V¢ € VB
(2.2) IAB < infLB and T,B = X(£) V¢ € AB
We say that¥ is smoothif for every non-empty linear setB C M , we have

(23) —co<supXB < oo = 3¢ € VB sothat X(¢) =supXB
(24) —oo<inf¥B < oo = 3¢ € AB sothat X(¢) =infXB

We say that¥ hasthe Darboux propertyf for every pair £,7 € M , we have

(25) &=n ., B¢ <3(n) <oo = Jre[{n] sothatX({) < (k) < X(n)

(26) (=<n, —c0<B(¢)<E(n) = kel n sothatX(¢) < B(k) < E(n)

We say that¥ hasthe strong Darboux property ¥ has the Darboux property and
satisfies the following condition:

(2.7) If (&) C L.(X) and &, T¢ for some & € L1(X) , then for every increasing
sequence(c,) C R satisfying ¢, T £(¢§) and ¢, < X(¢) forall n>1,
there exists an increasing sequengg,) C M such that &, <7, < ¢ and
—00 < X(n,) < ¢, forall n>1

We say that ¥ is order injective if ¢ ~ 5 forall ¢, 7 e LY(X) satisfying ¢ <7
and (&) = B(n) . If S is a non-empty set andh : S — R is a function,
we let Dy := {s € S | |h(s)| < oo} denotethe finite domainof %~ and we let
Dy :={s e S|h(s)=—oc} and Dj := {s € S| h(s) = oo} denotethe infinite
domainsof & .

Lemma 2.1: Let (M,=) be ac-lattice, let ¥ : M — R be an increasing function
and let B C M be a given set. Then we have

(1) V¢ e [B,x] 3¢ € [B, £ sothat £(v) = B

(2) V¢&e[xB] 3y e [¢,B] sothat ¥(v) = X\B



Proof: Let ¢ € [B,*] be given. Since[B, x| is non-empty, there exist);, 2, ... €
[B, *] such thatX(v,) — Xy B and since(M, <) is ac-lattice, there exists an element
€ ENN>1 Yy . Since B <¢ and B <, forall »n>1, we have ¢ € [B,{]
and so we haveXy B < X(v) . Since ¢ < ¢, , we have ©y B < X(¢) < X(v,,) for
all »>1 and since ¥(¢,,) — XyB , we see that¥X(y) = ¥yB which proves (1)
and (2) follows in the same manner. O

Lemma 2.2: Let (M, =) be ac-lattice and let: : M — R be an increasing smooth
function. Let B C M be a non-empty linear set and let us defiid := BN L'(%),
B, := BN L«(¥) and B* := BN L*(Y) . Then B, < B! < B* and we have

1) XyB=supXB <« either supXB > - or YyB = -

(2) XAB=inf¥B <« either infXB < oo or ¥AB = o

and if B' # (), then we have

(3) VvB'=V(B'UB,) #0 and £(¢) = supEB = sup (B U B,) V¢ € VB!
4) AB'=A(B'UB*) #0 and $(¢) = inf SB! = inf S(B' U B*) V¢ € AB!

Proof: (1+2): Since ¥ is increasing andB is a linear set satisfying¥(¢{) =

—0 < Y(k) < oo =X(n) forall ¢€ B,,al xc B! and all » € B*, we have

B, =< B! < B* . By (2.1), we havesup ¥B < %y B . Hence, if sup¥B = oo or

YvB = —0c0 , we have supXB = Xy B . Suppose that—oco < sup¥B < oo . By
smoothness of2 and linearity of B, there existsé € VB satisfying ¥({) = sup XB

and so by (2.1) we haveup XB = Xy B . Hence, we see that the implicatiog=" in

(1) holds and the converse implication is evident. Thus, (1) is proved and (2) follows
in the same manner.

(3+4): Suppose thaB3! # § . Since B, < B! , we havevB! = v(B'UB,) and
sup B! = sup X(B' U B,) > —oco . Suppose thatsup B! < oo . By smoothness
of ¥, there existsy € VB! such that () = sup B! . Hence, we see that (3)
follows from (2.1). So suppose thatup SB! = oo . Then there exists a sequence
(n,) € B! suchthatX(n,) — co and since M is ao-lattice, there exists an element
n eV m, . Let £ € B! be given. SinceX(¢) < oo, there exists an integek > 1
such that ¥(¢) < X(#,) . Since ¥ is increasing andB is a linear set containing
and 7, , we have ¢ <1, <7 and since(n,) C B!, we haven € vB! . Hence, we
see that (3) follows from (2.1) and (4) follows in the same manner. O

Theorem 2.3: Let (M,=<) be a lattice and letY : M — R be an increasing
smooth function with the Darboux property. Le8 C M be a linear set such that
Bl := BN LY(Y) # 0 and let us defineB, := BN L.(X) and B* := BN L*(Y) .
Then there exists a maximal linearly ordered setC M satisfying

(1) BCL , SyB,=infSXL' =%yL, , SAB* =supXL' = S\ L*



where L' .= LN LYY), L, == LN L(Y) and L* := LN L*Y) .

Proof: Let us define My := [B,, B} N L'(X) and r := Sy B, . Then | claim that
there exist a linear set) C M, satisfying inf (Q U B') = r .

Since B, < B' # 0, we have r < infX(B') and r < oo . Hence, if
inf X(B!) < r, we see that) := () satisfies the claim. So suppose that inf ©(B!) .
Then we have —x < inf ©(B!) < oo and so by smoothness of , there exists
7 € AB! satisfying $(r) = inf ©(B!) . In particular, we haver € L'(X) and since
B, = B! and © € AB! , we have B, < 7 < B! . Hence, we see thatr € M
and that (M, <) is a non-empty proset. So by Hausdorff maximality principle there
exists a maximal linearly ordered s&) C M, in the proset (M, <) . Let us define
a:=inf S(QU B') . Since Q and B! are linear andQ < B!, we see thatQ U B!
is linear and sinceB! # () and B, < QU B! , we have r < a < oo . Suppose that
r < a . Then we have—oco < a < oo and so by linearity ofQU B' and smoothness
of ¥, there existsn € A(Q U B') such that X(5) = « . In particular, we have
ne LY () and B, < < QUB' and sincer < a = X(1) , there existsy € [B, ]
satisfying (&) < a. Since M is a lattice, there exist§ € {oAn and sinceB, =< &
and B, <7, we have £ € [B*,n] and r < ¥(¢) < 3(&) < ¥(n) < oo . Since
¥ has the Darboux property there existse [¢, 7] satisfying (&) < (k) < X(n) .
Since B, < £ <k <n=<QUB', we see thats € My and that Qp := QU {x} is
a linear subset ofM, . Since Y(k) < ¥(n) = inf B(Q U B) , we have x ¢ Q and
Q ;Ct Qo . However, this contradicts the maximality af in M, and so we must
have o < r and since a > r , we see that() satisfies the claim.

Hence, we see that there exists a linear €@tC [B,., B'] n L'(Y) satisfying
inf X(Q U B') = ©yB. . In the same manner, we see that there exists a linear set
R C [BY,B*]n LY(Y) satisfying supX(RU B') = ¥,B* . Since B, @ and
R are linear and

B,<Q<B'<R=<B* and B=B,UB'UB*

we see thatC' := BUQ U R is a linear set containingB . So by Hausdorff's
maximality principle there exists a maximal linearly ordered getcontaining C' . Let

us define L' := LN LY(Y), Li:=LNLJX) and L* := LN L*(Z) . Since L is

linear, we haveL, < L' < L* and sinceB C L and QU B! C L' , we have

SyB, < ByL, <inf SL' < inf 2(Q U BY) = By B,

Hence, we see thaty B, = £y L, = inf X L' and in the same manner, we see that
YAB* =Y AL* =sup ZL' which proves the theorem. Ol

Theorem 2.4: Let (M,=) be ac-lattice and let ¥ : M — R be an increasing
smooth function with the Darboux property. Léd C R be a non-empty set and let
h : D — M be a increasing function satisfyin@h(z) = m> A (x V myx) for all

v € D and h(D)nN LY(X) # 0 . Then there exists an increasingpartition of unity
f: R — M satisfying f(z) = h(z) forall » € D .
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Proof: Let us defineA(z) := m*A(zVvmy) forall € R . Since & is increasing,
we see thath(D) is a linear, countably cofinal set and sindé is ac-lattice, we have
that Vi(D) is non-empty. So by Lem.2.1 wittB := () there existsj? € M such that
h(D) = 3 and () = m™ and we may (and shall) taket = h(cc) if oo € D .
Let x € R be given and let us defined)® := D N [z,00] and A% := h(D*) U {3} .
Then A” is countably cofinal and sincé is increasing, we havei(x) € AA” for
all z € D. Since M is aoc-lattice, there exists a functiomhy : R — M such
that ho(x) € AA* forall o € R and ho(z) = h(z) forall 2 € D . Since
r ~n A* is decreasing, we see thai, is increasing onR . Since “hi(y) < oo
forall y € DnN[—c0,) , we see thatinf CA* = oo implies A* = {5} and
so by (2.2) and Lem.2.2.(2), we hav&hg(x) = inf SA* for all » € R . Since
Y(B) =m® = Axz) forall »>m> and Sh(y) = \(y) forall y € D, we see that
Sho(z) = Mz) forall z € DU[m™ ] .

In the same manner, we see that there exists an increasing funetio® — M
satisfying hi(z) = ho(xz) forall = € DU [m* 00] and Shy(z) = A(x) for all
& € Dy := [—00,mx] U DU [m”, ] . Hence, if D; = R, then hy is an increasing
Y-partition of unity satisfying hy(z) = ho(x) = h(x) forall x € D .

So suppose thatD; # R.. Then my < m™ and B := hi(D;) is a linear set
containing h(D) . Since Yhi(x) = A(z) # oo forall x € D; N R, we see that
the sets B, := BN L,(X) and B* := BN L*(¥) contain at most one element and
so we have ¥y B, = my and Y,\B* = m> . Since § # h(D)N L' () , we have
B! := BNnLY(Y) # 0 and so by Thm.2.3 there exists a maximal linear Besatisfying

LDOB , inf SL' = SyL, = my, < m” = S\L* = sup ZL!

where L' .= LNLYY), L.:=LNLJ(X) and L* := LN L*Y) .

Let my < z < m™ be a given and let us definel” := {¢ € L | £(¢) > 2}
and A, == {£ € L | £(€) < z} . Since = < m> = sup L' , we have
AN LN (Y) = AN L' # 0 and AN LX) = . So by Lem.2.2 there exists
f(z) € ANAT = A(A" N LY) such that # < inf SA4% = ©f(z) < oo . Since
my =inf SLY <z, we have A, N LY(Z) = A, NnL' # 0 and A, NnL*(Z) =0 .
So by Lem.2.2 there existg/(r) € VA, = V(A, N L') such that —co < Sg(x) =
sup YA, < x . Since L = A*U A, is linear and X(§) < = < X(n) for all
¢ € A, and all n € A* , we have A, <= A and so we haveg(x) f(x)
and —oo < Yg(z) <z < Ef(x) < oo . Suppose thatXg(z) < Ef(x) . Since
g(x) € LX) and ¥ has the Darboux property, there existsc [ ( ), f(z)] such
that sup YA, = Yg(x) < X(k) < Xf(2) = inf A" . Since L = A, U A" , we see
that x ¢ L and since L is linear and A, < g(z) < k < f(z) < A" , we see that
Lu{k} is linear. However, this contradicts the maximality df and so we must
have Yg(z) > Xf(x) . Since Yg(z) < x < Xf(x), we have Yg(z) = v = Xf(x)
for all 2 € (ms,m™) and by (1.4) and maximality ofZ , we have f(x) € L and
g(z) € L forall z & (mg,m”) .

Since R\ D; C (my,m”) , we may define F(z
and F(z) := hi(x) if = € Dy . Since Thi(r) =

)= f(z) if 2z € R\ Dy
Axz) foral z» € D; and
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Yf(x) =2 = M) forall e (mg,m™), we have XF(z) = \(z) forall » € R
and sinceh (D) C L and f((mx, m™)) C L, we see thatF(x) € L forall 2 € L.
Let = <y be given. Suppose thah(z) < A(y) . Then we haveXF(y) < LF(x)
and sinceX is increasing andL is a linear set containing”(z) and F(y) , we have
F(y) < F(y) . Suppose that\(z) = A\(y) . Since = < y, we have eitherz < y < my,
or m* <z <y andsinceh; is increasing, we have”(z) = hy(x) < hi(y) = F(y)
in either case. Hence, we see that is an increasing:-partition of unity satisfying
F(x) = hi(x)=h(z) forall z€R . O

Theorem 2.5: Let (M, =) be ac-lattice and let ¥ : M — R be an increasing
smooth functional with the Darboux property. Letc M and x € L'(X) be given
elements and letA C [x,w] be a linear set such thatd, U {x,w} is linear where
Ay, = ANnL(Y). Let FF C A, be a given set and let us defing .= ¥, F and
r = YyA, . Then we have

(1) ¢<r<S(r)<oo and ¢ <r< () <Sw) VEe A\ A,

(2) q¢=r if F iscofinalin A, ,and ¢ = —oo if F is not cofinal in A,
and there exists an increasing-partition of unity f : R — M satisfying

(3) f(E(w)) =w and & = f(E(E)) VEe€ A\ A
(4) =2 f(g) YE€F and & = f(r) V¢ € As

Proof: (1): Since F C A, , we have ¢ < r and since A, U {k,w} is linear
and X(¢) = —o0o < X(k) forall £ € A, , we have A, < x . Hence, we have
g <r < X(k) <oo and by Lem.2.2, we haved, < A\ A, . Hence, we have
r < X() forall £ € A\ A, and since A < w , we have ¢ < r < X(w) which
completes the proof of (1).

(2): If F is cofinal in A, , we have [F, ] = [A,,*] and so we haver = ¢ .
Suppose thatF' is not cofinal in A, . Then there exists) € A, such thatn £ ¢ for
all £ € F' and since A, is linear and containsF’ , we have ¢ <n forall £ € F .
Hence, we haveq < X(n) and sincen € A, , we have ¢ = () = —o0 .

Suppose that¥)(w) = —oo . By Thm.2.4 there exists an increasifigpartition of
unity f: R — M such that f(X(w)) =w and f(3X(k)) = x and since A = A,
and ¢ =r = —o0 , we see thatf satisfies (3+4). So suppose that(w) > —occ .
Set Al .= (AU {w}) N LY(Y) and let us defineC := A' U {w} if A' #( and
C:={k,w} if Al=0. Since {k,w} is linear and (k) < oo , we see thatx < w
if ¥(w) = oo . Hence, we see that' is a linear set satisfyingC' N L(X) # ¢ and
Ay 2 C =2w. SobyLem.2.1 and Lem.2.2 there existsc M satisfying A, < v < C
and X(v) =r . Since FF C A, , we have FF < v and so by Lem.2.1 there exists
p€ M suchthatFF < p=<wv and X(p) =¢ andif ¢ =7, we may (and shall) take

=wv . Since C islinearandp < v < C , we see thatB := C U {p,v} is a linear
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set containing C' U {p,v,w} and so we haveB N LY(X) # 0 . Set D := %(B) ,
b :=Y(w) and B, = {¢ € B | () =z} foral z € R. Then we have
0+ B, C L'Y(Y) and sup¥B, forall » € DNR and since X(w) > —co and
p=B<w,wehavew e VB, and B_,, C {p} .

So by Lem.2.2 there exists a functioh : D — M such that h(z) € VB, and
Yh(z) =x forall z € D and h(b) =w . Since B is linear and X is increasing,
we have B, < B, forall z <y and so we see that is increasing onD . Since
B' # 0 , we have h(D) N L'(X) # 0 and so by Them.2.4 there exists an increasing
Y-partition of unity f : R — M such that f(x) = h(x) forall z € D . In particular,
we have f(b) = h(b) =w . Let £ € A\ A, begivenandsetr = X(&) . If v =0, we
have ¢ < w = f(x) . Suppose thatr < b . Since ¢ ¢ A, , we have¢ € A' C B and
sowe havexr € D and ¢ € B, . Since f(x) = h(x) € VB, , we have ¢ < f(z) .
Thus, we see thatf satisfies (3). Sinceq,r € D and p € B, and v € B, , we
have p < h(q) = f(¢) and v <X h(r) = f(r) and since A, <v and F < p, we
see that f satisfies (4). O

Lemma 2.6: Let (M,=<) be a proset and let : M — R be an increasing, order
injective function. ThenX is smooth if and only if

(1) If (&) C LY(Y) is an increasing sequence satisfyisgp, > £(¢,) < oo, then
there exists{ € M such that&, 1 ¢ and (&) = sup,,>1 L(&n)

(2) If (&) C L'(Y) is a decreasing sequence satisfying,,>; X(¢,) > —oc , then
there exists¢ € M such that¢, | ¢ and X(&) = inf,,>1 X(&,)

Proof: The “only if” part is evident. So suppose thab satisfies (1+2) and let
B C M be a non-empty linear set satisfyingsup ¥B| < oo . Then there exists am
increasing sequence(,) € B such that ¥(¢,) T supE¥B and —oo < £(§,) <
supEB < oo forall » > 1. In particular, we see that, € L'(X) and that
sup,,>; 2(&,) =supXB < oo . So by (1) there existst € M such thaté, T ¢ and
S(¢) =sup¥B . Since |supTB| < oo , we have ¢ € L'(Z) . Let n € B be given
and let me show that) < ¢ . If n=<¢, forsomen > 1, this is evident. So suppose
that n A&, forall n > 1. Since B is linear and containsy and &, , we have
&n = forall n>1 andsinceé € v,>1 &, , we have { <7 . Hence, we have
Y(¢) < X(n) <supXB = X({) and so we haveX({) = X(n) = supXB # o0 .
Hence, by order injectivity of: , we haven < ¢ forall n € B and since(¢,) C B
and ¢ € Vp>1&, , we have { € VB and X({) = supXB . Thus, we see thatt
satisfies (2.3) and in the same manner, we see thasatisfies (2.4). O

Theorem 2.7: Let (T,B,;) be a measure space and lét : M(T,B8) — R be a

p-integral. Then (M(T, B),<,) is ac-lattice and ¥ is an increasing, smooth, order
injective function satisfying

(1) LI(E) = L1<Ta B, M) ) E(f) = fodﬂ Vf S E(Tv Bv:u)



@ [, fdp <S(f) < [7 fdu Y f e M(T,B)
3 B(f1)+3(f) < S(f) < B(f)+S(f) Vf e M(T,B)

(4) If ceR and f: T — R and h € M(T,B,u) are given functions satisfying
[“fdu<c< [ hdu and f(t) < h(t) forall t e T ,then we have

(@ dJgeL(T,B,p) sothat [ gdu=c and f(t) < g(t) <h(t) VteT

(5) ¥ has the Darboux property if and only if is finitely founded and if so thei
has the increasing Darboux property

Remark: Recall thaty is finitely foundedf p has no infinite atoms or equivalently,
if wuo(B) = pu(B) forall B e B. Suppose that; is finitely founded and let
f € M(T,B) be a given function. By (1.2) and (1.3), we see thit and f_
belong to L(T,B,x) and that f € L(T,B,n) if and only if either [~ fdu < oo
or [ fdu > —oc . In particular, we see that the functionalg ~ [* fdu and
f ~ [, fdu arep-integrals whenevery is finitely founded.

Proof: (1) and (2) are easy consequences of (1.1). In particular, we see’tha
order injective. So by Lem.2.6 and the monotone convergence theorem we see that
is an increasing, smooth and order injective functional. Ifet M (T, B, ;1) be given.

If 3(f)=—-00 or ¥(f) = oo, then the first inequality in (3) holds trivially. So
suppose that:(f_) > —oo and X(f) < oo . Since f_ < f and ¥ is increasing, we
have —co < ©(f_) < X(f) < oo and so by (1) we see that € LY(X) = LY(T, B, )

and that the first inequality in (3) holds. The last inequality in (3) follows in the same
manner.

(4): If c=o00,we have [ hdyu=o00= ["hdu= oo and since f(t) < h(t)
forall ¢t € T , we see thatg := h satisfies (4.a). So suppose that< oo . Then
["fdu < oo and so there exist functions,, € LY(T,B,) and ¢ € M(T,B, )
such that [ ¢,dp | [* fdu and ¢,(t) | ¢(t) > f(t) forall t € T . Then
we have ["¢du = [" fdu and since h € M(T,B,;) and f < h , we see that
¥(t) == ¢(t) A h(t) is B-measurable andf(t) < ¢(t) for all ¢t € T . Hence,
we have [*fdu = ["¢du < c < [ hdp and | claim that ¢ € L(T,B,u) . If
["du = —oo , this is evident. If [* ¢ du > —oo , we haveinf,>1 [, ¢, dp > —oo
and [ hdu > —oo . Hence, we haveh_ € LYT,B,1) and by the monotone
convergence theorem, we havec L'(T, B, ;) . Since | (t)| < |o(t)| + |h_(t)| , we
see thaty = ¢ A h € LY(T, B) . Thus, we havey € L(T,B,p) , [pddu= ["fdv
and f(t) < ¥(t) < h(t) forall ¢t € T . Inthe same manner, we see that there
exists & € L(T,B, ;) such that [ &du = [ hdp and o(t) < &(t) < h(t) for
al teT . If ¢c=["fdu,then g := ¢ satisfies (4.a), and ifc = [ hdu ,
then ¢ := ¢ satisfies. So suppose thaf” fdu < ¢ < [“hdu . Then we have
Jpdp < ¢ < [;&dp and as above, we see that there exist, & € L'(T, B, )
satisfying [, vodp < c < [ &dp and (t) < o(t) < &o(t) <E(t) forall teT .
Then it follows easily thatg(t) := A vp(t) + (1 — \) &o(t) satisfies (4.a) if0 < A <1
is chosen such that = X [ vodu+ (1 = X) [, &odp .
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(5): Suppose thatp is not finitely founded and letA € B be an infinite
p-atom. Then we have ju.(A) = 0 and u(A) = oo . So by (1.1) we have
3(0) =0 < oo =23X(14) and by (1.2), we see thaf, fdu <0 forall fe M(T,B)
satisfying f <, 14 . Hence, by (1) we see thal does not have the Darboux property.
Suppose thaty is finitely founded. Let f,h € M(T,B, 1) be given functions such
that f <, h and Z(f) < (h) < oo . By (1.1), we haveh € L'(T, B, 1) . Hence,
we have f*fdu < oo and since p s finitely founded, we havef € L(T,B, ) .
Hence, by (1) we have[” fdu = S(f) < S(h) = [, hdp and so by (4) there exists
g€ LYT,B,p) suchthatf <, g<,h and S(f) < [, gdu < S(h) . Hence, by (1)
we see thatX satisfies (2.5) and in the same manner we see hasatisfies (2.6).

Let ¢ € LY(¥) and (&,) € M(T,B) be a given functions satisfyingt,, T ¢
p-a.e. and¥(¢,) = —oo forall n >1 andlet (¢,) C R be an increasing sequence
satisfying ¢, T ¢ :== X(¢) and ¢, < X(§) foral »n > 1. By (1.1), we have
¢ € LN(T,B, ;) and so redefining the functions onganull set, we may assume that
|€(t)] < oo and &,(t) T &(t) forall ¢t € T . Since u is finitely founded and
&n <&, we havet, € L(T, B, ;) forall n>1. So by (1) we have[, &du = %(¢)
and [, &, dp = S(&,) = —oo forall n>1. Letus definea, := cpy1 — ¢, and
fn(t) == &(t) — &u(t) forall n > 1. Since &(t) is finite and &,(t) T £(¢) , we
have f,(t) | 0 forall t €T and sinceé € LY(T,B,u) and Jréndp = —o00 , we
have f, € L(T,B,1) and [ f,du = oo . Let me show that there exists functions
91,92,... € LY (T, B, ) satisfying

()  Jromdp=a,, 0<g,(t) <oo and Y gi(t) < fi(t) Vte TVI<k<n
i=k

| shall construct the g,,'s recursively. By (4) with (f,h,c) = (0, fi,a1) , there
exists ¢1 € LY(T,B,;) such that Jroidp = a1 and 0 < g1(t) < fi(t)
and ¢1(t) < oo forall ¢t € T . Then (i) holds for n = 1 . Suppose that
g1,---,9n € LY(T,B, ;1) has been constructed such théd;)1<x<, satisfies (i) and
let us define G, 41(t) ;=0 and G(t) := > <<, 9i(t) for k=1,....n. By (i),
we have 0 < Gi(t) < fi(t) forall t€ T andall 1 <k <n+1.Hence, we have
hn+1(t) = minlskgn_H (fk(t> - Gk(t)) >0 forall t eT . Since fk(t) > fn_H(t)
and G(t) < Gy(t) forall 1 <k <n+1,wehaveh,+1(t) > fot1(t)—G1(t) forall
t € T and sinceGy € L'(T, B, ;1) and J7 fas1dp = 0o, we havehyy1 € L(T, B, 1)
and [, hpy1dp = oo . Hence, by (4) with (f,h,c) = (0, hpt1, ant1) , there exists
gn1 € LN(T, B, p) such that [ gny1dp = angr and 0 < gny1(t) < hyp(t) and
gnt1(t) <ooforall t €T . Since hpt1(t) < fr(t) — Gp(t) forall 1<k <n+1,
we see that(g;)i1<k<n+1 satisfies (i) which completes the recursive construction.

Let us define ¢"(¢t) := > .-, ¢i(t) foral n >1 andall t € T". Since
gi >0 and Y5 a = c—c, < oo, we see that ¢" € LYT,B,u) and
Jrg"dp = ¢ — ¢, and by (i), we have 0 < ¢"(t) < fu(t) = £(t) — &a(t) for
al teT andall n>1. Since ¢ € LYT,B, ) with Jp&dp = ¢, we have
My =& —g" € LNT,B,p) and [, m,dp = ¢, forall n >1 and since (¢")
is decreasing with0 < ¢"(t) < &(t) — &u(t) , we see that(n,) Iis increasing with
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En(t) < mu(t) < &(t) forall t € T . Hence, by (1) we see thatn,) satisfies the
hypotheses in (2.7) and so we see that has the strong Darboux property. O

3. Integral functionals Throughout this section, we letT, B, 1) denote a
fixed finitely founded measure space withi7) > 0 and we let ¥ : M(T,B) — R
denote a fixed:-integral; see (1.1).

Since u(T) > 0, we have (my, m™) = (—o00,00) and by Thm.2.7, we see that
(M(T,B),<,) is ao-lattice and that~ : M(T,B) — R is an increasing, smooth,
order injective functional with the strong Darboux property.

Let S be a non-empty set. Then we lét/s(T", B) denote the set of all functions

¢ :SxT — R satisfying ¢(s,-) € M(T,B) forall se S. If (S,<) is
a proset and¢ : S x T — R is a given function, we say thatp is pointwise
increasingon S if ¢(-,t) isincreasing onS for all ¢+ € T , and we say that
¢ is p-a.e. increasingon S, if &(s, ) <, é(u, -) foral s <wu. By Thm.2.7,
we see that f : R x T — R is an increasingz-partition if and only if f is p-
a.e. increasing onR and we have f(z, -) € L(T,B, 1) and [, f(x,t) p(dt) = «
for all z € R . In particular, we see that every increasipgpartition of unity is
an increasings-partition. If F : R — R is an increasing function andr € R ,
we set F(x+) := inf,>, F(y) and F(z—) := sup,, F(y) with the conventions
F(0o+) := F(o0) and F(—oo—) := F(—o0) . If f:R xT — R is an increasing
p-partition of unity, we say that f is right continuous resp. left continuous if
f(x,t) = f(a+,t) , resp. f(x,t) = f(x—,t), forall (z,t) e R xT

If (E,<) is a proset, we say thaf. is (F, <)-smoothif p*(Uyep Ny) =0
for every increasing family (N, ).cs satisfying N, € B and u(N,) = 0 for all
uw e E . If (E,<) is countably cofinal, then every measure(is, <)-smooth. If
q:T —[0,00) is a function such that;='(0) € B and pu(B) = > ,cp ¢(t) for all
B € B, then p s finitely founded and £, <)-smooth for every prose{F, <) .

Lemma 3.1: Let f: R x 7 — R be an increasing:-partition of unity. Then the
functions (z,t) ~ f(x+,t) and (z,t) ~ f(x—,t) are increasingu-partitions unity
satisfying

Q) fla—t) < f(x,t) < f(z+,t) V(z,t) e RxT

(2) f(x_7'):;Lf(x,‘)zﬂf(ilf‘f',') Ve R

(3) There exists a-null set N € B and asetB € B of o-finite y-measure such that
|f(z,t)] <00 V(x,t) e Rx (T\N) and f(z,t)=0 V(x,t) € Rx (T \ B)

Proof: (1) is evident and by the monotone convergence theorem, we se¢ that ¢)
and f(xz—,t) are increasing:-partitions unity. Hence, we see that (2) follows from
(1). Let @ denote the se of all rationals and let us definé := U,eq {t € T |
|f(g,t)] =00} and B :=Uycq{t €T | f(q.,t) #0} . Then N,B € B and since
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is countable andf(q, -) € L'(T,B, ) forall ¢ € Q , we see thatN is apu-null set
and that B is of o-finite u-measure. Sincef is pointwise increasing, we see that the
set N and B satisfies the claims in (3). O

Theorem 3.2: Let S C R be a non-empty set and lef,g : S x T — R be given
functions such thatg is pointwise increasing onS and f is u-a.e. increasing on
S and satisfies

(1) fe€ Mg(T,B) and g(s,t) < f(s,t) V(s,t) € SxT

Let @ C S be a countable set and leb C S be a set such thatf( -, ¢) is increasing
on D forall ¢t € T . Then there exists a functioh € Mq(T,B) such that i is
pointwise increasing onS and satisfies

(2) f(s,-)<uh(s,-) VseS and h(s, ) <, f(u,-) Vs,ue S with s <u
() g(s,t) < h(s,t) Y(s,t) € SxT and h(s,t) = f(s,t) V(s,t) e DxT
(4) Xh(s) =Xf(s) Vse S and h(s, )=, f(s,+) Vs € DsyUQ

Proof: Since f is p-a.e. increasing, we have thatf : S — R is increasing and
since S C R, we have thatA is at most countably whereA denotes the set of
all discontinuity points of ©f . Let p denote the right Sorgenfrey topology oR .
By [2; Exc.2.1.1 p.103], there exists a countable s€étC S suchthatQ UA C C
and C and CnD arep-dense inS and D , respectively. SinceC' is countable
and f is pu-a.e. increasing, there existsuanull set N € B such that f(-,t) is
increasing on C' forall ¢t € T\ N .

Let s € S be given an let us define® := DN [s,>|, C°:=Cn]Js,00] and

h(s,t) := ulean f(u,t) if te N and h(s,t):= uelDQECS flu,t) if te T\ N
Then h is pointwise increasing onS and | claim that » € Mg(7T,B) and satisfies
(2)—(4).

(2): Let s € S be given. Then there exists a countable skt C D, such
that L; is cofinal in (D*®,>) . Since f is pointwise increasing onD , we have
inf,eps f(u,t) = infuer, f(u,t) foral t € T . Since f(u,-) is B-measurable
and C' and Ls; are countable, we see thdt € Mg(7T,B) and since f is u-a.e.
increasing, we havef(s, -) <, f(u,-) forall v e SnJs,o0] . Hence, we have
f(s,+) <, h(s,-) foral s e S. Let s,u € S be given such thats < u .
Since C is p-dense in S , there existsv € C' such that s < v < u . Hence, we
have h(s,t) < f(v,t) forall t € T\ N and since f(v, -) <, f(u, -) , we have
h(s,-) <u f(u,-) . Thus, we see thath satisfies (2).

(3): Since g is pointwise increasing onS and ¢ < f , we have g(s,t) <
g(u,t) < f(u,t) forall (s,t) € SxT andall e Sn][s, o] . Hence, we see that
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g(s,t) < h(s,t) forall (s,t) € SxT . Let s € D be given. Sinces € D*® ,
we have h(s,t) < f(s,t) and since f is pointwise increasing onD , we have
h(s,t) = f(s,t) forall t € N and f(s,t) < f(u,t) forall (u,t) e D®*xT . Let
teT\N and u e C®\ {s} be given. Sinces <u and C N D is p-denseinD ,
there existsv € C'N D such thats < v <« and sinces,v € D and f is pointwise
increasing onD , we have f(s,t) < f(v,t). Sincet € T\ N , we have thatf(-,?)
is increasing onC' and sincev,u € C', we have f(v,t) < f(u,t) . Hence, we see
that f(s,t) < f(u,t) forall v« € D°UC® and since h(s,t) < f(s,t), we have
f(s,t) = h(s,t) forall (s,t) € D x (T\ N) which completes the proof of (3).

(4): By (2), we haveXf(s) < Xh(s) forall s€ S. Let s € C be given. Then
we have h(s,t) < f(s,t) forall t € T\ N and so by (2) we havé.(s, - ) =, f(s, -)
and Xf(s) = Zh(s) . Let s € S\ C be given. SinceC is p-dense in S , there
exists a decreasing sequen¢e,) C C' such thatu,, | s . Since u,, € C* , we have
h(s,t) < f(un,t) forall t € T\ N and so we haveXf(s) < Xh(s) < Xf(u,) for
all n>1.Since ACC and s€ S\ C, we see thatXf is continuous ats and
since u,, — s , we see thatXf(s) = Xh(s) . Hence, we see that the first equality in
(4) holds and so by (2) and order injectivity of , we have h(s, - ) =, f(s, ) for
all se Dy; andsince@ C C, we see thath satisfies (4). O

Theorem 3.3: Let S C R be a non-empty set and lef,g : S x T — R and
o, 3 € L(T, B, 1) be given functions such that is pointwise increasing onS and

(1) g(s,t) < f(s,t) < B(t) Y(s,t) € ST
(2)  f(s,-) € L(T.B,n) and s = [ f(s,t)pu(dt) = [T g(s.t) p(dt) Vs € S

Then f is pu-a.e. increasing onS \ {—oc} and if f is p-a.e. increasing onS
and pointwise increasing onD for some setD C S, then there exists an increasing
p-partition of unity 4 : R x T — R satisfying

() g(s,t) < h(s,t) <p(t) Y(s,t) € SXT , h(s,t)=f(s,t) YV(s,t) e D xT
(4) h(s, )=, f(s,-) VseS and h(s,t) = f(s,t) V(s,t) e DxT

Proof: Let x,y € S be given such that—co < = < y and let define £(¢) :=
flz,t) A f(y,t) forall ¢t € T . Since g is pointwise increasing onS and g < f
we have g(z,t) < £(t) < f(x,t) forall t € T and so by (2) we see that is
B-measurable with [“&dp = [, Edp = = [ f(x,t) p(dt) . Since = is finite, we
see that{ and f(x, -) areu-integrable and so we have=, f(x, -) or equivalently,
f(z, ) <, f(y, ) . Hence we see thaff is p-a.e. increasing onS' \ {—oo} .
Suppose thatf is p-a.e. increasing onS and pointwise increasing orD . By
(1) and Thm.3.2, there existg, € Mg (T,B) such that f, is pointwise increasing on
S and satisfies fo(s,t) = f(s,t) forall (s,t) € Dx T, g(s,t) < fo(s,t) < B(t)
forall (s,t) € SxT and fo(s, )=, f(s,) forall s S. Soby (2) and Thm.2.7,
we have fo(s, -) € L(T,B,p) and Sfo(s) = [, fo(s,t)u(dt) = s forall se S.
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Suppose thatS "R # () . By Thm.2.4, there exists an increasifgpartition of
unity f1: R x T — R satisfying fi(s,t) = fo(s,t) forall (s,t) € SxT . Then
f1 is pointwise increasing onS and so by Thm.3.2 withg = —oo , there exists
an increasing:-partition of unity 2 : R x T — R satisfying h(s,t) = fi(s,t) for
all (s,t) € SxT . Since fi(s,t) = fo(s,t) forall (s,t) € SxT , we see that
h satisfies (3) and (4).

Suppose thatS = {—occ, 00} . By (2) and Thm.2.7.(4) there existsc L'(T, B, ;1)
such that [, &dp = 0 and  fo(—oco,t) < &(t) < fo(oo,t) forall t e T .
Setting S = {—00,0,00} , f(+o0,t) := fi(£oo,t), §(+oo,t) = g(+oo,t) and
f(0,1) = g(t) := &(t) , we see that (f,§,S) satisfies (1), (2) andS N R # 0 .
Hence, by the argument above we see that there exists an increagsargtion of unity
h: R xT — R satisfying (3) and (4). The remaining two cases= {oo} and
S = {—o0} follow in the same manner. d

Theorem 3.4: Let (S, <) be a linear proset and letp € Mg(T,B) be a pointwise
increasing function witho-transform @(s) := Y¢(s) forall s € S. Let a,f €

L(T, B, ;1) be given functions satisfying(t) < ¢(s,t) < g(t) forall (s,t) € SxT
and let us define

o= [pady , b= [pBdy , Eo={ueS|du)=a(s)} Vs€S
¢ (s, 1) =supyep, ¢(s,1) , du(s,t) =infuep, ¢(s,t) V(s,t) € SxT
O*(s) = [*¢"(s. ) pldt) | Buls) = [ éu(s. ) pldt) Vs €S
Fy={uesS|du) <o), F-={ueS|du)>d(s) ¥Vses

Then ¢* and ¢, are pointwise increasing oy and there exists increasingpartitions
of unity ho,h1 : R x T — R satisfying (see the remark below)

(1) aVsupuep, ¥(s) < Buls) < B(s) < B*(s) < b Ainfuers ulu)

(2)  alt) < ouls,t) < (s, t) < d*(s,t) < B(t) A dx(u,t) Vs € SYue F?

B) If se S\ Dg and p is (E,, <)-smooth, then®(s) = ®*(s)

(4) If seS\Dj and p is (£, >)-smooth, then®(s) = ®,(s)

(5)  a(t) < ho(®.(s).1) < 0(s,1) < ha((s),1) < B(t) V(s,t) € Sx T

6) aft) = hola,t) < hi(a,t) and ho(b,t) < hy(b,t) = B(t) Vte T

Proof: Let x € R be given and let us definey*(z,t) := sup,ec. ¢(s,t) and
Ye(@,t) = infeec= @(s,t) forall ¢t € T where C, = {s € S| ®(s) < z}
and C* := {s € S| ®(s) > «} . Then ~* and 7. are pointwise increasing

on R . Let s € S be given and setr := &(s) . Since E, C C, N C* , we have
Ye(x,t) < Puls,t) < @*(s,t) < v*(x,t) forall t € T. Let s,u € S be given elements
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satisfying ®(s) < ®(u) and let v € E; and w € E, be given. SinceS is linear
and @ is increasing with ®(v) = ®(s) < ®(u) = ®(w) , we have v < w and since
¢ is pointwise increasing, we have(v,t) < ¢(w,t) forall ¢ € T . In particular, we
see that (2) holds and that we have(®(s),t) = ¢«(s,t) < ¢*(s,t) = v*(P(s),t) for

all teT and so we haved,(s) =T (®(s)) and ®*(s) =" (P(s)) forall se€ S

where T'*(z):= ["4*(x,t) u(dt) and Dy(z) := [Ty*(a,t) u(dt) forall z € R.

In particular, we see that, and ¢* are pointwise increasing functions satisfying
(2) and since a(t) < ¢u(s,t) < ¢(s,t) < ¢*(s,t) < [(t) , we see that (1) follows
from (2).

(3+4): Let s € S\ Dg be a given element such that is (£,, <)-smooth. Then
we have —oco < ®(s) < oo and by (1), we haved(s) = ®*(s) if P(s) =00 . So
suppose that®(s) # £oo and let us defineN, :={t € T | ¢(s,t) < ¢(u,t)} for all
u€e S . Then N, € B and since ¢ is pointwise increasing, we see that~ N, is
increasing. Letu € E;N|[s,*] be given. Sinces < u , we have ¢(s,t) < ¢(u,t) for
all t € T and sinceX is order injective andXo(u) = ®(u) = ®(s) = Lo(s) # +oo,
we see u(N,) = 0 . Hence, by(E, <)-smoothness of. , we have p*(N*) = 0
where N* = Uyep s« Nu and since N* = {t € T' | ¢(s,t) < ¢*(s, )} , we see
that ¢(s, -) =, ¢*(s, -) and ®(s) = ®*(s) . Hence, we have proved (3), and (4)
follows in the same manner.

Suppose thata = b . By (1), we have ®.(s) = ®(s) = P*(s) = a = b
for all s € S and by Thm.3.3, there exists an increasingartitions of unity
ho,h1 : R x T — R such that hg(a,t) = «(t) and hy(b,t) = 3(t) forall te T .
Hence, we see thathg, h1) satisfies (5+6). So suppose that< b and let us define
Ae i ={y e R|T*(y) <2} and g*(x,t) :=sup,ex, v*(y.t) forall (z,t) e RxT .
Then ¢* : R x T'— R is pointwise increasing orR and | claim that we have

(i) f* g*(x,t) p(dt) = G*(xv) Yo € R where G*(z) = supyen, 1*(y)

Proof of (i): Let z € R be given. If A, =0, we have G*(z) = —~ and
g*(z,t) = —oo and so we see that (i) holds. Suppose that~ A, C A_,, and
let y € A, and s € C;, be given. SinceA, C A_, , we have ['*(y) = —c0
and so we haveG*(x) = —oco . Since ®(s) < y and T'™ is increasing with
P(s) < *(s) = I'*(P(s)) , we have P(s) = P*(s) = I'"(P(s)) = IM(y) = —o0 .
Hence, we haveC, = C_ = E, and so we havey*(y,t) = ¢*(s,t) forall teT
and all y € A, . Hence, we haveg*(z,t) = ¢*(s,t) forall ¢t € T and so we have
[* g(x,t) p(dt) = ®*(s) = —oo = G*(x) . Suppose that\, Z A_.. . Then there exists
an increasing sequendg,) C A, \ A_- such that(y,) is cofinal in A, . Since I'*
and v*(-,t) are increasing, we hav€™*(y,,) T G*(x) and v*(y,.t) T ¢"(z,t) for all
t € T and sincey, € A;\A_ , we have—oc < T*(y,,) = [* v*(yn, t) u(dt) < z for
all n . Since the upper integral satisfies the increasing monotone convergence theorem,
we have T*(y,,) 1 [* g*(x,t) u(dt) and since*(y,) T G*(z) , we have proved (i),

By (1), we have S° := {a,b} U ®*(S) C [a,b] . Let (z,t) € S be given and
let us define g(z,t) := g*(a,t) if x € ®*(S), g(z,t) :=a(t) if x=a¢ P*(S)
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and g(x,t) = pB(t) if x=10¢ ®*(S). Let s € S be given and sety = ¥(s)
and x = ®*(s) . Then we have¢(s,t) < ¢*(s,t) = v*(y,t) and = = I'*(y) and
so we have G*(z) = = and 7*(y,t) < g*(x,t) forall ¢t € T . Hence, we see that
a(t) < ¢(s,t) < ¢*(s,t) < g"(P*(s),t) for all (s,t) € SxT and since g* is
pointwise increasing onR with ¢*(z,t) < 3(t) for all (x,t) € Rx T , we see that
g:S°xT — R is a pointwise function satisfying

J gl typldt) =, a(t) < gla,t) < () . o(s.t) < g((s).1)

forall x € S°,al se€ S andall ¢t € T . Hence, by Thm.2.7.(4) there exists
& € L(T,B,pu) such that [ & dp =« and g(x,t) < &(t) < G(t) for all
(s,t) € S°xT . By Thm.3.3, we see thai,(¢) is p-a.e. increasing orby := S°\{a} .
Let (z,) C Sy be a decreasing sequence such tliat) is cofinal in (Sp,>) and
let us define n(t) := inf,>; &, (t) forall ¢ € T . Then we have(, | n u-a.e.
and n <, & forall € S,. Since & € L(T,B,u) and &, € LYT, B, u) if
zn < b, we have n € L(T,B,u) and since g is pointwise increasing, we have
gla,t) < g(zn,t) < & (t) < B(t) and so we see thatv(t) < g(a,t) < n(t) < 5(t)
forall ¢t e T.

Hence, by Thm.2.7.(4), there exist§(a, -) € L(T, B, M) such that g(a,t) <
fla,t) < n(t) forall t e T and [, f(a,t)u(dt) = [ g(a, ) p(dt) = a . Let
us define f(b,t) := 3(t) and f(x,t) := &(¢t) foral z € S°\ {a,b} and all
t € T . Then we haveg(x,t) < f(z,t) < 3(t) forall (x,t) € S°xT and we have
flx,-) € L(T,B,u) and [, f(a,t)pu(dt) = o = [ g(a,t)u(dt) forall z € S°.
Since n <, & < p forall z € Sy, we see that f is p-a.e. increasing onS®
and so by Thm.3.3 with D := {b} there exists an increasingpartition of unity
hi: R xT — R satisfying g(x,t) < hy(x,t) < 3(t) forall (z,t) € S°x T and
hi(b,t) = (t) forall t € T. Sincea(t) < g(a,t) and ¢(s,t) < g(P*(s),t), we have
a(t) < hi(a,t) < hy(b,t) = F(t) and ¢(s,t) < h(P*(s),t) forall (s,t) e SxT.

Note that o(s, 1) == —¢(s,t) is pointwise increasing on the linear proses, >)
satisfying a(t) < ¢(s,t) < 3(t) where a(t) := —3(t) and ((t) := —a(t) . Observe
that S(¢) := —X(=¢) is ap-integral such that®(s) := S¢(s) = —(s) for all

s€S. Applylng the construction above on the paip, ) , we see that there exists
an increasingu-partition of unity hi : RxT — R satisfying a(t) < hy(a.t) <
hy (b, t) A(t) and ¢(s,t) < hi(®*(s),t) forall (s,t) € SxT wherea:= [,adpu
and b:= [, Fdu . Let us define hy(z,t) := —hi(—a,t) forall (z,t) € RxT .
Then ho is an u-partition of unity satisfying hg(a,t) = a(t) < ho(b,t) < f(t) and
since ®*(s) = —®,(s) , we have ho(P.(s),t) < é(s,t) forall (s,t) € SxT . Thus,
we see that the paifhg, ) satisfies (5+6). a

Theorem 3.5: Let (S, <) be alinear proset and lep : 2° — [0, o] be an increasing
set function satisfying()) = 0. Let ¢ € Mg (T, B) be a pointwise increasing function
with X-transform ®(s) := Y¢(s) forall s € S andlet ®*(s) and ®.(s) be defined
as in Thm.3.4. Then we have

() [ @udp < [, uldt) [T 0(s,0) plds) < [ uldt) [T 6(s.0) plds) < [ @ dp

17



Suppose thatu is sum-finite, let.A be ac-algebra on S and let v be a sum-finite
measure on (S, A) . If v ® pu denotes the product measure on the product space
(S xT,A® B), then we have

2 [.odv< [ ¢pdvou) <[ ®dv< [T Qdv< [Todvou) < [T d*dy

Remarks: (a): If FF C S, we say thatF' is p-exhaustivaf p(A)=p(ANF) for
al ACS.If f,g:5 —[0,00] are non-negative functions such that the $¢t= ¢}
is p-exhaustive, then it follows easily that we havgﬁffdp = ffgdp . Hence, if
{®. = ®*} is p-exhaustive, we have equality throughout in (1), and recall that (1),
(3) and (4) in Thm.3.4 provide tools for verifyingp.(s) = ®(s) or @(s) = ®*(s) .
Similarly, if ® = ®* v-a.e., then the last two inequalities in (2) become equalities.
(b): Let ¢: T — [0,00) and ¢: S xT — [0,00] be given functions such thap
is pointwise increasing ort . Then u(B) =, ¢(t) is a finitely founded measure
on (T,27) and we haveS¢(s) = >, q(t) ¢(s,t) forall s € S. Hence, by Thm.3.4
and non-negativity of® we have ®(s) = ®*(s) forall s € S and ®(s) = D, (s)
forall s € {® < o0} and so by (1) we obtain the following remarkable inequality

Siera(t) [Fos.t) plds) < [ ,cr a(t) o(s,t) p(ds)

with equality if {® < oo} is p-exhaustive.

(c): Let me give an example showing the we may have strict inequality in (2):
Suppose that the continuum hypothesis holds. Then there exists a well-orderiag
the unit interval 7 := [0,1] such that ;.= {t € I |t < s} is at most countable for
all sel. Then (I,=) is a linear poset and we lek denote the Lebesgue measure
on the Borelo-algebra onI . Let us define ¢(s,t) :=1;,(¢t) forall (s,t) el x 1.
Then ¢(-,t) is Borel measurable and increasing with respecttoand ¢(s, -) is
Borel measurable and decreasing with respeckto Thus, we are |n the setting of the
theorem with » = . := A and observe that we havé(s) = [} ¢(s,t)dt = 0 and
d*(s) =1 forall s € I. Hence, we have

[as[ ssnm=o<i=[af soni= [ siaen

Proof: By Lem.3.1 and Thm.3.4 witha(t) := 0 and f(t) := oo , there exist
increasingu-partitions of unity f,¢: R x T — R such that f is right continuous,
g is left continuous, g(®.(s),t) < ¢(s,t) < f(P*(s),t) forall (s,t) € SxT and
(0, t) < 0 < f(0,t) forall ¢te T . In particular, we have [, g(0,t) u(dt) = 0 =
J7 [(0,t) u(dt) and so by Lem.3.1 we see that there exisjsraull set N € B such
that g(0—|— t) =¢(0,t) =0= f(0,t) = f(0—,¢) forall t e T\ N and |f(z,t)| < o
and |g(z,t)| < oo forall (z,t) € Rx (T\N) .

Let t € T\ N be given. Then f(-,t) is a finite, increasing, right continuous
function and we let \; denote the Lebesgue-Stieltjes measure inducedfby,¢) .
If a<b,wehave \((a,b)) = f(b,t)— f(a,t) forall t €T and since f is an
increasingu-partition of unity and NV is ap-null set, we havefT\N Ae((a, b)) p(dt) =
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b—a = X(a,b]) where X\ denotes the Lebesgue measure. Hence, by the standard
proof we have

0/ ) [ ateitan) = [ gte)uan) = [ ) | ate) M)

for every non-negative Borel functiory : R — [0, o] .

Let us define F(t) := [F¢(s,t)p(ds) forall ¢+ € T and let me first show
that [“Fdu < [f®*dp . If [f®*dp = oo, this is evident. So suppose that
[f®*dp < oo . Let us define R(z,t) := p(s € S| ¢(s,t) > ) and Ry(z,t) :=
p(s € S| f(®*(s),t) > x) forall (z,t) € RxT . Since ¢(s,t) < f(P*(s),1) ,
we have R(x,t) < Ry(x,t) . Let t € T\ N be given. Then we havef(0,¢) = 0
and since [f ®*dv < oo , we have p(s € S | ®*(s) = oo) = 0 . Hence, we see
that Ro(xz) = 0 forall « > f(oco—,t) and since Ry(-,t) is decreasing we have
(see [3; (3.29.7) p.205))

©o oo f(oo_vt)
Fo) = [T RGdes [ R ode= [ R i
0 0 f(0,0)

< / " Ro(f(a— 1), 1) Me(da)

Let (s,t) € SxT and = € R be given such that f(z—,t) < f(®*(s),t) .
Since f(y,t) < f(xz—,t) for all y < x , we must have ®*(s) > = . Hence,
we have Ry(f(x—,t),t) < Ri(x) := p(s € S| ®*(s) > x) and so we see that
F(t) < [;7 Ri(z) M(dz) forall t € T\ N . So by (i) we have

/*qug/T\Nu(dt)/oooRl(x)/\t(dx):/OOORl(x)d:c:/F@*du

which completes the proof of the last inequality in (1). The first inequality in (2) follows
in the same manner using the increasinpartition of unity ¢ and the mid-inequality
is evident.

The last inequality in (2) holds trivially if f* ®*dy = oo . So suppose that
[T ®*dv < 0o and let a > ["®*dv be given. Then there exist§ € L'(S, A4, v)
such that [({dv < a and ®*(s) < {(s) forall s € S. Since f(-,t) is right
continuous for allt € T and f(z, -) is B-measurable for allz € R , we see that
f is measurable with respect to the produetigebra B(R) @ B and since ¢ is
A-measurable andb* < ¢ , we see thatf({(s),t) is (A B)-measurable and satisfies
0 < o(s,t) < f(D*(s),t) < f(&(s),t) . So by the Fubini-Tonelli theorem we have

/*(ﬁd(V@ p) < f((s), 1) (v @ p)(ds, dt) = / V(dS)/ F(&(s), 1) pldt)
SxT S T

Since f is an increasing:-partition of unity, we have [ f(&(s),t) u(dt) = &(s) for
all s €S andsowe seethaf ¢d(vou) < [¢Edv<a. Letting a| [®*dv, we
obtain the last inequality in (2). The first inequality in (2) follow in the same manner
and the remaining inequalities in (2) are well-known and easy. O
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Theorem 3.6: Let (S,<) be a linear proset and let) € Ms(T) be a given function
with X-transform @(s) := Y¢(s) . Suppose thatp is pointwise increasing onS and
O, (s) = ®*(s) forall s € S where ®*(s) and ®.(s) are defined as in Thm.3.4.
If £ C 2° is any given set such thap(-,t) € W(S,£) for y-a.a. t € T, then we
have ® € W(S,L) .

Proof: By Thm.3.4 with «(t) = —oco and ((t) = oo , there exist increasing-
partitions of unity f,g: R x T — R satisfying g(®(s),t) < ¢(s,t) < f(®(s),t) for
all (s,t) e SxT . Let —oo<ax<y<oo begiven. Since [, f(z,t)u(dt) =z <
y= [pg(y.t) u(dt), we havepu(t | f(z,t) < g(y,t)) > 0 and sinces( -,t) € W(S, L)
for p-a.a. t € T, there existstg € T and u,v € R such that ¢(-,ty) € W (S, L)
and f(xz,t)) < u < v < g(y,to) . Hence, there existsL € £ U {0, S} such that
{s | ¢(s,t0) > v} C L C{s| (s, tg) >u}. Let s € {®d >y} be given. Then we
have ¢(s,to) > g(®(s),t0) > g(y,to) > v and so we haves € L . Let s € L be
given. Then we havef(®(s),t9) > o(s,to) > u > f(x,tg) and since f(-,ty) is
increasing, we haveb(s) > x . Hence, we see thaf® >y} C L C {® > 2} and so
we have ® € W(S, L) . O

4. Solutions to problem (IP) Let (M,=<) and (S,<) be prosets, let
w € M be a given element and letY : M — R and H : S — R be
increasing functions. Then we lefy(H,w) denote the set of all increasing function
¢: S — M satisfying ¢(s) <w and Z¢(s) < H(s) < S(w) forall s e S.
If ¢ € Isx(H,w) , we let IPx(¢, H w) denote the set of all increasing functions
Y S — M satisfying ¢(s) < ¢¥(s) = w and Zu¢(s) = H(s) forall s e S.
Note that /P (¢, H,w) C Ix(H,w) and that I Ps(¢, H,w) is exactly the set of all
solution to problem (IP) of the introduction. We let/x,(H,w) denote the set of all
¢ € In(H,w) for which there existss € L'(%) such thato(Ds,,)U{x, w} is alinear
subset of (M, <) andif #: S — R is afunction and./J C S is a given set, we define
liminfgy s 0(s) := sup,es infsejnpu,« 0(s) with the conventionlim inf,g 6(s) := oo .

Theorem 4.1: Let (M, =) be ao-lattice and letY : M — R be an increasing smooth
functional with the Darboux property. Leb € M be a given element, letS, <) be
a linear proset and let : S — R be an increasing function. Let) € Iv(H,w)
be a given function and let us define := Svo(D%,,) , L := {s | H(s) <r} and
q = Yvo(L) . Then we have

(1) LuUDj C D§¢ and ¢ <r < X(w) A infs¢D%¢ Yo(s) < inf5¢D%¢ H(s)

(2) If L # Dy, ,then we haveq = —oo

() If ¢ ¢ GIx(H,w) , then we have|S(w)| = |¢| = |r| = [Z¢(s)| = oo for all

s €5 and {H < oo} C DY,
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and if ¢ € GIx(H,w) , then r < oo and there exists an increasing-partition of
unity f : R — M satisfying

(@) f(Sw) =w and é(s) < f(Se(s) Vs € 5\ Dy,
(5) ¢(s) < f(r) Vs €Dy, and o(s) < f(q) VseL
(6) o(s) < f(H(s) Vs e {H>q)

Proof: (1): Since ¢ is increasing, we have that¢ is increasing and sinc&¢ < H ,
we have Dy, C Dy, . Since S is linear we have thatd := ¢(5) is a linear subset of
M satisfying ANL.(2) = ¢(D3,,) , ANLY(T) = ¢(Dsy) and ANL* (D) = o(D5,,) -
So by Lem.2.2 we have)(u) =< ¢(s) forall uwe€ D3, andall s € S\ Dg,, . Hence,
we have r < Z¢(s) forall s € S\ D, and since T¢(s) < H(s) < T(w) , we
see that (1) holds.

(2): Suppose thatL # D5, . Since L C Dy, , there existsu € D3, \ L. Then

we have Y¢(u) = —oo and H(u) > r . Since S is linear and H is increasing,
we have s <wu forall s € L and since ¢ is increasing, we have(s) < ¢(u) for
all se L. Since ue€ Dg, , we have ¢ < Yo(u) = —o0 .

(3): Suppose thaty ¢ GIs(H,w) . Since ¢(S) < w , we have w ¢ L (%) ;
that is [Y(w)| = oo . Since ¢(Dsy) C LN(Y) and ¢(D%,) < ¢(Dgy) = w , we
have Dy, = 0 ; that is, |X¢(s)] = oo forall s € S. By Lem.2.1 there exists
v € M such that ¢(D5y) = v 2w and I(v) = r . Hence, we have|r| = oo
and so by (2) we havelq| = oo . Since X¢(s) < H(s) and |Z¢(s)| = oo, we
have {H < oo} C Dg .

(4)—(6): Suppose thaty € GIy(H,w) . Then there existsk € L'(X) such that
¢(D3y)U{k,w} islinear. SetA:= ¢(S) . Then we haveAn L.(X) = ¢(Dg,,) and
so by Thm.2.5 withF" := ¢(L) we see thatr < co and that there exists an increasing
Y-partition f: R — M satisfying (4+5). Lets € S be a given element satisfying
H(s) > ¢ . By (4), we have é(s) < f(S6(s) < f(H(s)) if s 5\ D°S. By
(5), we have ¢(s) = f(r) < f(H(s)) if s € Dy, and r < H(s) . So suppose
that s € D§¢ and ¢ < H(s) < r . Then we haves € L and so by (5) we have
o(s) < f(q) < f(H(s)) which completes the proof of (6). O

Theorem 4.2: Let (M, <) be ac-lattice and let: : M — R be an increasing smooth
functional with the Darboux property. Let € M be a given element, letS, <) be a
linear proset and letH : S — R be an increasing function. Leb, o € Iy,(H,w) be
given functions satisfying(s) < o(s) forall s € S and let us define := Xy ¢(Dg,)
and

Sp:={seS|—-o00<H(s)<X(w)} , L:={seS|H(s)<r}

and ¢ :=%Syo(L). Let F: S —R and #:S — M be given function such tha#
is increasing andXd(s) + F(s) < H(s) forall s € S. Then we have

(1) ¢e€GIs(H,w) and {s | H(s) < q} C D}y = IPs(¢,H,w)#0
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(2) IPs(0,H,w) C IPs(¢,H,w) andif D3 # Dy, and either ¢ or o belong
to GIx(H,w) , then we havel Ps(¢, H,w) # 0

(3) liminfgjy (H(s)—F(s)) > Syf(A) > —o00 VA 7¢_ Dy,

4) If ¢ € GIx(H,w) and (M,=) has the strong Darboux property, then the
following two statements are equivalent:

(&) IPs(¢,Hw) #0
(b) Either Dy = DS, or r < SUDse s, H(s)

5) SpNDY, =0 = IPg(¢,Huw) #0

Proof: (1): Suppose thaty € GIx(H,w) and {H < ¢} C D%, . By Thm.4.1 there
exists an increasing-partition of unity f: R — M satisfying (4)—(6) in Thm.4.1.
Let us define ¢(s) := ¢(s) if H(s) < ¢ and ¢(s) = f(H(s)) if H(s) > q.
By Thm.4.1, we have ¢(s) < 9¥(s) < w for all s € S and since S is linear
and ¢ , H and f are increasing, we see that is increasing. Sincef is an
increasingX-partition of unity, we haveXy(s) = H(s) forall s € {H > ¢} . Since
{H < ¢} C Dy and ¢ € Ix(H,w) , we have X¢(s) = E¢(s) < H(s) = —oo for all
s € {H < ¢} . Hence, we havety)(s) = H(s) forall s€ S and ¢ € IPx(¢,H,w) .

(2): Since ¢(s) = o(s) forall s €S, we havelPs(o, H,w) C Px(¢, Hyw) . So
suppose thatDs,, # Dy, and that eitherg or o belong to GIx(H,w) . Letus define
T(s) :==¢(s) if se DY and 7(s):=o0(s) if se S\ DS, . Since ¢(s) < o(s),
we have D3, C D, and since¢ and o are increasing withg(s) < o(s) 2 w
and Yo(s) < H(s) forall se€ S, we seethatr : S — M is an increasing function
satisfying ¢(s) < 7(s) R w and X7(s) < H(s) forall s € S . In particular, we
have 7 € Iy(H,w) and since Dy, C Ds,, , we have Dy, = DS, . Since ¢ and
7 coincide on Dy, and ¢(s) < o(s) , we have 7(D3 ) = ¢(Ds,,) = o(D3,) .
Since either ¢ or o belong to GIx(H,w) , we see thatt € GIy(H,w) . Since
Dy S D, , there existsu € D5\ Dy, and sinceS' is linear andX¢ is increasing,
we have 7(Ds, ) = ¢(Ds,,) = ¢(u) . Hence, we haveXy7(D3 ) < Yo(u) = —o0
and so by (1) we havel Ps(7, H,w) # () . Since ¢(s) < 7(s) forall se S, we see
that ) £ IPx (7, H,w) C IPx(¢, H,w) which completes the proof of (2).

(3): Let AC S be a given set satisfyingl Z D5, and let « denote thdim inf
in (3). Since ZA(s)+F(s) < H(s) , we have X0(s) < H(s)—F(s) forall se€ S
and since X¢ is increasing, we havesup X0(A) < a . Since A Z D3, ., we have
supXf(A) > —oo and so we see that (3) follows from Lem.2.2.

(4): Suppose that (4.a) holds and thaf;, # D§¢ . Then there exists an increasing
function ¢ : S — M satisfying ¢(s) < ¥ (s) and ¥ (s) = H(s) forall s € S and
by Thm.4.1, we haveD$; & DY, . Hence, we haveDy, ¢ D§; = D3, and so by
(3) with (6(s), F'(s)) = (¢(s),0) and A:=Dg, , we see thatr < SUDseng, H(s) .
Thus, we see that (4.a) implies (4.b)
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Suppose that (4.b) holds and let me show tha®s (¢, H,w) # 0 . By (1), we
see that this holds if {H < ¢} C D% . So suppose that there exists € S
such that —oo < H(u) < ¢ . By Thm.4.1 we have —oco < ¢ = r < oo and
Dy C{H <r} =Dy, and since —oo < H(u) < ¢ =r , we have Dy, # D3, .
Hence, by (4.b) we haV@upseD;¢ H(s)=r andsince H(s) <r forall se Dg,,
there exists si,sz,... € Dy, such that —oo < H(s1) < H(s2) < --- <r and
H(sp,) T r . Since S s linear and H is increasing, we haves; < sy < ---
Let s € Dy, be given. SinceH(s) <r and H(s,) | r, there exists an integer
n > 1 such that H(s) < H(s,) and since S is linear and H is increasing, we
have s < s,, . Hence, we see thats,,) is cofinal in Dy, and since¢ is increasing,
we have that(¢(s,)) is cofinal in ¢(Dg,,) . Since M is ao-lattice there exists an
element x € Vo(D3,,) = Vol é(sn) . By (2.1), we have X(x) = r and since r
is finite we have » € L(Y) and

O(sp) Tk, H(sp) Tr=%(k) , H(sp) <r and T¢(s,) =—00 Vn>1

Since X has the strong Darboux property there exists an increasing sequgnce M
such thato(s,+1) < n, <k and —oo < X(n,,) < H(sy,) forall n > 1. By Lem.2.2,
we have ¢(Dg,) = &(S\ D) and since k € V(DY) , we have x < w and
k=2 ¢(s) forall s e S\Dg, .

Let us define A(s) := inf{n > 0 | s < s,41} forall s € S with the usual
convention inf § := oo . Then A: S — {0,1,...,00} is an increasing function such
that {\ =0} = [*,s1] and since(s,) is cofinalin D5, , we have{\ < oo} = DS, .
In particular, we haveg(s) < ¢(sy) <m forall se€ {\=0} and 5, < kK < ¢(s)
forall s € {\ = oo} and since (7,) is increasing, we see that

V(s) =) If 1< A(s) < oo and ¢(s) := ¢(s) if A(s) =0 or A(s) =oc

defines an increasing function fro into M satisfying ¢ (s) < w forall s € S. Let
s € S be given such thatl < A\(s) < oo and setk := A(s) . Then we haves < s;14
and s £ s; . Since ¢ isincreasing, we have(s) < ¢(sg+1) = 7 = ¥(s) and sinceS
is linear and H is increasing, we have,, < s and Y (s) = X(n) < H(s,) < H(s) .
Hence, we have¢(s) < ¥(s) < w and Zi(s) < H(s) forall s € S. Since
H(s1) < H(s2) , we have A(s2) =1 and v(sy) = n and since X(n;) > —oo
and s, € DY, we have D3, # DS . Hence, by (2) we havel Ps; (¢, H,w) # 0
which completes the proof of (4).

(5): Suppose thatsy N DS, = 0 and let us definey(s) := ¢(s) if H(s) < Z(w)
and ¥ (s) :=w if H(s) > X(w). Since S islinearandH and ¢ are increasing with
#(s) = w and, we see that) : S — M is increasing and satisfies(s) < ¥(s) < w
and i(s) < H(s) < ¥(w) forall s € S. Suppose thatSy = 0 . Then we
have H(s) = —oo = Xu(s) If H(s) < E(w) and X¢(s) = S(w) = H(s) fif
H(s) > ¥(w) and so we see that) € IPs(¢, H,w) . So suppose thatSy # 0
and let « € Sy be given. Then we have—oc < H(u) < Y(w) and so we
have Dj, C D, = Dy, N{H < S(w)} . Since Sy nDy, =0, we see
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that D3 = Dy, and SUDseps,, H(s) = —oc0 and since v € Sy and we have
—o00 < Y¢(u) < H(u) < ¥(w) . Hence, by Thm.4.1 we have) € GIx(H,w) and so
by (2) and (4), we havel Ps (¢, H,w) # 0 . O

Theorem 4.3: Let (M, =) be ao-lattice, let w € M be a given element and let
¥ : M — R be an increasing smooth functional with the strong Darboux property.
Let (S,<) be linear proset and letH : S — R be an increasing function. Let
¢ € In(H,w) be a given function and let us definé:= {s € Dy, | H(s) < oo} . Let
En & and & ~ & be increasing function fromM into M satisfying

(1) B(€)+ (&%) < B(E) < B()+3(%) YVEe M
(2 wo€LYS) , & =& VEEM and 2(&) > —oo VE € LY(D)

() If &n,7 e M are given elements satisfying, <7 <w, and 7 € £V 1, then
we have ., <7 and 7° < &°

(@) limint (H(s) = S0°(s)) > Suoo(J) + limint (H(s) - S0°(s)) > —oc
Then we havelPs (¢, H,w) # 0

Proof: Let us define Sy = {s | —o0 < H(s) < ¥(w)} . By Thm.4.2.(5), we
have IPy(¢,H,w) # 0 if Sy n DS, =0 . Suppose thatinf ©¢(Dy,) = —oo .
Then Dsy # 0 and by Lem.2.2, we have¢(Dg,) =< &(Dsy) . Hence, we
have Xy¢(Dg,) = —oco and by Thm.4.1 we have¢ € GIy(H,w) . So by
Thm.4.2.(4) we have IPs(¢, H,w) # @ . So suppose thatSy N Dy, # (0 and
a = inf S¢(Dyxy) > —oo . Then we haveJ # 0 .

If Dyy # 0, we have —oo < a < oo and by Lem.2.2, there exists € Vo(Ds)
such that ¥(v) = ¢ and v € LY(X) . If Dgy =0, we set v := w . By (2),
we see thatv, € L'(X) and since ¢(5) < w and ¢(D3,) < ¢(Dsy) , we have
¢(D§¢) < v =< ¢(Dxyg) and v = w . Let us define

K(s) = ¢o(s) if s€J | k(s):=v, If s€S\J
0(s) = H(s) —S¢°(s) , G(s):=3(vs) A infue sy 0(u) Vs €S

Since ¢ and ¢ ~ & are increasing, we see thab, is increasing and since
#(J) < v, we have ¢,(J) < v, . Since S is linear and J is a lower interval,
we see thatx : S — M is an increasing function satisfying:(s) < v, for all
se€ S . Let seS\J begiven. SinceJ is lower interval, we haveJ N [s,*] =0
and so we haveG(s) = X(v,) = Yk(s) . Let s € J be given. By (1), we see
that Y¢.(u) < E(vs) A f(u) forall w e J and since ¢, is increasing, we have
Yk(s) = Sgo(s) < G(s) . Hence, we see that € Ix(G,v,) and sincev, € L(2) ,
we have k € GIx(G,v,) . By (2), we have k(s) = ¢.(s) = ¢(s) forall se J and
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since J C Dy, and v° € LY(Y) , we have D3_= J . Since k(J) < v, , we have
Yvk(J) = Zyoo(J) < X(vs) . Hence, by (4) we have

supees G(5) = X(vs) A hIng:l]Ilf(H(S);Z(ﬁO(S)) > 3(vo) A Xy o(J) = Byk(J)

and so by Thm.4.2.(4) there exists an increasing function S — M such that
k(s) 2 ((s) X v, and X((s) = G(s) forall s S . Suppose thatt¢®(s) = oo for
some s € J . Since £¢° is increasing, we haveX¢®(u) = oo for all » > s and
since H(u) < oo forall u € J,we havef(u) =—oo forall ue Jn]s, x| which
contradicts the last inequality in (4). Hence, we haie®(s) < co forall s € J and
since Y(v,) is finite, there existsv € J such that G(v) > —o0 .

Since ¢ and ¢ are increasing and/ is a lattice, there exists an increasing function
T:S — M satisfying 7(s) € ¢(s) vV ((s) forall se .S and since¢(s) = w and
((s) v =v=<w,wehaves(s) <7(s) 2w forall s€ S. Let s €S begivenand
let me show that¥7(s) < H(s) . If H(s) = oo, this is evident. Supposé?(s) < co
and s ¢ J . Then we haves ¢ Dy, and —oo < Z¢(s) < H(s) < oo . Hence, we
have ((s) < v < ¢(s) and so we see that(s) ~ ¢(s) and X7(s) = X¢(s) < H(s) .
Suppose thats € J . Then we have¢,(s) = x(s) < ((s) = ws and so by (3) with
(&,n) = (o(s),¢(s)) we have 7o(s) < ((s) and 7°(s) < ¢°(s) . Since T¢°(s) < 0o
and G(s) < X(vs) < oo, we have

G(s) + 56°(5) = G(s) + S6°(5) < G(s) + (H(s) ~ 6°(5)) < H(s)
and so by (1) we have
Y7(s) < T1o(s) + 27°(s) < B((s) + Tp°(s) < G(s)+X0%(s) < H(s)

Hence, we haveXr(s) < H(s) and ¢(s) = 7(s) R w forall s € S . Recall that
veJ and G(v) > —oco . Since ((v) < 7(v) , we have —oco < G(v) = E((v) <
Y7(v) < H(v) < oo . Hence, we see that € Dy,- N Dy, and so by Thm.4.1.(3), we
have 7 € GIy(H,w) . Hence, by Thm.4.2.(2) we havéPx (¢, H,w) # 0 . O

Theorem 4.4: Let (7,5, 1) be finitely founded measure space witi7’) > 0 and
let ¥ : M(T,B) — R be ap-integral. Let (S,<) be a linear proset and let
w € L(T,B,u) be a given function satisfyinngwdu > —o00. Let H:S —- R
be an increasing function, letp € Ix(H,w) be a given function and let us define
J:={s e Dy, | H(s) <oo} and Sy :={s € S| —oco < H(s) < E(w)} . Then
the following three statements are equivalent:

(1) IPsu(¢.How) # 0
(2) Forevery setA C S satisfying A € D%, , we have

(@ Xvo(A) < supgeq H(s)

(o) limsup (H(s) = S.(5)) > Sué(4) , Timsup (H(s) = Sy (s)) > —o0
sTA sTA
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(3) Either D3, NSy =0 or
@ liminf (H(s) = £0,(5) 2 Svo-(J) . lminf (H(s) S0, () > —0

Suppose thatl Px (¢, H,w) # () and that ¢ is pointwise increasing ort and satisfies
d(s,t) < w(t) forall (s,t) € S x T . Then there exists a function € Mg(T, B)
such that ¢ is pointwise increasing onS and

4)  b(s,t) <U(s,t) Sw(t) V(s,t) € SxT and Ei(s) = H(s) Vs €S
(B)  W(s,t) =d(s,t) V(s,t) € Dy x T and (s, t) =w(t) V(s,t) e W xT

where W := {s € S| H(s) > Z(w)} .

Proof: (1) = (2): Suppose that (1) holds and let C S be a given set satisfying
A ¢ DY% . Then there exists ap-a.e. increasing functiony :€ Mg (T, ) such
that ¢(s, -) <, ¥(s,-) <, w and Zi(s) = H(s) forall s € S and observe
that we may take ¢(s) = w for all s € {H = oo} . In particular, we have
Dy = DS, and since Yo, (s) < T4 (s) and Tvo(A) < Zyi(S) , we see that
(2.a) follows from Thm.4.2.(3) with(6(s), F(s)) = (¢'(s),0) . Since [, wdp > —oco ,
we have Y (w_) > —oo and sincev(s, -) € LY(T,B, ) forall s € Dy , we have
Dy =Dy, = Dy, . By Thm.2.7.(3), we havely_(s) + Sv4(s) < Zo(s) = H(s)
and so by Thm.4.2.(3) with(é(s), F(s)) = (v—(s),S¥4(s)) , we have

lilgixnf (H(s) = Z¢1(s)) > Bvy—(4) > —o0

and since Yo (s) < X4 (s) and Yyo(A) < Eyy(S) , we see that (2.b) holds.

(2) = (3): Suppose that (2) holds and that we havg; N Dy, # f . Then we
have J ¢ D% and so we see that (3.a) follows from (2.b).

(3) = (1): Suppose that (3) holds. IfSg N D§¢ = () , then (1) follows from
Thm.4.2.(5). So suppose that (3.a) holds. Since L(T,B, ;) and [pwdp > —o0 ,
we have w € LY(T,B, ) . But then it follows easily that the mapg°(t) := &, (¢)
and &(t) :=¢_(t) satisfies the conditions (1)—(3) in Thm.4.3 and since (3.a) implies
condition (4) in Thm.4.3, we see that Ps;(¢, H,w) # 0.

Thus, we see that (1)—(3) are equivalent. So suppose &l ¢, H,w) # 0 and
that ¢ is pointwise increasing and satisfies(s,t) < w(t) for all (s,t) € Sx T .
Suppose thatSy = 0 and let us definey(s,t) := ¢(s,t) if (s,t) € Wex T
and ¢(s,t) := w(t) if (s,t) € WxT . Then ¢ € Mg(T,B) . Let t € T be
given. Since S is linear and ¢(-,t) and H are increasing witho(s,t) < w(t)
and H(s) < ¥(w) forall s € S, we see thaty is pointwise increasing onS
and that we haveo(s,t) < ¥(s,t) < w(s) and Yi(s) < H(s) < Y(w) for all
(s,t) € SxT . Since Sy =0, we have H(s) = —oo = Z¢(s) = Z¢(s) for all
s € W¢ and Y¢(s) = ¥(w) = H(s) forall s € W and since £(w) > —o0 ,
we see thatvy satisfies (4+5).
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So suppose thatSy # 0 and let ¢ € IPs(¢, H,w) be given. Then we
have ¢(s, -) <, &(s,-) <, w and X¢(s) = H(s) foral s e S and since
0 # Sy C Diy = Dy , we have{ € GIx(H,w) by Thm.4.1.(3). Hence, by Thm.4.1
and Thm.3.2 there exists a pointwise increasingartition of unity f: R x 7 — R
satisfying

(s, ) <ué(s, ) < f(H(s),-) Vse{H>r} and f(X(w),t) =w(t) VteT
where r := X,{(DY,) . Let us define ¢(s,t) := &(s,t) if (s,t) € Dy x T and
U(s,t) = o(s,t)V f(H(s),t) if (s,t) € (S\Dy)xT . Then we havey € Mg(T,B)
and since Dy, is a lower interval and¢ and f are pointwise increasing, we see that
Y is a pointwise increasing. Sincé(s,t) < w(t) = f(X(w),t) and H(s) < Y(w) ,
we see that ¢ satisfies (5) and that we have)(s,t) < ¥(s,t) < w(t) for all
(s,t) € S x T . In particular, we haveX(s) = Y¢(s) = —oo = H(s) if s € Dy .
Let s € S\ D% . Then we havey(s,t) = ¢(s,t) vV f(H(s),t) and by Thm.4.1.(1),
we have H(s) > r . Hence, we haveg(s, -) <, f(H(s),-) and so we see that
U(s, )= f(H(s),-) and ¢ (s) = Zf(H(s)) = H(s) . Thus, we see that) satisfies
(4+5). O

Example Let S and T be subsets ofR with sup S =sup 7T = oo . Let B
denote the Boret-algebra on7" and let i be a finitely founded, Borel measure dn

satisfying u(7°) = oo forall s € S where TS =TnN(s,0).Let g:T — [0,00)
be a non-negative Borel function satisfying/(s) := fT gdp < oo foral s e S
where Ts := T N (—occ,s| . Let < denote the usual ordering 0§ and let ¢(s,t)

denote the function given by
(s, t):=g(t) Yse SVteTs , ¢(s,t):=-1 VseSVteT?®

t ¥ be any givenu-integral, let w € M(T,B) be a given function satisfying
( ) g w(t) forall t € T andlet H: S — R an increasing function satisfying
(s) < Jpwdp foral s e S. By Thm.2.7, we have ¢, (s) = G(s) and

E(;L(s) = Y¢(s) = —oo forall s € S . Hence, we see thatp € Iy(H,w) ,
D%, =S and J ={H < oo} where J and Sy are defined as in Thm.4.4. If
J # S, there existsu € S such that H(s) = oo for all s € Snu,00] and
since ¥¢,(s) = G(s) < oo, we have liminf,;; (H(s) — X¢,(s)) = oo . Since
¢ (s,t) =—1p«(t) and 7% | 0 , we have Xy ¢ (S)=0. Hence, by Thm.4.4 we see
that IPx(¢, H,w) # 0 if and only if H satisfies the following condition:

Le

(A) Either Sy =0 or liminfss(H(s) —G(s)) >0

and if so then there exists a functiomr € Mg (T,B) such that i) is pointwise
increasing on S and satisfies (4+5) in Thm.4.4..
1

Let us take T' = [1,00) , u = the Lebesgue measure ofi and g(t) := ; for

all €T . Then we haveG(s) =log, s and (A) takes the following form

(B) Either Sy =0 or liminfyg(H(s)—logs) >0
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Let us take7 = N, 1 = the counting measure oiN and g(t) := + forall t€ T .

Then we haveG(s) = E‘il 1 where [s] denotes the smallest integer s. Hence if

v =0.5772156649. .. denotes the Euler constant, then (A) takes the following form

(C) Either Sy =0 or liminfs g (H(s) —logs) > v
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