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Abstract
Univariate superpositions of Ornstein-Uhlenbeck (OU) type processes,

called supOU processes, provide a class of continuous time processes cap-
able of exhibiting long memory behaviour. This paper introduces multivariate
supOU processes and gives conditions for their existence and finiteness of mo-
ments. Moreover, the second order moment structure is explicitly calculated,
and examples exhibit the possibility of long range dependence.

Our supOU processes are defined via homogeneous and factorisable Lévy
bases. We show that the behaviour of supOU processes is particularly nice
when the mean reversion parameter is restricted to normal matrices and es-
pecially to strictly negative definite ones.

For finite variation Lévy bases we are able to give conditions for supOU
processes to have locally bounded càdlàg paths of finite variation and to show
an analogue of the stochastic differential equation of OU type processes, which
has been suggested in [2] in the univariate case. Finally, as an important special
case, we introduce positive semi-definite supOU processes.

AMS 2000 subject classifications: Primary 60G10,60H20; secondary 60E07, 60G51,
60G57
Keywords and phrases: Lévy bases, long memory, Ornstein-Uhlenbeck type processes,
normal matrices, positive semi-definite stochastic processes, second order moment
structure, stochastic differential equation

1 Introduction

Lévy-driven Ornstein-Uhlenbeck (OU) type processes are extensively used in ap-
plications as elements in continuous time models for observed time series. One area
where they are often applied is mathematical finance (see e.g. [10]), especially in
the OU type stochastic volatility model of [6]. An OU type process is given as the
solution of a stochastic differential equation of the form

dXt = −aXtdt+ dLt (1.1)

with L being a Lévy process (see e.g. [30] for a comprehensive introduction) and
a ∈ R. Typically, one is interested mainly in stationary solutions of (1.1). Provided
a > 0 and E(ln(|L| ∨ 1)) <∞, the SDE (1.1) has a unique stationary solution given
by

Xt =

∫ t

−∞
e−a(t−s)dLs.
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However, in many applications the dependence structure exhibited by empirical
data is found to be not in good accordance with that of OU type processes which
have autocorrelation functions of the form e−ah for positive lags h. In many data sets
a more complex and often a (quasi)long memory behaviour of the autocorrelation
function is encountered. OU type processes could be replaced by fractional OU type
processes (see [21] or [22], for instance) to have long memory effects included in
the model. However, in this case many desirable properties are lost, in particular
fractional OU type processes do no longer have jumps. An alternative to obtain
long memory from OU type processes and still to have jumps is to add up countably
many independent OU type processes, i.e.

Xt =
∞∑

k=1

wi

∫ t

−∞
e−ai(t−s)dLi,s

with independent identically distributed Lévy processes (Li)i∈N and appropriate
ai > 0, wi > 0 with

∑∞
i=1 wi = 1. Intuitively we can likewise “add” (i.e. integ-

rate) up independent OU type processes with all parameter values a > 0 possible.
The resulting processes are called supOU processes and have been introduced in [2]
where it has also been established that they may exhibit long range dependence.
For a comprehensive treatment regarding the theory and use of univariate supOU
processes in finance we refer to [7].

So far supOU processes have only been considered in the univariate case. How-
ever, in many applications it is crucial to model several time series with a joint
model and so flexible multivariate models are important. Therefore, in this paper
we introduce and study multivariate supOU processes. Due to the appearance of
matrices and the related peculiarities our theory is not a straightforward extension
of the univariate results. Multivariate (d-dimensional) OU type processes (see e.g.
[31] or [17]) are defined as the solutions of SDEs of the form

dXt = AXtdt+ dLt (1.2)

with L a d-dimensional Lévy process and A a d× d matrix. Provided all eigenvalues
of A have strictly negative real part and E(ln(‖L‖ ∨ 1)) < ∞, we have again a
unique stationary solution given by

Xt =

∫ t

−∞
eA(t−s)dLs.

Intuitively our multivariate supOU processes are obtained by “adding up” inde-
pendent OU type processes with all possible parameters A, i.e. we consider all d× d
matrices A with eigenvalues of strictly negative real parts. It turns out later on that
the behaviour of supOU becomes easier when we restrict A to come only from a nice
subset, like the negative definite matrices.

The remainder of this paper is structured as follows. The next section starts
with a brief overview of important notation and conventions used in this paper
and is followed in Section 2.2 by a comprehensive introduction into Lévy bases and
the related integration theory, which will be needed to define supOU processes.
In Section 3 we first define multivariate supOU processes and provide existence
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conditions in Section 3.1. Thereafter, we discuss the existence of moments and derive
the second order structure. For the finite variation case we show important path
properties in Section 3.3. Besides establishing that we have càdlàg paths of bounded
variation, we give an analogue of the stochastic differential equation (1.2) for supOU
processes and its proof. In particular, this proves a conjecture in [2], which has not
yet been shown in any non-degenerate set-up. We conclude that section with several
examples illustrating the behaviour and properties of supOU processes and showing
that they may exhibit long memory. Finally, in Section 4 we use our results to define
positive semi-definite supOU processes and analyse their properties. These processes
are important for applications like stochastic volatility modelling, since they may
be used to describe the stochastic dynamics of a latent covariance matrix.

2 Background and preliminaries

2.1 Notation

We denote the set of real m × n matrices by Mm,n(R). If m = n, we simply write
Mn(R) and denote the group of invertible n × n matrices by GLn(R), the linear
subspace of symmetric matrices by Sn, the (closed) positive semi-definite cone by
S+
n and the open positive definite cone by S++

n (likewise S−−n are the strictly negative
definite matrices etc.). In stands for the n×n identity matrix. The tensor (Kronecker)
product of two matrices A,B is written as A ⊗ B. vec denotes the well-known
vectorisation operator that maps the n×n matrices to Rn2

by stacking the columns of
the matrices below one another. For more information regarding the tensor product
and vec operator we refer to [15, Chapter 4]. The spectrum of a matrix is denoted
by σ(·). Finally, A∗ is the transpose (adjoint) of a matrix A ∈ Mm,n(R) and Aij
stands for the entry of A in the ith row and jth column.

Norms of vectors or matrices are denoted by ‖ · ‖. If the norm is not further
specified, then it is understood that we take the Euclidean norm or its induced
operator norm, respectively. However, due to the equivalence of all norms none of
our results really depends on the choice of norms.

For a complex number z we denote by <(z) its real part and by =(z) its imaginary
part. Moreover, the indicator function of a set A is written 1A.

A mapping f : V → W is said to be V -W -measurable, if it is measurable when
the σ-algebra V is used on the domain V and the σ-algebra W is used on the
range W . The Borel σ-algebras are denoted by B(·) and λ typically stands for the
Lebesgue measure which in vector or matrix spaces is understood to be defined as
the product of the coordinatewise Lebesgue measures.

Throughout we assume that all random variables and processes are defined on a
given complete probability space (Ω,F , P ).

Furthermore, we employ an intuitive notation with respect to the (stochastic)
integration with matrix-valued integrators referring to any of the standard texts
(e.g. [28]) for a comprehensive treatment of the theory of stochastic integration.
Let (At)t∈R+ in Mm,n(R), (Bt)t∈R+ in Mr,s(R) be càdlàg and adapted processes and

(Lt)t∈R+ inMn,r(R) be a semi-martingale. Then we denote by
∫ t

0
As−dLsBs− the mat-

rix Ct in Mm,s(R) which has ij-th element Cij,t =
∑n

k=1

∑r
l=1

∫ t
0
Aik,s−Blj,s−dLkl,s.
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Equivalently such an integral can be understood in the sense of [24, 23] by identify-
ing it with the integral

∫ t
0

As−dLs with At being for each fixed t the linear operator
Mn,r(R) → Mm,s(R), X 7→ AtXBt. Analogous notation is used in the context of
integrals with respect to random measures.

Finally, integrals of the form
∫
A

∫
B
f(x, y)m(dx, dy) are understood to be over

the set A in x and over B in y.

2.2 Lévy bases

To lay the foundations for the definition of vector-valued supOU processes, we give
now a summary of Lévy bases and the related integration theory. In this context
recall that a d-dimensional Lévy process can be understood as an Rd-valued random
measure on the real numbers. If L = (Lt)t∈R is a d-dimensional Lévy process, this
measure is simply determined by L((a, b]) = L(b)− L(a) for all a, b ∈ R, a < b.

Define now M−
d := {X ∈ Md(R) : σ(X) ⊂ (−∞, 0) + iR} and Bb

(
M−

d × R
)

to be the bounded Borel sets of M−
d × R. Note that M−

d is obviously a cone, but

not a convex one (cf. [14], for instance). Moreover, we obviously have M−
d = {X ∈

Md(R) : σ(X) ⊂ (−∞, 0] + iR}.
Definition 2.1. A family Λ = {Λ(B) : B ∈ Bb

(
M−

d × R
)
} of Rd-valued random

variables is called an Rd-valued Lévy basis on M−
d × R if:

(a) the distribution of Λ(B) is infinitely divisible for all B ∈ Bb

(
M−

d × R
)
,

(b) for any n ∈ N and pairwise disjoint sets B1, . . . , Bn ∈ Bb

(
M−

d × R
)

the ran-
dom variables Λ(B1), . . . ,Λ(Bn) are independent and

(c) for any pairwise disjoint sets Bi ∈ Bb

(
M−

d × R
)

with i ∈ N which satisfies⋃
n∈NBn ∈ Bb

(
M−

d × R
)

the series
∑∞

n=1 Λ(Bn) converges almost surely and
Λ
(⋃

n∈NBn

)
=
∑∞

n=1 Λ(Bn).

In the literature Lévy bases are also often called infinitely divisible independently
scattered random measures (abbreviated i.d.i.s.r.m.) instead.

In the following we will only consider Lévy bases, which are homogeneous (in
time) and factorisable (into the effects of one underlying infinitely divisible distri-
bution and a probability distribution on M−

d ), i.e. their characteristic function is of
the form

E (exp(iu∗Λ(B))) = exp (ϕ(u)Π(B)) (2.1)

for all u ∈ Rd and B ∈ Bb

(
M−

d (R)× R
)
. Here Π = π × λ is the product of a

probability measure π on M−
d (R) and the Lebesgue measure λ on R and

ϕ(u) = iu∗γ − 1

2
u∗Σu+

∫

Rd

(
eiu
∗x − 1− iu∗x1[−1,1](‖x‖)

)
ν(dx) (2.2)

is the cumulant transform of an infinitely divisible distribution on Rd with Lévy-
Khintchine triplet (γ,Σ, ν), i.e. γ ∈ Rd, Σ ∈ S+

d and ν is a Lévy measure – a
Borel measure on Rd with ν({0}) = 0 and

∫
Rd(‖x‖2 ∧ 1)ν(dx) <∞. The quadruple

(γ,Σ, ν, π) determines the distribution of the Lévy basis completely and is henceforth
referred to as the “generating quadruple” (cf. [11]).
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The Lévy process L defined by

Lt = Λ(M−
d × (0, t]) and L−t = Λ(M−

d × (−t, 0)) for t ∈ R+

has characteristic triplet (γ,Σ, ν) and is called “the underlying Lévy process”.
For more information on Rd-valued Lévy bases see [29] and [26].
A Lévy basis has a Lévy-Itô decomposition.

Theorem 2.2 (Lévy-Itô decomposition). Let Λ be a homogeneous and factorisable
Rd-valued Lévy basis on M−

d × R with generating quadruple (γ,Σ, ν, π). Then there
exists a modification Λ̃ of Λ which is also a Lévy basis with generating quadruple
(γ,Σ, ν, π) such that there exists an Rd-valued Lévy basis Λ̃G on M−

d × R with gen-
erating quadruple (0,Σ, 0, π) and an independent Poisson random measure µ on
(Rd ×M−

d × R,B(Rd ×M−
d × R)) with intensity measure ν × π × λ which satisfy

Λ̃(B) = γ(π × λ)(B) + Λ̃G(B) +

∫

‖x‖≤1

∫

B

x(µ(dx, dA, ds)− dsπ(dA)ν(dx))

+

∫

‖x‖>1

∫

B

xµ(dx, dA, ds) (2.3)

for all B ∈ Bb(M
−
d × R) and all ω ∈ Ω.

Provided
∫
‖x‖≤1

‖x‖ν(dx) <∞, it holds that

Λ̃(B) = γ0(π × λ)(B) + Λ̃G(B) +

∫

Rd

∫

B

xµ(dx, dA, ds)

for all B ∈ Bb(M
−
d × R) with

γ0 := γ −
∫

‖x‖≤1

xν(dx). (2.4)

Furthermore, the integral with respect to µ exists as a Lebesgue integral for all ω ∈ Ω.

Here an Rd-valued Lévy basis Λ̃ on M−
d ×R is called a modification of a Lévy basis

Λ if Λ̃(B) = Λ(B) a.s. for all B ∈ Bb(M
−
d ×R). For the necessary background on the

integration with respect to Poisson random measures we refer to [16, Section 2.1]
and [18, Lemma 12.13].

Proof. This follows immediately from [26, Theorem 4.5], because the control meas-
ure m is given by m(B) =

(
‖γ‖+ tr(Σ) +

∫
Rd(1 ∧ ‖x‖2)ν(dx)

)
(π × λ)(B) which is

trivially continuous due to the presence of the Lebesgue measure. The second part
is an immediate consequence, as no compensation for the small jumps is needed if∫
‖x‖≤1

‖x‖ν(dx) <∞.

From now on we assume without loss of generality that all Lévy bases are such
that they have the Lévy-Itô decomposition (2.3).

In the following we need to define integrals of deterministic functions with respect
to a Lévy basis Λ. Following [29], for simple functions f : M−

d × R→Md(R),

f(x) =
m∑

i=1

ai1Bi(x)
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with m ∈ N, ai ∈ Md(R) and Bi ∈ Bb

(
M−

d × R
)
, and for every B ∈ B

(
M−

d × R
)

we define the integral

∫

B

f(x)Λ(dx) =
m∑

i=1

aiΛ(B ∩Bi).

A B
(
M−

d × R
)
-B (Md(R))-measurable function f : M−

d × R → Md(R) is said to
be Λ-integrable if there exists a sequence of simple functions (fn)n∈N such that
fn → f Lebesgue almost everywhere and for all B ∈ B

(
M−

d × R
)

the sequence∫
B
fn(x)Λ(dx) converges in probability. For Λ-integrable f we set

∫
B
f(x)Λ(dx) =

plimn→∞
∫
B
fn(x)Λ(dx). As in [29] well-definedness of the integral is ensured by [32].

The following result is a straightforward generalisation of [29, Propositions 2.6,
2.7] to Rd-valued Lévy bases and follows along the same lines.

Proposition 2.3. Let Λ be an Rd-valued Lévy basis with characteristic function of
the form (2.1) and f : M−

d × R → Md(R) a B
(
M−

d × R
)
-B (Md(R))-measurable

function. Then f is Λ-integrable if and only if

∫

M−d

∫

R

∥∥∥f(A, s)γ

+

∫

Rd
f(A, s)x

(
1[−1,1](‖f(A, s)x‖)− 1[−1,1](‖x‖)

)
ν(dx)

∥∥∥dsπ(dA) <∞, (2.5)
∫

M−d

∫

R
‖f(A, s)Σf(A, s)∗‖dsπ(dA) <∞, (2.6)

∫

M−d

∫

R

∫

Rd
(1 ∧ ‖f(A, s)x‖2)ν(dx)dsπ(dA) <∞. (2.7)

If f is Λ-integrable the distribution of
∫
M−d

∫
R f(A, s)Λ(dA, ds) is infinitely divis-

ible with characteristic triplet (γint,Σint, νint) given by

γint =

∫

M−d

∫

R

(
f(A, s)γ

+

∫

Rd
f(A, s)x

(
1[−1,1](‖f(A, s)x‖)− 1[−1,1](‖x‖)

)
ν(dx)

)
dsπ(dA), (2.8)

Σint =

∫

M−d

∫

R
f(A, s)Σf(A, s)∗dsπ(dA), (2.9)

νint(B) =

∫

M−d

∫

R

∫

Rd
1B(f(A, s)x)ν(dx)dsπ(dA) for all Borel sets B ⊆ Rd. (2.10)

When the underlying Lévy process has finite variation we can do ω-wise Lebesgue
integration.

Proposition 2.4. Let Λ be an Rd-valued Lévy basis with characteristic quad-
ruple (γ, 0, ν, π) satisfying

∫
‖x‖≤1

‖x‖ν(dx) < ∞ and define γ0 as in (2.4) , i.e.

ϕ(u) = iu∗γ0 +
∫

Rd
(
eiu
∗x − 1

)
ν(dx). Additionally, let f : M−

d × R → Md(R) be a
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B
(
M−

d × R
)
-B (Md(R))-measurable function satisfying

∫

M−d

∫

R
‖f(A, s)‖dsπ(dA) <∞, (2.11)

∫

M−d

∫

R

∫

Rd
(1 ∧ ‖f(A, s)x‖)ν(dx)dsπ(dA) <∞. (2.12)

Then
∫

M−d

∫

R
f(A, s)Λ(dA, ds)

=

∫

M−d

∫

R
f(A, s)γ0dsπ(dA) +

∫

Rd

∫

M−d

∫

R
f(A, s)xµ(dx, dA, ds) (2.13)

and the right hand side is a Lebesgue integral for every ω ∈ Ω (Conditions (2.11)
and (2.12) are also necessary for this). Moreover, the distribution of

∫

M−d

∫

R
f(A, s)Λ(dA, ds)

is infinitely divisible with characteristic function

E
(

exp
(
iu∗
∫

M−d

∫

R
f(A, s)Λ(dA, ds)

))

= exp
(
iu∗γint,0 +

∫

Rd

(
eiu
∗x − 1

)
νint(dx)

)
, u ∈ Rd,

where

γint,0 =

∫

M−d

∫

R
f(A, s)γ0dsπ(dA), (2.14)

νint(B) =

∫

M−d

∫

R

∫

Rd
1B(f(A, s)x)ν(dx)dsπ(dA) for all Borel sets B ⊆ Rd. (2.15)

Proof. Follows from the Lévy-Itô decomposition and the usual integration theory
with respect to Poisson random measures (see [18, Lemma 12.13]).

Remark 2.5. All results of this section remain valid when replacing M−
d with

Mk(R), k ∈ N, or any measurable subset of a finite dimensional real vector space and
when considering integration of functions f : Mk(R) × R → Mm,d(R). We decided
to state all our results with M−

d as this set will be used mainly in the following and
it reduces the notational burden.

3 Multidimensional supOU processes

In this section we will introduce supOU processes taking values in Rd with d ∈ N
and analyse their properties. This extends to a multivariate setting the theory of
univariate supOU processes as introduced in [2] and studied further e.g. in [12].
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3.1 Definition and existence

We define a d-dimensional supOU process as a process of the form (3.4) below.

Theorem 3.1. Let Λ be an Rd-valued Lévy basis on M−
d ×R with generating quad-

ruple (γ,Σ, ν, π) satisfying

∫

‖x‖>1

ln(‖x‖)ν(dx) <∞ (3.1)

and assume there exist measurable functions ρ : M−
d → R+\{0} and κ : M−

d →
[1,∞) such that:

‖eAs‖ ≤ κ(A)e−ρ(A)s ∀ s ∈ R+, π − almost surely, (3.2)

and

∫

M−d

κ(A)2

ρ(A)
π(dA) <∞. (3.3)

Then the process (Xt)t∈R given by

Xt =

∫

M−d

∫ t

−∞
eA(t−s)Λ(dA, ds) (3.4)

is well-defined for all t ∈ R and stationary. The distribution of Xt is infinitely
divisible with characteristic triplet (γX ,ΣX , νX) given by

γX =

∫

M−d

∫

R+

(
eAsγ +

∫

Rd
eAsx

(
1[−1,1](‖eAsx‖)− 1[−1,1](‖x‖)

)
ν(dx)

)
dsπ(dA),

(3.5)

ΣX =

∫

M−d

∫

R+

eAsΣeA
∗sdsπ(dA), (3.6)

νX(B) =

∫

M−d

∫

R+

∫

Rd
1B(eAsx)ν(dx)dsπ(dA) for all Borel sets B ⊆ Rd. (3.7)

Proof. The stationarity is obvious once the well-definedness is shown. Using Propos-
ition 2.3 it follows that necessary and sufficient conditions for the integral to exist
are given by

∫

M−d

∫

R+

∥∥∥eAsγ +

∫

Rd
eAsx

(
1[−1,1](‖eAsx‖)− 1[−1,1](‖x‖)

)
ν(dx)

∥∥∥dsπ(dA) <∞,

(3.8)∫

M−d

∫

R+

‖eAsΣeA∗s‖dsπ(dA) <∞, (3.9)

∫

M−d

∫

R+

∫

Rd
(1 ∧ ‖eAsx‖2)ν(dx)dsπ(dA) <∞. (3.10)
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First we show (3.10):

∫

M−d

∫

R+

∫

Rd
(1 ∧ ‖eAsx‖2)ν(dx)dsπ(dA)

≤
∫

M−d

∫

R+

∫

Rd
(1 ∧ κ(A)2e−2ρ(A)s‖x‖2)ν(dx)dsπ(dA)

=

∫

M−d

∫

‖x‖>1/κ(A)

ln(κ(A)‖x‖) + 1/2

ρ(A)
ν(dx)π(dA)

+

∫

M−d

∫

‖x‖≤1/κ(A)

κ(A)2‖x‖2

2ρ(A)
ν(dx)π(dA).

The finiteness of the first integral follows from (3.1), (3.3), κ(A) ≥ 1 and ν being a
Lévy measure, which imply

∫

M−d

∫

‖x‖>1/κ(A)

ln(κ(A)‖x‖) + 1/2

ρ(A)
ν(dx)π(dA)

≤
∫

M−d

∫

‖x‖>1

ln(κ(A)) + ln(‖x‖) + 1/2

ρ(A)
ν(dx)π(dA)

+

∫

M−d

∫

‖x‖≤1

3κ(A)2‖x‖2

2ρ(A)
ν(dx)π(dA)

=

∫

M−d

ln(κ(A))

ρ(A)
π(dA)

∫

‖x‖>1

ν(dx)

+

∫

M−d

1

ρ(A)
π(dA)

∫

‖x‖>1

(ln(‖x‖) + 1/2)ν(dx)

+

∫

M−d

3κ(A)2

2ρ(A)
π(dA)

∫

‖x‖≤1

‖x‖2ν(dx) <∞.

Likewise the finiteness of the second integral is implied by (3.3), κ(A) ≥ 1 and∫
‖x‖≤1

‖x‖2ν(dx) <∞, as ν is a Lévy measure.

Next (3.9) follows from

∫

M−d

∫

R+

‖eAsΣeA∗s‖dsπ(dA)

≤ ‖Σ‖
∫

M−d

∫

R+

κ(A)2e−2ρ(A)sdsπ(dA) = ‖Σ‖
∫

M−d

κ(A)2

2ρ(A)
π(dA)

and (3.3).
Turning to (3.8) we have from (3.3) that:

∫

M−d

∫

R+

∥∥eAsγ
∥∥ dsπ(dA)

≤ ‖γ‖
∫

M−d

∫

R+

κ(A)e−ρ(A)sdsπ(dA) = ‖γ‖
∫

M−d

κ(A)

ρ(A)
π(dA) <∞.
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Moreover,

∫

M−d

∫

R+

∥∥∥
∫

Rd
eAsx

(
1[−1,1](‖eAsx‖)− 1[−1,1](‖x‖)

)
ν(dx)

∥∥∥dsπ(dA)

≤
∫

M−d

∫

R+

∫

‖x‖≤1,‖eAsx‖≥1

∥∥eAsx
∥∥ ν(dx)dsπ(dA)

+

∫

M−d

∫

R+

∫

‖x‖≥1,‖eAsx‖≤1

∥∥eAsx
∥∥ ν(dx)dsπ(dA)

≤
∫

M−d

∫

R+

∫

‖x‖≤1,‖eAsx‖≥1

∥∥eAsx
∥∥2
ν(dx)dsπ(dA)

+

∫

M−d

∫

R+

∫

‖x‖∈(1,eρ(A)s/2)
‖x‖κ(A)e−ρ(A)sν(dx)dsπ(dA)

+

∫

M−d

∫

R+

∫

‖x‖≥eρ(A)s/2

ν(dx)dsπ(dA)

≤
∫

‖x‖≤1

‖x‖2ν(dx)

∫

M−d

κ(A)2

2ρ(A)
π(dA) +

∫

M−d

2κ(A)

ρ(A)
π(dA)

∫

‖x‖>1

ν(dx)

+

∫

M−d

2

ρ(A)
π(dA)

∫

‖x‖>1

ln(‖x‖)ν(dx) <∞

with the finiteness following from (3.1), (3.3) and ν being a Lévy measure.

That the distribution of Xt is infinitely divisible and has the stated characteristic
triplet follows now immediately from Proposition 2.3.

Remark 3.2. (i) The necessary and sufficient conditions for the existence of the
multivariate supOU process X are (3.8), (3.9), (3.10). However, as they are obviously
very intricate to check in concrete situations, it seems to be appropriate to replace
them by the sufficient conditions (3.1), (3.2), (3.3). One particular advantage of
these conditions is that they involve only integrals with respect to either ν or π, but
not with respect to both.

(ii) Note also that for d = 1 the conditions above become the necessary and
sufficient conditions of [12], as we can then take κ(A) = 1 and ρ(A) = −A.

(iii) By looking at the Jordan decomposition one can see that pointwise there
is for any A ∈ M−

d a constant κ ∈ [1,∞) and a ρ ∈ (0,−max(<(σ(A)))] such
that ‖eAs‖ ≤ κe−ρs for all s ∈ R+. If A is diagonalisable, it is possible to choose
ρ(A) = −max(<(σ(A))) and κ(A) = ‖U‖‖U−1‖ with U ∈ GLd(C) being such that
UAU−1 is diagonal. So (3.2) essentially demands that this choice has to be done
measurably in A (see especially Example 3.5 for a concrete example).

In some applications like stochastic volatility modelling, for instance, one is par-
ticularly interested in the case where the underlying Lévy process is of finite vari-
ation and the supOU process is defined via ω-wise integration. The following result
is proved using Proposition 2.4 together with variations of the arguments of the
proof of Theorem 3.1.
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Proposition 3.3. Let Λ be an Rd-valued Lévy basis on M−
d × R with generating

quadruple (γ, 0, ν, π) satisfying

∫

‖x‖>1

ln(‖x‖)ν(dx) <∞ and

∫

‖x‖≤1

‖x‖ν(dx) <∞ (3.11)

and assume there exist measurable functions ρ : M−
d → R+\{0} and κ : M−

d →
[1,∞) such that:

‖eAs‖ ≤ κ(A)e−ρ(A)s ∀ s ∈ R+, π − almost surely, (3.12)

and

∫

M−d

κ(A)

ρ(A)
π(dA) <∞. (3.13)

Then the process (Xt)t∈R given by

Xt =

∫

M−d

∫ t

−∞
eA(t−s)Λ(dA, ds)

=

∫

M−d

∫ t

−∞
eA(t−s)γ0dsπ(dA) +

∫

Rd

∫

M−d

∫ t

−∞
eA(t−s)xµ(dx, dA, ds)

is well-defined as a Lebesgue integral for all t ∈ R and ω ∈ Ω and X is stationary.

Remark 3.4. If (3.3) is satisfied for a Lévy basis, then (3.13) is also satisfied.

We shall not develop the general case further, but consider two special cases
which appear to be sufficient for most purposes. We define MN−

d := {A ∈ Md(R) :
A is normal and σ(A) ⊂ (−∞, 0) + iR}.

Proposition 3.5. (i) Assume that π(MN−
d ) = 1, then (3.2) or (3.12) are satisfied

with κ(A) = 1 and ρ(A) = −max(<(σ(A))). Moreover, (3.3) or (3.13) are implied
by

−
∫

MN−
d

1

max(<(σ(A)))
π(dA) <∞. (3.14)

(ii) Assume that there are a K ∈ N and diagonalisable A1, . . . , AK ∈M−
d (R) such

that π({λAi : i = 1, . . . , K;λ ∈ R+\{0}}) = 1. Then (3.2) or (3.12) are satisfied
with κ(A) = C for some C ∈ [1,∞) and ρ(A) = −max(<(σ(A))). Moreover, (3.3)
or (3.13) are implied by

−
∫

M−d

1

max(<(σ(A)))
π(dA) <∞. (3.15)

In dimension one these are again the well-known necessary and sufficient con-
ditions. Observe also that the eigenvalues are continuous (and hence measurable)
in A, because they are the zeros of the characteristic polynomial.
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Proof. Part (i) follows immediately from the fact that all normal matrices are unit-
arily diagonalisable.

Likewise, (ii) is a consequence of the above mentioned pointwise bound and the
fact that this can be turned into a global one, because for fixed i = 1, . . . , N the
matrices {λAi}λ∈R+\{0} are all diagonalised by the same invertible matrices.

In (i) the mean reversion parameter A of the superimposed OU type processes
is restricted to normal matrices and in (ii) to finitely many rays {λAi}λ∈R+\{0}.

Remark 3.6. (i) Typically one will, in general, not consider normal matrices for
A as in (i), but only negative definite ones, since this allows one to use well-known
distributions on the positive definite matrices (see e.g. [13]) for π. In the case (ii)
possible π can be obtained by using arbitrary distributions on R+ along the rays and
positive weights summing to one for the different rays.

(ii) Intuitively (3.14) and (3.15) mean that π may not put too much mass on
elements with very slow exponential decay rates.

3.2 Finiteness of moments and second order structure

Before we look at the second order structure, we give sufficient conditions ensuring
the finiteness of moments.

Theorem 3.7. Let X be a stationary d-dimensional supOU process driven by a Lévy
basis Λ satisfying the conditions of Theorem 3.1.

(i) If
∫

‖x‖>1

‖x‖rν(dx) <∞ (3.16)

for r ∈ (0, 2], then X has a finite r-th moment, i.e. E(‖Xt‖r) <∞.

(ii) If r ∈ (2,∞) and

∫

‖x‖>1

‖x‖rν(dx) <∞,
∫

M−d

κ(A)r

ρ(A)
π(dA) <∞, (3.17)

then X has a finite r-th moment, i.e. E(‖Xt‖r) <∞.

In connection with the above results observe that the underlying Lévy process L has
an r-th moment, i.e. E(‖L1‖r) <∞, for r ∈ R+ if and only if

∫
‖x‖>1

‖x‖rνL(dx) <∞.

Proof. Using [30, Corollary 25.8] we have to show
∫
‖x‖>1

‖x‖rνX(dx) <∞.
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Now,

∫

‖x‖>1

‖x‖rνX(dx) =

∫

M−d

∫ ∞

0

∫

Rd
‖eAsx‖r1(1,∞)(‖eAsx‖)ν(dx)dsπ(dA)

≤
∫

M−d

∫ ∞

0

∫

Rd
κ(A)re−rρ(A)s‖x‖r1(1,∞)(κ(A)e−ρ(A)s‖x‖)ν(dx)dsπ(dA)

=

∫

M−d

∫

‖x‖>1/κ(A)

∫ ln(κ(A)‖x‖)
ρ(A)

0

κ(A)re−rρ(A)s‖x‖rdsν(dx)π(dA)

=

∫

M−d

∫

‖x‖>1/κ(A)

κ(A)r‖x‖r
rρ(A)

(
1− 1

κ(A)r‖x‖r
)
ν(dx)π(dA)

=

∫

M−d

∫

‖x‖>1/κ(A)

κ(A)r‖x‖r − 1

rρ(A)
ν(dx)π(dA).

That
∫
M−d

∫
‖x‖>1/κ(A)

1
rρ(A)

ν(dx)π(dA) < ∞ has already been shown in the proof of

Theorem 3.1.
Moreover, we obtain

∫

M−d

∫

‖x‖>1/κ(A)

κ(A)r‖x‖r
ρ(A)

ν(dx)π(dA)

≤
∫

M−d

∫

‖x‖>1

κ(A)r‖x‖r
ρ(A)

ν(dx)π(dA) +

∫

M−d

∫

‖x‖≤1

κ(A)r∨2‖x‖r∨2

ρ(A)
ν(dx)π(dA).

Hence, (i) and (ii) follow, since ν is a Lévy measure, using also (3.3) for (i).

Remark 3.8. In the set-up of Proposition 3.5 (i) (and analogously in (ii))

−
∫

M−d

1

max(<(σ(A)))
π(dA) <∞,

∫

‖x‖>1

‖x‖rν(dx) <∞. (3.18)

imply (3.14) and (3.17) (respectively (3.16)).

Theorem 3.9. Let X be a stationary d-dimensional supOU process driven by a Lévy
basis Λ satisfying the conditions of Theorem 3.1 and assume

∫
Rd ‖x‖2ν(dx) < ∞.

Then E(‖X0‖2) <∞ and we have

E(X0) = −
∫

M−d

A−1
(
γ +

∫

|x|>1

xν(dx)
)
π(dA) (3.19)

var(X0) = −
∫

M−d

(A (A))−1
(

Σ +
(∫

Rd
xx∗ν(dx)

))
π(dA) (3.20)

cov(Xh, X0) = −
∫

M−d

eAh(A (A))−1
(

Σ +

∫

Rd
xx∗ν(dx)

)
π(dA) for h ∈ N. (3.21)

with A (A) : Md(R)→Md(R), X 7→ AX +XA∗.
Moreover, it holds that

lim
h→∞

cov(Xh, X0) = 0. (3.22)
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Proof. The finiteness of the second moments follows from Theorem 3.7. Using the
formulae of Theorem 3.1 and [30, Example 25.12] we obtain

E(X0) =γX +

∫

‖x‖>1

xνX(dx) =

∫

M−d

∫

R+

eAs
(
γ +

∫

‖x‖>1

xν(dx)
)
dsπ(dA).

Noting that d
ds
A−1eAs = eAs, integrating over s gives (3.19).

Likewise we get

var(X0) = ΣX +

∫

Rd
xx∗νX(dx) =

∫

M−d

∫

R+

eAs
(

Σ +

∫

Rd
xx∗ν(dx)

)
eA
∗sdsπ(dA)

which implies (3.20) by integrating over s.
Finally,

cov(Xh, X0) =cov
(∫

M−d

∫ h

−∞
eA(h−s)Λ(dA, ds),

∫

M−d

∫ 0

−∞
e−AsΛ(dA, ds)

)

=cov
(∫

M−d

∫ 0

−∞
eA(h−s)Λ(dA, ds),

∫

M−d

∫ 0

−∞
e−AsΛ(dA, ds)

)

=

∫

M−d

eAh
(∫ 0

−∞
e−As

(
Σ +

∫

Rd
xx∗ν(dx)

)
e−A

∗sds
)
π(dA) (3.23)

=−
∫

M−d

eAh(A (A))−1
(

Σ +

∫

Rd
xx∗ν(dx)

)
π(dA)

since Λ is a Lévy basis and hence the random measures Λ on M−
d × (0, h] and on

M−
d × (−∞, 0] are independent.
From (3.23) one obtains

∥∥∥
∫

M−d

eAh
(∫ 0

−∞
e−As

(
Σ +

∫

Rd
xx∗ν(dx)

)
e−A

∗sds
)
π(dA)

∥∥∥

≤
∫

M−d

∫ 0

−∞
κ(A)2eρ(A)(2s−h)dsπ(dA)

∥∥∥Σ +

∫

Rd
xx∗ν(dx)

∥∥∥

≤
∫

M−d

κ(A)2

2ρ(A)
π(dA)

∥∥∥Σ +

∫

Rd
xx∗ν(dx)

∥∥∥ <∞

and therefore limh→∞ eAh = 0 for all A ∈ M−
d , and dominated convergence estab-

lish (3.22).

3.3 Some important path properties

In this section we show for a supOU process X a representation, which generalises
the SDE that governs OU type processes, and we derive important path properties
of X. That “SDE representation” – identity (3.28) below – has been conjectured
in the univariate case in [2], where neither a proof nor conditions for its validity
have been given. Below we are able to show these results for finite variation Lévy
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bases, which are naturally appearing in applications like stochastic volatility mod-
elling. The properties which we establish are especially important in the context of
integration, since they imply that, if X is the integrator, then pathwise Lebesgue in-
tegration can be carried out, and, when X is the integrand, the theory of stochastic
integrals of càdlàg processes with respect to semimartingales (see [28], for instance)
respectively the L2-theory of e.g. [25] applies. Likewise, the integrated process is of
importance in certain applications.

Below the filtration (Ft)t∈R generated by Λ is defined by Ft being the σ-algebra
generated by the set of random variables {Λ(B) : B ∈ B(M−

d × (−∞, t])} for t ∈ R.

Theorem 3.10. Let X be a supOU process as in Proposition 3.3. Then:
(i) Xt(ω) is B(R)×F measurable as a function of t ∈ R and ω ∈ Ω and adapted

to the filtration (Ft)t∈R generated by Λ.
(ii) If ∫

M−d

κ(A)π(dA) <∞, (3.24)

the paths of X are locally uniformly bounded in t for every ω ∈ Ω.
Furthermore, X+

t =
∫ t

0
Xsds exists for all t ∈ R+ and

X+
t =

∫

M−d

∫ t

−∞
A−1eA(t−s)Λ(dA, ds)

−
∫

M−d

∫ 0

−∞
A−1e−AsΛ(dA, ds)−

∫

M−d

∫ t

0

A−1Λ(dA, ds). (3.25)

(iii) Provided that

∫

M−d

(‖A‖ ∨ 1)κ(A)

ρ(A)
π(dA) <∞ (3.26)

and
∫

M−d

‖A‖κ(A)π(dA) <∞ (3.27)

it holds that

Xt = X0 +

∫ t

0

Zudu+ Lt (3.28)

where L is the underlying Lévy process and

Zu =

∫

M−d

∫ u

−∞
AeA(u−s)Λ(dA, ds) (3.29)

for all u ∈ R with the integral existing ω-wise.
Moreover, the paths of X are càdlàg and of finite variation on compacts.

Proof. (i) is immediate from the definition of Xt as a Lebesgue integral and the
measurability properties of the integrand eA(t−s)x1R+(t − s) which as a function of
t, s, A, x is B(R× R×M−

d × Rd)-B(Rd)-measurable.
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(ii) We first show local uniform boundedness of X. Choose arbitrary T1, T2 ∈ R
with T1 < T2. Then

fT1,T2(A, s, x) := sup
t∈[T1,T2]

∥∥eA(t−s)x1R+(t− s)
∥∥

≤
(
κ(A)e−ρ(A)(T1−s)1(−∞,T1](s) + κ(A)1(T1,T2](s)

)
‖x‖

for all A ∈M−
d (R), s ∈ R and x ∈ Rd and

sup
t∈[T1,T2]

‖Xt‖ ≤
∫

M−d

∫

R
fT1,T2(A, s, γ0)dsπ(dA)

+

∫

Rd

∫

M−d

∫

R
fT1,T2(A, s, x)µ(dx, dA, ds).

Therefore we only have to show the ω-wise existence and finiteness of the integral
on the right hand side. This is, however, an immediate consequence of the above
upper bound, (3.24), Proposition 2.4 and arguments as in the proof of Theorem 3.1
noting that

∫

M−d

∫ T2

T1

∫

Rd
(1 ∧ κ(A)‖x‖)ν(dx)dsπ(dA)

≤ (T2 − T1)
(∫

M−d

∫

‖x‖≤1

κ(A)‖x‖ν(dx)π(dA) +

∫

M−d

∫

‖x‖>1

1ν(dx)π(dA)
)
.

Turning to X+
t the existence follows immediately from the local boundedness.

Noting that we have actually proved the local boundedness of

∫

M−d

∫ t

−∞
‖eA(t−s)γ0‖dsπ(dA) +

∫

Rd

∫

M−d

∫ t

−∞
‖eA(t−s)x‖µ(dx, dA, ds)

above, we can use Fubini to obtain

X+
t =

∫

M−d

∫ t

−∞

∫ t

0∨u
eA(s−u)γ0dsduπ(dA)

+

∫

Rd

∫

M−d

∫ t

−∞

∫ t

0∨u
eA(s−u)xdsµ(dx, dA, du)

=

∫

M−d

∫ t

−∞
A−1eA(s−u)γ0

∣∣t
s=(0∨u)

duπ(dA)

+

∫

Rd

∫

M−d

∫ t

−∞
A−1eA(s−u)x

∣∣t
s=(0∨u)

dsµ(dx, dA, du),

which establishes (3.25) by straightforward calculations.

(iii) Using similar calculations as before the existence of Zu as an ω-wise integral
follows from Proposition 2.4 and (3.26). Similarly to (ii) one sees that under (3.27)
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Z is locally uniformly bounded in u. Hence, one can use Fubini to obtain

∫ t

0

Zudu =

∫

Rd

∫

M−d

∫ t

−∞

∫ t

0∨s
AeA(u−s)xduµ(dx, dA, ds)

+

∫

M−d

∫ t

−∞

∫ t

0∨s
AeA(u−s)γ0dudsπ(dA)

=

∫

Rd

∫

M−d

∫ t

−∞
eA(u−s)x

∣∣t
u=(0∨s) µ(dx, dA, ds)

+

∫

M−d

∫ t

−∞
eA(u−s)γ0

∣∣t
u=(0∨s) dsπ(dA)

= Xt −X0 − Lt

which establishes (3.28). That X has cádlág paths of finite variation is now an
immediate consequence of this integral representation.

Remark 3.11. (i) Condition (3.24) is always true if π is concentrated on the nor-
mal matrices or on finitely many rays and hence especially in dimension d = 1.
Moreover, it could be replaced by the weaker but rather impracticable condition that
f[T1,T2](A, s, x) ∧ 1 is integrable with respect to π × λ × ν and that, for any fixed x,
f[T1,T2](A, s, x) is integrable with respect to π×λ (cf. [20, Proposition 2.1] for a very
related result whose proof is similar in spirit to ours, but uses a series representation
instead of the Lévy-Itô decomposition).

(ii) Intuitively (3.27) means that π does not place too much mass on the elements
of M−

d with high norm and thus very fast exponential decay rates.
If π is concentrated on the normal matrices or finitely many diagonalisable rays,

then (3.26) and (3.27) become

−
∫

M−d

(‖A‖ ∨ 1)

max<(σ(A))
π(dA) <∞ and

∫

M−d

‖A‖π(dA) <∞. (3.30)

In particular, the second condition simply means that π has a finite first moment.
If π is concentrated on S−−d , then we have ‖A‖ = −min(σ(A)) and (3.26) becomes

∫

S−−d

(min(σ(A)) ∧ −1)

max (σ(A))
π(dA) <∞, (3.31)

so it can be seen as a condition on the spread between the different exponential decay
rates measured by the eigenvalues. It is easy to see that in dimension d = 1, it is
equivalent to

∫
R−(−1/A) π(dA) < ∞, which is part of the necessary and sufficient

conditions for the existence of the supOU process.

3.4 Examples and long range dependence

Like in the univariate case, the expression (3.21) does not imply that we necessarily
have an exponential decay of the autocovariance function and thus a short memory
process. On the contrary we can easily obtain a long memory process, as the following
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examples exhibit. Note that this illustrates that (3.22) is not obvious and indeed
requires a detailed proof as above.

Apart from showing that multivariate supOU processes may exhibit long range
dependence, the purpose of this section is to analyse some concrete examples and
their properties.

Regarding long range dependence, there is unfortunately basically no general
theory developed in the multivariate case so far. So below we mean by long range
dependence simply that at least one element of the autocovariance function decays
asymptotically like h−α for the lag h going to infinity and for some α ∈ (0; 1). Intu-
itively this should clearly be a case when one may appropriately speak of long range
dependence. Establishing a general theory for multivariate long range dependence
seems to be very important, but is beyond the scope of this paper.

Example 3.1. Let Λ be a d-dimensional Lévy basis with generating quadruple
(γ,Σ, ν, π) with ν satisfying

∫
Rd ‖x‖2ν(dx) < ∞ and π being given as the distribu-

tion of RB with a diagonalisable B ∈ M−
d and R being a real Γ(α, β)-distributed

random variable with α > 1, β ∈ R+\{0}. Hence, R has probability density f(r) =
βα

Γ(α)
rα−1e−βr1R+(r), and from

−
∫

M−d

1

max(<(σ(A)))
π(dA) =

−βα
max(<(σ(B)))Γ(α)

∫

R+

rα−2e−βrdr

=
−βα

max(<(σ(B)))Γ(α)
· Γ(α− 1)

βα−1
=

−β
αmax(<(σ(B)))

we conclude that (3.18) holds. Consequently the process

Xt =

∫

M−d

∫ t

−∞
eA(t−s)Λ(dA, ds)

exists, is stationary and has finite second moments.
For the autocovariance function for positive lags h we find

cov(Xh, X0) = −
∫

M−d

eAh(A (A))−1vec
(

Σ +

∫

Rd
xx∗ν(dx)

)
π(dA)

=

∫

R+

eBhr−βIdrrα−2dr
(
− βα

Γ(α)
B−1

(
Σ +

∫

Rd
xx∗ν(dx)

))

with B : Md(R)→Md(R), X 7→ BX +XB∗. Let now U ∈ GLd(C) and λ1, λ2, . . . ,
λd ∈ (−∞, 0) + iR be such that

UBU−1 =




λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λd


 .

Then, from
∫∞

0
tz−1e−ktdt = Γ(z)k−z for all z, k ∈ (0,∞) + iR, where the power is

defined via the principal branch of the complex logarithm (see [1, p. 255]), we obtain
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that
∫

R+

eBhr−βIdrrα−2dr

= U

∫

R+

exp

(
−r
(
βId −




λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λd


h

))
rα−2drU−1

= Γ(α− 1)U

(
βId −




λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λd


h

)1−α

U−1

= Γ(α− 1) (βId −Bh)1−α .

Above the (1 − α)-th power of a matrix is understood to be defined via spectral
calculus as usual.

Hence,

cov(Xh, X0) = − βα

α− 1
(βId −Bh)1−α B−1

(
Σ +

∫

Rd
xx∗ν(dx)

)

and thus we have a polynomially decaying autocovariance function. For α ∈ (1, 2)
we obviously get long memory.

Another question is whether we have the nice path properties of Theorem 3.10.
Hence, assume additionally that

∫
‖x‖≤1

‖x‖ν(dx) < ∞. In our example Condition

(3.24) is trivially satisfied and so the paths of X are locally uniformly bounded in
t. Regarding Condition (3.30) the second part is equivalent to

‖B‖
∫ ∞

0

rαe−βrdr <∞,

which is always true, as any Gamma distribution has a finite mean. Denoting the
density of the Γ(α, β)-distribution by fα,β(r), one obtains for the first part

−
∫ ∞

0

(r‖B‖ ∨ 1)

rmax(<(σ(B)))
fα,β(r)dr =−

∫ ‖B‖−1

0

1

rmax(<(σ(B)))
fα,β(r)dr

−
∫ ∞

‖B‖−1

‖B‖
max(<(σ(B)))

fα,β(r)dr,

which is obviously finite. Hence, the conditions of Theorem 3.10 (iii) are satisfied
and thus the paths are càdlàg and of finite variation, and (3.28) is valid.

Example 3.2. The previous example has an immediate extension to the case when
π is concentrated on several rays instead of a single one as above. Assume we have
w1, . . . , wm ∈ [0, 1] with

∑m
i=1wi = 1 and diagonalisable B1, . . . , Bm ∈ M−

d and
define πi to be the probability measure of the random variable RiBi with Ri being
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Γ(αi, βi) distributed with αi > 1, βi ∈ R+\{0}. If ν is as above and π =
∑m

i=1wiπi,
we get for the multivariate supOU process X

cov(Xh, X0) = −
m∑

i=1

(
wiβ

αi
i

αi − 1
(βiId −Bih)1−αi B−1

i

)(
Σ +

∫

Rd
xx∗ν(dx)

)

with Bi : Md(R)→Md(R), X 7→ BiX +XB∗i .
Assuming now

∫
‖x‖≤1

‖x‖ν(dx) < ∞, it is likewise straightforward to see that

Conditions (3.24) and (3.30) are satisfied. Hence, the paths ofX are locally uniformly
bounded in t, càdlàg and of finite variation, and (3.28) is valid.

Example 3.3. A similar result can be obtained if we restrict the mean reversion
parameter A to the strictly negative definite matrices S−−d and define π as a probab-
ility distribution on the proper convex cone S−−d as follows. Let S−−d denote the in-
tersection of the unit sphere in Sd with S−−d , let α : S−−d → (1,∞), β : S−−d → (0,∞)
be measurable mappings and w a probability distribution on S−−d such that

−
∫

S−−d

β(v)

α(v) max(σ(v))
w(dv) <∞. (3.32)

Now define π via

π(B) =

∫

S−−d

∫ ∞

0

1B(rv)
β(v)α(v)

Γ(α(v))
rα(v)−1e−β(v)rdrw(dv)

for any Borel set B ∈M−
d (R). Then π is a probability distribution concentrated on

S−−d .
Using this π in the above set-up means that the mean reversion parameter is no

longer necessarily restricted to finitely many rays. Moreover, similar calculations to
the ones in Example 3.1 give

−
∫

M−d

1

max(<(σ(A)))
π(dA) =

∫

S−−d

−β(v)

α(v) max(σ(v))
w(dv) <∞.

Hence, (3.18) holds and the process Xt =
∫
M−d

∫ t
−∞ e

A(t−s)Λ(dA, ds) exists, is station-

ary and has finite second moments. Likewise we get for the autocovariance function

cov(Xh, X0)

= −
(∫

S−−d

β(v)α(v)

α(v)− 1
(β(v)Id − vh)1−α(v) (V (v))−1w(dv)

)(
Σ +

∫

Rd
xx∗ν(dx)

)

with V (v) : Md(R)→Md(R), X 7→ vX +Xv∗.
Turning to the path properties, assume now that

∫
‖x‖≤1

‖x‖ν(dx) < ∞. Again

Condition (3.24) is trivially satisfied and so the paths of X are locally uniformly
bounded in t. Regarding condition (3.30) the second part becomes

∫

M−d

‖A‖π(dA) =

∫

S−−d

∫ ∞

0

rfα(v),β(v)(r)drw(dv) =

∫

S−−d

α(v)

β(v)
w(dv)
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and for the first part one obtains

−
∫

M−d

(‖A‖ ∨ 1)

max<(σ(A))
π(dA) =−

∫

S−−d

∫ 1

0

1

rmax(σ(v))
fα(v),β(v)(r)drw(dv)

−
∫

S−−d

∫ ∞

1

1

max(σ(v))
fα(v),β(v)(r)drw(dv).

The first summand is finite due to (3.32) and the second one is finite if

−
∫

S−−d

(
1

max(σ(v)

)
w(dv)

is finite. Hence, provided

−
∫

S−−d

1

max(σ(v))
w(dv) <∞ and

∫

S−−d

α(v)

β(v)
w(dv) <∞,

the conditions of Theorem 3.10 (iii) are satisfied and thus the paths are càdlàg and
of finite variation and (3.28) is valid.

Based on this we can easily give an example where we know that the supOU
process exists due to Proposition 3.3, but the conditions of Theorem 3.10 (iii) are
not satisfied. Assume w is a discrete distribution concentrated on the points

vn =



−1 0 0
0 −1 + (3n)−1 0
0 0 −1/2


 , n ∈ N,

and that w(vn) = 6
π2n

, α(vn) = 2 and β(vn) = n−1. Then we have that

−
∫

S−−d

β(v)

α(v) max(σ(v))
w(dv) =

6

π2

∞∑

n=1

n−3 <∞,

but ∫

M−d

‖A‖π(dA) =
12

π2

∞∑

n=1

n−1 =∞

and hence Condition (3.26) is not satisfied. Observe that this means that the prob-
ability measure π we have constructed does not have a first moment, although it is
defined via a polar representation where the radial parts are all univariate Gamma
distributions.

Example 3.4. Let Λ be now a two-dimensional Lévy basis with generating quad-
ruple (γ,Σ, ν, π) with ν satisfying

∫
Rd ‖x‖2ν(dx) < ∞. We restrict the mean rever-

sion parameter A to D−−2 , the 2 x 2 diagonal matrices with strictly negative entries
on the diagonal. Hence, π is a measure on D−−2 which can be identified with (R−−)2

and we assume that π has Lebesgue density

π(da1, da2) =
βα1

1 βα2
2

Γ(α1)Γ(α2)
(−a1)α1−1(−a2)α2−1eβ1a1+β2a21(R−−)2(a1, a2)da1da2
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with α1, α2 > 1 and β1, β2 > 0. So the diagonal elements are independent and their
absolute values follow Gamma distributions. We obtain

−
∫

D−−2

1

max(<(σ(A)))
π(dA)

=

∫ ∞

0

∫ ∞

0

1

min(a1, a2)

βα1
1 βα2

2

Γ(α1)Γ(α2)
(a1)α1−1(a2)α2−1e−β1a1−β2a2da1da2

≤
∫ ∞

0

βα1
1

Γ(α1)
(a1)α1−2e−β1a1da1

∫ ∞

0

βα2
2

Γ(α2)
(a2)α2−1e−β2a2da2

+

∫ ∞

0

βα1
1

Γ(α1)
(a1)α1−1e−β1a1da1

∫ ∞

0

βα2
2

Γ(α2)
(a2)α2−2e−β2a2da2 <∞.

Hence, (3.18) holds and the process Xt =
∫
M−d

∫ t
−∞ e

A(t−s)Λ(dA, ds) exists, is sta-

tionary and has finite second moments.
Let us now consider the individual components X1,t, X2,t of Xt. Denote by P1 :

R2 → R, (x1, x2)∗ 7→ x1 the projection onto the first coordinate and define an R-
valued Lévy basis Λ1 on R−− × R via Λ1(da1, ds) = P (Λ(P−1

1 (da1), ds) and a Lévy
measure ν1 on R via ν1(dx1) = ν(P−1

1 (dx1)). Then Λ1 has characteristic quadruple
(γ1,Σ11, ν1, π1) with π1 having Lebesgue density

π1(da1) =
βα1

1

Γ(α1))
(−a1)α1−1eβ1a11(R−−)(a1)da1

and

X1,t =

∫

R−−

∫ t

−∞
ea1(t−s)Λ1(da1, ds).

For the autocovariance function of the first component we get

cov(X1,h, X1,0) =
βα1

1

2(α1 − 1)
(β1 + h)1−α1

(
Σ11 +

∫

R
x2

1ν1(dx1)
)
, h ∈ R+.

An analogous result holds for the second component X2,t and we have long memory
in both components provided α1, α2 ∈ (1, 2).

The importance of this example is, however, that we can model the stationary
distributions of X1 and X2, i.e. the margins of the stationary distribution of Xt,
very explicitely by specifying the margins of ν, i.e. ν1 and ν2. From [2, Theorem 3.1,
Corollary 3.1] and [12, Remark 2.2] we know that it is exactly all non-degenerate
self-decomposable distributions on R which arise as the stationary distributions of
the components. Moreover, these authors provide formulae to calculate ν1 (or ν2) if
one wants to obtain a given stationary distribution for the component (alternatively
[3, Lemma 5.1] or the refinement [27, Theorem 4.9] can be used). Hence, one can
specify a two-dimensional supOU process with prescribed stationary distributions
of the components by calculating the required ν1 and ν2 and choosing ν accordingly.
The easiest way to get a possible ν is by specifying ν(dx1, dx2) = ν1(dx1)× δ0(x2) +
δ0(x1)× ν2(dx2) with δ0 denoting the Dirac distribution with unit mass at zero. In
this case the components of X are independent. An easy way to get an appropriate
ν and allowing for dependence is to combine ν1 and ν2 using a Lévy copula (see [19]
and [4]).
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Likewise it is again interesting to look at the path properties of Theorem 3.10.
Assuming again

∫
‖x‖≤1

‖x‖ν(dx) < ∞, Condition (3.24) is trivially satisfied and so

the paths of X are locally uniformly bounded in t. Regarding the second part of
condition (3.30) we have that

∫

M−d

‖A‖π(dA) <∞

is equivalent to
∫

(R+)2
max(a1, a2)fα1,β1(a1)fα2,β2(a1)da1da2

≤
∫

R+

a1fα1,β1(a1)da1 +

∫

R+

a2fα2,β2(a1)da2 <∞

which is always true. Turning to (3.31), it is implied by
∫

(R+)2

max(a1, a2)

min(a1, a2)
fα1,β1(a1)fα2,β2(a1)da1da2

≤
∫

(R+)2

a1 + a2

a1

fα1,β1(a1)fα2,β2(a1)da1da2

+

∫

(R+)2

a1 + a2

a2

fα1,β1(a1)fα2,β2(a1)da1da2 <∞,

which is easily seen to be always true. Hence, the conditions of Theorem 3.10 (iii)
are satisfied and thus the paths are càdlàg and of finite variation and (3.28) is valid.

Obviously this example has a straightforward extension to general dimension d.

Example 3.5. So far we have only studied cases where we could use Proposition 3.5
and did especially never have to bother with κ(A) in the conditions of Theorem 3.1.

In this example we will present a case where the behaviour of κ(A) is crucial and
where we show how κ and ρ can be specified in a measurable way. We define the
following sets:

D−d = {X ∈Md(R) : X is diagonal; all diagonal elements are strictly

negative, pairwise distinct and ordered such that <(xii) ≤ <(xjj)

and =(xii)1{xii=xjj} ≤ =(xjj)1{xii=xjj} ∀1 ≤ i ≤ j ≤ n},
Sd = {X ∈ GLd(R) : the first non-zero element in each column is 1},

M−
d = {SDS−1 : S ∈ Sd, D ∈ D−d }.

If A = SDS−1 is in M−
d , the matrix D consists of the eigenvalues of A and the

columns of S are the eigenvectors of A. In principle there are many possible S and
D if we only demand A = SDS−1. However, if we restrict ourselves to S ∈ Sd, D ∈
D−d , then S,D are unique, as elementary linear algebra shows. This means that the
map

M : Sd ×D−d →M−
d , (S,D) 7→ SDS−1

is bijective (and obviously continuous). We denote by M−1 = (S,D) the inverse
mapping. Since computing eigenvectors and eigenvalues are measurable procedures
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as are the orderings and normalisations involved in obtaining the diagonal matrix
in D−d and the eigenvector matrix in Sd, all these mappings are measurable. Note
also that D−d , Sd, M−

d are Borel sets.
Defining κ : M−

d → [1,∞), A 7→ ‖S(A)‖‖(S(A))−1‖ and ρ(A) = −max(<(σ(A)))
gives therefore measurable mappings on M−

d satisfying ‖eAs‖ ≤ κ(A)e−ρ(A)s. Using
these definitions for κ and ρ one could now specify probability distributions π on
M−

d and check whether Condition (3.3) is satisfied and the associated supOU process
therefore exists.

However, in concrete situations it seems easier to specify a Borel probability
measure πSd×D−d

on Sd × D−d and define π as its image under M, i.e. π(B) =

πSd×D−d
(M−1(B)) for all Borel sets B. Assume πSd×D−d

= πSd
× πD−d

is the product

of two probability measures πSd
on Sd and πD−d

on D−d . Then we have
∫

M−d

κ(A)2

ρ(A)
π(dA) <∞

⇔
∫

Sd

‖S‖2‖S−1‖2πSd
(dS) <∞ and −

∫

D−d

1

max(<(σ(D)))
πD−d

(dD) <∞.

That
∫

Sd
‖S‖2‖S−1‖2πSd

(dS) can be finite or infinite depending on the choice
of πSd

is exhibited by the following example. Let πS2 be a discrete measure concen-
trated on the points

Sn =

(
1 0
n 1

)
and pn := πS2(Sn) = Cαn

−α ∀n ∈ N

with α > 1 and Cα = 1/
∑∞

n=1 n
−α. Then

S−1
n =

(
1 0
−n 1

)
.

Using the equivalence of all norms we get that
∫

S2

‖S‖2‖S−1‖2πS2(dS) <∞ ⇔ Cα

∞∑

n=1

n4pn <∞ ⇔ α > 5.

Returning to the general example with π given via πSd
× πD−d

and turning to

path properties, we assume again
∫
‖x‖≤1

‖x‖ν(dx) <∞. In this finite variation case

the existence conditions (3.13) become
∫

Sd

‖S‖‖S−1‖πSd
(dS) <∞ and −

∫

D−d

1

max(<(σ(D)))
πD−d

(dD) <∞.

Furthermore, Condition (3.24) is always satisfied when the existence conditions are
satisfied and so the paths of X are locally uniformly bounded in t. Straightforward
arguments show that the conditions of Theorem 3.10 (iii) are satisfied and thus the
paths are càdlàg and of finite variation and (3.28) is valid if

∫

Sd

‖S‖2‖S−1‖2πSd
(dS) <∞,

−
∫

D−d

‖D‖
max(<(σ(D)))

πD−d
(dD) <∞ and

∫

D−d

‖D‖πD−d
(dD) <∞.
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By polarly decomposing πD−d
into a measure on the unit sphere in the diagonal

matrices and a radial part, the long memory examples of the foregoing examples
have straightforward extensions to this set-up.

4 Positive semi-definite supOU processes

Based on the previous section we now consider supOU processes which are positive
semi-definite at all times. The importance of such processes is that they can be used
to describe the random evolution of a latent covariance matrix over time and hence
they can be used in multivariate models for heteroskedastic data, e.g. the stochastic
volatility model of [9].

Let us briefly recall that a d× d positive semi-definite OU type process (see [8])
is defined as the unique càdlàg solution of the SDE

dΣt = (AΣt + ΣtA
∗)dt+ dLt,Σ0 ∈ S+

d

with A ∈ Md(R) and L being a d × d matrix subordinator (see [5]), i.e. a Lévy
process in Sd with Lt − Ls ∈ S+

d ∀ s, t ∈ R+, s < t. If max(<(σ(A))) < 0 and
E(ln(max(‖L1‖, 1))) <∞, the above SDE has the unique stationary solution

Σt =

∫ t

−∞
eA(t−s)dLse

A∗(t−s).

That the linear operators Sd → Sd of the form Z 7→ AZ + ZA∗ with some A ∈
Md(R) are the ones to be used for positive semi-definite OU type processes has been
established in [27].

Like one has to restrict the driving Lévy process to matrix subordinators in the
OU type processes, if one wants to get a positive semi-definite OU type process,
one needs to impose a comparable condition on the Lévy basis below. Note that
for a d × d matrix-valued Lévy-basis Λ we denote by vec(Λ) the Rd2-valued Lévy
basis given by vec(Λ)(B) = vec(Λ(B)) for all Borel sets B. Moreover, observe that
tr(XY ∗) (with X, Y ∈ Md(R) and tr denoting the usual trace functional) defines
a scalar product on Md(R) and that the vec operator is a Hilbert space isometry
between Md(R) equipped with this scalar product and Rd2 with the usual Euclidean
scalar product.

Positive semi-definite supOU processes are defined as processes of the form (4.4)
below which is the analogue of (3.4).

Theorem 4.1. Let Λ be an Sd-valued Lévy basis on M−
d ×R with generating quad-

ruple (γ, 0, ν, π) with γ0 := γ −
∫
‖x‖≤1

xν(dx) ∈ S+
d and ν being a Lévy measure on

Sd satisfying ν(Sd\S+
d ) = 0,

∫

‖x‖>1

ln(‖x‖)ν(dx) <∞ and

∫

‖x‖≤1

‖x‖ν(dx) <∞. (4.1)

Moreover, assume there exist measurable functions ρ : M−
d → R+\{0} and κ :

M−
d → [1,∞) such that:

‖eAs‖ ≤ κ(A)e−ρ(A)s ∀ s ∈ R+, π − almost surely, (4.2)
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and ∫

M−d

κ(A)2

ρ(A)
π(dA) <∞. (4.3)

Then the process (Σt)t∈R given by

Σt =

∫

M−d

∫ t

−∞
eA(t−s)Λ(dA, ds)eA

∗(t−s) (4.4)

=

∫

M−d

∫ t

−∞
eA(t−s)γ0e

A∗(t−s)dsπ(dA) +

∫

Sd

∫

M−d

∫ t

−∞
eA(t−s)xeA

∗(t−s)µ(dx, dA, ds)

is well-defined as a Lebesgue integral for all t ∈ R and ω ∈ Ω and Σ is stationary.
Moreover,

vec(Σt) =

∫

M−d

∫ t

−∞
e(A⊗Id+Id⊗A)(t−s)vec(Λ)(dA, ds), (4.5)

Σt ∈ S+
d for all t ∈ R and the distribution of Σt is infinitely divisible with character-

istic function

E (exp (itr(uΣt))) = exp
(
itr(uγΣ,0) +

∫

Sd

(
eitr(ux) − 1

)
νΣ(dx)

)
, u ∈ Sd,

where

γΣ,0 =

∫

M−d

∫ ∞

0

eAsγ0e
A∗sdsπ(dA), (4.6)

νΣ(B) =

∫

M−d

∫ ∞

0

∫

S+
d

1B(eAsxeA
∗s)ν(dx)dsπ(dA) for all Borel sets B ⊆ Sd. (4.7)

Proof. The equivalence of (4.5) and (4.4) follows from standard results on the vec-
torisation operator and the tensor product (see [15]).

Next we note that e(A⊗Id+Id⊗A)(t−s) = eA⊗eA and that ‖eA⊗eA‖ = ‖eA‖2 (using
the operator norm associated with the Euclidean norm). Hence, all assertions except
Σt ∈ S+

d for all t ∈ R+ follow immediately from Propositions 2.4 and 3.3.
However, Σt ∈ S+

d for all t ∈ R+ is now immediate, since the integral exists
ω-wise, eAsXeA

∗s ∈ S+
d ∀A ∈ Md(R), X ∈ S+

d , s ∈ R and S+
d is a closed convex

cone.

Remark 4.2. Like in Proposition 3.5, κ(A) can be replaced by 1 and ρ(A) by
−max(<(σ(A))) in (4.3) (and also in (4.14) and (4.15) below) provided π is con-
centrated on the normal matrices or finitely many diagonalisable rays.

Most importantly in the context of stochastic volatility models, which involve
stochastic integrals with Σ as integrand, Theorem 3.10 also has an analogue for
positive semi-definite supOU processes.

Theorem 4.3. Let Σ be the positive semi-definite supOU process of Theorem 4.1.
Then:
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(i) Σt(ω) is B(R)×F measurable as a function of t ∈ R and ω ∈ Ω and adapted
to the filtration (Ft)t∈R generated by Λ.

(ii) If ∫

M−d

κ(A)2π(dA) <∞, (4.8)

the paths of Σ are locally uniformly bounded in t for every ω ∈ Ω.
Furthermore, Σ+

t =
∫ t

0
Σsds exists for all t ∈ R+ and

Σ+
t =

∫

M−d

∫ t

−∞
(A(A))−1

(
eA(t−s)Λ(dA, ds)eA

∗(t−s))

−
∫

M−d

∫ 0

−∞
(A(A))−1

(
e−AsΛ(dA, ds)e−A

∗s
)

−
∫

M−d

∫ t

0

(A(A))−1Λ(dA, ds) (4.9)

with A(A) : Sd → Sd, X 7→ AX +XA∗.
(iii) Provided that

−
∫

M−d

(‖A‖ ∨ 1)κ(A)2

ρ(A)
π(dA) <∞ (4.10)

and
∫

M−d

‖A‖κ(A)2π(dA) <∞ (4.11)

it holds that

Σt = Σ0 +

∫ t

0

Zudu+ Lt (4.12)

where L is the underlying matrix subordinator and

Zu =

∫

M−d

∫ u

−∞

(
AeA(u−s)Λ(dA, ds)eA

∗(u−s) + eA(u−s)Λ(dA, ds)eA
∗(u−s)A∗

)
(4.13)

for all u ∈ R with the integral existing ω-wise.
Moreover, the paths of Σ are càdlàg and of finite variation on compacts.

Formula (4.9) is of particular interest in connection with stochastic volatility
modelling, as in this case the integrated volatility Σ+

t is a quantity of fundamental
importance.

Finally, we consider the existence of moments and the second order structure
which follow immediately from Theorems 3.7 and 3.9.

Proposition 4.4. Let Σ be a stationary S+
d -valued supOU process driven by a Lévy

basis Λ satisfying the conditions of Theorem 4.1.
(i) If ∫

‖x‖>1

‖x‖rν(dx) <∞ (4.14)
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for r ∈ (0, 1], then Σ has a finite r-th moment, i.e. E(‖Σt‖r) <∞.

(ii) If r ∈ (1,∞) and

∫

‖x‖>1

‖x‖rν(dx) <∞,
∫

M−d

κ(A)2r

ρ(A)
π(dA) <∞, (4.15)

then Σ has a finite r-th moment, i.e. E(‖Σt‖r) <∞.

(iii) If the conditions given in (ii) are satisfied for r = 2, then the second order
structure of Σ is given by:

E(Σ0) = −
∫

M−d

A(A)−1
(
γ0 +

∫

Sd
xν(dx)

)
π(dA)

var(vec(Σ0)) = −
∫

M−d

(A (A))−1
(∫

Sd
vec(x)vec(x)∗ν(dx)

)
π(dA)

cov(vec(Σh), vec(Σ0))

= −
∫

M−d

e(A⊗Id+Id⊗A)h(A (A))−1
(∫

Sd
vec(x)vec(x)∗ν(dx)

)
π(dA) for h ∈ N,

with A(A) : Md(R)→Md(R), X 7→ AX+XA∗ and A (A) : Md2(R)→Md2(R), X 7→
(A⊗ Id + Id ⊗ A)X +X(A∗ ⊗ Id + Id ⊗ A∗).

The Examples 3.1 to 3.5 can all be immediately adapted to the positive semi-
definite set-up. More examples in connection with stochastic volatility modelling
can be found in [9].

5 Conclusion

In this paper we introduced multivariate supOU processes and obtained various
important properties of them. Currently we are considering their use in stochastic
volatility modelling in [9]. However, there are still many important issues to be ad-
dressed which we hope to do in future work. Of particular interest is, for example, the
development of good estimators for supOU models and to show properties like con-
sistency and asymptotic normality for them. This is related to understanding better
the dependence structure of supOU processes which are clearly not Markovian.

Likewise, we have shown that supOU processes allow to model long memory
effects (in a specific sense). This illustrates that a detailed theory of multivariate
long range dependence should be developed.

Acknowledgements

This work was initiated during a visit of the authors to the Oxford-Man Institute
at the University of Oxford in December 2007. The authors are very grateful for the
hospitality and support.



multivariate supou processes 29

References

[1] Abramowitz, M. and Stegun, I. A., Eds. (1972). Handbook of Mathematical
Functions with Formulas, Graphs and Mathematical Tables. Applied Mathematics
Series, Vol. 55. National Bureau of Standards, Washington, D.C. 10th printing.

[2] Barndorff-Nielsen, O. E. (2001). Superposition of Ornstein–Uhlenbeck
type processes. Theory Probab. Appl. 45, 175–194.

[3] Barndorff-Nielsen, O. E., Jensen, J. L., and Sørensen, M. (1998).
Some stationary processes in discrete and continuous time. Adv. in Appl.
Probab. 30, 989–1007.

[4] Barndorff-Nielsen, O. E. and Lindner, A. M. (2007). Lévy copulas:
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