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Abstract

Let G0 be a connected, simply connected real simple Lie group. Suppose
that G0 has a compact Cartan subgroup T0, so it has discrete series represen-
tations. Relative to T0 there is a distinguished positive root system ∆+ for
which there is a unique noncompact simple root ν, the “Borel – de Siebenthal
system”. There is a lot of fascinating geometry associated to the correspond-
ing “Borel – de Siebenthal discrete series” representations of G0. In this paper
we explore some of those geometric aspects and we work out the K0–spectra
of the Borel – de Siebenthal discrete series representations. This has already
been carried out in detail for the case where the associated symmetric space
G0/K0 is of hermitian type, i.e. where ν has coefficient 1 in the maximal root
µ, so we assume that the group G0 is not of hermitian type, in other words
that ν has coefficient 2 in µ.

Several authors have studied the case where G0/K0 is a quaternionic sym-
metric space and the inducing holomorphic vector bundle is a line bundle.
That is the case where µ is orthogonal to the compact simple roots and the
inducing representation is 1–dimensional.
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1 Introduction

One of Harish–Chandra’s great achievements was the existence theorem for discrete
series representations of a semisimple Lie group. He characterized the groups with
discrete series representations by the equal rank condition, he found the explicit
formulae on the regular elliptic set for the characters of the discrete series, and he
showed that those formulae specify the characters. At the same time (and as a
main motivation) he was able to explicitly construct a particularly simple series, the
holomorphic discrete series, for those groups where the corresponding Riemannian
symmetric space is a bounded symmetric domain in a complex Euclidean space.
For the other discrete series representations however, the actual construction has
remained less explicit, although there are several beautiful realizations.

In this paper we initiate the study of a certain family, the so-called Borel – de
Siebenthal discrete series, from a point of view as close as possible to that of Harish–
Chandra for the holomorphic discrete series. This is motivated in part by the work
of Gross and Wallach for the scalar case of the quaternionic discrete series [GW].
As in that case we obtain in particular the admissibility of the series for a small
subgroup of the maximal compact subgroup. At the same time we discover a rather
appealing geometry for the coadjoint orbit that one wants to attach to the discrete
series in question. In particular we give a detailed classification of the possible
structures of such orbits in terms of explicit prehomogeneous vector spaces with
relative invariants. We feel these deserve attention in their own right; and while we
do give the construction for the Borel – de Siebenthal discrete series here, including
the explicit K0-types and the (important) admissibility for a small subgroup K1

of K0, we defer further analysis of continuations of the series to a sequel to this
paper. In particular, we shall then elucidate the role of the relative invariants in
constructing rather singular representations in the continuation of the series. We
mention that much of this has been carried out in the quaternion line bundle case in
[GW]. We also mention the papers [Kn2] and [Kn3] treating such questions for the
indefinite orthogonal and symplectic groups; here methods from [GW] are used, and
the connection to the continuation of unitary modules in the sense of Vogan (with
criteria for good and fair range of unitarity of cohomologically induced modules) is
made clear. Our approach seeks to employ analytic methods and the geometry of
the orbits, and in particular to use reproducing kernels, see e.g. [WaW].

Several questions concerning discrete series representations may be resolved by
our methods, for example the question of finding admissible branching laws, where
one obtains direct sum decompositions with finite multiplicities. By applying admis-
sibility of K1 such results may be obtained in complete analogy with what happens
for holomorphic discrete series representations.

In this paper we give a complete description of the geometry of the elliptic
coadjoint orbits corresponding to the Borel – de Siebenthal discrete series. They are
open G0–orbits in certain complex flag manifolds and we give precise results on their
maximal compact subvarieties (which are compact hermitian symmetric spaces) and
the holomorphic normal bundles to those subvarieties. We use this structural in-
formation to give a concrete geometric construction of the representations in this
series, including the structure of the K0–types. Our construction of the K0–types
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provides an analogue of the K0–type decomposition of holomorphic discrete series
representations.

The quaternionic discrete series, studied by Gross and Wallach [GW] in the line
bundle case, is the special case of the Borel – de Siebenthal discrete series, where the
maximal root is compact and is orthogonal to all the other compact positive roots,
or equivalently (see [W0]) where K0 has a local direct factor isomorphic to Sp(1).
While each complex simple Lie group G has exactly one noncompact real form G0

that has quaternionic discrete series representations, every real simple Lie group
G0 with rankG0 = rankK0 has either holomorphic discrete series representations or
Borel – de Siebenthal discrete series representations. Thus the Borel – de Siebenthal
discrete series is the natural extension of the holomorphic discrete series.

Our geometric approach allows us to extend several results from [GW]. While
Gross and Wallach constructed quaternionic discrete series representations on spaces
of holomorphic forms with values in a line bundle, we also allow vector bundles –
which is natural in the more general setting considered here. Our construction
also provides good concrete examples of minimal cohomology degree realizations of
discrete series representations in the sense of Kostant [Ko3].

Our basic tool is complex differential geometry and the associated cohomology
groups. An important component of this is a collection of basic spectral sequence
arguments, already implicit in the paper [S1]. See also [S2], [S3] and [W4]. Here we
make use of some technical results of M. Eastwood and the second named author
from [EW] for some crucial identifications of duals of finite dimensional represen-
tations of reductive Lie groups, in particular for keeping track of the action of the
center in terms of the highest weights and the Dynkin diagrams.

Our results include a careful collection of the data attached to the orbits in
question, and an explicit formula for the K0–types in the Harish–Chandra module
corresponding to the discrete series in question. As a by–product we find two natural
sets of strongly orthogonal roots, one corresponding to the hermitian symmetric
spaceK0/L0 and the other corresponding to the riemannian symmetric spaceG0/K0.
They fit together to realize the orbit G0(z0) = G0/L0 as a kind of Siegel domain
of Type II. This should provide useful coordinates for explicit calculations of the
elements in the Harish–Chandra module.

In Section 2 we work out the general structure of the complex manifold D =
G0(z0) ∼= G0/L0. We describe the action of l0 on the tangent and normal spaces to
the maximal compact subvariety Y = K0(z0) ∼= K0/L0, and on their duals. then we
discuss a negativity condition that is crucial to the realization of our discrete series
representations.

In Section 3 we list all instances of simple Lie algebras g0 corresponding to Borel
– de Siebenthal root orders. Setting aside the well–understood hermitian symmetric
cases, we work out the precise structure of the algebras k0 and l0 and the parts of
the complexified Lie algebra g that correspond to the holomorphic tangent space of
Y and the holomorphic normal space of Y in D, including the representations of l0
on those two spaces. In each case this allows explicit parameterization of the Borel
– de Siebenthal discrete series.

In Section 4 we consider the prehomogeneous space (L, u1) where u1 ⊂ g repre-
sents the holomorphic normal space to Y in D. There we describe the algebra of
relative invariants, using our knowledge of the representation of L on the symmet-
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ric algebra S(u1). In most cases we can be explicit, but in some we must rely on
general results of Sato and Kimura [SK]. These invariants are (in addition to being
interesting in themselves) relevant for the next step of understanding the analytic
continuation of the discrete series; here the ring of regular functions on the zero set
of an invariant will correspond to a module in this continuation. We intend to follow
this idea in a sequel to this paper.

In Section 5 we assemble our preparations and work out the exact K–spectrum
of the Borel – de Siebenthal discrete series representations. Our main result here,
which is the main result of the paper, is Theorem 5.18. In a final example we look
a the “sufficient negativity” condition that ensures the non-vanishing of exactly the
right analytic cohomology group, and we compare it to the corresponding condition
for individual K-types – this will indicate a possibility of continuing the discrete
series family.

2 Notation and the Basic Fibration

In general we use capital Latin letters for Lie groups with subscript 0 for real groups
and no subscript for complexifications. We use the corresponding small Gothic
letters for Lie algebras, again with subscript 0 for real Lie algebras and no subscript
for complexifications. Our basic objects are a connected simply connected simple
real Lie group G0, its Lie algebra g0, the complexification G of G0, and the Lie
algebra g of G. Here G is a connected simply connected complex Lie group and the
inclusion g0 →֒ g defines a homomorphism G0 → G with discrete central kernel.

When we omit a subscript 0 where there had been one before, we mean complex-
ification.

Fix a Cartan involution θ of G0 and g0. The fixed point set K0 = Gθ
0 is a

maximal compactly embedded subgroup of G0. As usual, we decompose g0 = k0 +s0

and g = k + s into (±1)–eigenspaces of θ, where k0 (resp. k) is the Lie algebra of K0

(resp. K).
We now make two assumptions:

rankG0 = rankK0,

and the symmetric space S0 := G0/K0 is not of hermitian type.
(2.1)

In particular K0 is a maximal compact subgroup of G0. Both G0 and K0 are simply
connected semisimple groups with finite center.

Fix a maximal torus T0 ⊂ K0. Then T0 is a compact Cartan subgroup of G0,
and a celebrated theorem of Harish–Chandra says that G0 has discrete series repre-
sentations.

The construction of Borel and de Siebenthal [BoS] provides a positive root system
∆+ = ∆+

G for (g, t) such that the associated simple root system Ψ = ΨG contains
just one noncompact root. We denote

Ψ = {ψ1, . . . , ψℓ} (Bourbaki root order)

and ν ∈ Ψ is the noncompact simple root.
(2.2)

Every root α ∈ ∆+ has expression α =
∑
ni(α)ψi. Since we have excluded the

hermitian case, the coefficient of ν in the maximal root µ is 2. Further, a root is
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compact just when the coefficient of ν in its expansion is 0 or ±2, noncompact just
when that coefficient is ±1. Also, (Ψ\{ν})∪{−µ} is a simple root system for (k, t).
Grading by the coefficient nν of ν we have a parabolic subalgebra of g given by

q = l + u−, reductive part l = t +
∑

nν=0

gα and nilradical u− = u−2 + u−1 (2.3)

where ui =
∑

nν=i gα. The opposite parabolic is qopp = l + u+ where u+ = u1 + u2.
Note that

s = u−1 + u1, so q ∩ s = u−1, and k = u−2 + l + u2. (2.4)

On the group level, we have the parabolic subgroup Q ⊂ G where Q has Lie
algebra q. The group Q has Chevalley semidirect product decomposition LU− where
L is the reductive component and U− is the unipotent radical. Note that G0 ∩ Q
is a real form L0 of L and that L0 is the centralizer in K0 of a circle subgroup of
T0. The parabolic Q defines a complex flag manifold Z = G/Q, say with base point
z0 = 1Q, and and open orbit D = G0(z0) ∼= G0/L0. The complex manifold D has
maximal compact subvariety Y = K0(z0) ∼= K0/L0, which is a smaller complex flag
manifold K/(K ∩Q).

Our choice of signs in (2.3) is such that

u+ is the holomorphic tangent space of D at z0 ,

u2 is the holomorphic tangent space of Y at z0 , and

u1 is the holomorphic normal space of Y in D at z0 .

(2.5)

Since G0/K0 is irreducible but not hermitian we know that the action of k0 on
s0 is absolutely irreducible. Thus the action of k on s is irreducible. From [W2,
Theorem 8.13.3] we know that the action of l on each ui is irreducible. It will be
convenient to have the notation

τi : representation of L on the vector space ui. (2.6)

The contragredient (dual) of τi is τ ∗i = τ−i. Some obvious highest or lowest weight
spaces of the τi are given by

τ2 has highest weight space gµ and τ−2 has lowest weight space g−µ,

τ1 has lowest weight space gν and τ−1 has highest weight space g−ν .
(2.7)

Note that the degree deg τi = dimC ui. If i 6= 0 it is the number of roots α such that
nν(α) = i.

The basic tool in this paper is the real analytic fibration

D → S0 with fiber Y, in other words G0/L0 → G0/K0 with fiber K0/L0. (2.8)

The structure of the holomorphic tangent bundle and the holomorphic normal bun-
dle to Y in D is given by (2.5), (2.6) and (2.7). In the next section we will make this
explicit. The fibration (2.8) was first considered by W. Schmid in [S1] and [S2] for a
related situation in which L0 = T0, and then somewhat later by R. O. Wells and one
of us [WeW] without that restriction. A much more general setting, which drops the
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compactness assumption on L0, is that of the double fibration transform (see [FHW]
and the references there), where S0 is replaced by a complexification S ⊂ G/K. Spe-
cialization of the double fibration transform to the Borel – de Siebenthal setting is
carried out in [EW].

The simple root system Ψ = {ψ1, . . . , ψℓ} of g defines the system

Ξ = {ξ1, . . . , ξℓ} where
2〈ξi,ψj〉
〈ψj ,ψj〉 = δi,j (2.9)

of fundamental simple weights. Let γ be the highest weight of an irreducible rep-
resentation of L0. For our discussion of the Borel – de Siebenthal discrete series in
Section 5 we will need to know exactly when 〈γ+ ρg, α〉 < 0 for all positive comple-
mentary roots α (roots α that are not roots of l) where ρg denotes half the sum of
the positive roots of g. The condition is Theorem 2.12 below.

Define ν∗ by 〈ν∗, ψj〉 = 0 for ψj 6= ν and 2〈ν∗, ν〉 = 〈ν, ν〉 (i.e. the fundamental
weight dual to ν). Then γ ∈ it∗0 decomposes as

γ = γ0 + tν∗ where 〈γ0, ν〉 = 0 and t ∈ R. (2.10)

Define ∆i = {α ∈ ∆G | nν(α) = i}, so ui =
∑

α∈∆i
gα for i ∈ {±1,±2}. Thus the

positive root system decomposes as ∆+ = (∆0∩∆+)∪∆1 ∪∆2. The highest weight
of τ2, representation of l on u2 =

∑
∆2

gα is µ. If we subtract a positive combination
of roots of Ψ \ {ν} from µ we decrease the inner product with γ + ρg. Thus

〈γ + ρg, α〉 < 0 for all α ∈ ∆2 if and only if 〈γ + ρg, µ〉 < 0. (2.11a)

The highest weight of τ−1 is −ν, so τ1 has highest weight w0
l (ν) where w0

l is the
longest element of the Weyl group of l. Thus

〈γ + ρg, α〉 < 0 for all α ∈ ∆1 if and only if 〈γ + ρg, w
0
l (ν)〉 < 0. (2.11b)

As ν∗ is orthogonal to the roots of l it is fixed by the inverse of w0
l , so 〈ν∗, w0

l (ν)〉 =
〈ν∗, ν〉 = 1. Using the decomposition (2.10), and combining (2.11a) and (2.11b), we
have

Theorem 2.12. The following conditions are equivalent.

1. The inequality 〈γ + ρg, α〉 < 0 holds for every root α ∈ ∆1 ∪ ∆2 (i.e. every
positive complementary root)

2. Both t < −1
2
〈γ0 + ρg, µ〉 and t < −〈γ0 + ρg, w

0
l (ν)〉.

Remark 2.13. In Theorem 2.12 it is automatic that 〈γ + ρg, β〉 > 0 for every
positive root of l, so the conditions of Theorem 2.12 ensure that 〈γ + ρg, α〉 6= 0
for every root α, in other words that γ + ρg is the Harish–Chandra parameter of
a discrete series representation of G0. Specifically, in our setting, the conditions of
Theorem 2.12 will characterize the Borel – de Siebenthal discrete series.
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3 Classification

In this section we give a complete list the simple Lie algebras g0 for which the
hypotheses (2.1) hold. We then specify the complex parabolic subalgebra q ⊂ g
and the real subalgebras k0 and l0 of g0. Next, we give precise descriptions of the
representations τi and their representation spaces ui. Much of this is done using the
Dynkin diagrams to indicate highest weights of representations. There the special
cases, where G0/K0 is a quaternionic symmetric space, are visible at a glance: they
are the ones where −µ connects directly to ν in the extended Dynkin diagram of g.

We will denote highest weights of representations as follows. In Dynkin diagrams
with two root lengths we denote short root nodes by black dots • and long roots by
the usual circles b. Extended diagrams are those with the negative of the maximal
root µ attached by the usual rules. Recall the system Ξ of fundamental simple
weights from (2.9). The (irreducible finite dimensional) representation of G and g
of highest weight

∑
niξi is indicated by the Dynkin diagram of g with ni written

next to the ith node, except that we omit writing zeroes. So for example the adjoint
representations are indicated by

Aℓ , ℓ ≧ 1 b2 or b1 b p p p b1 Bℓ , ℓ ≧ 3 b b1 p p p b r
Cℓ , ℓ ≧ 2 r2 r p p p r b Dℓ , ℓ ≧ 4 b b1 p p p bHH b�� b

G2 r b1 F4 b1 b r r
E6

b b b b b
b1 E7

b
1

b b b b b
b

E8

b b b b b b b
1b

We will use this notation for k as well. It can be identified from its simple root
system Ψk = (Ψ \ {ν}) ∪ {−µ}. We’ll follow the notation of [BE], except that we
won’t darken the dots. Thus the diagram of l consists of the diagram of g, except
that the o (resp. •) at the node for the noncompact simple root ν is replaced by an ×
(resp. ⊠)1. In the diagram of l, a symbol × or ⊠ indicates the 1–dimensional center
of L. The irreducible representation of L with highest weight

∑
niξi now indicated

by the Dynkin diagram of l with ni written next to the ith node, for ni 6= 0, whether
that node is o, •, × or ⊠.

If ν∗ is the fundamental simple weight corresponding to the noncompact simple
root ν, and x ∈ t by α(x) = 〈ξ, α〉 for α ∈ t∗, then l0 has center iRν∗.

Now we use the fact that K0 is connected, simply connected and semisimple.
The simple root system Ψk decomposes into

Ψk1 : connected component that contains − µ, and

Ψk2 : the complement of Ψk1 in Ψk

1Of course one can also look at L0 as a subgroup of K0, and from that viewpoint the diagram
of l is obtained from that of k on replacing the o at the node for −µ with a ×. However it is more
convenient to look at L0 as a subgroup of G0, and the diagram of l from that viewpoint, when we
consider the action of L on the subspaces ui.
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This results in decompositions K0 = K1 × K2 and L0 = L1 × L2, which we make
explicit in each case.

In the following we list the Dynkin diagrams, with the possibilities of the non-
compact simple root ν among the simple roots ψi. Also in the picture one finds the
extended Dynkin diagram node for −µ where µ is the maximal root. Diagrams of
Type A do not occur because ν must have coefficient 2 in the expression of µ as a
linear combination of simple roots. We now consider the cases where g is of type B.

3.1. Case Spin(4, 2ℓ−3). Here G0 is the 2–sheeted cover of the group SO(4, 2ℓ−3)
which is a real analytic subgroup of the complex simply connected group Spin(2ℓ+1; C).
Its extended Dynkin diagram isc

cψ1

−µ
...
...
..
c
ψ2

ν q q q c
ψℓ−1

s
ψℓ (type Bℓ , ℓ > 2) (3.1a)

Thus k is
b bψ1

−µ

b
ψ3

p p p b
ψℓ−1

r
ψℓ and l is

b
ψ1

× b
ψ3

p p p b
ψℓ−1

r
ψℓ .

Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = sp(1)⊕ (sp(1)⊕ so(2ℓ− 3)) and l0 = iRν∗ ⊕ (sp(1)× so(2ℓ− 3)) (3.1b)

where ν∗ the fundamental simple weight corresponding to ν. The representation of k

on s has highest weight −ν = −ψ2 so its diagram is
bb11 b

1
p p p b r

. Using
(2.7), the representation

τ2 : l on u2 is
b ×

1
b p p p b r

(3.1c)

Also, the action τ−1 of l on u−1 is
b
1

×
−2

b
1

p p p b r
, so the dualizing di-

agram method of [EW] shows that the representation

τ1 : l on u1 is
b

1
×
−1

b
1

p p p b r
. (3.1d)

Here dim u2 = 1 and dim u1 = (2ℓ− 3)(2ℓ− 4).

3.2. Case Spin(2p, 2ℓ − 2p + 1), 2 < p < ℓ. Here G0 is the 2–sheeted cover of
SO(2p, 2ℓ− 2p + 1), 2 < p < ℓ, contained in Spin(2ℓ + 1; C). Its extended Dynkin
diagram is c

cψ1

−µ
...
...
..
c
ψ2

q q q c
ψp

ν q q q c
ψℓ−1

s
ψℓ (type Bℓ , ℓ > 3) (3.2a)

Thus k is
bbψ1

−µ
��

b
ψ2

p p p b
ψp−1

b
ψp+1

b p p p b
ψℓ−1

r
ψℓ and l is

b
ψ1

b
ψ2

p p p b
ψp−1

×
ψp+1

b p p p b
ψℓ−1

r
ψℓ .

Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = so(2p)⊕ so(2ℓ− 2p+ 1) and

l0 = u(p)⊕ so(2ℓ− 2p+ 1) = iRν∗ ⊕ su(p)⊕ so(2ℓ− 2p+ 1).
(3.2b)
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The representation of k on s has highest weight−ν = −ψp:
bb�� b p p p b

1

b
1

p p p b r
.

Using (2.7), the representation

τ2 : l on u2 is
b b

1
p p p b × b p p p b r

. (3.2c)

Also, the action τ−1 of l on u−1 is
b b p p p b

1
×
−2

b
1

p p p b r
so the dualizing

diagram method of [EW] shows that the representation

τ1 : l on u1 is
b

1
b p p p b ×

−1
b

1
p p p b r

. (3.2d)

Here dim u2 = p(p− 1)/2 and dim u1 = p(2ℓ− 2p+ 1).

3.3. Case Spin(4, 1). Here G0 is the (universal) double cover of the group SO(4, 1).
Its extended Dynkin diagram is

c
ψ1

s
ψ2

ν..........................c
−µ

(type B2) (3.3a)

Thus k is
b
ψ1

b
−µ and l is

b
ψ1

⊠ . Now the decompositions k0 = k1 ⊕ k2 and
l0 = l1 ⊕ l2 are

k0 = sp(1)⊕ sp(1) and l0 = iRν∗ ⊕ sp(1). (3.3b)

Here k acts on s with highest weight −ν = −ψ2:
b

1
b
1 . Using (2.7), the represen-

tation
τ2 : l on u2 is

b ⊠
−2

. (3.3c)

Also, the action τ−1 of l on u−1 is
b
1

⊠
−2

so the dualizing diagram method of [EW]
shows that the representation

τ1 : l on u1 is
b
1

⊠
−1

. (3.3d)

dim u2 = 1 and dim u1 = 2.

3.4. Case Spin(2ℓ, 1), ℓ > 1. Here G0 is the universal (2–sheeted) cover of the
group SO(2ℓ, 1) with ℓ > 1. Its extended Dynkin diagram is

c
cψ1

−µ
...
...
..
c
ψ2

q q q c
ψℓ−1

s
ψℓ

ν

(type Bℓ , ℓ > 2) (3.4a)

Thus k is

bbψ1

−µ
��

b
ψ2

q q q b
ψℓ−1

and l is
b
ψ1

b
ψ2

q q q b
ψℓ−1

⊠ .
Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = so(2ℓ) and l0 = u(ℓ) = iRν∗ ⊕ su(ℓ). (3.4b)

The representation of k on s has highest weight −ν = −ψℓ: bb�� b p p p b
1

. Using

(2.7), the representation

τ2 : l on u2 is
b b

1
p p p b ⊠ . (3.4c)
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Also, the action τ−1 of l on u−1 is b b p p p b
1

⊠
−2

so the dualizing diagram

method of [EW] shows that the representation

τ1 : l on u1 is
b b
1

p p p b ⊠ . (3.4d)

Here dim u2 = ℓ(ℓ− 1)/2 and dim u1 = ℓ. This exhausts the cases where g is of type
B, and we go on to consider the cases where g is of type C.

3.5. Case Sp(p, ℓ− p), 1 < p < ℓ. Here G0 is simply connected, and its extended
Dynkin diagram is

c
−µ

................s
ψ1

s
ψ2

q q q sν
ψp

q q q s
ψℓ−1

c
ψℓ

(type Cℓ , ℓ > 1) (3.5a)

Thus k is
b

−µ
b
ψ1

r
ψ2

p p p r
ψp−1

r
ψp+1

p p p r
ψℓ−1

b
ψℓ with Ψk1 = {−µ, ψ1, ψ2, . . . , ψp−1} and

Ψk2 = {ψp+1, ψp+2, . . . , ψℓ}, and l is
r
ψ1

r
ψ2

p p p ⊠ p p p r
ψℓ−1

b
ψℓ .

Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = sp(p)⊕ sp(ℓ− p) and l0 = u(p)⊕ sp(ℓ− p) = iRν∗ ⊕ su(p)⊕ sp(ℓ− p). (3.5b)

The representation of k on s has highest weight−ν = −ψp: b r r p p p r
1 1

r p p p r b
.

Using (2.7), the representation

τ2 : l on u2 is r
2

r p p p r ⊠ r p p p r b (3.5c)

The action τ−1 of l on u−1 is
r r p p p r

1
⊠

−2
r

1
p p p r b

, so the dualizing dia-
gram method of [EW] shows that the representation

τ1 : l on u1 is r
1

r p p p r ⊠
−1

r
1

p p p r b (3.5d)

Here dim u2 = (p− 1)(p+ 2)/2 and dim u1 = 2p(ℓ− p).

3.6. Case Sp(1, ℓ − 1). Here G0 is simply connected, and its extended Dynkin
diagram is

c
−µ

................sν
ψ1

s
ψ2

q q q s
ψp

q q q s
ψℓ−1

c
ψℓ

(type Cℓ , ℓ > 1) (3.6a)

Thus k is
b

−µ
r
ψ2

p p p r
ψℓ−1

b
ψℓ and l is ⊠ r

ψ2

p p p r
ψℓ−1

b
ψℓ .

Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = sp(1)⊕ sp(ℓ− 1) and l0 = iRν∗ ⊕ sp(ℓ− 1). (3.6b)

The representation of k on s has highest weight−ν = −ψ1: b
1 1

r p p p r b .
Using (2.7), the representation

τ2 : l on u2 is ⊠
2

r p p p r b
(3.6c)

The action τ−1 of l on u−1 is ⊠
−2

r
1

p p p r b
, so the dualizing diagram

method of [EW] shows that the representation

τ1 : l on u1 is ⊠ r
1

p p p r b
. (3.6d)
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Here dim u2 = 1 and dim u1 = 2ℓ. This exhausts the cases where g is of type C, and
we go on to consider the cases where g is of type D.

3.7. Case Spin(4, 2ℓ − 4), ℓ > 4. Here G0 is the 2–sheeted cover of SO(4, 2ℓ − 4)
contained in Spin(2ℓ; C). Its extended Dynkin diagram is

c
cψ1

−µ
...
...
..
c
ψ2

ν q q q c
ψℓ−2

HHH cψℓ

��� cψℓ−1

(type Dℓ , ℓ > 4) (3.7a)

Thus k is
b bψ1

−µ

b
ψ3

p p p b
ψℓ−2

HH bψℓ

�� bψℓ−1

and l is
b
ψ1

× b
ψ3

p p p b
ψℓ−2HH bψℓ

�� bψℓ−1

.
Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = sp(1)⊕ (sp(1)⊕ so(2ℓ− 4)) and l0 = iRν∗ ⊕ (sp(1)⊕ so(2ℓ− 4)) . (3.7b)

The representation of k on s has highest weight −ν = −ψ2 so its diagram isbb11 b
1

p p p bHH b�� b
. Using (2.7), the representation

τ2 : l on u2 is b ×
1

b p p p bHH b�� b
(3.7c)

Also, the action τ−1 of l on u−1 is
b
1

×
−2

b
1

p p p bHH b�� b
, so the dualizing di-

agram method of [EW] shows that the representation

τ1 : l on u1 is b
1

×
−1

b
1

p p p bHH b�� b
. (3.7d)

Here dim u2 = 1 and dim u1 = 4(ℓ− 2).

3.8. Case SO(4, 4). Here G0 is the 2–sheeted cover of the group SO(4, 4) that is
contained in Spin(8; C). Its extended Dynkin diagram is

c
cψ1

−µ
...
...
..
ψ2

νc
HHH cψ4

��� cψ3

(type D4) (3.8a)

Thus k is
bb bbψ1

−µ
ψ3

ψ4

and l is
b
ψ1

×HH bψ4

�� bψ3

.

Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = sp(1)⊕ (sp(1)⊕ sp(1)⊕ sp(1)) and

l0 = iRν∗ ⊕ (sp(1)⊕ sp(1)⊕ sp(1)) .
(3.8b)

The representation of k on s has highest weight −ν = −ψ2 so its diagram isbb bb1

1

1

1

. Using (2.7), the representation

τ2 : l on u2 is b ×
1
HH b�� b

. (3.8c)

Also, the action τ−1 of l on u−1 is b1 ×
−2

HH b 1

1
�� b

so the dualizing diagram method

of [EW] shows that the representation

τ1 : l on u1 is b1 ×
−1

HH b 1

1
�� b

(3.8d)
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Here dim u2 = 1 and dim u1 = 8.

3.9. Case Spin(2p, 2ℓ − 2p), 2 < p < ℓ − 2. Here G0 is the 2–sheeted cover of
the group SO(2p, 2ℓ− 2p) that is contained in Spin(2ℓ; C), with 2 < p < ℓ− 2. Its
extended Dynkin diagram is

c
cψ1

−µ
...
...
..
c

ψ2

q q q ν

ψp

c q q q c
ψℓ−2

HHH c ψℓ

��� c ψℓ−1

(type Dℓ , ℓ > 5) (3.9a)

Thus k is
aaψ1

−µ
��

a
ψ2

p p p a
ψp−1
a

ψp+1
a p p p a

ψℓ−1
a

ψℓ−2
HH aψℓ

��
aψℓ−1

and l is a
ψ1

a
ψ2

p p p a
ψp−1

× ψp+1
a p p p a

ψℓ−2
HH aψℓ

��
aψℓ−1

.
Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = so(2p)⊕ so(2ℓ− 2p) and

l0 = u(p)⊕ so(2ℓ− 2p) = iRν∗ ⊕ su(p)⊕ so(2ℓ− 2p).
(3.9b)

The representation of k on s has highest weight−ν = −ψp: aa��a p p p a
1 1

a p p p a aHH a��
a
.

Using (2.7), the representation

τ2 : l on u2 is
b b

1
p p p b × b p p p bHH b�� b

. (3.9c)

Also, the action τ−1 of l on u−1 is
b b p p p b

1
×

−2
b

1
p p p bHH b�� b

so the dualizing
diagram method of [EW] shows that the representation

τ1 : l on u1 is
b

1
b p p p b ×

−1
b
1

p p p bHH b�� b
. (3.9d)

Here dim u2 = p(p− 1)/2 and dim u1 = 2p(ℓ− p). This exhausts the cases where g
is of type D, and thus exhausts the classical cases. We go on the the exceptional
cases.

3.10. Case G2,A1A1. Here G0 is the split real Lie group of type G2. It has maximal
compact subgroup SO(4). Its extended Dynkin diagram is

s
ψ1

c
ψ2

ν
............. c

−µ . (type G2) (3.10a)

Thus k is r
ψ1

b
−µ and l is

s
ψ1

⊠ .
Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = sp(1)⊕ sp(1) and l0 = iRν∗ ⊕ sp(1). (3.10b)

The representation of k on s has highest weight −ν = −ψ2:
r

3

b
1 . Using (2.7),

the representation

τ2 : l on u2 is
s ⊠

1
(3.10c)

Also, the action τ−1 of l on u−1 is
r
3

⊠
−2 so the representation

τ1 : l on u1 is
s
3

⊠
−1

. (3.10d)
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Note that τ1|[l,l] has degree 4, is self–dual, and has an antisymmetric bilinear invari-
ant. Also, dim u2 = 1 and τ2|[l,l] is trivial, so that bilinear invariant is given by the
Lie algebra product u1 × u1 → u2.

3.11. Case F4,A1C3 . Here G0 is the simply connected real Lie group of type F4

whose maximal compact subgroup has 2–sheeted cover Sp(1)× Sp(3). Its extended
Dynkin diagram is

c
−µ

.............c
ψ1

ν c
ψ2

s
ψ3

s
ψ4

(Type F4) (3.11a)

Thus k is
b

−µ
b
ψ2

r
ψ3

r
ψ4 and l is × b

ψ2

r
ψ3

r
ψ4 . Now the decompositions

k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = sp(1)⊕ sp(3) and l0 = iRν∗ ⊕ sp(3). (3.11b)

The representation of k on s has highest weight −ν = −ψ1:
b
1 1

b r r
. Us-

ing (2.7), the representation

τ2 : l on u2 is 1
× c s s

(3.11c)

Also, the action τ−1 of l on u−1 is −2
×

1
b r r

so the representation

τ1 : l on u1 is ×
−1 1

c s s
. (3.11d)

Note that τ1|[l,l] has degree 14, is self–dual, and has an antisymmetric bilinear in-
variant. Also, dim u2 = 1 and τ2|[l,l] is trivial, so that bilinear invariant is given by
the Lie algebra product u1 × u1 → u2.

3.12. Case F4,B4 . Here G0 is the simply connected real Lie group of type F4 with
maximal compact subgroup Spin(9). Its extended Dynkin diagram is

c
−µ

.............c
ψ1

c
ψ2

s
ψ3

νs
ψ4

(Type F4) (3.12a)

Thus k is
−µb ψ1b ψ2b ψ3r and l is bψ1 bψ2 rψ3

⊠ .
Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = so(9) and l0 = iRν∗ ⊕ so(7). (3.12b)

The representation of k on s has highest weight −ν = −ψ4: b b b r1 .
Using (2.7), the representation

τ2 : l on u2 is
c
1

c s ⊠ . (3.12c)

Also, the action τ−1 of l on u−1 is b b r1 ⊠
−2

so the representation

τ1 : l on u1 is c c s
1

⊠
−1

. (3.12d)
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Note that τ1|[l,l] has degree 8, is self–dual, and has a symmetric bilinear invariant.
In effect τ1 is the action of Spin(7) on the Cayley numbers, and τ2 is its action
(factored through SO(7) on the pure imaginary Cayley numbers. thus dim u2 = 7
and dim u1 = 8.

3.13. Case E6,A1A5,1. Here G0 is the group of type E6 whose maximal compact
subgroup is the 2–sheeted cover of SU(2) × SU(6). The noncompact simple root
ν = ψ3, so L is of type T1A1A4. We do not consider the case ν = ψ5 separately
because the two differ only by an outer automorphism of E6. Here the extended
Dynkin diagram (Bourbaki root order) is

cψ1 cψ3

ν

cψ4

cψ5 cψ6

HHH

���

cψ2.............c−µ
(Type E6) (3.13a)

Thus k is bψ1 bψ4
bψ5 bψ6

HH
�� bψ2 b−µ and l is bψ1 × bψ4

bψ5 bψ6

HH
�� bψ2

.

Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = su(6)⊕ su(2) and l0 =
(
su(5)⊕ iRν∗

)
⊕ su(2). (3.13b)

The representation of k on s has highest weight −ν = −ψ3: b1 b1 b b
HH
�� b b .

Using (2.7), the representation

τ2 : l on u2 is c × c c c
HHH

���

c1 . (3.13c)

Also, the action τ−1 of l on u−1 is b1 ×−2 b1 b b
HH
�� b so the representation

τ1 : l on u1 is c1 ×−1 c 1c c
HHH

���

c . (3.13d)

Note that τ1|[l,l] has degree 20 and is not self–dual. We have dim u2 = 5 and
dim u1 = 20.

3.14. Case E6,A1A5,2. Here G0 is the group of type E6 with maximal compact
subgroup SU(2)×SU(6). The noncompact simple root ν = ψ2, so L is of type T1A5.
The extended Dynkin diagram (Bourbaki root order) is

cψ1 cψ3 cψ4

cψ5 cψ6

HHH

���

cψ2

ν
.............c−µ

(Type E6) (3.14a)

Thus k is
bψ1 bψ3 bψ4

bψ5 bψ6

�� b−µ and l is bψ1 bψ3 bψ4
bψ5 bψ6

HH
��

× . Now the decomposi-
tions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = sp(1)⊕ su(6) and l0 = iRν∗ ⊕ su(6). (3.14b)
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The representation of k on s has highest weight −ν = −ψ2: b b b1 b b
�� b1 .

Using (2.7), the representation

τ2 : l on u2 is c c c c c
HHH

���

×1
. (3.14c)

Also, the action τ−1 of l on u−1 is b b b1 b b
HH
��

×−2 so the representation

τ1 : l on u1 is c c c1 c c
HHH

���

×−1
. (3.14d)

Note that τ1|[l,l] has degree 20, is self–dual, and has an antisymmetric bilinear in-
variant. Also, dim u2 = 1 and τ2|[l,l] is trivial, so that bilinear invariant is given by
the Lie algebra product u1 × u1 → u2. In brief, dim u2 = 1 and dim u1 = 20.

3.15. Case E7,A1D6,1. Here G0 is the group of type E7 with maximal compact
subgroup that is the 2–sheeted cover of SU(2)× Spin(12). The noncompact simple
root ν = ψ1, so L is of type T1D6 and the extended Dynkin diagram isc

−µ
.............c

ψ1

ν c
ψ3

c
ψ4

c
ψ5

c
ψ6

c
ψ7

cψ2

(Type E7) (3.15a)

Thus k is

b
−µ

b
ψ3

b
ψ4

b
ψ5

b
ψ6

b
ψ7bψ2 and l is

× b
ψ3

b
ψ4

b
ψ5

b
ψ6

b
ψ7bψ2 .

Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = sp(1)⊕ so(12) and l0 = iRν∗ ⊕ so(12). (3.15b)

The representation of k on s has highest weight −ν = −ψ1: a
1

a
1

a a a aa .

Using (2.7), the representation

τ2 : l on u2 is ×
1

c c c c c
c

(3.15c)

Also by (2.7), the representation τ−1 of l on u−1 is
×
−2

b
1

b b b b
b so the

representation

τ1 : l on u1 is

×
−1

c
1

c c c c
c . (3.15d)

Note that τ1|[l,l] has degree 32, is self–dual, and has an antisymmetric bilinear in-
variant. Also, dim u2 = 1 and τ2|[l,l] is trivial, so that bilinear invariant is given by
the Lie algebra product u1 × u1 → u2. In brief, dim u2 = 1 and dim u1 = 32.
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3.16. Case E7,A1D6,2. Again G0 is the group of type E7 with maximal compact
subgroup that is a 2–sheeted cover of SU(2)×Spin(12), but now noncompact simple
root ν = ψ6, so L is of type T1A1D5 and the extended Dynkin diagram isc

−µ
.............c

ψ1

c
ψ3

c
ψ4

c
ψ5

c
ψ6

ν c
ψ7

cψ2

(Type E7) (3.16a)

Thus k is

b
−µ

b
ψ1

b
ψ3

b
ψ4

b
ψ5

b
ψ7bψ2 and l is

b
ψ1

b
ψ3

b
ψ4

b
ψ5

× b
ψ7bψ2 . Now the

decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = so(12)⊕ sp(1) and

l0 =
(
so(2)⊕ so(10)

)
⊕ sp(1) =

(
iRν∗ ⊕ so(10)

)
⊕ sp(1).

(3.16b)

The representation of k on s has highest weight −ν = −ψ6: a a a a a
1

a
1a .

Using (2.7), the representation

τ2 : l on u2 is

c
1

c c c × c
c . (3.16c)

Also by (2.7), the representation τ−1 of l on u−1 is b b b b
1

×
−2

b
1b so the

representation

τ1 : l on u1 is

c c c c ×
−1

c
1

c1 . (3.16d)

Note that τ1|[l,l] has degree 16 and is not self–dual. In brief, dim u2 = 10 and
dim u1 = 16.

3.17. Case E7,A7. Here G0 is the group of type E7 with maximal compact subgroup
SU(8)/{±1}. The noncompact simple root ν = ψ2, so L is of type T1E6 and the
extended Dynkin diagram isc

−µ
.............c

ψ1

c
ψ3

c
ψ4

c
ψ5

c
ψ6

c
ψ7

cν ψ2

(Type E7) (3.17a)

Thus k is
b
−µ

b
ψ1

b
ψ3

b
ψ4

b
ψ5

b
ψ6

b
ψ7 and l is

b
ψ1

b
ψ3

b
ψ4

b
ψ5

b
ψ6

b
ψ7

× . Now
the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = su(8) and l0 = (u(1)⊕ u(7)) ∩ su(8) = iRν∗ ⊕ su(7). (3.17b)

The representation of k on s has highest weight−ν = −ψ2:
b b b b

1
b b b .

Using (2.7), the representation

τ2 : l on u2 is

c
1

c c c c c
×

. (3.17c)
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Also by (2.7), the representation τ−1 of l on u−1 is
b b b

1
b b b

×−2
so the

representation

τ1 : l on u1 is

c c c c
1

c c
×−1

. (3.17d)

Note that τ1|[l,l] has degree 35 and is not self–dual. In brief, dim u2 = 7 and
dim u1 = 35

3.18. Case E8,D8 . Here G0 is the group of type E8 with maximal compact subgroup
locally isomorphic to Spin(16). The noncompact simple root ν = ψ1, so L is of type
T1D7 and the extended Dynkin diagram iscν

ψ1

c
ψ3

c
ψ4

c
ψ5

c
ψ6

c
ψ7

c
ψ8

.............c
−µ

cψ2

(Type E8) (3.18a)

Thus k is

b
ψ3

b
ψ4

b
ψ5

b
ψ6

b
ψ7

b
ψ8

b
−µbψ2

and l is

× b
ψ3

b
ψ4

b
ψ5

b
ψ6

b
ψ7

b
ψ8bψ2

.
Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are‘

k0 = so(16) and l0 = so(2)⊕ so(14) = iRν∗ ⊕ so(14). (3.18b)

The representation of k on s has highest weight−ν = −ψ1:
b
1

b b b b b b
b .

Using (2.7), the representation

τ2 : l on u2 is

× c c c c c c
1c . (3.18c)

Also by (2.7), the representation τ−1 of l on u−1 is ×
−2

b
1

b b b b b
b so

the representation

τ1 : l on u1 is

×
−2

c c c c c c
c1 . (3.18d)

Note that τ1|[l,l] has degree 64 and is not self–dual; dim u2 = 14 and dim u1 = 64.

3.19. Case E8,A1E7. Here G0 is the group of type E8 with maximal compact sub-
group that has SU(2)×E7 as a double cover.. The noncompact simple root ν = ψ8,
so L is of type T1E7 and the extended Dynkin diagram isc

ψ1

c
ψ3

c
ψ4

c
ψ5

c
ψ6

c
ψ7

c
ψ8

ν .............c
−µ

cψ2

(Type E8) (3.19a)

Thus k is

b
ψ1

b
ψ3

b
ψ4

b
ψ5

b
ψ6

b
ψ7

b
−µbψ2

and l is

b
ψ1

b
ψ3

b
ψ4

b
ψ5

b
ψ6

b
ψ7

×bψ2
.
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Now the decompositions k0 = k1 ⊕ k2 and l0 = l1 ⊕ l2 are

k0 = sp(1)⊕ e7 and l0 = iRν∗ ⊕ e7. (3.19b)

The representation of k on s has highest weight−ν = −ψ8:
b b b b b b

1
b
1b .

Using (2.7), the representation

τ2 : l on u2 is

c c c c c c ×
1c . (3.19c)

Also by (2.7), the representation τ−1 of l on u−1 is

b b b b b b
1

×
−2b

so the representation

τ1 : l on u1 is

c c c c c c
1

×
−1

c . (3.19d)

Note that τ1|[l,l], has degree 56, is self-dual, and has an antisymmetric bilinear
invariant. Also, dim u2 = 1 and τ2|[l,l] is trivial, so that bilinear invariant is given by
the Lie algebra product u1 × u1 → u2.

This completes our run through the exceptional cases.
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4 Prehomogeneity and Relative Invariants for

(L, u1)

Consider a connected linear algebraic group with a rational representation on a com-
plex vector space. We say that the triple consisting of the group, the representation
and the vector space is prehomogeneous if there is a Zariski–dense orbit. When no
confusion is possible we omit the representation. A general theorem of Vinberg on
graded Lie algebras (see [Kn1, Theorem 10.19]) shows that (L, u1) is prehomoge-
neous. Or one can verify that fact by running through the lists of Section 3 and the
classification of [SK]. In fact we will do the latter in order to describe the algebra
of relative–invariant polynomials on u1 and the L–orbit structure of u1 for each in-
stance of (L, u1). We shall also use the notation V for the fundamental space u1 and
V ∗ = u−1 for its dual space.

We recall some material on prehomogeneous spaces as it applies to (L, u1). There
is no nonconstant L–invariant rational function f : u1 → C because the L–invariance
would force it to be constant on the Zariski–dense L–orbit [SK, Proposition 3 in §2].
By relative invariant for (L, u1) we mean a nonconstant polynomial function f :
u1 → C such that f(ℓξ) = χ(ℓ)f(ξ) for some rational character χ : L → C×. The
quotient of two relative invariants with the same character would be an L–invariant
rational function of u1, hence constant, so a relative invariant f is determined up
to scalar multiple by its character χ [SK, Proposition 3 in §4]. In particular all
the fc : ξ 7→ f(cξ) are proportional, so f is a homogeneous polynomial. It will be
convenient to denote

A(L, u1) : the associative algebra of all relative invariants of (L, u1). (4.1)

The regular set for (L, u1) is the open L–orbit O0 := Ad(L)ξ0 ⊂ u1 and the
singular set is its complement u1 \ O0. Let V1, . . . , Ve be those components of the
singular set that are of codimension 1 in u1. For each i, Vi is the zero set of an irre-
ducible polynomial fi. The algebra of relative invariants for (L, u1) is the polynomial
algebra C[f1, . . . , fe] [SK, Proposition 5 in §4]. In particular (L, u1) has a relative
invariant if and only if the its singular set has a component of codimension 1. So far
we haven’t used irreducibility of L on u1, but now we use it to see [SK, Proposition
12 in §4] that e ≦ 1, i.e. that either A(L, u1) = C (in other words (L.u1) has no
relative invariant) or A(L, u1) has form C[f ].

4.2 Cases SO(2p, r). We first consider the various cases where G0 is the univer-
sal covering group of the indefinite orthogonal group SO(2p, 2q) or SO(2p, 2q + 1).
For convenience we write that as SO(2p, r). Then L0 consists of all ( a 0

0 b ) where
a is in the image of the standard embedding ι : U(p) →֒ SO(2p) and where
b ∈ SO(r). Here s0 =

{(
0 x
tx 0

)∣∣ x ∈ R2p×r} ∼= R2p×r and the (conjugation) ac-
tion ( a 0

0 b ) ∈ L0 on s0 is given by x 7→ axb−1. Now u1
∼= Cp×r with the action of

L ≃ GL(p; C)×SO(r; C) given by ℓ =
(
ℓ1 0
0 ℓ2

)
: z 7→ ℓ1zℓ

−1
2 . Then f(z) := det (z · tz)

transforms by f(ℓ(z)) = det (ℓ)2f(z). However it is a relative invariant only when
it is not identically zero, i.e. when p ≦ r.

On the other hand, if p > r then the (SL(p; C) × SO(r; C))–orbit of
(

Ir
0p−r

)
is
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open in Cp×r, so there is no nonconstant (SL(p; C)× SO(r; C))–invariant. It follows
that there is no relative invariant for L.

Summary: if p ≦ r then A(L, u1) = C[f ] where f(z) := det (z · tz), polynomial
of degree 2p. If p > r then A(L, u1) = C.

4.3 Cases Sp(p, q). We next consider the cases where G0 = Sp(p, q). Then
L0 consists of all

(
a 0
0 b

)
where a is in the image of the standard embedding ι :

U(p) →֒ Sp(p) and where b ∈ Sp(q). Here s0 = {( 0 x
x∗ 0 ) | x ∈ Hp×q} ∼= Hp×q and

the (conjugation) action
(
a 0
0 b

)
∈ L0 on s0 is given by x 7→ axb−1. Now u1

∼= Cp×2q

with the action of L ≃ GL(p; C)× Sp(q; C) given by ℓ =
(
ℓ1 0
0 ℓ2

)
: z 7→ ℓ1zℓ

−1
2 . Let

J =
( 0 Iq
−Iq 0

)
, so Sp(q; C) is characterized by b ·J · tb = J . Let Pf denote the Pfaffian

polynomial on the space of antisymmetric 2q × 2q matrices, so Pf(m)2 = det (m).
Then f(z) := Pf(z · J · tz) transforms by f(ℓz) = det (ℓ)f(z). And of course f is
a relative invariant only when it is not identically zero. For that we must have the
possibility that the p× p antisymmetric matrix z · J · tz is nonsingular, which is the
case just when both that p ≦ 2q and p is even.

As before, if p > 2q then the (SL(p; C) × Sp(q; C))–orbit of
( I2q

0p−2q

)
is open

in Cp×2q, so there is no nonconstant (SL(p; C) × Sp(q; C))–invariant, and thus no
relative invariant for L.

If p ≦ 2q but p is odd we define m ∈ Cp×2q by mi,i = 1 if i ≦ p and i is odd,
mi,q+i = 1 if i ≦ p and i is even, all other entries zero. The point is that the row
space of m has dimension p and has nullity 1 relative to the bilinear form J that
defines Sp(q; C). Then (SL(p; C) × Sp(q; C))(m) consists of all elements of Cp×2q

whose row space has dimension p and nullity 1 relative to J , and that is open in
Cp×2q. As above, it follows that there is no relative invariant for L.

Summary: if p ≦ 2q and p is even then A(L, u1) = C[f ] where f(z) := Pf(z·J ·tz),
polynomial of degree p. If p > 2q of if p is odd then A(L, u1) = C.

We have completely described A(Lu1) when G is classical. Except for a few
extreme cases, the representation τ1|L′ of the derived group L′ = [L,L] failed to be
self–dual because of a tensor factor

b
1

b p p p b b
. In many of the exceptional

group cases, τ1|L′ is self–dual, so it has a bilinear invariant, and when that bilin-
ear invariant is symmetric it generates A(L, u1). Also, if that bilinear invariant is
antisymmetric, then τ1(L

′) is contained in the symplectic group J of the bilinear in-
variant, and if σ is the representation of J on u1 then S2(S2(σ)) contains the trivial
representation with multiplicity 1, and that gives a quartic invariant that generates
A(L, u1). Before formalizing these statements we look back at Section 3 to see the
first five columns of Table 4.4 on the facing page.

The information of the last column of Table 4.4 on the next page is contained
in [SK], but we can give a short direct proof of the cases where there is a relative
invariant, as follows.

Lemma 4.5. If τ1|L′ is self–dual there are two possibilities. Either it has a nonzero
symmetric bilinear invariant b and A(L, u1) = C[b], or it has a nonzero antisym-
metric bilinear invariant and A(L, u1) = C[f ] where f has degree 4. In the non
self–dual case (3.17) we have A(L, u1) = C[f ] where f has degree 7, and in the non
self–dual case (3.18) we have A(L, u1) = C[f ] where f has degree 8.
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Table 4.4

Case G0 deg τ1 self–dual? bilinear invariant relative invariant

(3.10) G2,A1A1 4 yes antisymmetric degree 4
(3.11) F4,A1C3 14 yes antisymmetric degree 4
(3.12) F4,B4 8 yes symmetric degree 2
(3.13) E6,A1A5,1 20 no none none
(3.14) E6,A1A5,2 20 yes antisymmetric degree 4
(3.15) E7,A1D6,1 32 yes antisymmetric degree 4
(3.16) E7,A1D6,2 16 no none none
(3.17) E7,A7 35 no none degree 7
(3.18) E8,D8 64 no none degree 8
(3.19) E8,A1E7 56 yes antisymmetric degree 4

Proof. If the bilinear invariant b is symmetric, then since it has degree 2 it must
generate A(L, u1). If b is antisymmetric, then in each of the five relevant cases of
Table 4.4 we compute symmetric powers S2(τ1|L′), S3(τ1|L′) and S4(τ1|L′) to see that
we first encounter a τ1(L

′)–invariant in degree 4. (This degree 4 semiinvariant can
also be seen by a classification free argument [P, Proposition 1.4].)

Consider the two non self–dual cases of Table 4.4 for which we claim a τ1|L′–
invariant. In case (3.17) we compute the Sr(τ1|L′) for 2 ≦ r ≦ 7 to see that we
first encounter a τ1(L

′)–invariant in degree 7, and and in case (3.18) we compute
the Sr(τ1|L′) for 2 ≦ r ≦ 8 to see that we first encounter a τ1(L

′)–invariant in
degree 8.
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5 Negativity and K0–types

In this section we discuss negativity of a homogeneous holomorphic vector bundle
over G0/L0 and the K0–types of the resulting discrete series representations.

Recall some notation from Section 2. The flag domain D = G0(z0) ∼= G0/L0 is
an open G0–orbit in the complex flag manifold Z = G/Q, where z0 = 1Q is the base
point and L0 = G0 ∩Q. The parabolic subgroup Q of G has Lie algebra q = l + u−
and its nilradical u− is opposite to u+, which in turn represents the holomorphic
tangent space to D at z0. According the the multiplicity of the noncompact simple
root, u+ = u1 + u2. The maximal compact subvariety Y = K0(z0) = K(z0) has
holomorphic tangent space at z0 represented by u2 and has holomorphic normal
space represented by V = u1. The group L acts irreducibly on both of them, and
those representations were derived explicitly in Section 3. The variety Y is a complex
flag manifold K/(K ∩Q) in its own right, and is the fiber of the basic fibration (2.8)
D = G0/L0 → G0/K0.

Fix an irreducible representation τγ of L. Here γ is the highest weight, Eγ is the
representation space, Eγ → D is the associated homogeneous holomorphic vector
bundle. and O(Eγ) → D is the sheaf of germs of holomorphic sections.

By O(Eγ)|Y → D we mean the pull–back sheaf of O(Eγ) → D under Y →֒ D.
It is a sheaf on D supported on Y . We filter it by order of vanishing in directions
transverse to Y :

Fn(Eγ) =
{
f ∈O(Eγ)|Y

∣∣
f vanishes to order ≧ n in directions transverse to Y

}
.

(5.1)

We also need the notation

NY → Y : holomorphic normal bundle to Y in D,

N∗
Y → Y : holomorphic conormal bundle to Y in D and

Sn(N∗
Y ) = O(Sn(N∗

Y ))

where Sn(N∗
Y ) → Y is the nth symmetric power of N∗

Y → Y.

(5.2)

Then NY → Y is the homogeneous holomorphic vector bundle over Y with fiber
represented by V = u1, its dual N∗

Y → Y is the homogeneous holomorphic vector
bundle with fiber V ∗ = u−1, similarly for the third bundle with fibers Sn(V ∗), and
we view Sn(N∗

Y ) as a sheaf onD supported on Y . Now we have short exact sequences

0 −→ Fn+1(Eγ) −→ Fn(Eγ) −→ O(Eγ |Y ⊗ Sn(N∗
Y )) −→ 0 (5.3)

of sheaves on D supported in Y . This leads to the long exact sequences

0 −→H0(D;Fn+1(Eγ))
a−−→ H0(D;Fn(Eγ))

b−→ H0(D;O(Eγ|Y ⊗ Sn(N∗
Y )))

δ−→H1(D;Fn+1(Eγ))
a−−→ H1(D;Fn(Eγ))

b−→ H1(D;O(Eγ|Y ⊗ Sn(N∗
Y )))

δ−→· · ·
δ−→Hs−1(D;Fn+1(Eγ))

a−−→ Hs−1(D;Fn(Eγ))
b−→ Hs−1(D;O(Eγ|Y ⊗ Sn(N∗

Y )))

δ−→Hs(D;Fn+1(Eγ))
a−−→ Hs(D;Fn(Eγ))

b−→ Hs(D;O(Eγ|Y ⊗ Sn(N∗
Y )))

δ−→0.
(5.4)
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where a and b are coefficient morphisms from (5.3), δ is the coboundary, and
s = dimC Y . If a sheaf on a locally compact space (such as D) is supported on
a closed subspace (such as Y ) then the inclusion induces a natural isomorphism of
cohomologies [G, Corollary to Lemma 4.9.2]. So we can rewrite (5.4) as

0 −→H0(Y ;Fn+1(Eγ))
a−−→ H0(Y ;Fn(Eγ))

b−→ H0(Y ;O(Eγ|Y ⊗ Sn(N∗
Y )))

δ−→H1(Y ;Fn+1(Eγ))
a−−→ H1(Y ;Fn(Eγ))

b−→ H1(Y ;O(Eγ|Y ⊗ Sn(N∗
Y )))

δ−→· · ·
δ−→Hs−1(Y ;Fn+1(Eγ))

a−−→ Hs−1(Y ;Fn(Eγ))
b−→ Hs−1(Y ;O(Eγ |Y ⊗ Sn(N∗

Y )))

δ−→Hs(Y ;Fn+1(Eγ))
a−−→ Hs(Y ;Fn(Eγ))

b−→ Hs(Y ;O(Eγ|Y ⊗ Sn(N∗
Y )))

δ−→0.
(5.5)

Note that (5.5) is an exact sequence of K–modules.

Remark 5.6. Let n, j ≧ 0. Then Hj(Y ;O(Eγ |Y ⊗ Sn(N∗
Y ))) = Hj(Y ;O(Eγ|Y ))⊗

Sn(u−1) as K2–module. If Eγ → Y is a line bundle then K2 acts trivially on the
first factor Hj(Y ;O(Eγ |Y )).

Proof. The group K2 acts trivially on Y , so its action on Sn(N∗
Y ) factors out of

the cohomology. Recall that N∗
Y → Y is the K0–homogeneous vector bundle based

on the L0–module u−1. If Eγ → Y is a line bundle then K2 acts trivially on each
Hj(Y ;O(Eγ|Y )) because it is semisimple.

Recall that the positive compact roots are those for which the coefficient of ν,
as a linear combination from Ψ = ΨG, is 0 or 2. The ones of coefficient 0 are
roots of (l, t). The others, forming the set ∆2 of the discussion after (2.10), are the
complementary compact positive roots. They give the holomorphic tangent space
of Y . Let ρk denote half the sum of the positive compact roots (positive roots of k).
Then the proof of (2.11a) gives us

〈γ + ρk, α〉 < 0 for all α ∈ ∆2 if and only if 〈γ + ρk, µ〉 < 0. (5.7)

If α1 ∈ ∆1 and α2 ∈ ∆2 then α1 + α2 is not a root, because it would have
coefficient 3 at ν. Thus 〈α1, α2〉 ≧ 0. That gives us

Lemma 5.8. If α2 ∈ ∆2 then 〈γ + ρk, α2〉 ≦ 〈γ + ρg, α2〉. In particular if α2 ∈ ∆2

then 〈γ + ρg, α2〉 < 0 implies 〈γ + ρk, α2〉 < 0. Thus the G0–negativity condition

〈γ + ρg, α〉 < 0 for all α ∈ ∆1 ∪∆2

implies the K0–negativity condition

〈γ + ρk, α〉 < 0 for all α ∈ ∆2.

We are going to need the following fact about tensor products of irreducible finite
dimensional representations. It appears in [H] as Exercise 12 to Section 24, based
on [Ko1].
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Lemma 5.9. Let Eγ1 and Eγ2 be irreducible L0–modules, where γi is the highest
weight of Eγi

. Then every irreducible summand of Eγ1 ⊗ Eγ2 has highest weight of
the form γ1 + ϕ for some weight ϕ of Eγ2 .

Now the K0–negativity condition gives a vanishing result in (5.5), as follows,
where we take (5.7) into account.

Theorem 5.10. Suppose that 〈γ + ρk, µ〉 < 0. Then Hj(Y ;O(Eγ |Y ⊗ Sn(N∗
Y ))) = 0

whenever j 6= s and n ≧ 0.

Proof. Note that Eγ |Y ⊗ Sn(N∗
Y ) → Y is the K0–homogeneous bundle based on the

representation of L0 on Eγ ⊗ Sn(u−1). In view of Lemma 5.9 that L0–module is
the sum of irreducibles with highest weights of the form γ + ϕ where ϕ is a weight
of Sn(u−1). Thus, as a homogeneous holomorphic vector bundle, Eγ |Y ⊗ Sn(N∗

Y )
has composition series with composition factors of the form Eγ+α1+···+αn where the
αi ∈ ∆−1.

Let α ∈ ∆2. Then (5.7) shows that 〈γ + ρk, α〉 < 0. The coefficient of ν in α
is 2, so α− αi cannot be a root. This forces 〈αi, α〉 ≦ 0. Now 〈γ + ρk, α〉 < 0 forces
〈γ + α1 + · · · + αn + ρk, α〉 < 0. The Bott–Borel–Weil Theorem now tells us that
Hj(Y ;O(Eγ|Y ⊗ Sn(N∗

Y ))) = 0 for j 6= s.

Corollary 5.11. Suppose that 〈γ+ ρk, µ〉 < 0. Then Hj(Y ;O(Eγ |Y )) = 0 whenever
j 6= s.

Following [S2] and [W4], with the result [S3] that γ+ρg need only be nonsingular
(instead of “sufficiently nonsingular”), one has the following vanishing theorem.

Theorem 5.12. If 〈γ + ρg, α〉 < 0 whenever α ∈ ∆1 ∪∆2, then Hj(D;O(Eγ)) = 0
for j 6= s.

Recall the decomposition of (2.10): γ = γ0 + tν∗ where 〈γ0, ν〉 = 0 and t ∈ R. In
view of (2.11a), (2.11b) and Theorem 2.12, we reformulate Theorem 5.12 as follows.

Theorem 5.13. Let γ = γ0 + tν∗ as in equation (2.10). If 〈γ + ρg, µ〉 < 0 and
〈γ + ρg, w

0
l (ν)〉 < 0, in other words if t < −1

2
〈γ0 + ρg, µ〉 and t < −〈γ0 + ρg, w

0
l (ν)〉,

then Hj(D;O(Eγ)) = 0 for j 6= s.

Definition 5.14. To facilitate use of these vanishing theorems we will say that
Eγ → D is sufficiently negative if 〈γ + ρg, α〉 < 0 whenever α is a complementary
positive root, i.e. whenever α ∈ ∆1∪∆2. This means that Eγ⊗K1/2 → D is negative
in the sense of differential or algebraic geometry, where K → D is the canonical line
bundle.

In the presence of sufficient negativity Theorem 5.13 trivializes the long exact
sequences (5.4) and (5.5) as follows.

Proposition 5.15. Suppose that Eγ → D is sufficiently negative. Then

Hq(Y ;Fn+1(Eγ)) ∼= Hq(Y ;Fn(Eγ)) for 0 ≦ q < s,

and
Hs(Y ;O(Eγ|Y ⊗ Sn(N∗

Y ))) ∼= Hs(Y ;Fn(Eγ))/H
s(Y ;Fn+1(Eλ)).
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Now we may apply the above case-by-case analysis and diagrams to understand
what amounts to the structure and geometric quantization of the coadjoint elliptic
orbits corresponding to the particular discrete series of representations we have in
mind, the so–called Borel – de Siebenthal discrete series. Also, the results above
on the filtration are crucial for the construction of the cohomology groups carrying
these representations; they are the analytic counterparts of the Vogan–Zuckerman
derived functor modules that are constructed purely algebraically. Thus we wish to
construct the Borel – de Siebenthal discrete series by direct analysis on orbits, and
using the above results analyze theK0–types explicitly (without subscript K denotes
the complexified group); after this we shall end the paper with some remarks and
immediate consequences, and treat the (interesting) analytic continuation of this
particular discrete series in a later paper.

As is clear from the above discussion there is some variation in the meaning of
“discrete series”. Initially the discrete series of G0 meant the family of (equivalence
classes of) irreducible unitary representation π of G0 that are discrete summands of
the left regular representation. This is equivalent to the condition that the matrix
coefficients fu,v(g) = 〈u, π(v)〉 of π belong to L2(G). That is how they are treated
in the work of Harish–Chandra, and there the discrete series representations are
also treated as Harish–Chandra modules. Later one had the construction of discrete
series representation as the action of G0 on cohomology spaces Hq(D; E) both as
nuclear Fréchet spaces ([S2], [SW2]) and as Hilbert spaces [W4], and still later
they appeared algebraically as Zuckerman derived functor modules. The underlying
Harish–Chandra module is the same for all these constructions, and we will use the
cohomology constructions.

We first recall some results about the discrete series representations in general.
See [Kn1, Theorem 9.20] where Harish-Chandra’s parameterization is recalled: Here
there is given a standard root order (which is not the same as we are working with
in the diagrams above) of the root system as follows:

∆+
λ = {α ∈ ∆ | 〈λ, α〉 > 0} (5.16)

where ∆ is the root system, and λ is the Harish-Chandra parameter for the dis-
crete series representation πλ. The Harish–Chandra parameter λ ∈ (it)′ satisfies
the integrality condition that λ + ρg is analytically integral, in other words that
exp(λ+ ρg) is a well defined character on the maximal torus of K0. It also satisfies
the nonsingularity condition that 〈λ, α〉 6= 0 for all α in ∆. Two such representa-
tions are equivalent if and only if their parameters are conjugate under the compact
Weyl group Wk. Thus one could normalize the Harish–Chandra parameter by the
condition that 〈λ, α〉 < 0 for all compact positive roots.

The parameter λ of course determines the positive root system ∆+
λ of the stan-

dard root order (5.16), and conversely to each Weyl chamber of g, modulo the action
of Wk, we associate a family of discrete series representations. The family we are
interested in is in some sense the smallest possible kind of discrete series represen-
tations of G0.

Of particular interest is the lowest K0–type contained in the (Harish-Chandra
module for) πλ given by its highest weight (in the standard root order (5.16))

Λ = λ+ ρg− 2ρk
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in terms of the usual half sums of positive roots. This K0–type has multiplicity one,
and other K0–types have highest weights of the form

Λ′ = Λ +
∑

α∈∆+

nαα

for integers nα ≧ 0. In the general theory of discrete series this statement about
the K0–types only amounts to an inclusion, whereas our results above analyzing
the cohomology groups in terms of restriction and Taylor expansion in the normal
direction (V ) gives a concrete list of the K0–types. We shall formulate this precisely
below.

Let us first see how these parameters fit with the description in [GW] of the
quaternionic discrete series πqλ. They write β for the maximal root, but we translate
that to our notation of µ in describing their results. Thus the Harish–Chandra
(and infinitesimal character) parameter of their πqλ is of the form λ = −k

2
µ + ρg

where the integer k ≥ 2d+1 and dimR G0/K0 = 4d. We consider the corresponding
standard root order ∆+

λ . Dividing as usual into compact and noncompact roots we
have ρg = ρk + ρg/k, ρk = ρl + µ

2
and ρg/k = d

2
µ, where ρg/k is half the sum of the

noncompact positive roots and ρl is half sum of positive roots of l. Similarly for
the standard root order we have ρ′k = ρl − µ

2
and ρ′g/k = −d

2
µ, so the lowest K0–

type in the standard root order ∆+
λ is Λ = −k

2
µ + ρg + ρ′g − 2ρ′k. That simplifies

to Λ = −k+2
2
µ. This is exactly the highest weight for the (k − 1)–dimensional

representation of the simple SU(2) factor in K found as the lowest K0–type by
Gross and Wallach. In the following we shall find the analogous lowest K0–type for
the Borel – de Siebenthal discrete series, and at the same time realize it (and in fact
all K0–types) as cohomology groups on the compact Hermitian symmetric space Y .

Now recall the noncompact simple root ν from Section 2. As before, ν∗ denote
the dual to ν in the system of fundamental simple weights (2.9). The parabolic
subalgebra q of g may also be defined by means of ν∗, and the centralizer of ν∗

is l. Thus the coadjoint orbit Ad∗(G0)(ν
∗) is our space G0/L0 and is fibered by Y .

Multiples of this ν∗ will define the line bundles we shall need, and the representations
in the Borel – de Siebenthal discrete series are then the cohomology groups in degree
s = dimC Y with coefficients in the bundle.

Recall the maximal compact subgroup K0 = K1×K2 explicit in the classification
of Section 3, where the “small” factorK1 corresponds to the component of the simple
root system Ψk = (Ψ \ {ν}) ∪ {−µ} that contains {−µ}. In the quaternionic case
L1 = Sp(1). Now Y = K0/L0 = (K1 × K2)/(L1 × K2) = K1/L1. Thus, as far as
induced representations and cohomology, the action of the K2 factor will be rather
simple. This we will make explicit below. Also, it is important that the factor L1 in
L0 contains the center of L0, and that the action of that center on the holomorphic
normal space V = u1 is given explicitly in the case by case diagrams of Section 2.

Let Eγk
→ D be the holomorphic vector bundle induced from the representation

of L0 with highest weight γk = γ0 − kν∗, k ∈ N. (As G is simply connected exp(γk)
is the highest weight of a representation of L0). Denote

πλk
: representation of G0 on Hs(D,O(Eγk

))

where λk = γk + ρg = γ0 − kν∗ + ρg .

(5.17)
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We will say that the integer k is sufficiently positive if λk = γk + ρg = γ0 − kν∗ + ρg

is sufficiently negative in the sense of Definition 5.14 and Theorem 2.12. Using the
filtration (5.1) and arguments analogous to those of [GW] we characterize the line
bundle valued Borel – de Siebenthal discrete series as follows.

Theorem 5.18. The Borel – de Siebenthal discrete series representations of G0

are the πλk
of (5.17) for which k ∈ N is sufficiently positive. As a K–module, the

underlying Harish–Chandra module is
∑

m≧0

Hs
(
Y,O(Eγk

⊗ Sm(V ∗))
)
,

and it not only is K0–admissible but is K1–admissible. Further, the lowest K0–type
(corresponding to m = 0) is given by

Wλk
= Hs(Y,O(Eγk

)),

and it has multiplicity 1 in πλk
.

Remark. The L0–modules Sm(V ∗) are not always multiplicity free, though they are
multiplicity free in many cases. For example for the group of type D9 and m = 6,
calculation with the computer program LiE produces multiplicities, while there are
none for F4. Thus even in the scalar case, where Eγn → D is a line bundle, i.e. when
γ0 = 0, πλk

need not be K0–multiplicity free. This is of course in contrast the the
K0–multiplicity free property of the line bundle holomorphic discrete series.

Proof. We use the filtration (5.1) and the exact sequences (5.4) and (5.5), together
with the fact that Y is a compact hermitian symmetric space for K1. The action
of K2 is part of the holomorphically induced representation, and the action of L1

on V and its dual V ∗ is given as above. Finally the admissibility can be read off
from the K0–types directly: each Hs(Y,O(Eγk

⊗ Sm(V ∗))) is a sum of irreducible
representations of K1, disjoint for different m, and the Sm(V ∗) are finite dimensional
representations of K2 and also of L0.

Consider the parabolic subgroup Q ∩K = LU−2 of K. Whenever M is a finite
dimensional (Q ∩ K)–module, the space of K–finite vectors in the induced repre-
sentation IndKQ∩K(M) is

∑
δ∈ bK Vδ ⊗ (V ∗

δ ⊗M)Q∩K . In particular the multiplicity of
a K0–type δ is equal to the number of times the highest weight vector of M occurs
as a highest weight vector for L in Vδ. In our case the highest weights of M will
grow with m in Sm(V ∗), and they are distinguished by the action of the center of
L0. Thus each K1–type only occurs finitely many times, so πλk

is K1–admissible.
That, of course, implies admissibility for K0.

Remark. We compare our parameter for the lowest K0–type with the general de-
scription mentioned for the scalar quaternionic case. In that scalar quaternionic
case the infinitesimal character of the representation πλk

is given by

λk = −kν∗ + ρg, ρk = ρl + c2ν
∗ and ρg/k = c1ν

∗

for positive constants c1 and c2 depending only on the root system. Then for the
standard root order ∆+

λk
we get

ρ′k = ρl − c2ν
∗ and ρ′n = −c1ν∗
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so that the lowest K0–type has highest weight

Λ = −kν∗ + ρg + ρ′g− 2ρ′k = −kν∗ + 2ρk/l

where ρk/l = c2ν
∗ is exactly the shift coming from the square root of the canonical

bundle K → Y . Thus this corresponds to the lowest K0–type above, viz. W =
Hs(Y,O(L−k)).

It is an interesting problem to study the structure, including unitarity, of πλk

for smaller values of k, and to relate this to the projective varieties defined by the
relative invariants - this will be taken up in a sequel to this paper. In particular
the ring of regular functions on L0–orbits will be important, as in the paper by
Gross and Wallach for the case of the quaternionic discrete series. For now we
remark as an application of the admissibility above, that branching problems will
be manageable in a way similar to the case of holomorphic discrete series. This will
require that the embedding of the smaller group respects the relevant structure, i.e.
that the orderings are compatible. For example if we want to branch to a symmetric
subgroup H0 of G0, then the embedding will be compatible provided the symmetry
fixes K1. Namely, we simply use the admissibility of the action of K1, so that
admissibility for the branching law to H0 will follow for the Borel – de Siebenthal
discrete series. In this case a Borel – de Siebenthal discrete series will branch as a
direct sum of Borel – de Siebenthal discrete series representations.

Remark. As is evident from the case of indefinite orthogonal groups as in [Kn3],
the question of continuation of the discrete series modules is closely connected with
the geometry of the relative invariants for the holomorphic normal (to the maximal
compact subvariety) V . Already the case where G is of type E8 and K of type D8

is an interesting example; here V is of dimension 64 and admits a relative invariant
of degree 8, and the maximal compact subvariety is the Grassmannian of 2–planes
in 16–space. Let us here be a little more explicit about this example:

Let
γ0 = n2ξ2 + · · ·+ n8ξ8

and we find

ρk = 14ψ1 + 28ψ2 + 35ψ3 + 55ψ4 + 46ψ5 + 36ψ6 + 25ψ7 + 13ψ8

and
ρg = 46ψ1 + 68ψ2 + 91ψ3 + 135ψ4 + 110ψ5 + 84ψ6 + 57ψ7 + 29ψ8

so the “sufficient G0–negativity” condition of Theorems 2.12 and 5.18 is, using

µ = 2ψ1 + 3ψ2 + 4ψ3 + 6ψ4 + 5ψ5 + 4ψ6 + 3ψ7 + 2ψ8

that both t < −1
2
(3n2+4n3+6n4+5n5+4n6+3n7+2n8)−29

2
and t < −〈γ0+ρg, w

0
l (ν)〉.

Now the range from G0–sufficiently negative to K0–sufficiently negative is indicated
by the condition (as in Corollary 5.16) t < −1

2
(3n2 + 4n3 + 6n4 + 5n5 + 4n6 +

3n7 + 2n8) + 1
2
.

Hence we see that there is an interval, where the K0–types still exist as cohomol-
ogy groups, even though the large cohomology group carrying the G0–representation
ceases to exist. We shall study in more detail what happens here in a sequel to the
present paper.
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