research reports

No. 502 February 2009

J. Hoffmann-Jørgensen

Increasing Partitions of Unity

department of theoretical statistics university of aarhus

Increasing Partitions of Unity

J. Hoffmann-Jørgensen Department of Mathematical Sciences

University of Aarhus, Denmark

Abstract: Let (T,\mathcal{B},μ) be a measure space and let $f: \bar{\mathbf{R}} \times T \to \bar{\mathbf{R}}$ be a function. Then we say that f is an increasing μ -partition of unity if f(x,t) is increasing in x, measurable in t and $\int_T f(x,t) \, \mu(dt) = x$ for all $x \in \bar{\mathbf{R}}$. Increasing partitions of unity have a variety of applications which will be explored in the paper. For instance, applications include the Fubini-Tonelli theorem for upper and lower integrals and Fubini-integrals, measurability or upper (lower) semicontinuity of integral transforms, and construction of functions with a prescribed integral transform and satisfying a given set of (in)equalities.

1. Introduction Recall that (X, \leq) is a *proset* if X is a non-empty set equipped with a relation \leq satisfying $x \leq x \ \forall x \in X$ and $x \leq y$, $y \leq z \Rightarrow x \leq z$. Let (M, \preceq) be a proset and let $\Sigma : M \to \bar{\mathbf{R}}$ be an increasing function where $\bar{\mathbf{R}} := [-\infty, \infty]$ denotes the extended real line with its usual ordering. Then we let $m_\Sigma := \inf_{\xi \in M} \Sigma(\xi)$ and $m^\Sigma := \sup_{\xi \in M} \Sigma(\xi)$ denote the two extreme values of Σ . If S is a non-empty set and $\phi : S \to M$ is a given function, we let $\Sigma = \Sigma(\phi(s))$ denote the Σ -transform of ϕ for all $s \in S$. We say that $f : \bar{\mathbf{R}} \to M$ is an increasing Σ -partition of unity if f is increasing and $\Sigma f(x) = x$ for all $m_\Sigma \leq x \leq m^\Sigma$ or equivalently, if f is increasing and $\Sigma f(x) = m^\Sigma \wedge (x \vee m_\Sigma)$ for all $x \in \bar{\mathbf{R}}$. In Section 2, we shall apply the Hausdorff maximality principle to construct increasing partitions of unity satisfying a prescribed set of (in)equalities. Increasing partitions of unity have a variety of applications and in Section 3 and 4, we shall explore some of these applications.

Let (T,\mathcal{B},μ) be a measure space. Then we let $\bar{\mathbf{R}}^T$ denote the set of all functions $f:T\to \bar{\mathbf{R}}$, we let $\bar{M}(T,\mathcal{B})$ denote the set of all $f\in \bar{\mathbf{R}}^T$ which are \mathcal{B} -measurable, and we let $L^1(T,\mathcal{B},\mu)$ denote the set of all functions $f\in \bar{M}(T,\mathcal{B})$ which are μ -integrable. If $f,h:\in \bar{\mathbf{R}}^T$, we write $f\leq h$ if $f(t)\leq h(t)$ for all $t\in T$ and we write $f\leq_{\mu}h$ if $f(t)\leq h(t)$ for μ -a.a. $t\in T$. If $f\in \bar{\mathbf{R}}^T$, we let $\int_{*}^{*}f\,d\mu$ and $\int_{*}f\,d\mu$ denote the upper and lower μ -integral of f. If $f:\bar{\mathbf{R}}\times T\to \bar{\mathbf{R}}$ is a given function, we say that f is an increasing μ -partition of unity if $f(x,\cdot)$ is \mathcal{B} -measurable for all $x\in \bar{\mathbf{R}}$ and $f(\cdot,t)$ is increasing on $\bar{\mathbf{R}}$ for all $t\in T$ and we have $f(x,\cdot)\in L^1(T,\mathcal{B},\mu)$ and $\int_T f(x,t)\,\mu(dt)=x$ for all $x\in \mathbf{R}$. Note

 $(\bar{M}(T,\mathcal{B}), \leq_{\mu})$ is a proset and we say that $\Sigma : \bar{M}(T,\mathcal{B}) \to \bar{\mathbf{R}}$ is a μ -integral if Σ is increasing with respect to the preordering \leq_{μ} and satisfies

$$\begin{array}{lll} \text{(1.1)} & \Sigma(f) = \int_T f \, d\mu & \forall \, f \in L^1(T,\mathcal{B},\mu) \quad \text{and if} \quad f \in \bar{M}(T,\mathcal{B}) \quad \text{and} \quad |\Sigma(f)| < \infty \,\,, \\ & \text{then we have} \quad f \in L^1(T,\mathcal{B},\mu) \end{array}$$

Let (S, A, ν) be a measure space. If ν and μ are sum-finite (see [3; p.171]), then the product measure $\nu \otimes \mu$ exists and we have (the Fubini-Tonelli theorem):

$$\int_{*} \phi d(\nu \otimes \mu) \leq \int_{*} \nu(ds) \int_{*} \phi(s,t) \mu(dt) \leq \int_{*} \nu(ds) \int_{*} \phi(s,t) \mu(dt) \leq \int_{*} \phi d(\nu \otimes \mu)$$

for all $\phi \in \mathbf{R}^{S \times T}$. In Section 3, we shall how increasing partitions unity can be used to establish equality when $\phi(s,t)$ is measurable in t and increasing in s with respect some linear ordering on S. Moreover, we shall establish a Fubini-Tonelli inequality for the so-called Fubini integral:

Let S be a given set, let 2^S denote the set of all subsets of S and let $\rho:2^S\to[0,\infty]$ be an increasing set function satisfying $\rho(\emptyset)=0$. If $f:S\to[0,\infty]$ is a non-negative function, we let $\int^F f \,d\rho:=\int_0^\infty \,\rho(s\mid f(s)>x)\,dx$ denote the Fubini integral of f; see [5]. Let $\mathcal{A}\subseteq 2^S$ be an algebra on S and let $\nu:\mathcal{A}\to[0,\infty]$ be a finitely additive content. Then we set $\mathcal{A}^\circ:=\{A\in\mathcal{A}\mid \nu(A)<\infty\}$ and if $C\subseteq S$, we define $\nu^*(C):=\inf_{A\in\mathcal{A}} \int_{A\subseteq C} \nu(A)$ and $\nu_*(C):=\sup_{A\in\mathcal{A}} \int_{A\subseteq C} \nu(A)$ denote the upper and lower ν -integrals for all $\nu_*(C):=\sup_{A\in\mathcal{A}} \int_{A\subseteq C} \nu(A)$ is a non-negative function, we have (see [5]):

(1.2)
$$\int_{-\infty}^{\infty} h \, d\nu = \int_{-\infty}^{\infty} h \, d\nu^* \quad \text{and} \quad \int_{\infty}^{\infty} h \, d\nu = \int_{-\infty}^{\infty} h \, d\nu_{\circ}$$

If $x,y\in \bar{\mathbf{R}}$ are extended real numbers, we let x+y denote the usual extension of the addition with the convention $\infty+(-\infty):=\infty$ and we let x+y denote the usual extension of the addition with the convention $\infty+(-\infty):=-\infty$. We define x-y:=x+(-y) and x-y:=x+(-y). If $f:S\to \bar{\mathbf{R}}$ is an arbitrary function, we let $f_+(s):=f(s)\vee 0$ and $f_-(s):=f(s)\wedge 0$ denote the positive and negative parts of f for all $s\in S$. Then we have (see [5]):

(1.3)
$$\int_{-\pi}^{\pi} f \, d\nu = \int_{-\pi}^{\pi} f_{+} \, d\nu + \int_{-\pi}^{\pi} f_{-} \, d\nu \quad , \quad \int_{\pi} f \, d\nu = \int_{\pi} f_{+} \, d\nu + \int_{\pi} f_{-} \, d\nu$$

If $\mathcal{L}\subseteq 2^S$, we let $\bar{W}(S,\mathcal{L})$ denote the set of all $upper\ \mathcal{L}$ -functions; that is, the set of all $f:S\to \bar{\mathbf{R}}$ such that for all $-\infty < x < y < \infty$, there exists $L_{xy}\in \mathcal{L}\cup \{\emptyset,S\}$ satisfying $\{f>y\}\subseteq L_{xy}\subseteq \{f>x\}$. If \mathcal{L} is a σ -algebra on S, we have $\bar{W}(S,\mathcal{L})=\bar{M}(S,\mathcal{L})$. If S is topological space and \mathcal{L} is the set of all open (closed) subsets of S, then $\bar{W}(S,\mathcal{L})$ is the set of all lower (upper) semicontinuous functions $f:S\to \bar{\mathbf{R}}$. Let (T,\mathcal{B},μ) be a measure space and let $\phi:S\times T\to \bar{\mathbf{R}}$ be a given function such that $\phi(s,t)$ is an upper \mathcal{L} -function in s and \mathcal{B} -measurable in s. In Section 3, we shall see that increasing s-partitions can used to establish criteria for the integral transform $s \curvearrowright \int_T \phi(s,t)\,\mu(dt)$ to be an upper \mathcal{L} -function.

- Let (S, \leq) and (M, \leq) be prosets and let $\Sigma : M \to \overline{\mathbf{R}}$ be an increasing function. In Section 4, we shall see that increasing partitions unity can used to solve the following problem:
- (IP) Let $\omega \in M$ be a given element and let $H: S \to \bar{\mathbf{R}}$ and $\phi: S \to M$ be increasing functions. Find necessary and/or sufficient conditions for the existence of a an increasing function $\psi: S \to M$ satisfying $\phi(s) \preceq \psi(s) \preceq \omega$ and $\Sigma \psi(s) = H(s) \ \forall \ s \in S$

Let me at this point recall the concepts concerning prosets, needed for our objective:

Let (X, \leq) be a proset and let $x, y \in X$ be given. Then we write x < y if $x \leq y$ and $y \not \leq x$, we write $x \approx y$ if $x \leq y$ and $y \leq x$, and we introduce the following *intervals*:

$$[*,x] = \{ u \in X \mid u \le x \}$$
, $[x,*] = \{ u \in X \mid u \ge x \}$, $[x,y] = [x,*] \cap [*,y]$

Let $A, B \subseteq X$ be a given sets. Then we write $A \leq B$ if $x \leq y$ for all $x \in A$ and all $y \in B$, and we introduce the following *intervals*:

$$[*,A] = \{ u \in X \mid u \le A \} \ , \ [A,*] = \{ u \in X \mid u \ge A \} \ , \ [A,B] = [A,*] \cap [*,B]$$

We say that A is a lower interval, resp. an upper interval, if $[*,u]\subseteq A$, resp. $[u,*]\subseteq A$, for all $u\in A$. We let $\vee A$ denote the set of all suprema of A; that is the set of all $x\in A$ satisfying $A\leq x$ and $x\leq y$ for all $y\in X$ satisfying $A\leq y$, and we define the set $\wedge A$ of all infima of A similarly. We say that A is cofinal in (B,\leq) if $A\subseteq B\subseteq \cup_{u\in A}[*,u]$ and we say that (A,\leq) is countably cofinal if (A,\leq) admits a countable, cofinal subset. We say that (X,\leq) is a lattice if $x\vee y\neq\emptyset$ and $x\wedge y\neq\emptyset$ for all $x,y\in X$, and we say that (X,\leq) is a σ -lattice if $\forall A\neq\emptyset$ and $A\neq\emptyset$ for every non-empty countable set $A\subseteq X$. We say that A is linear if for all $x,y\in A$ we have either $x\leq y$ or $y\leq x$, and we say that A is a maximal linearly ordered set if A is linear and A=B for every linear set $A\subseteq X$ is contained in some maximal linearly ordered set, and observe that we have

(1.4) If $A \subseteq X$ is a maximal linearly ordered set, then we have $\vee B \subseteq A$ and $\wedge B \subseteq A$ for all $B \subseteq A$

Let $x, x_1, x_2, \ldots \in X$ be given elements. Then we write $x_n \uparrow x$, if $x_1 \le x_2 \le \cdots$ and $x \in \bigvee \{x_n \mid n \ge 1\}$, and we write $x_n \downarrow x$, if $x_1 \ge x_2 \ge \cdots$ and $x \in \bigwedge \{x_n \mid n \ge 1\}$.

2. Smoothness and the Darboux property Let (M, \preceq) be a proset and let $\Sigma : M \to \overline{\mathbf{R}}$ be an increasing function. Then we let $m_{\Sigma} := \inf_{\xi \in M} \Sigma(\xi)$ and

 $m^\Sigma := \sup_{\xi \in M} \, \Sigma(\xi) \,\,$ denote the two extreme values of $\,\, \Sigma \,\,$ and we define

$$L^1(\Sigma) = \{ \xi \in M \mid -\infty < \Sigma(\xi) < \infty \}$$

$$L_*(\Sigma) = \{ \xi \in M \mid \Sigma(\xi) = -\infty \} , \quad L^*(\Sigma) = \{ \xi \in M \mid \Sigma(\xi) = \infty \}$$

$$\Sigma_{\vee} B = \inf_{\xi \in [B,*]} \Sigma(\xi) \ , \ \Sigma_{\wedge} B = \sup_{\xi \in [*,B]} \Sigma(\xi) \ \forall \ B \subseteq M$$

$$\sup \Sigma B = \sup_{\xi \in B} \Sigma(\xi) \ , \ \inf \Sigma B = \inf_{\xi \in B} \Sigma(\xi) \ \forall \ B \subseteq M$$

with the usual conventions $\inf \emptyset := \infty$ and $\sup \emptyset := -\infty$. Then we have

(2.1)
$$\sup \Sigma B \leq \Sigma_{\vee} B$$
 and $\Sigma_{\vee} B = \Sigma(\xi) \ \forall \xi \in \vee B$

(2.2)
$$\Sigma_{\Lambda} B \leq \inf \Sigma B$$
 and $\Sigma_{\Lambda} B = \Sigma(\xi) \ \forall \xi \in \Lambda B$

We say that Σ is *smooth* if for every non-empty linear set $B \subseteq M$, we have

(2.3)
$$-\infty < \sup \Sigma B < \infty \implies \exists \xi \in \forall B \text{ so that } \Sigma(\xi) = \sup \Sigma B$$

(2.4)
$$-\infty < \inf \Sigma B < \infty \implies \exists \xi \in \wedge B \text{ so that } \Sigma(\xi) = \inf \Sigma B$$

We say that Σ has the Darboux property if for every pair $\xi, \eta \in M$, we have

(2.5)
$$\xi \leq \eta$$
, $\Sigma(\xi) < \Sigma(\eta) < \infty \Rightarrow \exists \kappa \in [\xi, \eta]$ so that $\Sigma(\xi) < \Sigma(\kappa) < \Sigma(\eta)$

$$(2.6) \quad \xi \preceq \eta \ \ , \ \ -\infty < \Sigma(\xi) < \Sigma(\eta) \ \Rightarrow \ \exists \ \kappa \in [\xi, \eta] \ \ \text{so that} \ \ \Sigma(\xi) < \Sigma(\kappa) < \Sigma(\eta)$$

We say that Σ has the strong Darboux property if Σ has the Darboux property and satisfies the following condition:

(2.7) If $(\xi_n) \subseteq L_*(\Sigma)$ and $\xi_n \uparrow \xi$ for some $\xi \in L^1(\Sigma)$, then for every increasing sequence $(c_n) \subseteq \mathbf{R}$ satisfying $c_n \uparrow \Sigma(\xi)$ and $c_n < \Sigma(\xi)$ for all $n \ge 1$, there exists an increasing sequence $(\eta_n) \subseteq M$ such that $\xi_n \preceq \eta_n \preceq \xi$ and $-\infty < \Sigma(\eta_n) \le c_n$ for all $n \ge 1$

We say that Σ is order injective, if $\xi \approx \eta$ for all $\xi, \eta \in L^1(\Sigma)$ satisfying $\xi \preceq \eta$ and $\Sigma(\xi) = \Sigma(\eta)$. If S is a non-empty set and $h: S \to \bar{\mathbf{R}}$ is a function, we let $D_h := \{s \in S \mid |h(s)| < \infty\}$ denote the finite domain of h and we let $D_h^\circ := \{s \in S \mid h(s) = -\infty\}$ and $D_h^* := \{s \in S \mid h(s) = \infty\}$ denote the infinite domains of h.

Lemma 2.1: Let (M, \preceq) be a σ -lattice, let $\Sigma : M \to \overline{\mathbf{R}}$ be an increasing function and let $B \subseteq M$ be a given set. Then we have

(1)
$$\forall \xi \in [B, *] \ \exists \ \psi \in [B, \xi] \ \textit{ so that } \ \Sigma(\psi) = \Sigma_{\vee} B$$

(2)
$$\forall \xi \in [*, B] \ \exists \ \psi \in [\xi, B] \ \text{so that} \ \Sigma(\psi) = \Sigma_{\wedge} B$$

Proof: Let $\xi \in [B,*]$ be given. Since [B,*] is non-empty, there exist $\psi_1,\psi_2,\ldots \in [B,*]$ such that $\Sigma(\psi_n) \to \Sigma_{\vee} B$ and since (M,\preceq) is a σ -lattice, there exists an element $\psi \in \xi \wedge \wedge_{n \geq 1} \psi_n$. Since $B \preceq \xi$ and $B \preceq \psi_n$ for all $n \geq 1$, we have $\psi \in [B,\xi]$ and so we have $\Sigma_{\vee} B \leq \Sigma(\psi)$. Since $\psi \preceq \psi_n$, we have $\Sigma_{\vee} B \leq \Sigma(\psi) \leq \Sigma(\psi_n)$ for all $n \geq 1$ and since $\Sigma(\psi_n) \to \Sigma_{\vee} B$, we see that $\Sigma(\psi) = \Sigma_{\vee} B$ which proves (1) and (2) follows in the same manner.

Lemma 2.2: Let (M, \preceq) be a σ -lattice and let $\Sigma : M \to \overline{\mathbf{R}}$ be an increasing smooth function. Let $B \subseteq M$ be a non-empty linear set and let us define $B^1 := B \cap L^1(\Sigma)$, $B_* := B \cap L_*(\Sigma)$ and $B^* := B \cap L^*(\Sigma)$. Then $B_* \preceq B^1 \preceq B^*$ and we have

- (1) $\Sigma_{\vee}B = \sup \Sigma B \Leftrightarrow \text{ either } \sup \Sigma B > -\infty \text{ or } \Sigma_{\vee}B = -\infty$
- (2) $\Sigma_{\Lambda}B = \inf \Sigma B \Leftrightarrow \text{ either } \inf \Sigma B < \infty \text{ or } \Sigma_{\Lambda}B = \infty$

and if $B^1 \neq \emptyset$, then we have

(3)
$$\forall B^1 = \forall (B^1 \cup B_*) \neq \emptyset$$
 and $\Sigma(\xi) = \sup \Sigma B^1 = \sup \Sigma(B^1 \cup B_*) \ \forall \xi \in \forall B^1$

(4)
$$\wedge B^1 = \wedge (B^1 \cup B^*) \neq \emptyset$$
 and $\Sigma(\xi) = \inf \Sigma B^1 = \inf \Sigma(B^1 \cup B^*) \ \forall \xi \in \wedge B^1$

Proof: (1+2): Since Σ is increasing and B is a linear set satisfying $\Sigma(\xi) = -\infty < \Sigma(\kappa) < \infty = \Sigma(\eta)$ for all $\xi \in B_*$, all $\kappa \in B^1$ and all $\eta \in B^*$, we have $B_* \preceq B^1 \preceq B^*$. By (2.1), we have $\sup \Sigma B \le \Sigma_{\vee} B$. Hence, if $\sup \Sigma B = \infty$ or $\Sigma_{\vee} B = -\infty$, we have $\sup \Sigma B = \Sigma_{\vee} B$. Suppose that $-\infty < \sup \Sigma B < \infty$. By smoothness of Σ and linearity of B, there exists $\xi \in \vee B$ satisfying $\Sigma(\xi) = \sup \Sigma B$ and so by (2.1) we have $\sup \Sigma B = \Sigma_{\vee} B$. Hence, we see that the implication " \Leftarrow " in (1) holds and the converse implication is evident. Thus, (1) is proved and (2) follows in the same manner.

(3+4): Suppose that $B^1 \neq \emptyset$. Since $B_* \preceq B^1$, we have $\vee B^1 = \vee (B^1 \cup B_*)$ and $\sup \Sigma B^1 = \sup \Sigma (B^1 \cup B_*) > -\infty$. Suppose that $\sup \Sigma B^1 < \infty$. By smoothness of Σ , there exists $\eta \in \vee B^1$ such that $\Sigma(\eta) = \sup \Sigma B^1$. Hence, we see that (3) follows from (2.1). So suppose that $\sup \Sigma B^1 = \infty$. Then there exists a sequence $(\eta_n) \subseteq B^1$ such that $\Sigma(\eta_n) \to \infty$ and since M is a σ -lattice, there exists an element $\eta \in \vee_{n=1}^\infty \eta_n$. Let $\xi \in B^1$ be given. Since $\Sigma(\xi) < \infty$, there exists an integer $k \ge 1$ such that $\Sigma(\xi) < \Sigma(\eta_k)$. Since Σ is increasing and B is a linear set containing ξ and η_k , we have $\xi \preceq \eta_k \preceq \eta$ and since $(\eta_n) \subseteq B^1$, we have $\eta \in \vee B^1$. Hence, we see that (3) follows from (2.1) and (4) follows in the same manner.

Theorem 2.3: Let (M, \preceq) be a lattice and let $\Sigma : M \to \overline{\mathbf{R}}$ be an increasing smooth function with the Darboux property. Let $B \subseteq M$ be a linear set such that $B^1 := B \cap L^1(\Sigma) \neq \emptyset$ and let us define $B_* := B \cap L_*(\Sigma)$ and $B^* := B \cap L^*(\Sigma)$. Then there exists a maximal linearly ordered set $L \subseteq M$ satisfying

(1)
$$B \subseteq L$$
, $\Sigma_{\vee} B_* = \inf \Sigma L^1 = \Sigma_{\vee} L_*$, $\Sigma_{\wedge} B^* = \sup \Sigma L^1 = \Sigma_{\wedge} L^*$

where $L^1 := L \cap L^1(\Sigma)$, $L_* := L \cap L_*(\Sigma)$ and $L^* := L \cap L^*(\Sigma)$.

Proof: Let us define $M_0 := [B_*, B^1] \cap L^1(\Sigma)$ and $r := \Sigma_{\vee} B_*$. Then I claim that there exist a linear set $Q \subseteq M_0$ satisfying $\inf \Sigma(Q \cup B^1) = r$.

Since $B_* \preceq B^1 \neq \emptyset$, we have $r \leq \inf \Sigma(B^1)$ and $r < \infty$. Hence, if $\inf \Sigma(B^1) \leq r$, we see that $Q := \emptyset$ satisfies the claim. So suppose that $r < \inf \Sigma(B^1)$. Then we have $-\infty < \inf \Sigma(B^1) < \infty$ and so by smoothness of Σ , there exists $\pi \in \wedge B^1$ satisfying $\Sigma(\pi) = \inf \Sigma(B^1)$. In particular, we have $\pi \in L^1(\Sigma)$ and since $B_* \leq B^1$ and $\pi \in \wedge B^1$, we have $B_* \leq \pi \leq B^1$. Hence, we see that $\pi \in M_0$ and that (M_0, \preceq) is a non-empty proset. So by Hausdorff maximality principle there exists a maximal linearly ordered set $Q \subseteq M_0$ in the proset (M_0, \preceq) . Let us define $\alpha := \inf \Sigma(Q \cup B^1)$. Since Q and B^1 are linear and $Q \preceq B^1$, we see that $Q \cup B^1$ is linear and since $B^1 \neq \emptyset$ and $B_* \leq Q \cup B^1$, we have $r \leq \alpha < \infty$. Suppose that $r < \alpha$. Then we have $-\infty < \alpha < \infty$ and so by linearity of $Q \cup B^1$ and smoothness of Σ , there exists $\eta \in \wedge (Q \cup B^1)$ such that $\Sigma(\eta) = \alpha$. In particular, we have $\eta \in L^1(\Sigma)$ and $B_* \leq \eta \leq Q \cup B^1$ and since $r < \alpha = \Sigma(\eta)$, there exists $\xi_0 \in [B_*, *]$ satisfying $\Sigma(\xi_0) < \alpha$. Since M is a lattice, there exists $\xi \in \xi_0 \wedge \eta$ and since $B_* \leq \xi_0$ and $B_* \leq \eta$, we have $\xi \in [B^*, \eta]$ and $r \leq \Sigma(\xi) \leq \Sigma(\xi_0) < \Sigma(\eta) < \infty$. Since Σ has the Darboux property there exists $\kappa \in [\xi, \eta]$ satisfying $\Sigma(\xi) < \Sigma(\kappa) < \Sigma(\eta)$. Since $B_* \leq \xi \leq \kappa \leq \eta \leq Q \cup B^1$, we see that $\kappa \in M_0$ and that $Q_0 := Q \cup \{\kappa\}$ is a linear subset of M_0 . Since $\Sigma(\kappa) < \Sigma(\eta) = \inf \Sigma(Q \cup B^1)$, we have $\kappa \notin Q$ and $Q \subsetneq Q_0$. However, this contradicts the maximality of Q in M_0 and so we must have $\alpha \leq r$ and since $\alpha \geq r$, we see that Q satisfies the claim.

Hence, we see that there exists a linear set $Q\subseteq [B_*,B^1]\cap L^1(\Sigma)$ satisfying $\inf\Sigma(Q\cup B^1)=\Sigma_{\vee}B_*$. In the same manner, we see that there exists a linear set $R\subseteq [B^1,B^*]\cap L^1(\Sigma)$ satisfying $\sup\Sigma(R\cup B^1)=\Sigma_{\wedge}B^*$. Since B, Q and R are linear and

$$B_* \leq Q \leq B^1 \leq R \leq B^*$$
 and $B = B_* \cup B^1 \cup B^*$

we see that $C:=B\cup Q\cup R$ is a linear set containing B. So by Hausdorff's maximality principle there exists a maximal linearly ordered set L containing C. Let us define $L^1:=L\cap L^1(\Sigma)$, $L_*:=L\cap L_*(\Sigma)$ and $L^*:=L\cap L^*(\Sigma)$. Since L is linear, we have $L_*\preceq L^1\preceq L^*$ and since $B\subseteq L$ and $Q\cup B^1\subseteq L^1$, we have

$$\Sigma_{\vee} B_* \leq \Sigma_{\vee} L_* \leq \inf \Sigma L^1 \leq \inf \Sigma (Q \cup B^1) = \Sigma_{\vee} B_*$$

Hence, we see that $\Sigma_{\vee}B_{*}=\Sigma_{\vee}L_{*}=\inf\Sigma L^{1}$ and in the same manner, we see that $\Sigma_{\wedge}B^{*}=\Sigma_{\wedge}L^{*}=\sup\Sigma L^{1}$ which proves the theorem.

Theorem 2.4: Let (M, \preceq) be a σ -lattice and let $\Sigma: M \to \bar{\mathbf{R}}$ be an increasing smooth function with the Darboux property. Let $D \subseteq \bar{\mathbf{R}}$ be a non-empty set and let $h: D \to M$ be a increasing function satisfying $\Sigma h(x) = m^\Sigma \wedge (x \vee m_\Sigma)$ for all $x \in D$ and $h(D) \cap L^1(\Sigma) \neq \emptyset$. Then there exists an increasing Σ -partition of unity $f: \bar{\mathbf{R}} \to M$ satisfying f(x) = h(x) for all $x \in D$.

Proof: Let us define $\lambda(x):=m^\Sigma\wedge(x\vee m_\Sigma)$ for all $x\in \bar{\mathbf{R}}$. Since h is increasing, we see that h(D) is a linear, countably cofinal set and since M is a σ -lattice, we have that $\vee h(D)$ is non-empty. So by Lem.2.1 with $B:=\emptyset$ there exists $\beta\in M$ such that $h(D)\preceq\beta$ and $\Sigma(\beta)=m^\Sigma$ and we may (and shall) take $\beta=h(\infty)$ if $\infty\in D$. Let $x\in \bar{\mathbf{R}}$ be given and let us define $D^x:=D\cap[x,\infty]$ and $\Delta^x:=h(D^x)\cup\{\beta\}$. Then Δ^x is countably cofinal and since h is increasing, we have $h(x)\in\wedge\Delta^x$ for all $x\in D$. Since M is a σ -lattice, there exists a function $h_0:\bar{\mathbf{R}}\to M$ such that $h_0(x)\in\wedge\Delta^x$ for all $x\in\bar{\mathbf{R}}$ and $h_0(x)=h(x)$ for all $x\in D$. Since $x\mapsto\Delta^x$ is decreasing, we see that h_0 is increasing on $\bar{\mathbf{R}}$. Since $\Sigma h(y)<\infty$ for all $y\in D\cap[-\infty,\infty)$, we see that $\inf\Sigma\Delta^x=\infty$ implies $\Delta^x=\{\beta\}$ and so by (2.2) and Lem.2.2.(2), we have $\Sigma h_0(x)=\inf\Sigma\Delta^x$ for all $x\in\bar{\mathbf{R}}$. Since $\Sigma(\beta)=m^\Sigma=\lambda(x)$ for all $x\geq m^\Sigma$ and $\Sigma(y)=\lambda(y)$ for all $y\in D$, we see that $\Sigma(y)=\lambda(y)$ for all $y\in D$, we see that $\Sigma(y)=\lambda(y)$ for all $y\in D$, we see that $\Sigma(y)=\lambda(y)$ for all $x\in D$.

In the same manner, we see that there exists an increasing function $h_1: \bar{\mathbf{R}} \to M$ satisfying $h_1(x) = h_0(x)$ for all $x \in D \cup [m^\Sigma, \infty]$ and $\Sigma h_1(x) = \lambda(x)$ for all $x \in D_1 := [-\infty, m_\Sigma] \cup D \cup [m^\Sigma, \infty]$. Hence, if $D_1 = \bar{\mathbf{R}}$, then h_1 is an increasing Σ -partition of unity satisfying $h_1(x) = h_0(x) = h(x)$ for all $x \in D$.

So suppose that $D_1 \neq \bar{\mathbf{R}}$. Then $m_\Sigma < m^\Sigma$ and $B := h_1(D_1)$ is a linear set containing h(D). Since $\Sigma h_1(x) = \lambda(x) \neq \pm \infty$ for all $x \in D_1 \cap \mathbf{R}$, we see that the sets $B_* := B \cap L_*(\Sigma)$ and $B^* := B \cap L^*(\Sigma)$ contain at most one element and so we have $\Sigma_{\vee} B_* = m_\Sigma$ and $\Sigma_{\wedge} B^* = m^\Sigma$. Since $\emptyset \neq h(D) \cap L^1(\Sigma)$, we have $B^1 := B \cap L^1(\Sigma) \neq \emptyset$ and so by Thm.2.3 there exists a maximal linear set L satisfying

$$L \supset B$$
, inf $\Sigma L^1 = \Sigma_V L_* = m_{\Sigma} < m^{\Sigma} = \Sigma_{\Lambda} L^* = \sup \Sigma L^1$

where $L^1:=L\cap L^1(\Sigma)$, $L_*:=L\cap L_*(\Sigma)$ and $L^*:=L\cap L^*(\Sigma)$.

Let $m_{\Sigma} < x < m^{\Sigma}$ be a given and let us define $A^x := \{ \xi \in L \mid \Sigma(\xi) > x \}$ and $A_x := \{ \xi \in L \mid \Sigma(\xi) \leq x \}$. Since $x < m^\Sigma = \sup \Sigma L^1$, we have $A^x \cap L^1(\Sigma) = A^x \cap L^1 \neq \emptyset$ and $A^x \cap L_*(\Sigma) = \emptyset$. So by Lem.2.2 there exists $f(x) \in A^x = A^x = A^x \cap L^1$ such that $x \leq \inf \Sigma A^x = \Sigma f(x) < \infty$. Since $m_\Sigma=\inf\ \Sigma L^1< x$, we have $A_x\cap L^1(\Sigma)=A_x\cap L^1\neq\emptyset$ and $A_x\cap L^*(\Sigma)=\emptyset$. So by Lem.2.2 there exists $g(x) \in \forall A_x = \forall (A_x \cap L^1)$ such that $-\infty < \Sigma g(x) =$ $\sup \Sigma A_x \leq x$. Since $L = A^x \cup A_x$ is linear and $\Sigma(\xi) \leq x < \Sigma(\eta)$ for all $\xi \in A_x$ and all $\eta \in A^x$, we have $A_x \preceq A^x$ and so we have $g(x) \preceq f(x)$ and $-\infty < \Sigma g(x) \le x \le \Sigma f(x) < \infty$. Suppose that $\Sigma g(x) < \Sigma f(x)$. Since $g(x) \in L^1(\Sigma)$ and Σ has the Darboux property, there exists $\kappa \in [g(x), f(x)]$ such that $\sup \Sigma A_x = \Sigma g(x) < \Sigma(\kappa) < \Sigma f(x) = \inf \Sigma A^x$. Since $L = A_x \cup A^x$, we see that $\kappa \notin L$ and since L is linear and $A_x \leq g(x) \leq \kappa \leq f(x) \leq A^x$, we see that $L \cup \{\kappa\}$ is linear. However, this contradicts the maximality of L and so we must have $\Sigma g(x) \geq \Sigma f(x)$. Since $\Sigma g(x) \leq x \leq \Sigma f(x)$, we have $\Sigma g(x) = x = \Sigma f(x)$ for all $x \in (m_{\Sigma}, m^{\Sigma})$ and by (1.4) and maximality of L, we have $f(x) \in L$ and $g(x) \in L$ for all $x \in (m_{\Sigma}, m^{\Sigma})$.

Since $\mathbf{R} \setminus D_1 \subseteq (m_{\Sigma}, m^{\Sigma})$, we may define F(x) := f(x) if $x \in \bar{\mathbf{R}} \setminus D_1$ and $F(x) := h_1(x)$ if $x \in D_1$. Since $\Sigma h_1(x) = \lambda(x)$ for all $x \in D_1$ and

 $\Sigma f(x) = x = \lambda(x)$ for all $x \in (m_{\Sigma}, m^{\Sigma})$, we have $\Sigma F(x) = \lambda(x)$ for all $x \in \bar{\mathbf{R}}$ and since $h_1(D) \subseteq L$ and $f((m_{\Sigma}, m^{\Sigma})) \subseteq L$, we see that $F(x) \in L$ for all $x \in L$. Let x < y be given. Suppose that $\lambda(x) < \lambda(y)$. Then we have $\Sigma F(y) < \Sigma F(x)$ and since Σ is increasing and L is a linear set containing F(x) and F(y), we have $F(y) \preceq F(y)$. Suppose that $\lambda(x) = \lambda(y)$. Since x < y, we have either $x < y \le m_{\Sigma}$ or $m^{\Sigma} \le x < y$ and since h_1 is increasing, we have $F(x) = h_1(x) \preceq h_1(y) = F(y)$ in either case. Hence, we see that F is an increasing Σ -partition of unity satisfying $F(x) = h_1(x) = h(x)$ for all $x \in \bar{\mathbf{R}}$.

Theorem 2.5: Let (M, \preceq) be a σ -lattice and let $\Sigma : M \to \overline{\mathbf{R}}$ be an increasing smooth functional with the Darboux property. Let $\omega \in M$ and $\kappa \in L^1(\Sigma)$ be given elements and let $A \subseteq [*, \omega]$ be a linear set such that $A_* \cup \{\kappa, \omega\}$ is linear where $A_* := A \cap L_*(\Sigma)$. Let $F \subseteq A_*$ be a given set and let us define $q := \Sigma_{\vee} F$ and $r := \Sigma_{\vee} A_*$. Then we have

- (1) $q \le r \le \Sigma(\kappa) < \infty$ and $q \le r \le \Sigma(\xi) \le \Sigma(\omega) \ \forall \xi \in A \setminus A_*$
- (2) q = r if F is cofinal in A_* , and $q = -\infty$ if F is not cofinal in A_*

and there exists an increasing Σ -partition of unity $f: \bar{\mathbf{R}} \to M$ satisfying

- (3) $f(\Sigma(\omega)) = \omega$ and $\xi \leq f(\Sigma(\xi)) \ \forall \xi \in A \setminus A_*$
- (4) $\xi \leq f(q) \ \forall \xi \in F \ and \ \xi \leq f(r) \ \forall \xi \in A_*$

Proof: (1): Since $F \subseteq A_*$, we have $q \le r$ and since $A_* \cup \{\kappa, \omega\}$ is linear and $\Sigma(\xi) = -\infty < \Sigma(\kappa)$ for all $\xi \in A_*$, we have $A_* \preceq \kappa$. Hence, we have $q \le r \le \Sigma(\kappa) < \infty$ and by Lem.2.2, we have $A_* \preceq A \setminus A_*$. Hence, we have $r \le \Sigma(\xi)$ for all $\xi \in A \setminus A_*$ and since $A \preceq \omega$, we have $q \le r \le \Sigma(\omega)$ which completes the proof of (1).

(2): If F is cofinal in A_* , we have $[F,*]=[A_*,*]$ and so we have r=q. Suppose that F is not cofinal in A_* . Then there exists $\eta\in A_*$ such that $\eta\not\preceq\xi$ for all $\xi\in F$ and since A_* is linear and contains F, we have $\xi\preceq\eta$ for all $\xi\in F$. Hence, we have $q\leq \Sigma(\eta)$ and since $\eta\in A_*$, we have $q=\Sigma(\eta)=-\infty$.

Suppose that $\Sigma(\omega)=-\infty$. By Thm.2.4 there exists an increasing Σ -partition of unity $f:\bar{\mathbf{R}}\to M$ such that $f(\Sigma(\omega))=\omega$ and $f(\Sigma(\kappa))=\kappa$ and since $A=A_*$ and $q=r=-\infty$, we see that f satisfies (3+4). So suppose that $\Sigma(\omega)>-\infty$. Set $A^1:=(A\cup\{\omega\})\cap L^1(\Sigma)$ and let us define $C:=A^1\cup\{\omega\}$ if $A^1\neq\emptyset$ and $C:=\{\kappa,\omega\}$ if $A^1=\emptyset$. Since $\{\kappa,\omega\}$ is linear and $\Sigma(\kappa)<\infty$, we see that $\kappa\preceq\omega$ if $\Sigma(\omega)=\infty$. Hence, we see that C is a linear set satisfying $C\cap L^1(\Sigma)\neq\emptyset$ and $A_*\preceq C\preceq\omega$. So by Lem.2.1 and Lem.2.2 there exists $v\in M$ satisfying $A_*\preceq v\preceq C$ and $\Sigma(v)=r$. Since $F\subseteq A_*$, we have $F\preceq v$ and so by Lem.2.1 there exists $\rho\in M$ such that $F\preceq\rho\preceq v$ and $\Sigma(\rho)=q$ and if $\gamma=r$, we may (and shall) take $\gamma=v$. Since $\gamma=v$ is linear and $\gamma=v$ and $\gamma=v$ and $\gamma=v$ is a linear

set containing $C \cup \{\rho, v, \omega\}$ and so we have $B \cap L^1(\Sigma) \neq \emptyset$. Set $D := \Sigma(B)$, $b := \Sigma(\omega)$ and $B_x := \{\xi \in B \mid \Sigma(\xi) = x\}$ for all $x \in \overline{\mathbf{R}}$. Then we have $\emptyset \neq B_x \subseteq L^1(\Sigma)$ and $\sup \Sigma B_x$ for all $x \in D \cap \mathbf{R}$ and since $\Sigma(\omega) > -\infty$ and $\rho \preceq B \preceq \omega$, we have $\omega \in \vee B_b$ and $B_{-\infty} \subseteq \{\rho\}$.

So by Lem.2.2 there exists a function $h:D\to M$ such that $h(x)\in \vee B_x$ and $\Sigma h(x)=x$ for all $x\in D$ and $h(b)=\omega$. Since B is linear and Σ is increasing, we have $B_x\preceq B_y$ for all x< y and so we see that h is increasing on D. Since $B^1\neq\emptyset$, we have $h(D)\cap L^1(\Sigma)\neq\emptyset$ and so by Them.2.4 there exists an increasing Σ -partition of unity $f:\bar{\mathbf{R}}\to M$ such that f(x)=h(x) for all $x\in D$. In particular, we have $f(b)=h(b)=\omega$. Let $\xi\in A\setminus A_*$ be given and set $x=\Sigma(\xi)$. If x=b, we have $\xi\preceq\omega=f(x)$. Suppose that x< b. Since $\xi\notin A_*$, we have $\xi\in A^1\subseteq B$ and so we have $x\in D$ and $\xi\in B_x$. Since $f(x)=h(x)\in \vee B_x$, we have $\xi\preceq f(x)$. Thus, we see that f satisfies (3). Since $g, x\in D$ and $g, x\in D$

Lemma 2.6: Let (M, \preceq) be a proset and let $\Sigma : M \to \overline{\mathbf{R}}$ be an increasing, order injective function. Then Σ is smooth if and only if

- (1) If $(\xi_n) \subseteq L^1(\Sigma)$ is an increasing sequence satisfying $\sup_{n \ge 1} \Sigma(\xi_n) < \infty$, then there exists $\xi \in M$ such that $\xi_n \uparrow \xi$ and $\Sigma(\xi) = \sup_{n \ge 1} \Sigma(\xi_n)$
- (2) If $(\xi_n) \subseteq L^1(\Sigma)$ is a decreasing sequence satisfying $\inf_{n \ge 1} \Sigma(\xi_n) > -\infty$, then there exists $\xi \in M$ such that $\xi_n \downarrow \xi$ and $\Sigma(\xi) = \inf_{n \ge 1} \Sigma(\xi_n)$

Proof: The "only if" part is evident. So suppose that Σ satisfies (1+2) and let $B\subseteq M$ be a non-empty linear set satisfying $|\sup \Sigma B|<\infty$. Then there exists am increasing sequence $(\xi_n)\subseteq B$ such that $\Sigma(\xi_n)\uparrow\sup \Sigma B$ and $-\infty<\Sigma(\xi_n)\le\sup \Sigma B<\infty$ for all $n\ge 1$. In particular, we see that $\xi_n\in L^1(\Sigma)$ and that $\sup_{n\ge 1}\Sigma(\xi_n)=\sup \Sigma B<\infty$. So by (1) there exists $\xi\in M$ such that $\xi_n\uparrow\xi$ and $\Sigma(\xi)=\sup \Sigma B$. Since $|\sup \Sigma B|<\infty$, we have $\xi\in L^1(\Sigma)$. Let $\eta\in B$ be given and let me show that $\eta\preceq \xi$. If $\eta\preceq \xi_n$ for some $n\ge 1$, this is evident. So suppose that $\eta\not\preceq \xi_n$ for all $n\ge 1$. Since B is linear and contains η and ξ_n , we have $\xi_n\preceq \eta$ for all $n\ge 1$ and since $\xi\in \bigvee_{n\ge 1}\xi_n$, we have $\xi\preceq \eta$. Hence, we have $\Sigma(\xi)\le \Sigma(\eta)\le\sup \Sigma B=\Sigma(\xi)$ and so we have $\Sigma(\xi)=\Sigma(\eta)=\sup \Sigma B\ne\pm\infty$. Hence, by order injectivity of Σ , we have $\eta\preceq \xi$ for all $\eta\in B$ and since $(\xi_n)\subseteq B$ and $\xi\in \bigvee_{n\ge 1}\xi_n$, we have $\xi\in B$ and $\xi\in \bigcup_{n\ge 1}\xi_n$, we have $\xi\in B$ and $\xi\in B$ and in the same manner, we see that Σ satisfies (2.4).

Theorem 2.7: Let (T, \mathcal{B}, μ) be a measure space and let $\Sigma : M(T, \mathcal{B}) \to \mathbf{R}$ be a μ -integral. Then $(\bar{M}(T, \mathcal{B}), \leq_{\mu})$ is a σ -lattice and Σ is an increasing, smooth, order injective function satisfying

(1)
$$L^1(\Sigma) = L^1(T, \mathcal{B}, \mu)$$
, $\Sigma(f) = \int_T f \, d\mu \quad \forall f \in \bar{L}(T, \mathcal{B}, \mu)$

- (2) $\int_{*} f \, d\mu \le \Sigma(f) \le \int_{*} f \, d\mu \quad \forall f \in \bar{M}(T, \mathcal{B})$
- (3) $\Sigma(f_+) + \Sigma(f_-) \le \Sigma(f) \le \Sigma(f_+) + \Sigma(f_-) \quad \forall f \in \bar{M}(T, \mathcal{B})$
- (4) If $c \in \bar{\mathbf{R}}$ and $f: T \to \bar{\mathbf{R}}$ and $h \in \bar{M}(T, \mathcal{B}, \mu)$ are given functions satisfying $\int_{-\infty}^{\infty} f \, d\mu \le c \le \int_{\infty}^{\infty} h \, d\mu$ and $f(t) \le h(t)$ for all $t \in T$, then we have
 - (a) $\exists g \in \bar{L}(T, \mathcal{B}, \mu)$ so that $\int_T g d\mu = c$ and $f(t) \leq g(t) \leq h(t) \ \forall t \in T$
- (5) Σ has the Darboux property if and only if μ is finitely founded and if so then Σ has the increasing Darboux property

Remark: Recall that μ is *finitely founded* if μ has no infinite atoms or equivalently, if $\mu_{\circ}(B) = \mu(B)$ for all $B \in \mathcal{B}$. Suppose that μ is finitely founded and let $f \in \bar{M}(T,\mathcal{B})$ be a given function. By (1.2) and (1.3), we see that f_+ and f_- belong to $\bar{L}(T,\mathcal{B},\mu)$ and that $f \in \bar{L}(T,\mathcal{B},\mu)$ if and only if either $\int_{*}^{*} f \, d\mu < \infty$ or $\int_{*} f \, d\mu > -\infty$. In particular, we see that the functionals $f \curvearrowright \int_{*}^{*} f \, d\mu$ and $f \curvearrowright \int_{*}^{*} f \, d\mu$ are μ -integrals whenever μ is finitely founded.

Proof: (1) and (2) are easy consequences of (1.1). In particular, we see that Σ is order injective. So by Lem.2.6 and the monotone convergence theorem we see that Σ is an increasing, smooth and order injective functional. Let $f \in \overline{M}(T,\mathcal{B},\mu)$ be given. If $\Sigma(f_-) = -\infty$ or $\Sigma(f) = \infty$, then the first inequality in (3) holds trivially. So suppose that $\Sigma(f_-) > -\infty$ and $\Sigma(f) < \infty$. Since $f_- \leq f$ and Σ is increasing, we have $-\infty < \Sigma(f_-) \leq \Sigma(f) < \infty$ and so by (1) we see that $f \in L^1(\Sigma) = L^1(T,\mathcal{B},\mu)$ and that the first inequality in (3) holds. The last inequality in (3) follows in the same manner.

(4): If $c = \infty$, we have $\int_* h \, d\mu = \infty = \int^* h \, d\mu = \infty$ and since $f(t) \le h(t)$ for all $t \in T$, we see that g := h satisfies (4.a). So suppose that $c < \infty$. Then $\int_{-\pi}^{\pi} f \, d\mu < \infty$ and so there exist functions $\phi_n \in L^1(T, \mathcal{B}, \mu)$ and $\phi \in \bar{M}(T, \mathcal{B}, \mu)$ such that $\int_T \phi_n \, d\mu \downarrow \int_*^* f \, d\mu$ and $\phi_n(t) \downarrow \phi(t) \geq f(t)$ for all $t \in T$. Then we have $\int_*^* \phi \, d\mu = \int_*^* f \, d\mu$ and since $h \in \bar{M}(T,\mathcal{B},\mu)$ and $f \leq h$, we see that $\psi(t) := \phi(t) \wedge h(t)$ is \mathcal{B} -measurable and $f(t) \leq \psi(t)$ for all $t \in T$. Hence, we have $\int_{-\infty}^{\infty} f \, d\mu = \int_{-\infty}^{\infty} \psi \, d\mu \le c \le \int_{\infty}^{\infty} h \, d\mu$ and I claim that $\psi \in \bar{L}(T, \mathcal{B}, \mu)$. If $\int_{-\infty}^{\infty} \psi \, d\mu = -\infty$, this is evident. If $\int_{-\infty}^{\infty} \psi \, d\mu > -\infty$, we have $\inf_{n \ge 1} \int_{T} \phi_n \, d\mu > -\infty$ and $\int_* h \, d\mu > -\infty$. Hence, we have $h_- \in L^1(T,\mathcal{B},\mu)$ and by the monotone convergence theorem, we have $\phi \in L^1(T, \mathcal{B}, \mu)$. Since $|\psi(t)| \leq |\phi(t)| + |h_-(t)|$, we see that $\psi=\phi\wedge h\in L^1(T,\mathcal{B})$. Thus, we have $\psi\in \bar{L}(T,\mathcal{B},\mu)$, $\int_T\psi\,d\mu=\int^*f\,d\nu$ and $f(t) \leq \psi(t) \leq h(t)$ for all $t \in T$. In the same manner, we see that there exists $\xi \in \bar{L}(T,\mathcal{B},\mu)$ such that $\int_T \xi \, d\mu = \int_* h \, d\mu$ and $\psi(t) \leq \xi(t) \leq h(t)$ for all $t \in T$. If $c = \int_*^* f \, d\mu$, then $g := \psi$ satisfies (4.a), and if $c = \int_* h \, d\mu$, then $g := \xi$ satisfies. So suppose that $\int^* f \, d\mu < c < \int^* h \, d\mu$. Then we have $\int_T \psi \, d\mu < c < \int_T \xi \, d\mu$ and as above, we see that there exist $\psi_0, \xi_0 \in L^1(T, \mathcal{B}, \mu)$ satisfying $\int_T \psi_0 \, d\mu < c < \int_T \xi_0 \, d\mu$ and $\psi(t) \le \psi_0(t) \le \xi_0(t) \le \xi(t)$ for all $t \in T$. Then it follows easily that $g(t) := \lambda \psi_0(t) + (1 - \lambda) \xi_0(t)$ satisfies (4.a) if $0 < \lambda < 1$ is chosen such that $c = \lambda \int_T \psi_0 d\mu + (1 - \lambda) \int_T \xi_0 d\mu$.

(5): Suppose that μ is not finitely founded and let $A \in \mathcal{B}$ be an infinite μ -atom. Then we have $\mu_{\circ}(A) = 0$ and $\mu(A) = \infty$. So by (1.1) we have $\Sigma(0) = 0 < \infty = \Sigma(1_A)$ and by (1.2), we see that $\int_* f \, d\mu \leq 0$ for all $f \in \bar{M}(T,\mathcal{B})$ satisfying $f \leq_{\mu} 1_A$. Hence, by (1) we see that Σ does not have the Darboux property. Suppose that μ is finitely founded. Let $f, h \in \bar{M}(T, \mathcal{B}, \mu)$ be given functions such that $f \leq_{\mu} h$ and $\Sigma(f) < \Sigma(h) < \infty$. By (1.1), we have $h \in L^1(T, \mathcal{B}, \mu)$. Hence, we have $\int^* f \, d\mu < \infty$ and since μ is finitely founded, we have $f \in \bar{L}(T, \mathcal{B}, \mu)$. Hence, by (1) we have $\int^* f \, d\mu = \Sigma(f) < \Sigma(h) = \int_* h \, d\mu$ and so by (4) there exists $g \in L^1(T, \mathcal{B}, \mu)$ such that $f \leq_{\mu} g \leq_{\mu} h$ and $\Sigma(f) < \int_T g \, d\mu < \Sigma(h)$. Hence, by (1) we see that Σ satisfies (2.5) and in the same manner we see that Σ satisfies (2.6).

Let $\xi \in L^1(\Sigma)$ and $(\xi_n) \subseteq \bar{M}(T,\mathcal{B})$ be a given functions satisfying $\xi_n \uparrow \xi$ μ -a.e. and $\Sigma(\xi_n) = -\infty$ for all $n \geq 1$ and let $(c_n) \subseteq \mathbf{R}$ be an increasing sequence satisfying $c_n \uparrow c := \Sigma(\xi)$ and $c_n < \Sigma(\xi)$ for all $n \geq 1$. By (1.1), we have $\xi \in L^1(T,\mathcal{B},\mu)$ and so redefining the functions on a μ -null set, we may assume that $|\xi(t)| < \infty$ and $\xi_n(t) \uparrow \xi(t)$ for all $t \in T$. Since μ is finitely founded and $\xi_n \leq \xi$, we have $\xi_n \in \bar{L}(T,\mathcal{B},\mu)$ for all $n \geq 1$. So by (1) we have $\int_T \xi \, d\mu = \Sigma(\xi)$ and $\int_T \xi_n \, d\mu = \Sigma(\xi_n) = -\infty$ for all $n \geq 1$. Let us define $a_n := c_{n+1} - c_n$ and $f_n(t) := \xi(t) - \xi_n(t)$ for all $n \geq 1$. Since $\xi(t)$ is finite and $\xi_n(t) \uparrow \xi(t)$, we have $f_n(t) \downarrow 0$ for all $t \in T$ and since $\xi \in L^1(T,\mathcal{B},\mu)$ and $\int_T \xi_n \, d\mu = -\infty$, we have $f_n \in \bar{L}(T,\mathcal{B},\mu)$ and $\int_T f_n \, d\mu = \infty$. Let me show that there exists functions $g_1,g_2,\ldots \in L^1(T,\mathcal{B},\mu)$ satisfying

(i)
$$\int_T g_n d\mu = a_n$$
, $0 \le g_n(t) < \infty$ and $\sum_{i=k}^n g_i(t) \le f_k(t) \ \forall \, t \in T \ \forall \, 1 \le k \le n$

I shall construct the g_n 's recursively. By (4) with $(f,h,c)=(0,f_1,a_1)$, there exists $g_1\in L^1(T,\mathcal{B},\mu)$ such that $\int_T g_1\,d\mu=a_1$ and $0\leq g_1(t)\leq f_1(t)$ and $g_1(t)<\infty$ for all $t\in T$. Then (i) holds for n=1. Suppose that $g_1,\dots,g_n\in L^1(T,\mathcal{B},\mu)$ has been constructed such that $(g_k)_{1\leq k\leq n}$ satisfies (i) and let us define $G_{n+1}(t):=0$ and $G_k(t):=\sum_{k\leq i\leq n}g_i(t)$ for $k=1,\dots,n$. By (i), we have $0\leq G_k(t)\leq f_k(t)$ for all $t\in T$ and all $1\leq k\leq n+1$. Hence, we have $h_{n+1}(t):=\min_{1\leq k\leq n+1}(f_k(t)-G_k(t))\geq 0$ for all $t\in T$. Since $f_k(t)\geq f_{n+1}(t)$ and $G_k(t)\leq G_1(t)$ for all $1\leq k\leq n+1$, we have $h_{n+1}(t)\geq f_{n+1}(t)-G_1(t)$ for all $t\in T$ and since $G_1\in L^1(T,\mathcal{B},\mu)$ and $\int_T f_{n+1}\,d\mu=\infty$, we have $h_{n+1}\in \bar{L}(T,\mathcal{B},\mu)$ and $\int_T h_{n+1}\,d\mu=\infty$. Hence, by (4) with $(f,h,c)=(0,h_{n+1},a_{n+1})$, there exists $g_{n+1}\in L^1(T,\mathcal{B},\mu)$ such that $\int_T g_{n+1}\,d\mu=a_{n+1}$ and $0\leq g_{n+1}(t)\leq h_{n+1}(t)$ and $g_{n+1}(t)<\infty$ for all $t\in T$. Since $h_{n+1}(t)\leq f_k(t)-G_k(t)$ for all $1\leq k\leq n+1$, we see that $(g_k)_{1\leq k\leq n+1}$ satisfies (i) which completes the recursive construction.

Let us define $g^n(t):=\sum_{i\geq n}g_i(t)$ for all $n\geq 1$ and all $t\in T$. Since $g_i\geq 0$ and $\sum_{i\geq n}a_i=c-c_n<\infty$, we see that $g^n\in L^1(T,\mathcal{B},\mu)$ and $\int_Tg^n\,d\mu=c-c_n$ and by (i), we have $0\leq g^n(t)\leq f_n(t)=\xi(t)-\xi_n(t)$ for all $t\in T$ and all $n\geq 1$. Since $\xi\in L^1(T,\mathcal{B},\mu)$ with $\int_T\xi\,d\mu=c$, we have $\eta_n:=\xi-g^n\in L^1(T,\mathcal{B},\mu)$ and $\int_T\eta_n\,d\mu=c_n$ for all $n\geq 1$ and since (g^n) is decreasing with $0\leq g^n(t)\leq \xi(t)-\xi_n(t)$, we see that (η_n) is increasing with

 $\xi_n(t) \leq \eta_n(t) \leq \xi(t)$ for all $t \in T$. Hence, by (1) we see that (η_n) satisfies the hypotheses in (2.7) and so we see that Σ has the strong Darboux property.

3. Integral functionals Throughout this section, we let (T, \mathcal{B}, μ) denote a fixed finitely founded measure space with $\mu(T) > 0$ and we let $\Sigma : \overline{M}(T, \mathcal{B}) \to \overline{\mathbf{R}}$ denote a fixed μ -integral; see (1.1).

Since $\mu(T) > 0$, we have $(m_{\Sigma}, m^{\Sigma}) = (-\infty, \infty)$ and by Thm.2.7, we see that $(\bar{M}(T, \mathcal{B}), \leq_{\mu})$ is a σ -lattice and that $\Sigma : \bar{M}(T, \mathcal{B}) \to \bar{\mathbf{R}}$ is an increasing, smooth, order injective functional with the strong Darboux property.

Let S be a non-empty set. Then we let $\bar{M}_S(T,\mathcal{B})$ denote the set of all functions $\phi:S\times T\to \bar{\mathbf{R}}$ satisfying $\phi(s,\cdot)\in \bar{M}(T,\mathcal{B})$ for all $s\in S$. If (S,\leq) is a proset and $\phi:S\times T\to \bar{\mathbf{R}}$ is a given function, we say that ϕ is *pointwise increasing* on S if $\phi(\cdot,t)$ is increasing on S for all $t\in T$, and we say that ϕ is μ -a.e. increasing on S, if $\phi(s,\cdot)\leq_{\mu}\phi(u,\cdot)$ for all $s\leq u$. By Thm.2.7, we see that $f:\bar{\mathbf{R}}\times T\to \bar{\mathbf{R}}$ is an increasing Σ -partition if and only if f is μ -a.e. increasing on $\bar{\mathbf{R}}$ and we have $f(x,\cdot)\in \bar{L}(T,\mathcal{B},\mu)$ and $\int_T f(x,t)\,\mu(dt)=x$ for all $x\in \bar{\mathbf{R}}$. In particular, we see that every increasing μ -partition of unity is an increasing Σ -partition. If $F:\bar{\mathbf{R}}\to \bar{\mathbf{R}}$ is an increasing function and $x\in \bar{\mathbf{R}}$, we set $F(x+):=\inf_{y>x}F(y)$ and $F(x-):=\sup_{y< x}F(y)$ with the conventions $F(\infty+):=F(\infty)$ and $F(-\infty-):=F(-\infty)$. If $f:\bar{\mathbf{R}}\times T\to \bar{\mathbf{R}}$ is an increasing μ -partition of unity, we say that f is right continuous, resp. left continuous, if f(x,t)=f(x+,t), resp. f(x,t)=f(x-,t), for all $f(x,t)\in \bar{\mathbf{R}}\times T$

If (E,\leq) is a proset, we say that μ is (E,\leq) -smooth if $\mu^*(\cup_{u\in E}N_u)=0$ for every increasing family $(N_u)_{u\in S}$ satisfying $N_u\in \mathcal{B}$ and $\mu(N_u)=0$ for all $u\in E$. If (E,\leq) is countably cofinal, then every measure is (E,\leq) -smooth. If $q:T\to[0,\infty)$ is a function such that $q^{-1}(0)\in \mathcal{B}$ and $\mu(B)=\sum_{t\in B}q(t)$ for all $B\in \mathcal{B}$, then μ is finitely founded and (E,\leq) -smooth for every proset (E,\leq) .

Lemma 3.1: Let $f: \bar{\mathbf{R}} \times T \to \bar{\mathbf{R}}$ be an increasing μ -partition of unity. Then the functions $(x,t) \curvearrowright f(x+,t)$ and $(x,t) \curvearrowright f(x-,t)$ are increasing μ -partitions unity satisfying

- (1) $f(x-,t) \le f(x,t) \le f(x+,t) \quad \forall (x,t) \in \bar{\mathbf{R}} \times T$
- (2) $f(x-,\cdot) =_{\mu} f(x,\cdot) =_{\mu} f(x+,\cdot) \quad \forall x \in \mathbf{R}$
- (3) There exists a μ -null set $N \in \mathcal{B}$ and a set $B \in \mathcal{B}$ of σ -finite μ -measure such that $|f(x,t)| < \infty \ \ \forall (x,t) \in \mathbf{R} \times (T \setminus N)$ and $f(x,t) = 0 \ \ \forall (x,t) \in \mathbf{R} \times (T \setminus B)$

Proof: (1) is evident and by the monotone convergence theorem, we see that f(x+,t) and f(x-,t) are increasing μ -partitions unity. Hence, we see that (2) follows from (1). Let Q denote the se of all rationals and let us define $N:=\cup_{q\in Q}\{t\in T\mid |f(q,t)|=\infty\}$ and $B:=\cup_{q\in Q}\{t\in T\mid f(q,t)\neq 0\}$. Then $N,B\in\mathcal{B}$ and since Q

is countable and $f(q, \cdot) \in L^1(T, \mathcal{B}, \mu)$ for all $q \in Q$, we see that N is a μ -null set and that B is of σ -finite μ -measure. Since f is pointwise increasing, we see that the set N and B satisfies the claims in (3).

Theorem 3.2: Let $S \subseteq \bar{\mathbf{R}}$ be a non-empty set and let $f, g: S \times T \to \bar{\mathbf{R}}$ be given functions such that g is pointwise increasing on S and f is μ -a.e. increasing on S and satisfies

(1)
$$f \in \bar{M}_S(T, \mathcal{B})$$
 and $g(s,t) \leq f(s,t) \ \forall (s,t) \in S \times T$

Let $Q \subseteq S$ be a countable set and let $D \subseteq S$ be a set such that $f(\cdot,t)$ is increasing on D for all $t \in T$. Then there exists a function $h \in \bar{M}_S(T,\mathcal{B})$ such that h is pointwise increasing on S and satisfies

(2)
$$f(s, \cdot) \leq_{\mu} h(s, \cdot) \ \forall s \in S \ \text{and} \ h(s, \cdot) \leq_{\mu} f(u, \cdot) \ \forall s, u \in S \ \text{with} \ s < u$$

(3)
$$g(s,t) \le h(s,t) \ \forall (s,t) \in S \times T \ \text{and} \ h(s,t) = f(s,t) \ \forall (s,t) \in D \times T$$

(4)
$$\Sigma h(s) = \Sigma f(s) \ \forall s \in S \ \text{and} \ h(s, \cdot) =_{\mu} f(s, \cdot) \ \forall s \in D_{\Sigma f} \cup Q$$

Proof: Since f is μ -a.e. increasing, we have that $\Sigma f:S\to \mathbf{R}$ is increasing and since $S\subseteq \bar{\mathbf{R}}$, we have that Δ is at most countably where Δ denotes the set of all discontinuity points of Σf . Let ρ denote the right Sorgenfrey topology on $\bar{\mathbf{R}}$. By [2; Exc.2.1.I p.103], there exists a countable set $C\subseteq S$ such that $Q\cup\Delta\subseteq C$ and C and $C\cap D$ are ρ -dense in S and D, respectively. Since C is countable and f is μ -a.e. increasing, there exists a μ -null set $N\in\mathcal{B}$ such that $f(\cdot,t)$ is increasing on C for all $t\in T\setminus N$.

Let $s \in S$ be given an let us define $D^s := D \cap [s, \infty]$, $C^s := C \cap [s, \infty]$ and

$$h(s,t) := \inf_{u \in D^s} f(u,t) \ \text{ if } \ t \in N \ \text{ and } \ h(s,t) := \inf_{u \in D^s \cup C^s} f(u,t) \ \text{ if } \ t \in T \setminus N$$

Then h is pointwise increasing on S and I claim that $h \in \overline{M}_S(T, \mathcal{B})$ and satisfies (2)–(4).

(2): Let $s \in S$ be given. Then there exists a countable set $L_s \subseteq D_s$ such that L_s is cofinal in (D^s, \geq) . Since f is pointwise increasing on D, we have $\inf_{u \in D^s} f(u,t) = \inf_{u \in L_s} f(u,t)$ for all $t \in T$. Since $f(u,\cdot)$ is \mathcal{B} -measurable and C and L_s are countable, we see that $h \in \overline{M}_S(T,\mathcal{B})$ and since f is μ -a.e. increasing, we have $f(s,\cdot) \leq_{\mu} f(u,\cdot)$ for all $u \in S \cap [s,\infty]$. Hence, we have $f(s,\cdot) \leq_{\mu} h(s,\cdot)$ for all $s \in S$. Let $s,u \in S$ be given such that s < u. Since C is ρ -dense in S, there exists $v \in C$ such that $s \leq v < u$. Hence, we have $h(s,t) \leq f(v,t)$ for all $t \in T \setminus N$ and since $f(v,\cdot) \leq_{\mu} f(u,\cdot)$, we have $h(s,\cdot) \leq_{\mu} f(u,\cdot)$. Thus, we see that h satisfies (2).

(3): Since g is pointwise increasing on S and $g \le f$, we have $g(s,t) \le g(u,t) \le f(u,t)$ for all $(s,t) \in S \times T$ and all $u \in S \cap [s,\infty]$. Hence, we see that

 $g(s,t) \leq h(s,t)$ for all $(s,t) \in S \times T$. Let $s \in D$ be given. Since $s \in D^s$, we have $h(s,t) \leq f(s,t)$ and since f is pointwise increasing on D, we have h(s,t) = f(s,t) for all $t \in N$ and $f(s,t) \leq f(u,t)$ for all $(u,t) \in D^s \times T$. Let $t \in T \setminus N$ and $u \in C^s \setminus \{s\}$ be given. Since s < u and $C \cap D$ is ρ -dense in D, there exists $v \in C \cap D$ such that $s \leq v < u$ and since $s, v \in D$ and f is pointwise increasing on D, we have $f(s,t) \leq f(v,t)$. Since $t \in T \setminus N$, we have that $f(\cdot,t)$ is increasing on C and since $v, u \in C$, we have $f(v,t) \leq f(u,t)$. Hence, we see that $f(s,t) \leq f(u,t)$ for all $u \in D^s \cup C^s$ and since $h(s,t) \leq f(s,t)$, we have f(s,t) = h(s,t) for all $(s,t) \in D \times (T \setminus N)$ which completes the proof of (3).

(4): By (2), we have $\Sigma f(s) \leq \Sigma h(s)$ for all $s \in S$. Let $s \in C$ be given. Then we have $h(s,t) \leq f(s,t)$ for all $t \in T \setminus N$ and so by (2) we have $h(s,\cdot) =_{\mu} f(s,\cdot)$ and $\Sigma f(s) = \Sigma h(s)$. Let $s \in S \setminus C$ be given. Since C is ρ -dense in S, there exists a decreasing sequence $(u_n) \subseteq C$ such that $u_n \downarrow s$. Since $u_n \in C^s$, we have $h(s,t) \leq f(u_n,t)$ for all $t \in T \setminus N$ and so we have $\Sigma f(s) \leq \Sigma h(s) \leq \Sigma f(u_n)$ for all $n \geq 1$. Since $\Delta \subseteq C$ and $s \in S \setminus C$, we see that Σf is continuous at $s \in S$ and since $u_n \to s$, we see that $\Sigma f(s) = \Sigma h(s)$. Hence, we see that the first equality in (4) holds and so by (2) and order injectivity of Σ , we have $h(s,\cdot) =_{\mu} f(s,\cdot)$ for all $s \in D_{\Sigma f}$ and since $Q \subseteq C$, we see that h satisfies (4).

Theorem 3.3: Let $S \subseteq \bar{\mathbf{R}}$ be a non-empty set and let $f, g: S \times T \to \bar{\mathbf{R}}$ and $\alpha, \beta \in \bar{L}(T, \mathcal{B}, \mu)$ be given functions such that g is pointwise increasing on S and

$$(1) \quad g(s,t) \le f(s,t) \le \beta(t) \quad \forall (s,t) \in S \times T$$

(2)
$$f(s,\cdot) \in \bar{L}(T,\mathcal{B},\mu)$$
 and $s = \int_T f(s,t) \mu(dt) = \int^* g(s,t) \mu(dt) \ \forall s \in S$

Then f is μ -a.e. increasing on $S\setminus \{-\infty\}$ and if f is μ -a.e. increasing on S and pointwise increasing on D for some set $D\subseteq S$, then there exists an increasing μ -partition of unity $h: \bar{\mathbf{R}}\times T\to \bar{\mathbf{R}}$ satisfying

(3)
$$g(s,t) \le h(s,t) \le \beta(t) \ \forall (s,t) \in S \times T \ , \ h(s,t) = f(s,t) \ \forall (s,t) \in D \times T$$

(4)
$$h(s, \cdot) =_{\mu} f(s, \cdot) \quad \forall s \in S \quad and \quad h(s, t) = f(s, t) \quad \forall (s, t) \in D \times T$$

Proof: Let $x,y\in S$ be given such that $-\infty < x < y$ and let define $\xi(t):=f(x,t)\wedge f(y,t)$ for all $t\in T$. Since g is pointwise increasing on S and $g\leq f$, we have $g(x,t)\leq \xi(t)\leq f(x,t)$ for all $t\in T$ and so by (2) we see that ξ is \mathcal{B} -measurable with $\int_{-\infty}^{\infty} \xi \, d\mu = \int_{\infty} \xi \, d\mu = x = \int_{T} f(x,t) \, \mu(dt)$. Since x is finite, we see that ξ and $f(x,\cdot)$ are μ -integrable and so we have $\xi=\mu f(x,\cdot)$ or equivalently, $f(x,\cdot)\leq_{\mu} f(y,\cdot)$. Hence we see that f is μ -a.e. increasing on $S\setminus \{-\infty\}$.

Suppose that f is μ -a.e. increasing on S and pointwise increasing on D. By (1) and Thm.3.2, there exists $f_0 \in \bar{M}_S(T,\mathcal{B})$ such that f_0 is pointwise increasing on S and satisfies $f_0(s,t)=f(s,t)$ for all $(s,t)\in D\times T$, $g(s,t)\leq f_0(s,t)\leq \beta(t)$ for all $(s,t)\in S\times T$ and $f_0(s,\cdot)=_{\mu}f(s,\cdot)$ for all $s\in S$. So by (2) and Thm.2.7, we have $f_0(s,\cdot)\in \bar{L}(T,\mathcal{B},\mu)$ and $\Sigma f_0(s)=\int_T f_0(s,t)\,\mu(dt)=s$ for all $s\in S$.

Suppose that $S \cap \mathbf{R} \neq \emptyset$. By Thm.2.4, there exists an increasing Σ -partition of unity $f_1: \bar{\mathbf{R}} \times T \to \bar{\mathbf{R}}$ satisfying $f_1(s,t) = f_0(s,t)$ for all $(s,t) \in S \times T$. Then f_1 is pointwise increasing on S and so by Thm.3.2 with $g \equiv -\infty$, there exists an increasing μ -partition of unity $h: \bar{\mathbf{R}} \times T \to \bar{\mathbf{R}}$ satisfying $h(s,t) = f_1(s,t)$ for all $(s,t) \in S \times T$. Since $f_1(s,t) = f_0(s,t)$ for all $(s,t) \in S \times T$, we see that h satisfies (3) and (4).

Suppose that $S=\{-\infty,\infty\}$. By (2) and Thm.2.7.(4) there exists $\xi\in L^1(T,\mathcal{B},\mu)$ such that $\int_T \xi\,d\mu=0$ and $f_0(-\infty,t)\leq \xi(t)\leq f_0(\infty,t)$ for all $t\in T$. Setting $\tilde{S}:=\{-\infty,0,\infty\}$, $\tilde{f}(\pm\infty,t):=f_1(\pm\infty,t)$, $\tilde{g}(\pm\infty,t):=g(\pm\infty,t)$ and $\tilde{f}(0,t)=\tilde{g}(t):=\xi(t)$, we see that $(\tilde{f},\tilde{g},\tilde{S})$ satisfies (1), (2) and $\tilde{S}\cap\mathbf{R}\neq\emptyset$. Hence, by the argument above we see that there exists an increasing μ -partition of unity $h:\bar{\mathbf{R}}\times T\to \bar{\mathbf{R}}$ satisfying (3) and (4). The remaining two cases $S=\{\infty\}$ and $S=\{-\infty\}$ follow in the same manner.

Theorem 3.4: Let (S, \leq) be a linear proset and let $\phi \in \bar{M}_S(T, \mathcal{B})$ be a pointwise increasing function with Σ -transform $\Phi(s) := \Sigma \phi(s)$ for all $s \in S$. Let $\alpha, \beta \in \bar{L}(T, \mathcal{B}, \mu)$ be given functions satisfying $\alpha(t) \leq \phi(s, t) \leq \beta(t)$ for all $(s, t) \in S \times T$ and let us define

$$a = \int_{T} \alpha \, d\mu \ , \ b = \int_{T} \beta \, d\mu \ , \ E_{s} = \{ u \in S \mid \Phi(u) = \Phi(s) \} \ \forall s \in S$$

$$\phi^{*}(s,t) = \sup_{u \in E_{s}} \phi(s,t) \ , \ \phi_{*}(s,t) = \inf_{u \in E_{s}} \phi(s,t) \ \forall (s,t) \in S \times T$$

$$\Phi^{*}(s) = \int_{*}^{*} \phi^{*}(s,t) \, \mu(dt) \ , \ \Phi_{*}(s) = \int_{*}^{*} \phi_{*}(s,t) \, \mu(dt) \ \forall s \in S$$

$$F_{s} = \{ u \in S \mid \Phi(u) < \Phi(s) \} \ , \ F^{s} = \{ u \in S \mid \Phi(u) > \Phi(s) \} \ \forall s \in S$$

Then ϕ^* and ϕ_* are pointwise increasing on S and there exists increasing μ -partitions of unity $h_0, h_1 : \bar{\mathbf{R}} \times T \to \bar{\mathbf{R}}$ satisfying (see the remark below)

- (1) $a \vee \sup_{u \in F_u} \Phi^*(s) \le \Phi_*(s) \le \Phi(s) \le \Phi^*(s) \le b \wedge \inf_{u \in F^s} \Phi_*(u)$
- (2) $\alpha(t) \leq \phi_*(s,t) \leq \phi(s,t) \leq \phi^*(s,t) \leq \beta(t) \wedge \phi_*(u,t) \ \forall s \in S \ \forall u \in F^s$
- (3) If $s \in S \setminus D_{\Phi}^{\circ}$ and μ is (E_s, \leq) -smooth, then $\Phi(s) = \Phi^*(s)$
- (4) If $s \in S \setminus D_{\Phi}^*$ and μ is (E_s, \geq) -smooth, then $\Phi(s) = \Phi_*(s)$
- (5) $\alpha(t) \le h_0(\Phi_*(s), t) \le \phi(s, t) \le h_1(\Phi^*(s), t) \le \beta(t) \ \forall (s, t) \in S \times T$
- (6) $\alpha(t) = h_0(a, t) \le h_1(a, t)$ and $h_0(b, t) \le h_1(b, t) = \beta(t) \ \forall t \in T$

Proof: Let $x \in \bar{\mathbf{R}}$ be given and let us define $\gamma^*(x,t) := \sup_{s \in C_x} \phi(s,t)$ and $\gamma_*(x,t) := \inf_{s \in C^x} \phi(s,t)$ for all $t \in T$ where $C_x := \{s \in S \mid \Phi(s) \leq x\}$ and $C^x := \{s \in S \mid \Phi(s) \geq x\}$. Then γ^* and γ_* are pointwise increasing on \mathbf{R} . Let $s \in S$ be given and set $x := \Phi(s)$. Since $E_x \subseteq C_x \cap C^x$, we have $\gamma_*(x,t) \leq \phi_*(s,t) \leq \phi^*(s,t) \leq \gamma^*(x,t)$ for all $t \in T$. Let $s,u \in S$ be given elements

satisfying $\Phi(s) < \Phi(u)$ and let $v \in E_s$ and $w \in E_u$ be given. Since S is linear and Φ is increasing with $\Phi(v) = \Phi(s) < \Phi(u) = \Phi(w)$, we have $v \le w$ and since ϕ is pointwise increasing, we have $\phi(v,t) \le \phi(w,t)$ for all $t \in T$. In particular, we see that (2) holds and that we have $\gamma_*(\Phi(s),t) = \phi_*(s,t) \le \phi^*(s,t) = \gamma^*(\Phi(s),t)$ for all $t \in T$ and so we have $\Phi_*(s) = \Gamma_*(\Phi(s))$ and $\Phi^*(s) = \Gamma^*(\Phi(s))$ for all $s \in S$ where $\Gamma^*(x) := \int_{-\infty}^{\infty} \gamma^*(x,t) \, \mu(dt)$ and $\Gamma_*(x) := \int_{-\infty}^{\infty} \gamma^*(x,t) \, \mu(dt)$ for all $x \in \bar{\mathbf{R}}$.

In particular, we see that ϕ_* and ϕ^* are pointwise increasing functions satisfying (2) and since $\alpha(t) \leq \phi_*(s,t) \leq \phi(s,t) \leq \phi^*(s,t) \leq \beta(t)$, we see that (1) follows from (2).

(3+4): Let $s \in S \setminus D_\Phi^\circ$ be a given element such that μ is (E_s, \leq) -smooth. Then we have $-\infty < \Phi(s) \leq \infty$ and by (1), we have $\Phi(s) = \Phi^*(s)$ if $\Phi(s) = \infty$. So suppose that $\Phi(s) \neq \pm \infty$ and let us define $N_u := \{t \in T \mid \phi(s,t) < \phi(u,t)\}$ for all $u \in S$. Then $N_u \in \mathcal{B}$ and since ϕ is pointwise increasing, we see that $u \curvearrowright N_u$ is increasing. Let $u \in E_s \cap [s,*]$ be given. Since $s \leq u$, we have $\phi(s,t) \leq \phi(u,t)$ for all $t \in T$ and since Σ is order injective and $\Sigma \phi(u) = \Phi(u) = \Phi(s) = \Sigma \phi(s) \neq \pm \infty$, we see $\mu(N_u) = 0$. Hence, by (E_s, \leq) -smoothness of μ , we have $\mu^*(N^*) = 0$ where $N^* = \bigcup_{u \in E_s \cap [s,*]} N_u$ and since $N^* = \{t \in T \mid \phi(s,t) < \phi^*(s,t)\}$, we see that $\phi(s,\cdot) =_{\mu} \phi^*(s,\cdot)$ and $\Phi(s) = \Phi^*(s)$. Hence, we have proved (3), and (4) follows in the same manner.

Suppose that a=b. By (1), we have $\Phi_*(s)=\Phi(s)=\Phi^*(s)=a=b$ for all $s\in S$ and by Thm.3.3, there exists an increasing μ -partitions of unity $h_0,h_1:\bar{\mathbf{R}}\times T\to \bar{\mathbf{R}}$ such that $h_0(a,t)=\alpha(t)$ and $h_1(b,t)=\beta(t)$ for all $t\in T$. Hence, we see that (h_0,h_1) satisfies (5+6). So suppose that a< b and let us define $\Lambda_x:=\{y\in \bar{\mathbf{R}}\mid \Gamma^*(y)\leq x\}$ and $g^*(x,t):=\sup_{y\in \Lambda_x}\gamma^*(y,t)$ for all $(x,t)\in \bar{\mathbf{R}}\times T$. Then $g^*:\bar{\mathbf{R}}\times T\to \bar{\mathbf{R}}$ is pointwise increasing on $\bar{\mathbf{R}}$ and I claim that we have

(i)
$$\int^* g^*(x,t) \, \mu(dt) = G^*(x) \quad \forall x \in \mathbf{\bar{R}} \text{ where } G^*(x) = \sup_{y \in \Lambda_x} \Gamma^*(y)$$

Proof of (i): Let $x \in \bar{\mathbb{R}}$ be given. If $\Lambda_x = \emptyset$, we have $G^*(x) = -\infty$ and $g^*(x,t) \equiv -\infty$ and so we see that (i) holds. Suppose that $\emptyset \neq \Lambda_x \subseteq \Lambda_{-\infty}$ and let $y \in \Lambda_x$ and $s \in C_y$ be given. Since $\Lambda_x \subseteq \Lambda_{-\infty}$, we have $\Gamma^*(y) = -\infty$ and so we have $G^*(x) = -\infty$. Since $\Phi(s) \leq y$ and Γ^* is increasing with $\Phi(s) \leq \Phi^*(s) = \Gamma^*(\Phi(s))$, we have $\Phi(s) = \Phi^*(s) = \Gamma^*(\Phi(s)) = \Gamma^*(y) = -\infty$. Hence, we have $C_y = C_{-\infty} = E_s$ and so we have $\gamma^*(y,t) = \phi^*(s,t)$ for all $t \in T$ and all $y \in \Lambda_x$. Hence, we have $g^*(x,t) = \phi^*(s,t)$ for all $t \in T$ and so we have $\int_{-\infty}^{\infty} g(x,t) \mu(dt) = \Phi^*(s) = -\infty = G^*(x)$. Suppose that $\Lambda_x \not\subseteq \Lambda_{-\infty}$. Then there exists an increasing sequence $(y_n) \subseteq \Lambda_x \setminus \Lambda_{-\infty}$ such that (y_n) is cofinal in Λ_x . Since Γ^* and $\gamma^*(\cdot,t)$ are increasing, we have $\Gamma^*(y_n) \uparrow G^*(x)$ and $\gamma^*(y_n,t) \uparrow g^*(x,t)$ for all $t \in T$ and since $y_n \in \Lambda_x \setminus \Lambda_{-\infty}$, we have $-\infty < \Gamma^*(y_n) = \int_{-\infty}^{\infty} \gamma^*(y_n,t) \mu(dt) \leq x$ for all n. Since the upper integral satisfies the increasing monotone convergence theorem, we have $\Gamma^*(y_n) \uparrow \int_{-\infty}^{\infty} g^*(x,t) \mu(dt)$ and since $\Gamma^*(y_n) \uparrow G^*(x)$, we have proved (i),

By (1), we have $S^{\diamond}:=\{a,b\}\cup\Phi^*(S)\subseteq[a,b]$. Let $(x,t)\in S^{\diamond}$ be given and let us define $g(x,t):=g^*(x,t)$ if $x\in\Phi^*(S)$, $g(x,t):=\alpha(t)$ if $x=a\notin\Phi^*(S)$

and $g(x,t)=\beta(t)$ if $x=b\notin\Phi^*(S)$. Let $s\in S$ be given and set $y=\Phi(s)$ and $x=\Phi^*(s)$. Then we have $\phi(s,t)\leq\phi^*(s,t)=\gamma^*(y,t)$ and $x=\Gamma^*(y)$ and so we have $G^*(x)=x$ and $\gamma^*(y,t)\leq g^*(x,t)$ for all $t\in T$. Hence, we see that $\alpha(t)\leq\phi(s,t)\leq\phi^*(s,t)\leq g^*(\Phi^*(s),t)$ for all $(s,t)\in S\times T$ and since g^* is pointwise increasing on $\bar{\mathbf{R}}$ with $g^*(x,t)\leq\beta(t)$ for all $(x,t)\in\bar{\mathbf{R}}\times T$, we see that $g:S^\diamond\times T\to\bar{\mathbf{R}}$ is a pointwise function satisfying

$$\int_{0}^{x} g(x,t) \, \mu(dt) = x$$
, $\alpha(t) \le g(x,t) \le \beta(t)$, $\phi(s,t) \le g(\Phi^{*}(s),t)$

for all $x\in S^{\diamond}$, all $s\in S$ and all $t\in T$. Hence, by Thm.2.7.(4) there exists $\xi_x\in \bar{L}(T,\mathcal{B},\mu)$ such that $\int_T \xi_x\,d\mu=x$ and $g(x,t)\leq \xi_x(t)\leq \beta(t)$ for all $(s,t)\in S^{\diamond}\times T$. By Thm.3.3, we see that $\xi_x(t)$ is μ -a.e. increasing on $S_0:=S^{\diamond}\setminus\{a\}$. Let $(z_n)\subseteq S_0$ be a decreasing sequence such that (z_n) is cofinal in (S_0,\geq) and let us define $\eta(t):=\inf_{n\geq 1}\xi_{z_n}(t)$ for all $t\in T$. Then we have $\xi_{z_n}\downarrow\eta$ μ -a.e. and $\eta\leq_{\mu}\xi_x$ for all $x\in S_0$. Since $\xi_b\in \bar{L}(T,\mathcal{B},\mu)$ and $\xi_{z_n}\in L^1(T,\mathcal{B},\mu)$ if $z_n< b$, we have $\eta\in \bar{L}(T,\mathcal{B},\mu)$ and since g is pointwise increasing, we have $g(a,t)\leq g(z_n,t)\leq \xi_{z_n}(t)\leq \beta(t)$ and so we see that $\alpha(t)\leq g(a,t)\leq \eta(t)\leq \beta(t)$ for all $t\in T$.

Hence, by Thm.2.7.(4), there exists $f(a,\cdot)\in \bar{L}(T,\mathcal{B},\mu)$ such that $g(a,t)\leq f(a,t)\leq \eta(t)$ for all $t\in T$ and $\int_T f(a,t)\,\mu(dt)=\int^*g(a,t)\,\mu(dt)=a$. Let us define $f(b,t):=\beta(t)$ and $f(x,t):=\xi_x(t)$ for all $x\in S^\diamond\setminus\{a,b\}$ and all $t\in T$. Then we have $g(x,t)\leq f(x,t)\leq \beta(t)$ for all $(x,t)\in S^\diamond\times T$ and we have $f(x,\cdot)\in \bar{L}(T,\mathcal{B},\mu)$ and $\int_T f(x,t)\,\mu(dt)=x=\int^*g(x,t)\,\mu(dt)$ for all $x\in S^\diamond$. Since $\eta\leq_\mu\xi_x\leq\beta$ for all $x\in S_0$, we see that f is μ -a.e. increasing on S^\diamond and so by Thm.3.3 with $D:=\{b\}$ there exists an increasing μ -partition of unity $h_1:\bar{\mathbf{R}}\times T\to \bar{\mathbf{R}}$ satisfying $g(x,t)\leq h_1(x,t)\leq\beta(t)$ for all $(x,t)\in S^\diamond\times T$ and $h_1(b,t)=\beta(t)$ for all $t\in T$. Since $a(t)\leq g(a,t)$ and $\phi(s,t)\leq g(\Phi^*(s),t)$, we have $\alpha(t)\leq h_1(a,t)\leq h_1(b,t)=\beta(t)$ and $\phi(s,t)\leq h_1(\Phi^*(s),t)$ for all $(s,t)\in S\times T$.

Note that $\tilde{\phi}(s,t):=-\phi(s,t)$ is pointwise increasing on the linear proset (S,\geq) satisfying $\tilde{\alpha}(t)\leq\tilde{\phi}(s,t)\leq\tilde{\beta}(t)$ where $\tilde{\alpha}(t):=-\beta(t)$ and $\tilde{\beta}(t):=-\alpha(t)$. Observe that $\tilde{\Sigma}(\xi):=-\Sigma(-\xi)$ is a μ -integral such that $\tilde{\Phi}(s):=\tilde{\Sigma}\tilde{\phi}(s)=-\Phi(s)$ for all $s\in S$. Applying the construction above on the pair $(\tilde{\phi},\tilde{\Sigma})$, we see that there exists an increasing μ -partition of unity $\tilde{h}_1:\bar{\mathbf{R}}\times T\to\bar{\mathbf{R}}$ satisfying $\tilde{\alpha}(t)\leq\tilde{h}_1(\tilde{a},t)\leq\tilde{h}_1(\tilde{b},t)=\tilde{\beta}(t)$ and $\tilde{\phi}(s,t)\leq\tilde{h}_1(\tilde{\Phi}^*(s),t)$ for all $(s,t)\in S\times T$ where $\tilde{a}:=\int_T\tilde{\alpha}\,d\mu$ and $\tilde{b}:=\int_T\tilde{\beta}\,d\mu$. Let us define $h_0(x,t):=-\tilde{h}_1(-x,t)$ for all $(x,t)\in\bar{\mathbf{R}}\times T$. Then h_0 is an μ -partition of unity satisfying $h_0(a,t)=\alpha(t)\leq h_0(b,t)\leq \beta(t)$ and since $\tilde{\Phi}^*(s)=-\Phi_*(s)$, we have $h_0(\Phi_*(s),t)\leq\phi(s,t)$ for all $(s,t)\in S\times T$. Thus, we see that the pair (h_0,h_1) satisfies (5+6).

Theorem 3.5: Let (S, \leq) be a linear proset and let $\rho: 2^S \to [0, \infty]$ be an increasing set function satisfying $\rho(\emptyset) = 0$. Let $\phi \in \bar{M}_S(T, \mathcal{B})$ be a pointwise increasing function with Σ -transform $\Phi(s) := \Sigma \phi(s)$ for all $s \in S$ and let $\Phi^*(s)$ and $\Phi_*(s)$ be defined as in Thm.3.4. Then we have

(1)
$$\int_{-F}^{F} \Phi_* d\rho \leq \int_{*} \mu(dt) \int_{-F}^{F} \phi(s,t) \rho(ds) \leq \int_{-F}^{*} \mu(dt) \int_{-F}^{F} \phi(s,t) \rho(ds) \leq \int_{-F}^{F} \Phi^* d\rho$$

Suppose that μ is sum-finite, let \mathcal{A} be a σ -algebra on S and let ν be a sum-finite measure on (S,\mathcal{A}) . If $\nu\otimes\mu$ denotes the product measure on the product space $(S\times T,\mathcal{A}\otimes\mathcal{B})$, then we have

(2)
$$\int_{*} \Phi_{*} d\nu \leq \int_{*} \phi d(\nu \otimes \mu) \leq \int_{*} \Phi d\nu \leq \int_{*} \Phi d\nu \leq \int_{*} \phi d(\nu \otimes \mu) \leq \int_{*} \Phi^{*} d\nu$$

Remarks: (a): If $F \subseteq S$, we say that F is ρ -exhaustive if $\rho(A) = \rho(A \cap F)$ for all $A \subseteq S$. If $f, g: S \to [0, \infty]$ are non-negative functions such that the set $\{f = g\}$ is ρ -exhaustive, then it follows easily that we have $\int^F f \, d\rho = \int^F g \, d\rho$. Hence, if $\{\Phi_* = \Phi^*\}$ is ρ -exhaustive, we have equality throughout in (1), and recall that (1), (3) and (4) in Thm.3.4 provide tools for verifying $\Phi_*(s) = \Phi(s)$ or $\Phi(s) = \Phi^*(s)$. Similarly, if $\Phi = \Phi^*$ ν -a.e., then the last two inequalities in (2) become equalities.

(b): Let $q:T\to [0,\infty)$ and $\phi:S\times T\to [0,\infty]$ be given functions such that ϕ is pointwise increasing on S. Then $\mu(B)=\sum_{t\in B}q(t)$ is a finitely founded measure on $(T,2^T)$ and we have $\Sigma\phi(s)=\sum_{t\in T}q(t)\,\phi(s,t)$ for all $s\in S$. Hence, by Thm.3.4 and non-negativity of Φ we have $\Phi(s)=\Phi^*(s)$ for all $s\in S$ and $\Phi(s)=\Phi_*(s)$ for all $s\in S$ and $\Phi(s)=\Phi_*(s)$ for all $s\in S$ and $\Phi(s)=\Phi_*(s)$

$$\sum_{t \in T} q(t) \int^{\mathcal{F}} \phi(s,t) \, \rho(ds) \leq \int^{\mathcal{F}} \sum_{t \in T} q(t) \, \phi(s,t) \, \rho(ds)$$

with equality if $\{\Phi < \infty\}$ is ρ -exhaustive.

(c): Let me give an example showing the we may have strict inequality in (2): Suppose that the continuum hypothesis holds. Then there exists a well-ordering \preceq on the unit interval I:=[0,1] such that $I_s:=\{t\in I\mid t\preceq s\}$ is at most countable for all $s\in I$. Then (I,\preceq) is a linear poset and we let λ denote the Lebesgue measure on the Borel σ -algebra on I. Let us define $\phi(s,t):=1_{I_s}(t)$ for all $(s,t)\in I\times I$. Then $\phi(\cdot,t)$ is Borel measurable and increasing with respect to \preceq and $\phi(s,\cdot)$ is Borel measurable and decreasing with respect to \preceq . Thus, we are in the setting of the theorem with $\nu=\mu:=\lambda$ and observe that we have $\Phi(s)=\int_0^1\phi(s,t)\,dt=0$ and $\Phi^*(s)=1$ for all $s\in I$. Hence, we have

$$\int_0^1 ds \int_0^1 \phi(s,t) \, dt = 0 < 1 = \int_0^1 dt \int_0^1 \phi(s,t) \, ds = \int^* \phi \, d(\lambda \otimes \lambda)$$

Proof: By Lem.3.1 and Thm.3.4 with $\alpha(t):=0$ and $\beta(t):=\infty$, there exist increasing μ -partitions of unity $f,g:\bar{\mathbf{R}}\times T\to \bar{\mathbf{R}}$ such that f is right continuous, g is left continuous, $g(\Phi_*(s),t)\leq \phi(s,t)\leq f(\Phi^*(s),t)$ for all $(s,t)\in S\times T$ and $g(0,t)\leq 0\leq f(0,t)$ for all $t\in T$. In particular, we have $\int_T g(0,t)\,\mu(dt)=0=\int_T f(0,t)\,\mu(dt)$ and so by Lem.3.1 we see that there exists a μ -null set $N\in\mathcal{B}$ such that g(0+,t)=g(0,t)=0=f(0,t)=f(0-,t) for all $t\in T\setminus N$ and $|f(x,t)|<\infty$ and $|g(x,t)|<\infty$ for all $(x,t)\in \mathbf{R}\times (T\setminus N)$.

Let $t \in T \setminus N$ be given. Then $f(\cdot,t)$ is a finite, increasing, right continuous function and we let λ_t denote the Lebesgue-Stieltjes measure induced by $f(\cdot,t)$. If a < b, we have $\lambda_t((a,b]) = f(b,t) - f(a,t)$ for all $t \in T$ and since f is an increasing μ -partition of unity and N is a μ -null set, we have $\int_{T \setminus N} \lambda_t((a,b]) \, \mu(dt) = \int_{T \setminus N} \lambda_t((a,b]) \, \mu(dt)$

 $b-a=\lambda((a,b])$ where λ denotes the Lebesgue measure. Hence, by the standard proof we have

(i)
$$\int_{T \setminus N} \mu(dt) \int_{\mathbf{R}} g(x) \, \lambda^t(dx) = \int_{\mathbf{R}} g(x) \, \mu(dx) = \int_{T \setminus N} \mu(dt) \int_{\mathbf{R}} g(x) \, \lambda_t(dx)$$

for every non-negative Borel function $g: \mathbf{R} \to [0, \infty]$.

Let us define $F(t):=\int^F\phi(s,t)\,\rho(ds)$ for all $t\in T$ and let me first show that $\int^*F\,d\mu\leq\int^F\Phi^*\,d\rho$. If $\int^F\Phi^*\,d\rho=\infty$, this is evident. So suppose that $\int^F\Phi^*\,d\rho<\infty$. Let us define $R(x,t):=\rho(s\in S\mid\phi(s,t)>x)$ and $R_0(x,t):=\rho(s\in S\mid f(\Phi^*(s),t)>x)$ for all $(x,t)\in\mathbf{R}\times T$. Since $\phi(s,t)\leq f(\Phi^*(s),t)$, we have $R(x,t)\leq R_0(x,t)$. Let $t\in T\setminus N$ be given. Then we have f(0,t)=0 and since $\int^F\Phi^*\,d\nu<\infty$, we have $\rho(s\in S\mid\Phi^*(s)=\infty)=0$. Hence, we see that $R_0(x)=0$ for all $x\geq f(\infty-,t)$ and since $R_0(\cdot,t)$ is decreasing we have (see [3; (3.29.7) p.205])

$$F(t) = \int_0^\infty R(x,t) \, dx \le \int_0^\infty R_0(x,t) \, dx = \int_{f(0,t)}^{f(\infty,t)} R_0(x,t) \, dx$$

$$\le \int_0^\infty R_0(f(x-t),t) \, \lambda_t(dx)$$

Let $(s,t) \in S \times T$ and $x \in \mathbf{R}$ be given such that $f(x-,t) < f(\Phi^*(s),t)$. Since $f(y,t) \leq f(x-,t)$ for all y < x, we must have $\Phi^*(s) \geq x$. Hence, we have $R_0(f(x-,t),t) \leq R_1(x) := \rho(s \in S \mid \Phi^*(s) \geq x)$ and so we see that $F(t) \leq \int_0^\infty R_1(x) \, \lambda_t(dx)$ for all $t \in T \setminus N$. So by (i) we have

$$\int_{T\setminus N}^* F \, d\mu \le \int_{T\setminus N} \mu(dt) \int_0^\infty R_1(x) \, \lambda_t(dx) = \int_0^\infty R_1(x) \, dx = \int_0^F \Phi^* \, d\nu$$

which completes the proof of the last inequality in (1). The first inequality in (2) follows in the same manner using the increasing μ -partition of unity g and the mid-inequality is evident.

The last inequality in (2) holds trivially if $\int^* \Phi^* d\nu = \infty$. So suppose that $\int^* \Phi^* d\nu < \infty$ and let $a > \int^* \Phi^* d\nu$ be given. Then there exists $\xi \in L^1(S, \mathcal{A}, \nu)$ such that $\int_S \xi d\nu < a$ and $\Phi^*(s) \leq \xi(s)$ for all $s \in S$. Since $f(\cdot,t)$ is right continuous for all $t \in T$ and $f(x,\cdot)$ is \mathcal{B} -measurable for all $x \in \overline{\mathbf{R}}$, we see that f is measurable with respect to the product σ -algebra $\mathcal{B}(\overline{\mathbf{R}}) \otimes \mathcal{B}$ and since ξ is \mathcal{A} -measurable and $\Phi^* \leq \xi$, we see that $f(\xi(s),t)$ is $(\mathcal{A} \otimes \mathcal{B})$ -measurable and satisfies $0 \leq \phi(s,t) \leq f(\Phi^*(s),t) \leq f(\xi(s),t)$. So by the Fubini-Tonelli theorem we have

$$\int_{S \times T} f(\xi(s), t) (\nu \otimes \mu)(ds, dt) = \int_{S} \nu(ds) \int_{T} f(\xi(s), t) \mu(dt)$$

Since f is an increasing μ -partition of unity, we have $\int_T f(\xi(s),t)\,\mu(dt)=\xi(s)$ for all $s\in S$ and so we see that $\int^*\phi\,d(\nu\otimes\mu)\leq\int_S\xi\,d\nu< a$. Letting $a\downarrow\int^*\Phi^*d\nu$, we obtain the last inequality in (2). The first inequality in (2) follow in the same manner and the remaining inequalities in (2) are well-known and easy.

Theorem 3.6: Let (S, \leq) be a linear proset and let $\phi \in \bar{M}_S(T)$ be a given function with Σ -transform $\Phi(s) := \Sigma \phi(s)$. Suppose that ϕ is pointwise increasing on S and $\Phi_*(s) = \Phi^*(s)$ for all $s \in S$ where $\Phi^*(s)$ and $\Phi_*(s)$ are defined as in Thm.3.4. If $\mathcal{L} \subseteq 2^S$ is any given set such that $\phi(\cdot, t) \in \bar{W}(S, \mathcal{L})$ for μ -a.a. $t \in T$, then we have $\Phi \in \bar{W}(S, \mathcal{L})$.

Proof: By Thm.3.4 with $\alpha(t) \equiv -\infty$ and $\beta(t) \equiv \infty$, there exist increasing μ -partitions of unity $f,g: \bar{\mathbf{R}} \times T \to \bar{\mathbf{R}}$ satisfying $g(\Phi(s),t) \leq \phi(s,t) \leq f(\Phi(s),t)$ for all $(s,t) \in S \times T$. Let $-\infty < x < y < \infty$ be given. Since $\int_T f(x,t) \, \mu(dt) = x < y = \int_T g(y,t) \, \mu(dt)$, we have $\mu(t \mid f(x,t) < g(y,t)) > 0$ and since $\phi(\cdot,t) \in \bar{W}(S,\mathcal{L})$ for μ -a.a. $t \in T$, there exists $t_0 \in T$ and $u,v \in \mathbf{R}$ such that $\phi(\cdot,t_0) \in \bar{W}(S,\mathcal{L})$ and $f(x,t_0) < u < v < g(y,t_0)$. Hence, there exists $L \in \mathcal{L} \cup \{\emptyset,S\}$ such that $\{s \mid \phi(s,t_0) > v\} \subseteq L \subseteq \{s \mid \phi(s,t_0) > u\}$. Let $s \in \{\Phi > y\}$ be given. Then we have $\phi(s,t_0) \geq g(\Phi(s),t_0) \geq g(y,t_0) > v$ and so we have $s \in L$. Let $s \in L$ be given. Then we have $f(\Phi(s),t_0) \geq \phi(s,t_0) > u > f(x,t_0)$ and since $f(\cdot,t_0)$ is increasing, we have $\Phi(s) > x$. Hence, we see that $\{\Phi > y\} \subseteq L \subseteq \{\Phi > x\}$ and so we have $\Phi(s,t_0) \geq W(s,t_0) > u > g(t_0) > u > g(t_0)$

4. Solutions to problem (IP) Let (M, \preceq) and (S, \leq) be prosets, let $\omega \in M$ be a given element and let $\Sigma : M \to \bar{\mathbf{R}}$ and $H : S \to \bar{\mathbf{R}}$ be increasing functions. Then we let $I_{\Sigma}(H,\omega)$ denote the set of all increasing function $\phi : S \to M$ satisfying $\phi(s) \preceq \omega$ and $\Sigma \phi(s) \leq H(s) \leq \Sigma(\omega)$ for all $s \in S$. If $\phi \in I_{\Sigma}(H,\omega)$, we let $IP_{\Sigma}(\phi,H,\omega)$ denote the set of all increasing functions $\psi : S \to M$ satisfying $\phi(s) \preceq \psi(s) \preceq \omega$ and $\Sigma \psi(s) = H(s)$ for all $s \in S$. Note that $IP_{\Sigma}(\phi,H,\omega) \subseteq I_{\Sigma}(H,\omega)$ and that $IP_{\Sigma}(\phi,H,\omega)$ is exactly the set of all solution to problem (IP) of the introduction. We let $GI_{\Sigma}(H,\omega)$ denote the set of all $\phi \in I_{\Sigma}(H,\omega)$ for which there exists $\kappa \in L^1(\Sigma)$ such that $\phi(D^{\circ}_{\Sigma \phi}) \cup \{\kappa,\omega\}$ is a linear subset of (M,\preceq) and if $\theta : S \to \bar{\mathbf{R}}$ is a function and $J \subseteq S$ is a given set, we define $\liminf_{s \uparrow J} \theta(s) := \sup_{u \in J} \inf_{s \in J \cap [u,s]} \theta(s)$ with the convention $\liminf_{s \uparrow \emptyset} \theta(s) := \infty$.

Theorem 4.1: Let (M, \preceq) be a σ -lattice and let $\Sigma : M \to \bar{\mathbf{R}}$ be an increasing smooth functional with the Darboux property. Let $\omega \in M$ be a given element, let (S, \leq) be a linear proset and let $H: S \to \bar{\mathbf{R}}$ be an increasing function. Let $\phi \in I_{\Sigma}(H, \omega)$ be a given function and let us define $r := \Sigma_{\vee} \phi(D_{\Sigma \phi}^{\circ})$, $L := \{s \mid H(s) < r\}$ and $q := \Sigma_{\vee} \phi(L)$. Then we have

- $(1) \quad L \cup D_H^{\circ} \subseteq D_{\Sigma\phi}^{\circ} \text{ and } q \leq r \leq \Sigma(\omega) \wedge \inf_{s \notin D_{\Sigma\phi}^{\circ}} \Sigma\phi(s) \leq \inf_{s \notin D_{\Sigma\phi}^{\circ}} H(s)$
- (2) If $L \neq D_{\Sigma,\phi}^{\circ}$, then we have $q = -\infty$
- (3) If $\phi \notin GI_{\Sigma}(H,\omega)$, then we have $|\Sigma(\omega)| = |q| = |r| = |\Sigma\phi(s)| = \infty$ for all $s \in S$ and $\{H < \infty\} \subseteq D^{\circ}_{\Sigma\phi}$

and if $\phi \in GI_{\Sigma}(H,\omega)$, then $r < \infty$ and there exists an increasing Σ -partition of unity $f: \bar{\mathbf{R}} \to M$ satisfying

- (4) $f(\Sigma(\omega)) = \omega$ and $\phi(s) \leq f(\Sigma\phi(s)) \ \forall s \in S \setminus D_{\Sigma\phi}^{\circ}$
- (5) $\phi(s) \leq f(r) \ \forall s \in D^{\circ}_{\Sigma \phi} \ \text{and} \ \phi(s) \leq f(q) \ \forall s \in L$
- (6) $\phi(s) \leq f(H(s)) \quad \forall s \in \{H \geq q\}$
- **Proof:** (1): Since ϕ is increasing, we have that $\Sigma \phi$ is increasing and since $\Sigma \phi \leq H$, we have $D_H^{\circ} \subseteq D_{\Sigma \phi}^{\circ}$. Since S is linear we have that $A := \phi(S)$ is a linear subset of M satisfying $A \cap L_*(\Sigma) = \phi(D_{\Sigma \phi}^{\circ})$, $A \cap L^1(\Sigma) = \phi(D_{\Sigma \phi})$ and $A \cap L^*(\Sigma) = \phi(D_{\Sigma \phi}^*)$. So by Lem.2.2 we have $\phi(u) \preceq \phi(s)$ for all $u \in D_{\Sigma \phi}^{\circ}$ and all $s \in S \setminus D_{\Sigma \phi}^{\circ}$. Hence, we have $r \leq \Sigma \phi(s)$ for all $s \in S \setminus D_{\Sigma \phi}^{\circ}$ and since $\Sigma \phi(s) \leq H(s) \leq \Sigma(\omega)$, we see that (1) holds.
- (2): Suppose that $L \neq D_{\Sigma\phi}^{\circ}$. Since $L \subseteq D_{\Sigma\phi}^{\circ}$, there exists $u \in D_{\Sigma\phi}^{\circ} \setminus L$. Then we have $\Sigma\phi(u) = -\infty$ and $H(u) \geq r$. Since S is linear and H is increasing, we have $s \leq u$ for all $s \in L$ and since ϕ is increasing, we have $\phi(s) \preceq \phi(u)$ for all $s \in L$. Since $u \in D_{\Sigma\phi}^{\circ}$, we have $q \leq \Sigma\phi(u) = -\infty$.
- (3): Suppose that $\phi \notin GI_{\Sigma}(H,\omega)$. Since $\phi(S) \preceq \omega$, we have $\omega \notin L^{1}(\Sigma)$; that is $|\Sigma(\omega)| = \infty$. Since $\phi(D_{\Sigma\phi}) \subseteq L^{1}(\Sigma)$ and $\phi(D_{\Sigma\phi}^{\circ}) \preceq \phi(D_{\Sigma\phi}) \preceq \omega$, we have $D_{\Sigma\phi} = \emptyset$; that is, $|\Sigma\phi(s)| = \infty$ for all $s \in S$. By Lem.2.1 there exists $v \in M$ such that $\phi(D_{\Sigma\phi}^{\circ}) \preceq v \preceq \omega$ and $\Sigma(v) = r$. Hence, we have $|r| = \infty$ and so by (2) we have $|q| = \infty$. Since $\Sigma\phi(s) \leq H(s)$ and $|\Sigma\phi(s)| = \infty$, we have $\{H < \infty\} \subseteq D_{\Sigma\phi}^{\circ}$.
- (4)–(6): Suppose that $\phi \in GI_{\Sigma}(H,\omega)$. Then there exists $\kappa \in L^1(\Sigma)$ such that $\phi(D_{\Sigma\phi}^{\circ}) \cup \{\kappa,\omega\}$ is linear. Set $A:=\phi(S)$. Then we have $A \cap L_*(\Sigma) = \phi(D_{\Sigma\phi}^{\circ})$ and so by Thm.2.5 with $F:=\phi(L)$ we see that $r<\infty$ and that there exists an increasing Σ -partition $f: \bar{\mathbf{R}} \to M$ satisfying (4+5). Let $s \in S$ be a given element satisfying $H(s) \geq q$. By (4), we have $\phi(s) \preceq f(\Sigma\phi(s)) \preceq f(H(s))$ if $s \in S \setminus D^{\circ}\Sigma\phi$. By (5), we have $\phi(s) \preceq f(T) \preceq f(T)$ if $s \in D_{\Sigma\phi}^{\circ}$ and $s \in T$ is suppose that $s \in D_{\Sigma\phi}^{\circ}$ and $s \in T$ and so by (5) we have $\phi(s) \preceq f(T) \preceq f(T)$ which completes the proof of (6).
- **Theorem 4.2:** Let (M, \preceq) be a σ -lattice and let $\Sigma : M \to \overline{\mathbf{R}}$ be an increasing smooth functional with the Darboux property. Let $\omega \in M$ be a given element, let (S, \leq) be a linear proset and let $H: S \to \overline{\mathbf{R}}$ be an increasing function. Let $\phi, \sigma \in I_{\Sigma}(H, \omega)$ be given functions satisfying $\phi(s) \preceq \sigma(s)$ for all $s \in S$ and let us define $r := \Sigma_{V} \phi(D_{\Sigma \phi}^{\circ})$ and

$$S_H := \left\{ \left. s \in S \mid -\infty < H(s) < \Sigma(\omega) \right\} \right. , \quad L := \left\{ \left. s \in S \mid H(s) < r \right\} \right.$$

and $q := \Sigma_{\vee} \phi(L)$. Let $F : S \to \overline{\mathbf{R}}$ and $\theta : S \to M$ be given function such that θ is increasing and $\Sigma \theta(s) + F(s) \leq H(s)$ for all $s \in S$. Then we have

(1)
$$\phi \in GI_{\Sigma}(H,\omega)$$
 and $\{s \mid H(s) < q\} \subseteq D_H^{\circ} \Rightarrow IP_{\Sigma}(\phi,H,\omega) \neq \emptyset$

- (2) $IP_{\Sigma}(\sigma, H, \omega) \subseteq IP_{\Sigma}(\phi, H, \omega)$ and if $D^{\circ}_{\Sigma\sigma} \neq D^{\circ}_{\Sigma\phi}$ and either ϕ or σ belong to $GI_{\Sigma}(H, \omega)$, then we have $IP_{\Sigma}(\phi, H, \omega) \neq \emptyset$
- (3) $\liminf_{s \uparrow A} (H(s) F(s)) \ge \Sigma_{\vee} \theta(A) > -\infty \quad \forall A \not\subseteq D_{\Sigma \theta}^{\circ}$
- (4) If $\phi \in GI_{\Sigma}(H, \omega)$ and (M, \preceq) has the strong Darboux property, then the following two statements are equivalent:
 - (a) $IP_{\Sigma}(\phi, H, \omega) \neq \emptyset$
 - (b) Either $D_H^{\circ} = D_{\Sigma\phi}^{\circ}$ or $r \leq \sup_{s \in D_{\Sigma\phi}^{\circ}} H(s)$
- (5) $S_H \cap D_{\Sigma\phi}^{\circ} = \emptyset \Rightarrow IP_{\Sigma}(\phi, H, \omega) \neq \emptyset$
- **Proof:** (1): Suppose that $\phi \in GI_{\Sigma}(H,\omega)$ and $\{H < q\} \subseteq D_H^{\circ}$. By Thm.4.1 there exists an increasing Σ -partition of unity $f: \bar{\mathbf{R}} \to M$ satisfying (4)–(6) in Thm.4.1. Let us define $\psi(s) := \phi(s)$ if H(s) < q and $\psi(s) := f(H(s))$ if $H(s) \geq q$. By Thm.4.1, we have $\phi(s) \preceq \psi(s) \preceq \omega$ for all $s \in S$ and since S is linear and ϕ , H and f are increasing, we see that ψ is increasing. Since f is an increasing Σ -partition of unity, we have $\Sigma \psi(s) = H(s)$ for all $s \in \{H \geq q\}$. Since $\{H < q\} \subseteq D_H^{\circ}$ and $\phi \in I_{\Sigma}(H,\omega)$, we have $\Sigma \psi(s) = \Sigma \phi(s) \leq H(s) = -\infty$ for all $s \in \{H < q\}$. Hence, we have $\Sigma \psi(s) = H(s)$ for all $s \in S$ and $\psi \in IP_{\Sigma}(\phi, H, \omega)$.
- (2): Since $\phi(s) \preceq \sigma(s)$ for all $s \in S$, we have $IP_{\Sigma}(\sigma,H,\omega) \subseteq P_{\Sigma}(\phi,H,\omega)$. So suppose that $D_{\Sigma\sigma}^{\circ} \neq D_{\Sigma\phi}^{\circ}$ and that either ϕ or σ belong to $GI_{\Sigma}(H,\omega)$. Let us define $\tau(s) := \phi(s)$ if $s \in D_{\Sigma\sigma}^{\circ}$ and $\tau(s) := \sigma(s)$ if $s \in S \setminus D_{\Sigma\sigma}^{\circ}$. Since $\phi(s) \preceq \sigma(s)$, we have $D_{\Sigma\sigma}^{\circ} \subseteq D_{\Sigma\phi}^{\circ}$ and since ϕ and σ are increasing with $\phi(s) \preceq \sigma(s) \preceq \omega$ and $\Sigma\sigma(s) \leq H(s)$ for all $s \in S$, we see that $\tau: S \to M$ is an increasing function satisfying $\phi(s) \preceq \tau(s) \preceq \omega$ and $\Sigma\tau(s) \leq H(s)$ for all $s \in S$. In particular, we have $\tau \in I_{\Sigma}(H,\omega)$ and since $D_{\Sigma\sigma}^{\circ} \subseteq D_{\Sigma\phi}^{\circ}$, we have $D_{\Sigma\tau}^{\circ} = D_{\Sigma\sigma}^{\circ}$. Since ϕ and τ coincide on $D_{\Sigma\sigma}^{\circ}$ and $\phi(s) \preceq \sigma(s)$, we have $\tau(D_{\Sigma\tau}^{\circ}) = \phi(D_{\Sigma\sigma}^{\circ}) \preceq \sigma(D_{\Sigma\sigma}^{\circ})$. Since either ϕ or σ belong to $GI_{\Sigma}(H,\omega)$, we see that $\tau \in GI_{\Sigma}(H,\omega)$. Since $D_{\Sigma\sigma}^{\circ} \subseteq D_{\Sigma\phi}^{\circ}$, there exists $u \in D_{\Sigma\phi}^{\circ} \setminus D_{\Sigma\sigma}^{\circ}$ and since S is linear and $\Sigma\phi$ is increasing, we have $\tau(D_{\Sigma\tau}^{\circ}) = \phi(D_{\Sigma\sigma}^{\circ}) \preceq \phi(u)$. Hence, we have $\Sigma_{V}\tau(D_{\Sigma\tau}^{\circ}) \leq \Sigma\phi(u) = -\infty$ and so by (1) we have $IP_{\Sigma}(\tau,H,\omega) \neq \emptyset$. Since $\phi(s) \preceq \tau(s)$ for all $s \in S$, we see that $\emptyset \neq IP_{\Sigma}(\tau,H,\omega) \subseteq IP_{\Sigma}(\phi,H,\omega)$ which completes the proof of (2).
- (3): Let $A\subseteq S$ be a given set satisfying $A\not\subseteq D_{\Sigma\theta}^{\circ}$ and let a denote the \liminf in (3). Since $\Sigma\theta(s)+F(s)\leq H(s)$, we have $\Sigma\theta(s)\leq H(s)-F(s)$ for all $s\in S$ and since $\Sigma\theta$ is increasing, we have $\sup \Sigma\theta(A)\leq a$. Since $A\not\subseteq D_{\Sigma\theta}^{\circ}$, we have $\sup \Sigma\theta(A)>-\infty$ and so we see that (3) follows from Lem.2.2.
- (4): Suppose that (4.a) holds and that $D_H^\circ \neq D_{\Sigma\phi}^\circ$. Then there exists an increasing function $\psi: S \to M$ satisfying $\phi(s) \preceq \psi(s)$ and $\Sigma \psi(s) = H(s)$ for all $s \in S$ and by Thm.4.1, we have $D_H^\circ \subsetneq D_{\Sigma\phi}^\circ$. Hence, we have $D_{\Sigma\phi}^\circ \not\subseteq D_H^\circ = D_{\Sigma\psi}^\circ$ and so by (3) with $(\theta(s), F(s)) = (\psi(s), 0)$ and $A := D_{\Sigma\phi}^\circ$, we see that $r \leq \sup_{s \in D_{\Sigma\phi}^\circ} H(s)$. Thus, we see that (4.a) implies (4.b)

Suppose that (4.b) holds and let me show that $IP_{\Sigma}(\phi,H,\omega)\neq\emptyset$. By (1), we see that this holds if $\{H< q\}\subseteq D_H^{\circ}$. So suppose that there exists $u\in S$ such that $-\infty < H(u) < q$. By Thm.4.1 we have $-\infty < q = r < \infty$ and $D_H^{\circ}\subseteq \{H< r\}=D_{\Sigma\phi}^{\circ}$ and since $-\infty < H(u) < q = r$, we have $D_H^{\circ}\neq D_{\Sigma\phi}^{\circ}$. Hence, by (4.b) we have $\sup_{s\in D_{\Sigma\phi}^{\circ}}H(s)=r$ and since H(s)< r for all $s\in D_{\Sigma\phi}^{\circ}$, there exists $s_1,s_2,\ldots\in D_{\Sigma\phi}^{\circ}$ such that $-\infty < H(s_1) < H(s_2) < \cdots < r$ and $H(s_n)\uparrow r$. Since S is linear and S is increasing, we have $s_1\leq s_2\leq\cdots$. Let $s\in D_{\Sigma\phi}^{\circ}$ be given. Since S is linear and S

$$\phi(s_n) \uparrow \kappa$$
 , $H(s_n) \uparrow r = \Sigma(\kappa)$, $H(s_n) < r$ and $\Sigma \phi(s_n) = -\infty \ \forall n \ge 1$

Since Σ has the strong Darboux property there exists an increasing sequence $(\eta_n) \subseteq M$ such that $\phi(s_{n+1}) \preceq \eta_n \preceq \kappa$ and $-\infty < \Sigma(\eta_n) \leq H(s_n)$ for all $n \geq 1$. By Lem.2.2, we have $\phi(D_{\Sigma\phi}^{\circ}) \preceq \phi(S \setminus D_{\Sigma\phi}^{\circ})$ and since $\kappa \in \vee \phi(D_{\Sigma\phi}^{\circ})$, we have $\kappa \preceq \omega$ and $\kappa \preceq \phi(s)$ for all $s \in S \setminus D_{\Sigma\phi}^{\circ}$.

Let us define $\lambda(s):=\inf\{n\geq 0\mid s\leq s_{n+1}\}$ for all $s\in S$ with the usual convention $\inf\emptyset:=\infty$. Then $\lambda:S\to\{0,1,\ldots,\infty\}$ is an increasing function such that $\{\lambda=0\}=[*,s_1]$ and since (s_n) is cofinal in $D_{\Sigma\phi}^{\circ}$, we have $\{\lambda<\infty\}=D_{\Sigma\phi}^{\circ}$. In particular, we have $\phi(s)\preceq\phi(s_1)\preceq\eta_1$ for all $s\in\{\lambda=0\}$ and $\eta_n\preceq\kappa\preceq\phi(s)$ for all $s\in\{\lambda=\infty\}$ and since (η_n) is increasing, we see that

$$\psi(s) := \eta_{\lambda(s)}$$
 if $1 \le \lambda(s) < \infty$ and $\psi(s) := \phi(s)$ if $\lambda(s) = 0$ or $\lambda(s) = \infty$

defines an increasing function from S into M satisfying $\psi(s) \preceq \omega$ for all $s \in S$. Let $s \in S$ be given such that $1 \leq \lambda(s) < \infty$ and set $k := \lambda(s)$. Then we have $s \leq s_{k+1}$ and $s \not\leq s_k$. Since ϕ is increasing, we have $\phi(s) \preceq \phi(s_{k+1}) \preceq \eta_k = \psi(s)$ and since S is linear and S is increasing, we have $s_k \leq s$ and S is S increasing, we have S is and S increasing, we have S increasing, we have S increasing, we have S is and S increasing, we have S is and S increasing, we have S is an S increasing S is an S increasing S in S increasing S is an S increasing S in S increasing S in S increasing S is an S increasing S in S increasing S in S increasing S is an S in S increasing S in S in S in S increasing S in S in

(5): Suppose that $S_H \cap D^\circ_{\Sigma\phi} = \emptyset$ and let us define $\psi(s) := \phi(s)$ if $H(s) < \Sigma(\omega)$ and $\psi(s) := \omega$ if $H(s) \geq \Sigma(\omega)$. Since S is linear and H and ϕ are increasing with $\phi(s) \preceq \omega$ and, we see that $\psi: S \to M$ is increasing and satisfies $\phi(s) \preceq \psi(s) \preceq \omega$ and $\Sigma \psi(s) \leq H(s) \leq \Sigma(\omega)$ for all $s \in S$. Suppose that $S_H = \emptyset$. Then we have $H(s) = -\infty = \Sigma \psi(s)$ if $H(s) < \Sigma(\omega)$ and $\Sigma \psi(s) = \Sigma(\omega) = H(s)$ if $H(s) \geq \Sigma(\omega)$ and so we see that $\psi \in IP_\Sigma(\phi, H, \omega)$. So suppose that $S_H \neq \emptyset$ and let $u \in S_H$ be given. Then we have $-\infty < H(u) < \Sigma(\omega)$ and so we have $D^\circ_H \subseteq D^\circ_{\Sigma\phi} = D^\circ_{\Sigma\phi} \cap \{H < \Sigma(\omega)\}$. Since $S_H \cap D^\circ_{\Sigma\phi} = \emptyset$, we see

that $D_H^\circ = D_{\Sigma\psi}^\circ$ and $\sup_{s \in D_{\Sigma\psi}^\circ} H(s) = -\infty$ and since $u \in S_H$ and we have $-\infty < \Sigma\psi(u) \le H(u) < \Sigma(\omega)$. Hence, by Thm.4.1 we have $\psi \in GI_{\Sigma}(H,\omega)$ and so by (2) and (4), we have $IP_{\Sigma}(\phi,H,\omega) \ne \emptyset$.

Theorem 4.3: Let (M, \preceq) be a σ -lattice, let $\omega \in M$ be a given element and let $\Sigma : M \to \bar{\mathbf{R}}$ be an increasing smooth functional with the strong Darboux property. Let (S, \leq) be linear proset and let $H : S \to \bar{\mathbf{R}}$ be an increasing function. Let $\phi \in I_{\Sigma}(H, \omega)$ be a given function and let us define $J := \{s \in D_{\Sigma\phi}^{\circ} \mid H(s) < \infty\}$. Let $\xi \curvearrowright \xi^{\diamond}$ and $\xi \curvearrowright \xi_{\diamond}$ be increasing function from M into M satisfying

- (1) $\Sigma(\xi^{\diamond}) + \Sigma(\xi_{\diamond}) \leq \Sigma(\xi) \leq \Sigma(\xi^{\diamond}) + \Sigma(\xi_{\diamond}) \quad \forall \xi \in M$
- (2) $\omega_{\diamond} \in L^1(\Sigma)$, $\xi_{\diamond} \preceq \xi \ \forall \xi \in M \ and \ \Sigma(\xi_{\diamond}) > -\infty \ \forall \xi \in L^1(\Sigma)$
- (3) If $\xi, \eta, \tau \in M$ are given elements satisfying $\xi_{\diamond} \preceq \eta \preceq \omega_{\diamond}$ and $\tau \in \xi \vee \eta$, then we have $\tau_{\diamond} \preceq \eta$ and $\tau^{\diamond} \preceq \xi^{\diamond}$
- $(4) \quad \liminf_{s\uparrow J} \left(H(s) \,\dot{-}\, \Sigma \phi^{\diamond}(s)\right) \geq \Sigma_{\vee} \phi_{\diamond}(J) \ , \ \liminf_{s\uparrow J} \left(H(s) \,\dot{-}\, \Sigma \phi^{\diamond}(s)\right) > -\infty$

Then we have $IP_{\Sigma}(\phi, H, \omega) \neq \emptyset$

Proof: Let us define $S_H:=\{s\mid -\infty < H(s) < \Sigma(\omega)\}$. By Thm.4.2.(5), we have $IP_{\Sigma}(\phi,H,\omega)\neq\emptyset$ if $S_H\cap D_{\Sigma\phi}^{\circ}=\emptyset$. Suppose that $\inf\Sigma\phi(D_{\Sigma\phi})=-\infty$. Then $D_{\Sigma\phi}\neq\emptyset$ and by Lem.2.2, we have $\phi(D_{\Sigma\phi}^{\circ})\preceq\phi(D_{\Sigma\phi})$. Hence, we have $\Sigma_{V}\phi(D_{\Sigma\phi}^{\circ})=-\infty$ and by Thm.4.1 we have $\phi\in GI_{\Sigma}(H,\omega)$. So by Thm.4.2.(4) we have $IP_{\Sigma}(\phi,H,\omega)\neq\emptyset$. So suppose that $S_H\cap D_{\Sigma\phi}^{\circ}\neq\emptyset$ and $a:=\inf\Sigma\phi(D_{\Sigma\phi})>-\infty$. Then we have $J\neq\emptyset$.

If $D_{\Sigma\phi} \neq \emptyset$, we have $-\infty < a < \infty$ and by Lem.2.2, there exists $v \in \lor \phi(D_{\Sigma\phi})$ such that $\Sigma(v) = a$ and $v \in L^1(\Sigma)$. If $D_{\Sigma\phi} = \emptyset$, we set $v := \omega$. By (2), we see that $v_{\diamond} \in L^1(\Sigma)$ and since $\phi(S) \preceq \omega$ and $\phi(D_{\Sigma\phi}^{\circ}) \preceq \phi(D_{\Sigma\phi})$, we have $\phi(D_{\Sigma\phi}^{\circ}) \preceq v \preceq \phi(D_{\Sigma\phi})$ and $v \preceq \omega$. Let us define

$$\begin{split} &\kappa(s) := \phi_{\diamond}(s) \ \text{ if } \ s \in J \ \ , \ \ \kappa(s) := v_{\diamond} \ \text{ if } \ s \in S \setminus J \\ &\theta(s) := H(s) \stackrel{.}{-} \Sigma \phi^{\diamond}(s) \ \ , \ \ G(s) := \Sigma(v_{\diamond}) \wedge \inf_{u \in J \cap [s,*]} \theta(u) \ \ \forall \, s \in S \end{split}$$

Since ϕ and $\xi \curvearrowright \xi_{\diamond}$ are increasing, we see that ϕ_{\diamond} is increasing and since $\phi(J) \preceq v$, we have $\phi_{\diamond}(J) \preceq v_{\diamond}$. Since S is linear and J is a lower interval, we see that $\kappa: S \to M$ is an increasing function satisfying $\kappa(s) \preceq v_{\diamond}$ for all $s \in S$. Let $s \in S \setminus J$ be given. Since J is lower interval, we have $J \cap [s,*] = \emptyset$ and so we have $G(s) = \Sigma(v_{\diamond}) = \Sigma \kappa(s)$. Let $s \in J$ be given. By (1), we see that $\Sigma \phi_{\diamond}(u) \leq \Sigma(v_{\diamond}) \land \theta(u)$ for all $u \in J$ and since $\Sigma \phi_{\diamond}$ is increasing, we have $\Sigma \kappa(s) = \Sigma \phi_{\diamond}(s) \leq G(s)$. Hence, we see that $\kappa \in I_{\Sigma}(G, v_{\diamond})$ and since $v_{\diamond} \in L^{1}(\Sigma)$, we have $\kappa \in GI_{\Sigma}(G, v_{\diamond})$. By (2), we have $\kappa(s) = \phi_{\diamond}(s) \preceq \phi(s)$ for all $s \in J$ and

since $J \subseteq D_{\Sigma\phi}^{\circ}$ and $v^{\diamond} \in L^{1}(\Sigma)$, we have $D_{\Sigma\kappa}^{\circ} = J$. Since $\kappa(J) \leq v_{\diamond}$, we have $\Sigma_{\vee}\kappa(J) = \Sigma_{\vee}\phi_{\diamond}(J) \leq \Sigma(v_{\diamond})$. Hence, by (4) we have

$$\sup_{s \in J} \ G(s) = \Sigma(v_{\diamond}) \wedge \liminf_{s \uparrow J} (H(s) \dot{-} \Sigma \phi^{\diamond}(s)) \geq \Sigma(v_{\diamond}) \wedge \Sigma_{\vee} \phi_{\diamond}(J) = \Sigma_{\vee} \kappa(J)$$

and so by Thm.4.2.(4) there exists an increasing function $\zeta:S\to M$ such that $\kappa(s)\preceq \zeta(s)\preceq v_{\diamond}$ and $\Sigma\zeta(s)=G(s)$ for all $s\in S$. Suppose that $\Sigma\phi^{\diamond}(s)=\infty$ for some $s\in J$. Since $\Sigma\phi^{\diamond}$ is increasing, we have $\Sigma\phi^{\diamond}(u)=\infty$ for all $u\geq s$ and since $H(u)<\infty$ for all $u\in J$, we have $\theta(u)=-\infty$ for all $u\in J\cap [s,*]$ which contradicts the last inequality in (4). Hence, we have $\Sigma\phi^{\diamond}(s)<\infty$ for all $s\in J$ and since $\Sigma(v_{\diamond})$ is finite, there exists $v\in J$ such that $G(v)>-\infty$.

Since ϕ and ζ are increasing and M is a lattice, there exists an increasing function $\tau:S\to M$ satisfying $\tau(s)\in\phi(s)\vee\zeta(s)$ for all $s\in S$ and since $\phi(s)\preceq\omega$ and $\zeta(s)\preceq v_\diamond\preceq v\preceq\omega$, we have $\phi(s)\preceq\tau(s)\preceq\omega$ for all $s\in S$. Let $s\in S$ be given and let me show that $\Sigma\tau(s)\leq H(s)$. If $H(s)=\infty$, this is evident. Suppose $H(s)<\infty$ and $s\notin J$. Then we have $s\notin D^\circ_{\Sigma\phi}$ and $-\infty<\Sigma\phi(s)\leq H(s)<\infty$. Hence, we have $\zeta(s)\preceq v\preceq\phi(s)$ and so we see that $\tau(s)\approx\phi(s)$ and $\Sigma\tau(s)=\Sigma\phi(s)\leq H(s)$. Suppose that $s\in J$. Then we have $\phi_\diamond(s)=\kappa(s)\preceq\zeta(s)\preceq\omega_\diamond$ and so by (3) with $(\xi,\eta)=(\phi(s),\zeta(s))$ we have $\tau_\diamond(s)\preceq\zeta(s)$ and $\tau^\diamond(s)\preceq\phi^\diamond(s)$. Since $\Sigma\phi^\diamond(s)<\infty$ and $G(s)\leq\Sigma(v_\diamond)<\infty$, we have

$$G(s) \dotplus \Sigma \phi^{\diamond}(s) = G(s) \dotplus \Sigma \phi^{\diamond}(s) \leq G(s) \dotplus (H(s) \dotplus \Sigma \phi^{\diamond}(s)) \leq H(s)$$

and so by (1) we have

$$\Sigma \tau(s) \le \Sigma \tau_{\diamond}(s) + \Sigma \tau^{\diamond}(s) \le \Sigma \zeta(s) + \Sigma \phi^{\diamond}(s) \le G(s) + \Sigma \phi^{\diamond}(s) \le H(s)$$

Hence, we have $\Sigma \tau(s) \leq H(s)$ and $\phi(s) \preceq \tau(s) \preceq \omega$ for all $s \in S$. Recall that $v \in J$ and $G(v) > -\infty$. Since $\zeta(v) \preceq \tau(v)$, we have $-\infty < G(v) = \Sigma \zeta(v) \leq \Sigma \tau(v) \leq H(v) < \infty$. Hence, we see that $v \in D_{\Sigma \tau} \cap D_{\Sigma \phi}^{\circ}$ and so by Thm.4.1.(3), we have $\tau \in GI_{\Sigma}(H,\omega)$. Hence, by Thm.4.2.(2) we have $IP_{\Sigma}(\phi,H,\omega) \neq \emptyset$.

Theorem 4.4: Let (T,\mathcal{B},μ) be finitely founded measure space with $\mu(T)>0$ and let $\Sigma:\bar{M}(T,\mathcal{B})\to\bar{\mathbf{R}}$ be a μ -integral. Let (S,\leq) be a linear proset and let $\omega\in\bar{L}(T,\mathcal{B},\mu)$ be a given function satisfying $\int_T\omega\,d\mu>-\infty$. Let $H:S\to\bar{\mathbf{R}}$ be an increasing function, let $\phi\in I_\Sigma(H,\omega)$ be a given function and let us define $J:=\{s\in D_{\Sigma\phi}^\circ\mid H(s)<\infty\}$ and $S_H:=\{s\in S\mid -\infty< H(s)<\Sigma(\omega)\}$. Then the following three statements are equivalent:

- (1) $IP_{\Sigma}(\phi, H, \omega) \neq \emptyset$
- (2) For every set $A\subseteq S$ satisfying $A\not\subseteq D_H^{\circ}$, we have
 - (a) $\Sigma_{\vee}\phi(A) \leq \sup_{s \in A} H(s)$
 - (b) $\limsup_{s\uparrow A} (H(s) \Sigma\phi_+(s)) \ge \Sigma_{\vee}\phi_-(A)$, $\limsup_{s\uparrow A} (H(s) \Sigma\phi_+(s)) > -\infty$

(3) Either $D_{\Sigma,\phi}^{\circ} \cap S_H = \emptyset$ or

(a)
$$\liminf_{s\uparrow J} (H(s) - \Sigma \phi_+(s)) \ge \Sigma_{\vee} \phi_-(J)$$
, $\liminf_{s\uparrow J} (H(s) - \Sigma \phi_+(s)) > -\infty$

Suppose that $IP_{\Sigma}(\phi, H, \omega) \neq \emptyset$ and that ϕ is pointwise increasing on S and satisfies $\phi(s,t) \leq \omega(t)$ for all $(s,t) \in S \times T$. Then there exists a function $\psi \in \bar{M}_S(T,\mathcal{B})$ such that ψ is pointwise increasing on S and

(4)
$$\phi(s,t) \leq \psi(s,t) \leq \omega(t) \ \forall (s,t) \in S \times T \ \text{and} \ \Sigma \psi(s) = H(s) \ \forall s \in S$$

(5)
$$\psi(s,t) = \phi(s,t) \ \forall (s,t) \in D_H^{\circ} \times T \ \text{and} \ \psi(s,t) = \omega(t) \ \forall (s,t) \in W \times T$$

where $W := \{ s \in S \mid H(s) \geq \Sigma(\omega) \}$.

Proof: (1) \Rightarrow (2): Suppose that (1) holds and let $A \subseteq S$ be a given set satisfying $A \not\subseteq D_H^\circ$. Then there exists an μ -a.e. increasing function $\psi:\in \bar{M}_S(T,\mathcal{B})$ such that $\phi(s,\cdot)\leq_{\mu}\psi(s,\cdot)\leq_{\mu}\omega$ and $\Sigma\psi(s)=H(s)$ for all $s\in S$ and observe that we may take $\psi(s)=\omega$ for all $s\in\{H=\infty\}$. In particular, we have $D_H^\circ=D_{\Sigma\psi}^\circ$ and since $\Sigma\phi_+(s)\leq\Sigma\psi_+(s)$ and $\Sigma_V\phi(A)\leq\Sigma_V\psi(S)$, we see that (2.a) follows from Thm.4.2.(3) with $(\theta(s),F(s))=(\psi(s),0)$. Since $\int_T\omega\,d\mu>-\infty$, we have $\Sigma(\omega_-)>-\infty$ and since $\psi(s,\cdot)\in L^1(T,\mathcal{B},\mu)$ for all $s\in D_H$, we have $D_H^\circ=D_{\Sigma\psi}^\circ=D_{\Sigma\psi_-}^\circ$. By Thm.2.7.(3), we have $\Sigma\psi_-(s)+\Sigma\psi_+(s)\leq\Sigma\psi(s)=H(s)$ and so by Thm.4.2.(3) with $(\theta(s),F(s))=(\psi_-(s),\Sigma\psi_+(s))$, we have

$$\liminf_{s \uparrow A} (H(s) - \Sigma \psi_{+}(s)) \ge \Sigma_{\vee} \psi_{-}(A) > -\infty$$

and since $\Sigma \phi_+(s) \leq \Sigma \psi_+(s)$ and $\Sigma_{\vee} \phi(A) \leq \Sigma_{\vee} \psi(S)$, we see that (2.b) holds.

- (2) \Rightarrow (3): Suppose that (2) holds and that we have $S_H \cap D_{\Sigma\phi}^{\circ} \neq \emptyset$. Then we have $J \not\subseteq D_H^{\circ}$ and so we see that (3.a) follows from (2.b).
- (3) \Rightarrow (1): Suppose that (3) holds. If $S_H \cap D_{\Sigma\phi}^{\circ} = \emptyset$, then (1) follows from Thm.4.2.(5). So suppose that (3.a) holds. Since $\omega \in \bar{L}(T,\mathcal{B},\mu)$ and $\int_T \omega \, d\mu > -\infty$, we have $\omega_- \in L^1(T,\mathcal{B},\mu)$. But then it follows easily that the maps $\xi^{\diamond}(t) := \xi_+(t)$ and $\xi_{\diamond}(t) := \xi_-(t)$ satisfies the conditions (1)–(3) in Thm.4.3 and since (3.a) implies condition (4) in Thm.4.3, we see that $IP_{\Sigma}(\phi,H,\omega) \neq \emptyset$.

Thus, we see that (1)–(3) are equivalent. So suppose that $IP_{\Sigma}(\phi,H,\omega)\neq\emptyset$ and that ϕ is pointwise increasing and satisfies $\phi(s,t)\leq\omega(t)$ for all $(s,t)\in S\times T$. Suppose that $S_H=\emptyset$ and let us define $\psi(s,t):=\phi(s,t)$ if $(s,t)\in W^c\times T$ and $\psi(s,t):=\omega(t)$ if $(s,t)\in W\times T$. Then $\psi\in \bar{M}_S(T,\mathcal{B})$. Let $t\in T$ be given. Since S is linear and $\phi(\cdot,t)$ and H are increasing with $\phi(s,t)\leq\omega(t)$ and $H(s)\leq\Sigma(\omega)$ for all $s\in S$, we see that ψ is pointwise increasing on S and that we have $\phi(s,t)\leq\psi(s,t)\leq\omega(s)$ and $\Sigma\psi(s)\leq H(s)\leq\Sigma(\omega)$ for all $(s,t)\in S\times T$. Since $S_H=\emptyset$, we have $H(s)=-\infty=\Sigma\phi(s)=\Sigma\psi(s)$ for all $s\in W^c$ and $\Sigma\psi(s)=\Sigma(\omega)=H(s)$ for all $s\in W$ and since $\Sigma(\omega)>-\infty$, we see that ψ satisfies (4+5).

So suppose that $S_H \neq \emptyset$ and let $\xi \in IP_\Sigma(\phi, H, \omega)$ be given. Then we have $\phi(s,\cdot) \leq_\mu \xi(s,\cdot) \leq_\mu \omega$ and $\Sigma \xi(s) = H(s)$ for all $s \in S$ and since $\emptyset \neq S_H \subseteq D_H = D_{\Sigma \xi}$, we have $\xi \in GI_\Sigma(H,\omega)$ by Thm.4.1.(3). Hence, by Thm.4.1 and Thm.3.2 there exists a pointwise increasing μ -partition of unity $f: \mathbf{R} \times T \to \bar{\mathbf{R}}$ satisfying

 $\phi(s,\,\cdot\,) \leq_\mu \xi(s,\,\cdot\,) \leq_\mu f(H(s),\,\cdot\,) \ \ \forall \, s \in \{\,H \geq r\} \ \ \text{and} \ \ f(\Sigma(\omega),t) = \omega(t) \ \ \forall \, t \in T$ where $r:=\Sigma_\vee \xi(D_H^\circ)$. Let us define $\psi(s,t):=\phi(s,t)$ if $(s,t)\in D_H^\circ \times T$ and $\psi(s,t):=\phi(s,t)\vee f(H(s),t)$ if $(s,t)\in (S\setminus D_H^\circ)\times T$. Then we have $\psi\in \bar{M}_S(T,\mathcal{B})$ and since D_H° is a lower interval and ϕ and f are pointwise increasing, we see that ψ is a pointwise increasing. Since $\phi(s,t)\leq \omega(t)=f(\Sigma(\omega),t)$ and $H(s)\leq \Sigma(\omega)$, we see that ψ satisfies (5) and that we have $\phi(s,t)\leq \psi(s,t)\leq \omega(t)$ for all $(s,t)\in S\times T$. In particular, we have $\Sigma\psi(s)=\Sigma\phi(s)=-\infty=H(s)$ if $s\in D_H^\circ$. Let $s\in S\setminus D_H^\circ$. Then we have $\psi(s,t)=\phi(s,t)\vee f(H(s),t)$ and by Thm.4.1.(1), we have $H(s)\geq r$. Hence, we have $\phi(s,\cdot)\leq_\mu f(H(s),\cdot)$ and so we see that $\psi(s,\cdot)=f(H(s),\cdot)$ and $\Sigma\psi(s)=\Sigma f(H(s))=H(s)$. Thus, we see that ψ satisfies

Example Let S and T be subsets of $\mathbf R$ with $\sup S = \sup T = \infty$. Let $\mathcal B$ denote the Borel σ -algebra on T and let μ be a finitely founded, Borel measure on T satisfying $\mu(T^s) = \infty$ for all $s \in S$ where $T^s := T \cap (s, \infty)$. Let $g: T \to [0, \infty)$ be a non-negative Borel function satisfying $G(s) := \int_{T_s} g \, d\mu < \infty$ for all $s \in S$ where $T_s := T \cap (-\infty, s]$. Let \leq denote the usual ordering on S and let $\phi(s, t)$ denote the function given by

$$\phi(s,t) := g(t) \ \forall s \in S \ \forall t \in T_s \ , \ \phi(s,t) := -1 \ \forall s \in S \ \forall t \in T^s$$

Let Σ be any given μ -integral, let $\omega \in M(T,\mathcal{B})$ be a given function satisfying $g(t) \leq \omega(t)$ for all $t \in T$ and let $H: S \to \bar{\mathbf{R}}$ an increasing function satisfying $H(s) \leq \int_T \omega \, d\mu$ for all $s \in S$. By Thm.2.7, we have $\Sigma \phi_+(s) = G(s)$ and $\Sigma \phi_-(s) = \Sigma \phi(s) = -\infty$ for all $s \in S$. Hence, we see that $\phi \in I_\Sigma(H,\omega)$, $D_{\Sigma \phi}^{\circ} = S$ and $J = \{H < \infty\}$ where J and S_H are defined as in Thm.4.4. If $J \neq S$, there exists $u \in S$ such that $H(s) = \infty$ for all $s \in S \cap [u,\infty]$ and since $\Sigma \phi_+(s) = G(s) < \infty$, we have $\liminf_{s \uparrow J} (H(s) - \Sigma \phi_+(s)) = \infty$. Since $\phi_-(s,t) = -1_{T^s}(t)$ and $T^s \downarrow \emptyset$, we have $\Sigma_{\vee} \phi_-(S) = 0$. Hence, by Thm.4.4 we see that $IP_\Sigma(\phi,H,\omega) \neq \emptyset$ if and only if H satisfies the following condition:

(A) Either $S_H = \emptyset$ or $\liminf_{s \uparrow S} (H(s) - G(s)) \ge 0$

(4+5).

and if so then there exists a function $\psi \in \bar{M}_S(T, \mathcal{B})$ such that ψ is pointwise increasing on S and satisfies (4+5) in Thm.4.4..

Let us take $T=[1,\infty)$, $\mu=$ the Lebesgue measure on T and $g(t):=\frac{1}{t}$ for all $t\in T$. Then we have $G(s)=\log_+ s$ and (A) takes the following form

(B) Either $S_H = \emptyset$ or $\liminf_{s \uparrow S} (H(s) - \log s) \ge 0$

Let us take $T=\mathbf{N}$, $\mu=$ the counting measure on \mathbf{N} and $g(t):=\frac{1}{t}$ for all $t\in T$. Then we have $G(s)=\sum_{t=1}^{[s]}\frac{1}{t}$ where [s] denotes the smallest integer $\geq s$. Hence if $\gamma=0.5772156649\ldots$ denotes the Euler constant, then (A) takes the following form

(C) Either $S_H = \emptyset$ or $\liminf_{s \uparrow S} (H(s) - \log s) \ge \gamma$

References:

- [1] N. Dunford and J.T. Schwartz (1958): *Linear operators. Part 1: General Theory*, Interscience Publishers Inc., New York and London.
- [2] Engelkind, R. (1977): General topology; Polish Scientific Publishers, Warszawa
- [3] J. Hoffmann-Jørgensen, (1994): *Probability with a view toward statistics*; vol.I, Chapman & Hall, New York and London.
- [4] J. Hoffmann-Jørgensen, (2002): *Integral representations*; Functional Analysis VII, Proc. of Postgraduate School and Conference, Dubrovnik 2001; editors: D. Bakić, P. Pandžić and G. Peskir. University of Aarhus, Department of Mathematical Sciences, Var. Publ. Ser. No. 46, p.229–445.
- [5] J. Hoffmann-Jørgensen, (2006): Constructions of contents and measures satisfying a prescribed set of inequalities; Prob. and Math. Stat., 26, p.283–313.
- [6] P. Suppes (1960): Axiomatic set theory; D. Van Nostand Co. Inc.; New York and London