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METRIC INHOMOGENEOUS DIOPHANTINE APPROXIMATION
IN POSITIVE CHARACTERISTIC

S. KRISTENSEN

Abstract. We obtain asymptotic formulae for the number of solutions to systems
of inhomogeneous linear Diophantine inequalities over the field of formal Laurent
series with coefficients from a finite fields, which are valid for almost every such
system. Here ‘almost every’ is with respect to Haar measure of the coefficients of
the homogeneous part when the number of variables is at least two (singly metric
case), and with respect to the Haar measure of all coefficients for any number of
variables (doubly metric case). As consequences, we derive zero-one laws in the spirit
of the Khintchine–Groshev Theorem and zero-infinity laws for Hausdorff measure
in the spirit of Jarník’s Theorem. The latter result depends on extending a recently
developed slicing technique of Beresnevich and Velani to the present setup.

1. Introduction and background

The fields of formal Laurent series with coefficients from a finite field is a natural
setting for studying questions about complexity and combinatorics, see e.g. [17]. It
is also a natural setting for studying analogues of other areas of mathematics, with
number theory being an important example of this. In the present paper, we study
the metrical theory of Diophantine approximation over this field.

This study originated with de Mathan [14], who among other things proved an
analogue of Khintchine’s celebrated theorem [7] from the real numbers. This was
extended to systems of linear forms by the present author [8]. In that paper, the
Hausdorff dimension of the involved exceptional sets is also calculated, providing an
analogue of the Jarník–Besicovitch theorem in the setting of formal Laurent series.

A number of developments have occurred in metrical Diophantine approximation
in this setting since the publication of [8]. At the same time, in the more familiar
setting of the real numbers a number of new tools have been developed (e.g., [1, 2, 3]),
and both classical and newer results now admit considerably simpler proofs.

The purpose of the present paper is two-fold. One objective is to translate and
extend where appropriate the recently developed methods mentioned above to the
setting of formal Laurent series. The second objective is to derive analogues of several
results of Schmidt [18, 19], in showing how a number of properties hold true for almost
all systems of affine forms. We will also deduce Hausdorff dimension versions of some
of these theorems. In particular, we extend results of Dickinson [4], Dodson [5] and
Levesley [11] to the present setting. As a corollary of our results, we extend a recent
result of Ma and Su [12] to higher dimensions.

In fact, our results represent a significant generalisation of that of Ma and Su, as
we obtain an asymptotic formula for the number of solutions to certain Diophantine
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2 S. KRISTENSEN

inequalities including those studied in [12]. This extends a result of Dodson, Levesley
and the author [6] to the inhomogeneous setting.

We now define the setup used throughout the paper. Let F denote the finite field
of q = p` elements and consider the polynomial ring F[X] with coefficients from F.
We introduce an absolute value on F by letting ∣P ∣ = qdeg(P ) for P ∈ F[X] ∖ {0} and∣0∣ = 0. This induces an absolute value on the field of fractions F(X), which is in
turn completed with respect to the absolute value to obtain the complete valued field,
F((X−1)). Evidently,

F((X−1)) = { ∞∑
i=−na−iX

−i ∶ a−i ∈ F, an ≠ 0} ∪ {0},
and in this representation,

∣ ∞∑
i=−na−iX

−i∣ = qn.
This representation of the elements in the field justifies the name ‘formal Laurent
series’.

In analogy with the integer part the real numbers, we will denote by [x] the poly-
nomial part of x ∈ F((X−1)), i.e., the part of the expansion for which no negative
exponents occur. We also define

I = {x ∈ F((X−1)) ∶ [x] = 0} ,
the unit ball in F((X−1)). Additionally, we will let ∥x∥ denote the distance from x to
the nearest polynomial in the metric induced by the absolute value defined above.

The field obtained in this way is ultra-metric, locally compact and has character-
istic p, the characteristic of the base field F. As a locally compact field, F((X−1))
supports a Haar measure, which is unique up to scaling by a positive constant. We
let µ denote the Haar measure scaled in such a way that µ(I) = 1.

We will consider matrices and vector spaces over F((X−1)). More specifically, we
will be working inside the ‘unit cube’, i.e., Ih, where h ∈ N. For these vector spaces,
we will slightly abuse notation and let ∣x∣ = max{∣x1∣ , . . . , ∣xh∣} for x = (x1, . . . , xh) ∈
F((X−1))h. Similarly, we will let ∥x∥ denote the distance to the nearest vector with
polynomial coordinates in the metric induced by this norm. Throughout, we denote by
Matm,n(I) the set of m by n matrices with entries from I. We will identify Matm,n(I)
with Imn, and equip the set with the mn-fold product measure of µ, which we denote
again by a slight abuse of notation by µ.

Let n,m ∈ N be fixed. We will consider the Diophantine inequalities

(1) ∥qA − y∥ < ψ(∣q∣),
where q ∈ F[X]m, A ∈ Matm,n(I) = Imn, y ∈ In and ψ ∶ {qr ∶ r ∈ Z} → {qr ∶ r ∈ Z} is
some non-increasing function. We will be concerned with the question of the existence
of infinitely many solutions to (1) as well as the asymptotic number of solutions the
equation as ∣q∣ grows.

Most known results deal with the almost sure existence or non-existence of infinitely
many solutions to (1). For our purposes, we define sets

(2) Wm,n(ψ,y) = {A ∈ Matm,n(I) ∶ (1) has ∞ many solutions q ∈ F[X]m} ,
and

(3) Wm,n(ψ) = {(A,y) ∈ Matm,n(I) × In ∶ (1) has ∞ many solutions q ∈ F[X]m} .
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In (2), the vector y is fixed, and we refer to the study of the measure and dimension
of this set as the singly metric theory. In (3), the inhomogeneous term y is varying,
and we call this the doubly metric setup.

In this setup, much is known about Wm,n(ψ,0), the homogeneous setup. The work
of de Mathan [14] calculates the measure of W1,1(ψ,0), while in [8] the Hausdorff
dimension of this set as well as the measure of Wm,n(ψ,0) is calculated for m > 1.
In [9], the Hausdorff dimension of the sets Wm,n(ψ,0) is calculated without the as-
sumption that ψ is non-increasing. In [6], we calculate the asymptotics of the number
of solutions to (1) when y = 0 and m > 1.

It appears that the inhomogeneous theory, i.e. the case when y ≠ 0, has been
somewhat neglected. An exception to this is the paper by Ma and Su [12], where the
measure and Hausdorff dimension of W1,1(ψ) is calculated. It appears that the more
difficult singly metric case has so far avoided study.

A main result in the present paper is the following asymptotic formula, which counts
of the number of solutions to (1) for a fixed y. The formula is valid for almost every
A ∈ Matm,n(I).
Theorem 1.1. Let m ≥ 2 and let y ∈ F((X−1))n be fixed let ψ ∶ {qr ∶ r ∈ Z} → {qr ∶
r ∈ Z} be non-increasing. For Q ∈ {qt ∶ t ∈ N}, let

Φ(Q) = ∑
q∈F[X]m

q≤Q
ψ(q)n,

and let N(Q,A) denote the number of solutions to (1) with ∣q∣ ≤ Q. Then, for any
ε > 0, for almost every A ∈ Matm,n(I) with respect to Haar measure,

N(Q,A) = Φ(Q) +O (Φ(q)1/2 log3/2+ε(Φ(Q))) .
From this, we will derive asymptotics in the doubly metric case, where the result

strengthens Corollary 1.4. Furthermore, we easily prove the result for the case m = 1
as well and so obtain a complete result for the doubly metric case.

Corollary 1.2. Let ψ ∶ {qr ∶ r ∈ Z} → {qr ∶ r ∈ Z} be non-increasing. For Q ∈ {qt ∶
t ∈ N}, let

Φ(Q) = ∑
q∈F[X]m

q≤Q
ψ(q)n,

and let N(Q,A) denote the number of solutions to (1) with ∣q∣ ≤ Q. Then, for any
ε > 0, for almost every (A,y) ∈ Matm,n(I) × I with respect to Haar measure,

N(Q,A) = Φ(Q) +O (Φ(q)1/2 log3/2+ε(Φ(Q))) .
With these two results in place, we are able to deduce a number of results relating

to the sets Wm,n(ψ,y) and Wm,n(ψ). We may instantly deduce the following result
on the Haar measure of Wm,n(ψ,y).
Theorem 1.3. Let m ≥ 2 and let ψ ∶ {qr ∶ r ∈ Z≥0} → {qr ∶ r ∈ Z} be non-increasing.
For any y ∈ In,

µ (Wm,n(ψ,y)) = {1 if ∑q∈F[X]m ψ(∣q∣)n = ∞
0 if ∑q∈F[X]m ψ(∣q∣)n < ∞

A generalisation of the Theorem 1.4 in Ma and Su [12] is an immediate consequence
of Theorem 1.3 together with Fubini’s Theorem. This result is proved without the
restriction on m, i.e., for any m ∈ N.
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Corollary 1.4. Let ψ ∶ {qr ∶ r ∈ Z≥0} → {qr ∶ r ∈ Z} be non-increasing. Then,

µ (Wm,n(ψ)) = {1 if ∑q∈F[X]m ψ(∣q∣)n = ∞
0 if ∑q∈F[X]m ψ(∣q∣)n < ∞

In fulfilling the first objective of the paper, we introduce a number of tools in
the next section. Whenever the required result is already known, we quote it without
proof. However, in one particular instance, we will need to extend the so-called Slicing
Theorem of Beresnevich and Velani [3] to the present setup. With this result in place,
we are in addition to the results for Haar measure able to give complete results for
Hausdorff measures.

Theorem 1.5. Let m ≥ 2 and let ψ ∶ {qr ∶ r ∈ Z≥0} → {qr ∶ r ∈ Z} be non-increasing
and let f be a dimension function such that f(r)/rmn is monotonic, and such that
g(r) = r−(m−1)nf(r) is a dimension function. Then for any y ∈ In,

µ (Wm,n(ψ,y)) = ⎧⎪⎪⎨⎪⎪⎩
Hf(Imn) if ∑q∈F[X]m∖{0} g (ψ(∣q∣)∣q∣ ) ∣q∣n = ∞
0 if ∑q∈F[X]m∖{0} g (ψ(∣q∣)∣q∣ ) ∣q∣n < ∞

Using the exact same derivation, which leads us to deduce Theorem 1.5 from The-
orem 1.3, we may deduce a Hausdorff measure version of Corollary 1.4.

Corollary 1.6. Let ψ ∶ {qr ∶ r ∈ Z≥0} → {qr ∶ r ∈ Z} be non-increasing and let f
be a dimension function such that f(r)/r(m+1)n is monotonic, and such that g(r) =
r−mnf(r) is a dimension function. Then,

µ (Wm,n(ψ)) = ⎧⎪⎪⎨⎪⎪⎩
Hf(Imn) if ∑q∈F[X]m∖{0} g (ψ(∣q∣)∣q∣ ) ∣q∣n = ∞
0 if ∑q∈F[X]m∖{0} g (ψ(∣q∣)∣q∣ ) ∣q∣n < ∞

Note that while the Corollary looks almost identical to Theorem 1.5, there is a
difference in the definition of the function g occurring in the series. This is critical,
and encodes the fact that there are more dimensions available in the Corollary.

As a corollary of Theorem 1.5, we deduce an analogue of Levesley’s result in positive
characteristic. To state it precisely, we need the definition of the order at infinity λ(h)
of a function ψ. Let h ∶ R+ → R+ be some function, and define

(4) λ(h) = lim
x→∞

logh(x)
logx

,

whenever this limit exists. We will apply this definition to functions h ∶ {qr ∶ r ∈ Z} →{qr ∶ r ∈ Z}. In this case, we just take the limit over the set {qr ∶ r ∈ Z} as k →∞.

Corollary 1.7. Let m ≥ 2 and let ψ ∶ {qr ∶ r ∈ Z} → {qr ∶ r ∈ Z} be such that the order
at infinity of the function 1/ψ exists. Let λ denote this quantity. Then for any y ∈ In,

dimH (Wm,n(ψ,y)) = {(m − 1)n + m+n
1+λ if λ > m

n ,

mn if λ ≤ m
n .

Note that in Levesley’s paper [11], the order at infinity of 1/ψ is not required to exist.
In that paper, the order at infinity is replaced with the lower order at infinity, which is
in turn defined by replacing the limit with a lim inf in (4). Also, the requirement that
m ≥ 2 is not needed in Levesley’s proof. No doubt the present result can be extended
to this situation, but for the sake of clarity of exposition, we have chosen not to do
this.
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As a final corollary, we obtain a multidimensional generalisation of Theorem 1.5
in [12]. This result also extends results of Dickinson [4] and Dodson [5] to the setting
of formal Laurent series.

Corollary 1.8. Let ψ ∶ {qr ∶ r ∈ Z} → {qr ∶ r ∈ Z} be such that the order at infinity of
the function 1/ψ exists. Let λ denote this quantity. Then,

dimH (Wm,n(ψ)) = {mn + m+n
1+λ if λ > m

n ,(m + 1)n if λ ≤ m
n .

The paper is structured as follows. In section 2, we introduce the necessary tools
for the proofs on the main theorems. We will require some standard results and
definitions from measure theory and probability theory, which will be recalled in
Section 2.1. We state a number of results from literature. Whenever a proof is not
available in literature, we present such a proof here. Notably, in Section 2.4 we extend
the recently developed slicing technique to the present setting.

In Section 3, we discuss asymptotic formulae, and prove Theorem 1.1 and Corol-
lary 1.2. Together with the auxiliary results from Section 2, this will in turn allow
us to deduce Theorem 1.3 and all the following consequences, i.e., Corollary 1.4,
Theorem 1.5 and Corollaries 1.6–1.8. Finally, in Section 5 we give some concluding
remarks.

2. Tools

2.1. Measure theory. There will be two kinds of measures at work in this paper.
One is the Haar measure on F((X−1)) and vector spaces over this field. The other is
Hausdorff measures, which can be defined in arbitrary metric spaces, but will only be
considered on F((X−1)) in this paper.

Haar measure on the field of formal Laurent series has been completely described.
Sprindžuk [20] constructed this measure directly, and found that the measure of a ball
of radius qr is equal to qr+1. This scaling ensures that the measure of the unit ballI is equal to 1. Mahler [13] also used volumes in the setting of formal series. While
Mahler’s construction differs from that of Sprindžuk, uniqueness of the Haar measure
(up to a scaling constant) ensures that results of both papers are valid for the Haar
measure.

We now briefly define Hausdorff measures. We will say that a function f ∶ R≥0 → R≥0

is a dimension function if it is continuous and non-decreasing with f(0) = 0. Given
a dimension function f , the Hausdorff f -measure on a locally compact metric space(X,d) is defined as follows. For a set F ⊆ X, consider the family Cρ of countable
open coverings C of F by balls Bi of radius r(Bi) ≤ ρ, where ρ > 0. The Hausdorff
f -measure of f is given by

Hf(F ) = lim
ρ→0

infC∈Cρ ∑Bi∈C f(r(Bi)) = sup
ρ>0

infC∈Cρ ∑Bi∈C f(r(Bi)).
The final equality follows as the infimum can only increase when we impose additional
restrictions on the covers over which it is taken.

If f(r) = rs for some s > 0, we will denote the Hausdorff f -measure by Hs and speak
of the Hausdorff s-measure. For a set F , the Hausdorff dimension of F is defined by

dimH(F ) = inf{s > 0 ∶ Hs(F ) = 0}.
When the metric space in question is Rh, the Hausdorff h-measure is comparable
with the usual h-dimensional Lebesgue measure, so that sets of positive measure have
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Hausdorff dimension h. Similar statements hold for vector spaces over F((X−1)),
where the measure is product of the Haar measure on the base field. Note that the
Haar measure on each of these fields shares an important property with the Lebesgue
measure on R: The Haar measure of a ball of radius r is comparable with the radius
of the ball.

Finally, we need a ‘shrinking lemma’, essentially stating that if the lim sup set of
a sequence of balls is full, this property is preserved when we scale the balls by an
absolute factor. Recall that if {Bi} ⊆X is a sequence of subsets of the set X, then

lim supBi = ∞⋂
N=1

⋃
i≥NBi = {x ∈X ∶ x ∈ Bi for infinitely many i ∈ N} .

Lemma 2.1. Let {Bi} be a sequence of balls in F((X−1))h, let U ⊆ F((X−1))h be open
and suppose that lim supBi is full in U . Let δ ∈ (0,1) and denote by δBi the ball with
the same centre as Bi and with radius δ times the radius of Bi. Then lim sup δBi is
full in U .

The proof of Lemma is identical to that of [3, Lemma 5], where is is deduced from
[2, Lemma 6]. The only property of Rh used in that proof is that Hh is comparable
to the h-dimensional Lebesgue measure. This holds true in the present setting on
reading ‘Haar’ in place of ‘Lebesgue’.

2.2. Resonant neighbourhoods. Two critical estimates in all proofs to follow con-
cerns the measure of the so-called resonant neighbourhoods as well as the intersections
of these. These are the sets of matrices where one particular inequality of the form
(1) is satisfied. The term ‘resonant’ comes from physics, where resonance occurs when
certain Diophantine equations have solutions. Here, we are merely close to a solution,
which justifies the term ‘neighbourhood’.

Let m,n be fixed and fix an inhomogeneous term y ∈ F((X−1))n and a q ∈ F[X]m.
We define sets

(5) B̃(q, ε) = {A ∈ Matm,n(I) ∶ ∥qA − y∥ < ε} ,
for any ε > 0. In our notation, we have suppressed the dependence on y, which will be
fixed in any concrete case. We will additionally suppose that ε ∈ {qr ∶ r ∈ Z} in order
to avoid ambiguities. We will reserve the notation B(x, ρ) for a ball centred at x of
radius ρ.

We have the following estimates, from which all subsequent results will follow.

Lemma 2.2. With B̃(q, ε) as in (5),

µ(B̃(q, ε)) = εn.
Proof. We proceed as in [8]. The set B̃(q, ε) is the disjoint union of neighbourhoods
around the solutions to qA − y = p, where p ∈ F[X]n. Since we further require that
A ∈ Matm,n(I), we immediately find that exactly ∣q∣n values of p give rise to solutions.
Note that this uses the ultrametricity of the setup.

Now let p be fixed. We now have,

µ{A ∈ Matm,n(I) ∶ ∥qA − y − p∥ < ε} = µ{A ∈ Matm,n(I) ∶ qA ∈ B(y + p, ε)}
= εn∣q∣n .

The latter equality follows by noting that the set in question is convex and hence a
parallelepiped by [13]. The result now follows using Mahler’s estimates [13]. Note
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again that ultrametricity is critical for the argument. The lemma now follows on
taking the union of the above disjoint sets. �
Lemma 2.3. Suppose that m ≥ 2 and that q,q′ ∈ F[X]m are linearly independent over
F((X−1)). Then,

µ(B̃(q, ε) ∩ B̃(q′, ε′)) = µ(B̃(q, ε))µ(B̃(q′, ε′)).
Proof. Consider first the case m = 2, n = 1. In this case, the set B̃(q, ε) ∩ B̃(q′, ε′)
consists of disjoint parallelograms containing the intersection points of the lines qA−
y−p1 = 0 and q′A−y−p2 = 0. Mahler [13] calculated the measure of such sets. Indeed,
he showed that the measure of each of the parallelograms must be εε′/ ∣det(q,q′)∣, i.e.,
the product of the right hand sides of the defining inequalities divided by the determ-
inant of the matrix with q and q′ as columns. Counting the number of components
as in the proof of Lemma 2.2, we obtain the result in this special case.

For the general case, consider n copies of the span of q and q′. In this way, we arrive
at nm-dimensional parallelepipeds, for which the measure may be calculated once
more by Mahler’s results. Counting the number of intersections yield the complete
result. �

Whenm = 1, the situation is somewhat different. In this paper, we will consider only
the doubly metric setup for this case. Hence, we define the doubly metric resonant
neighbourhoods

(6) B̂(q, ε) = {(A,y) ∈ Mat1,n(I) × In ∶ ∥qA − y∥ < ε} .
We may again calculate the measure of each set and their intersections.

Lemma 2.4. Suppose that q, q′ ∈ F[X] with q ≠ q′. Then,

µ(B̂(q,ψ(∣q∣))) = ψ(∣q∣)n,
and

µ(B̂(q,ψ(∣q∣)) ∩ B̂(q′, ψ(∣q∣)′)) = µ(B̂(q,ψ(∣q∣)))µ(B̂(q′, ψ(∣q∣)′)).
Proof. This follows instantly from [12, Lemma 2.4] and Fubini’s Theorem. �

2.3. The Mass Transference Principle. One of the main techniques applied in
this paper is the transfer of statements about the Haar measure of a lim sup set to
statements about Hausdorff measures of the same set. In two papers [2, 3], Beresnevich
and Velani developed tools for this purpose. In [2], a technique known as known as
the Mass Transference Principle was developed for a large class of metric spaces. We
quote the result here.

Theorem 2.5 ([2], Theorem 3 (The Mass Transference Principle)). Let g ∶ R≥0 → R≥0

be a dimension function for which there is a λ > 1 such that f(2x) > λf(x) for all
x ∈ R+. Let (X,d) be a locally compact metric space such that for some r0 > 0, for any
ball B ⊆ X of radius r(B) ≤ r0, Hf(B) ≍ g(r). For a ball B = B(c, r) ⊆ X of centre c
and radius r and a dimension function g, we denote by Bg the ball B(c, f−1(g(r))).

Let {Bi} be a sequence of balls in X, such that r(Bi) → 0 as i → ∞, and let
g ∶ R≥0 → R≥0 be a dimension function such that g(x)/f(x) is monotonic. Suppose
that for any ball B ⊆X,

Hg(B ∩ lim sup
i→∞ Bf

i ) = Hg(B).
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Then, for any ball B ⊆X,

Hf(B ∩ lim sup
i→∞ Bg

i ) = Hf(B).
2.4. Slicing for local fields. The purpose of this section is to extend the results of
Beresnevich and Velani [3] to the present setup. In the original paper, the argument
was only given for lim sup sets in vector spaces over the reals. We extend this to
vector spaces over F((X−1)). The argument carries over to the p-adic fields without
problems, but we will not need that here.

Let h ∈ N and let {Rα} be a countable collection of subsets of F((X−1))h. To each
Rα, suppose that we have an associated weight βα ∈ {qr ∶ r ∈ Z} and let φ ∶ {qr ∶
r ∈ Z} → {qr ∶ r ∈ Z} be some function. We are interested in the set

(7) W ({Rα}, φ) = {x ∈ F((X−1))h ∶ d(x,Rα) < φ(βα) for infinitely many Rα} .
Clearly, the sets studied in this paper are of this form.

In the following, let h, t ∈ N and l ∈ Z+ be fixed with h = l+t. We let R = {Rα}α∈J be
a countable family of affine l-dimensional subspaces of an h-dimensional vector space
over F((X−1)), i.e., sets of the form V + b where V ⊆ F((X−1))h is an l-dimensional
linear subspace and b ∈ F((X−1))h. To each Rα and each δ > 0, we associate the
δ-neighbourhood of Rα,

∆(Rα, δ) = {x ∈ F((X−1))h ∶ d(x,Rα) < δ} .
Associate to each α ∈ J a weight βα > 0 and let φ ∶ {qr ∶ r ∈ Z} → {qr ∶ r ∈ Z} be a
function. Suppose for every ε > 0 that #{α ∈ J ∶ βα > ε} < ∞. Finally, let W ({Rα}, φ)
be defined as in (7).

The following is our main result in this section. If we replace F((X−1)) with R,
this is [3, Theorem 3].

Theorem 2.6 (The Slicing Theorem). Let h, l, t,R and φ be as above. Let V ⊆
F((X−1))h be an t-dimensional linear subspace with
(i) V ∩Rα ≠ ∅ for any α ∈ J ,
(ii) supα∈J diam(V ∩∆(Rα,1)) < ∞.
Let f, g ∶ R≥0 → R≥0 be dimension functions with g(r) = r−lf(r), such that r−hf(r) is
monotonic. Let Ω be a ball in F((X−1))h and suppose that for any ball B ⊆ Ω,

Hh (B ∩W ({Rα}, (g ○ φ)1/t)) = Hh(B).
Then Hf (B ∩W ({Rα}, φ)) = Hf(B).

In order to prove Theorem 2.6, we will need the previously established auxiliary
results as well as a lemma from fractal geometry.

In the following, we will use the notation V ⊥ and speak of ‘orthogonal complements’.
This is strictly speaking not the correct terminology, since the spaces considered do not
have an inner product. What we mean by V ⊥ of a subspace V is the following. Take
a basis for a k − l-dimensional subspace V ⊆ F((X−1))h, v1, . . . , vk−l and extend it to a
basis for V by adding to it vectors vk−l+1, . . . , vh. We will let V ⊥ = span{vk−l+1, . . . , vh}.
Note that this is not a canonical choice, and the subspace V ⊥ depends on the proced-
ure. This however causes no problems in the proofs.

In addition to the Mass Transference Principle, we will need an extension of part
of [15, Theorem 10.10] to the setting of locally compact fields.
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Lemma 2.7. Let l, h ∈ N with l ≤ h, let f, g ∶ R≥0 → R≥0 be dimension functions with
g(r) = r−lf(r) and let A ⊆ F((X−1))h be a Borel set with Hf(A) < ∞. Then for any(k − l)-dimensional linear subspace V ⊆ F((X−1))h,

Hg(A ∩ (V + a)) < ∞
for any a ∈ V ⊥ ∖E, where Hl(E) = 0.

Proof. The proof is identical to that in [15] or [3]. We need only observe that Fatou’s
Lemma holds for locally compact spaces (see e.g. [16, § I.9]). This implies that proof
of Lemma 2.3 in [3] may now be copied (almost) verbatim. Lemma 2.7 now follows
as an easy corollary. �

We will use the contrapositive form of Lemma 2.7, which is the appropriate analogue
of the Slicing Lemma of [3].

Lemma 2.8. Let l, h ∈ N with l ≤ h, let f, g ∶ R≥0 → R≥0 be dimension functions with
g(r) = r−lf(r) and let A ⊆ F((X−1))h be a Borel set. Suppose that there is a set
S ⊆ V ⊥ with Hl(S) > 0, such that for any a ∈ S,

Hg(A ∩ (V + a)) = ∞.
Then, Hf(A) = ∞

Wit these tools in place, we can prove Theorem 2.6.
The proof falls in two cases. The first is the case when l = 0, so that the Rα are

points. In this case, we easily deduce the result from Theorem 2.5. We subsequently
deduce the full theorem, using again Theorem 2.5 and Lemma 2.8.

We make a first reduction of the number of cases to be considered. Let B ⊆
F((X−1))h be a fixed ball It is simple to observe, that if r−hf(r) → 0 as r → 0,
then Hf(B) = 0, and the result is immediate. If on the other hand r−hr(t) → L as
r → 0 with L positive and finite, the measures Hf and Hh are comparable, and the
statement of the theorem is trivial. Hence, we assume throughout that

(8) r−hf(r) → ∞ as r → 0.

2.4.1. The case l = 0. As h = t, V = F((X−1))h, so clearly (i) holds. Now, for any
Rα, diam(V ∩ ∆(Rα,1)) ≤ 2 < ∞, so (ii) is also trivially satisfied. Now, note that(g ○ φ)1/t(r) = f(φ(r))1/t, so that W ({Rα}, (g ○ φ)1/t) = lim supBf

i , where the Bi are
balls of radius φ(r). The result may now be read off directly from Theorem 2.5 on
letting g(r) = rh.
2.4.2. The case l ≥ 0. Under assumption (8), Hh(B) = ∞, so the assumption of the
theorem reads

(9) Hh (B ∩W ({Rα}, (g ○ φ)1/t)) = ∞.
We will show that this implies the conclusion.

Let V ⊥ denote the orthogonal complement of V in F((X−1))h. For any x0 ∈ V ⊥ and
any function φ ∶ R+ → R+, we define a subset Λx0(φ) of the affine space V + x0 by
letting

(10) Λx0(φ) = {x ∈ V + x0 ∶ dV +x0(Rα ∩ (V + x0), x) < φ(βα) for infinitely many Rα} ,
where dV +x0 denotes the induced metric on the affine space V + x0.
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As (9) holds for any ball, we get from Fubini’s Theorem that there is a set S ⊆ V ⊥
of full l-dimensional Haar measure such that for each x0 ∈ S,
(11) Ht(B ∩ (V + x0) ∩Λx0(g ○ φ)1/t) = Ht(B ∩ (V + x0)).
Let x0 ∈ S be fixed.

A consequence of assumption (i) and (ii) is that the intersection between a set Rα

and V + x0 must consist of a single point, cα say. Furthermore, it is a consequence of
(ii) that for C = supα∈J diam(V ∩∆(Rα,1)), for any α and for any r > 0

B(cα, r) ∩ (V + x0) ⊆ {x ∈ F((X−1))h ∶ d(Rα, x) < r} ∩ (V + x0)⊆ B(cα,Cr) ∩ (V + x0)(12)

Hence, the set on the left hand side of (11) is contained within the lim sup set of a
sequence of balls in V + x0, which in turn must have full measure,

(13) Ht(B ∩ (V + x0) ∩ lim supB(cα,C(g(φ(βα)))1/t) = Ht(B ∩ (V + x0)).
Now, Lemma 2.1 implies that we may take C = 1 in (13), so that

(14) Ht(Bx0 ∩ lim supB(cα, (g(φ(βα)))1/t) = Ht(Bx0),
where Bx0 = B ∩ (V + x0) is a ball in V + x0.

Now, we apply Theorem 2.5 to the metric space V + x0 to conclude from (14) that

(15) Hg(Bx0 ∩ lim supB(cα, φ(βα)) = Hg(Bx0) = ∞.
Using again (12), we get that for each x0 ∈ S,
(16) Hg(BX0 ∩Λx0(φ)) = ∞.
Lemma 2.8 now implies the theorem.

2.5. A result from probability. In deriving asymptotic formulae, we need the fol-
lowing result, which originates in Rademacher’s work. The version quoted here is
from Sprindžuk’s monograph [21]. It is phrased in a more general language than the
rest of the present paper. Specialisation to the present setup will be given in §3.

Lemma 2.9. Let (Ω,B, µ) be a probability space, let (Xk) be a sequence of non-
negative measurable functions, and let (fk) and (τk) be sequences of real numbers
with

0 ≤ fk ≤ τk ≤ 1, k = 1,2, . . .

Suppose that there is a constant C > 0 such that for any pair of integers m,n with
m < n,

∫
Ω
( ∑
m<k≤nXk(ω) − ∑

m<k≤n fk)
2

dµ(ω) ≤ C ∑
m<k≤n τk.

Then for any ε > 0, for almost all ω ∈ Ω,
n∑
k=1

Xk(ω) = n∑
k=1

fk +O (T 1/2(n) log3/2+ε T (n)) ,
where T (n) = ∑n

k=1 τk.
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3. Asymptotic formulae

Having assembled the necessary tools, we now embark on the proofs of the Dio-
phantine results.

Proof of Theorem 1.1. We deduce the result from Lemmas 2.2, 2.3, 2.4 and 2.9. With
reference to Lemma 2.9, let (Ω,B, µ) be (Matm,n(I),B, µ), where B is the Borel σ-
algebra and µ is the mn-fold product of the normalised Haar measure. We will use
q ∈ F[X]m as the indexing parameter rather than k.

Suppose first thatm ≥ 2. For each q ∈ F[X]m, letXq ∶ Matm,n(I) → R≥0 be the char-
acteristic function on the set B(q, ψ(∣q∣)), let fq = ψ(∣q∣)n and let τq = ψ(∣q∣)nd(q),
where d(q) denotes the number of common factors in F[X] of the coordinates of q.

We need to check the assumptions of Lemma 2.9, so consider the integral

(17) ∫
Ω
( ∑
qs<∣q∣≤qtXq(A) − ∑

qs<k≤qt fq)
2

dµ(A),

where s < t are integers. We expand the square to obtain a double sum over q and q′
over the same range of norms. We then split this sum up into the cases when q and
q′ are linearly independent and linearly dependent respectively.

Consider first the case when q ∦ q′, i.e., the case of linear independence. In this
case, the contribution to the integral (17) is

∫
Ω
∑
q∦q′(Xq(A) − fq)(Xq′(A) − fq′)dµ(A)

= ∑
q∦q′(∫Ω

Xq(A)Xq′(A)dµ(A) − fq′ ∫
Ω
Xq(A)dµ(A)

− fq∫
Ω
Xq′(A)dµ(A) + fqfq′)

= ∑
q∦q′ (fqfq′ − fqfq′ − fqfq′ + fqfq′) = 0,

where we have used Lemma 2.2 and Lemma 2.3 to evaluate the integrals. Hence, we
only get contributions to (17) from the linearly dependent case.

Consider now the linearly dependent case. It is evident that in order for q and q′
with ∣q∣ ≥ q′ to be linearly dependent, there must be a d ∈ F[X] such that dq′ = q.
In other words, there must be a d, which divides all coordinates of q, and there is a
linearly dependent vector q′ for each such d. Also, we find in this case that

(18) µ(B(q, ψ(∣q∣)) ∩B(dq, ψ(∣dq∣))) ≤ µ(B(q, ψ(∣q∣)) = ψ(∣q∣)n,
since ψ is non-increasing.
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Using (18) and Lemma 2.2,

∫
Ω
∑
q∥q′(Xq(A) − fq)(Xq′(A) − fq′)dµ(A)

≤ ∑
q

∑
d∣qi,1≤i≤m

(∫
Ω
Xq(A)Xdq(A)dµ(A) − fdq∫

Ω
Xq(A)dµ(A)

− fq∫
Ω
Xdq(A)dµ(A) + fqfdq)

≤ ∑
q

∑
d∣qi,1≤i≤m

µ(B(q, ψ(∣q∣)) ∩B(dq, ψ(∣dq∣)))
≤ ∑

q

d(q)ψ(∣q∣)n
= ∑

q

τq.

By Lemma 2.9, this gives an asymptotic formula with the correct main term.
It remains to show that the error term is of the same order of magnitude as that in

the statement of the theorem. In other words, it suffices to show that

T (Q) = ∑∣q∣≤Qd(q)ψ(∣q∣)n ≪ ∑
q≤Qψ(q)n = Φ(Q).

This was done in [6] in the final step of the proof of the main theorem of that paper.
This completes the proof. �

We now prove the doubly metric statement of Corollary 1.2.

Proof of Corollary 1.2. We deduce Corollary 1.2 in the casem ≥ 2 by applying Fubini’s
Theorem to the indicator of the exceptional set and using Theorem 1.1. Hence, it
remains only to deduce the result for the case m = 1. Here, the result follows from
Lemma 2.4 and Lemma 2.9 on letting Xq(A,y) be the characteristic function on
B̂(q, ψ(∣q∣)) and fq = τq = ψ(∣q∣). The deduction is similar to that in the proof of
Theorem 1.1, but slightly simpler. �

Remark. The asymptotic formulae can be generalised to give asymptotics along sub-
sequences, i.e. under restriction to the case when q ∈ S ∈ F[X]m. This extends results
in [9]. In both cases, the main term is a volume sum as above, and the error term
will be bounded by the square root of the main term times a power of the logarithm
of the main term. In the case when m = 1, this is immediate. If m ≥ 2, the error term
requires a little work. We leave the details to the interested reader.

4. Zero-one and zero-infinity laws

Proving Theorem 1.3 and Corollary 1.4 from Theorem 1.1 and Corollary 1.2 is an
easy exercise. Indeed, the series which determines whether the measure is null or full
is the same as the main term of the asymptotic formulae. Furthermore, if the series in
question converges, the error term is also bounded. Hence, the asymptotic formulae
immediately imply Theorem 1.3 and 1.4.

It remains for us to prove the Hausdorff measure results. We derive the singly metric
statement of Theorem 1.5 and give a sketch of the doubly metric case of Corollary 1.6.
The proof in the latter case is very similar, and the details are left to the interested
reader.
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There are two parts of the theorem. The case when the series converges uses a
covering argument.

Proof of Theorem 1.5 (convergence part). For each q, we consider the affine planes
qA = p, p ∈ F[X]n. Exactly ∣q∣n of these intersect non-trivially with Inm. Inside each,
we choose points at distance an integer multiple of ψ(∣q∣)/ ∣q∣ of each other. Evidently,
for each p, we may cover the set

{A ∈ Matn,m(I) ∶ qA = p}
with (ψ(∣q∣)/ ∣q∣)(m−1)n balls centred at these points with radius ψ(∣q∣)/ ∣q∣.

Now, for each N ≥ 1, the set Wm,n(ψ,y) is contained in the union of these balls,
where ∣q∣ ≥ N and p runs over the allowed range. Using this as a natural cover in the
definition of Hausdorff measure yields,

Hf(Wm,n(ψ,y)) ≤ ∑
q∈F[X]m∣q∣≥N

∣q∣n (ψ(∣q∣)∣q∣ )(m−1)n
f (ψ(∣q∣)∣q∣ )

= ∑
q∈F[X]m∣q∣≥N

g (ψ(∣q∣)∣q∣ ) ∣q∣n .
As this holds true for every N , and as the last series i above is assumed to converge,
we have the conclusion. �

Note that if we apply the covering argument to the dimension function f(r) = rmn,
we obtain a direct proof of the convergence case of Theorem 1.3, independent of the
asymptotic formula.

In order to obtain the divergence part of Theorem 1.5, we will use the slicing
technique from Section 2.4. Essentially, we follow Beresnevich and Velani [3] in the
deduction.

Proof of Theorem 1.5, divergence case. We will deduce the result follows from The-
orem 1.3 and Theorem 2.6. Our first task is to get Theorem 1.3 into a form, where
the Slicing Theorem applies. We will make some very crude estimates in the process,
which no doubt could be improved upon, although this would have no impact on the
result. Without loss of generality, we can assume that r−mnf(r) → ∞ as r → 0, since
otherwise the result is a trivial consequence of Theorem 1.3. See also (8) above for
details on this assumption.

First, let φ(r) = ψ(r)/rm. We also restrict the family of resonant sets to those
defined by q = (q1, . . . , qm) with ∣q∣ = ∣q1∣. With reference to the framework of Section
2.4, h = mn and {Rα} is the family of (m − 1)n-dimensional affine planes defined by
the conditions

qA − y − p = 0 and ∣q∣ = ∣q1∣ .
It is straightforward to prove that

W ({Rα}, φ) ⊆Wm,n(ψ,y).
Hence, to show that the Hausdorff f -measure of the right hand side is infinite, it
suffices to show that the left hand side has infinite Hausdorff f -measure.

Repeating the arguments used in the proof of Theorem 1.1, we easily show that
if ∑q∈F[X]m φ(∣q∣)n ∣q∣n = ∞, then the set W ({Rα}, φ) is full with respect to Haar
measure. Note that this divergence condition is equivalent to that of Theorem 1.3.
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Again with reference to the framework of Section 2.4, l = (m − 1)n and t = n. In
order to apply the Slicing Theorem, we need an n-dimensional linear subspace, which
intersects all the Rα non-trivially, and such that condition (ii) of Theorem 2.6 holds.
Evidently, the subspace

(19) V = {A = (aij) ∈ Matm,n(F((X−1))) ∶ aij = 0 for j ≥ 2},
i.e., the set of m×n matrices with zeros off the first ro, satisfies the required assump-
tions.

Recall that we have assumed that

∑
q∈F[X]m∖{0} g (

ψ(∣q∣)∣q∣ ) ∣q∣n = ∑
q∈F[X]m∖{0} (g(φ(∣q∣))1/n)n ∣q∣ = ∞.

Hence, W ({Rα}, φ) is full, so that for any ball B ⊆ Matm,n(F((X−1))),
Hmn(B ∩W ({Rα}, (g ○ φ)1/n)) = Hmn(B).

It then follows from Theorem 2.6 that

Hf(B ∩W ({Rα}, φ)) = Hf(B) = ∞.
The latter equality follows as r−mnf(r) → ∞ as r → 0. �

We now sketch a proof of the doubly metric result.

Sketch of the proof of Corollary 1.6. The proof is essentially the same as the proof
of Theorem 1.5, except that we let y vary in the definition of the Rα. For the
convergence case, the argument carries over, with the only modification that we now
need (ψ(∣q∣) ∣q∣)mn balls to cover each resonant neighbourhood.

For the divergence case, we also follow the proof of Theorem 1.5, but we obtain
new parameters, so that with reference to the framework of Section 2.4, h = (m+1)n,
l = mn and k = n. The subspace V is still an appropriate subspace for the Slicing
Theorem to work. The divergence condition which we used from Theorem 1.3 is
replaced with that of Corollary 1.4. Otherwise, the proof is identical. �

Finally, we deduce the results on Hausdorff dimension.

Proof of Corollary 1.7. Note that by assumption, for any ε > 0, there is an r0 > 0 such
that if qk ≥ r0, then ∣q∣−λ−ε ≤ ψ(∣q∣) ≤ ∣q∣−λ+ε .
Hence,

Wm,n(r ↦ r−λ−ε,y) ⊆Wm,n(ψ,y) ⊆Wm,n(r ↦ r−λ+ε,y),
and it suffices to find the Hausdorff dimension of the leftmost and rightmost sets
above.

However, using the definition of Hausdorff dimension together with Theorem 1.5,
we find that for any v >m/n,

dimH(Wm,n(r ↦ r−v,y)) = (m − 1)n + m + n
1 + v .

Hence,

(m − 1)n + m + n
1 + v + ε ≤ dimH(Wm,n(ψ,y)) ≤ (m − 1)n + m + n

1 + v − ε.
As ε > 0 is arbitrary, the conclusion follows for λ >m/n.
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To obtain the result for λ ≤ m/n, note that we can get a lower bound as close to
mn as we wish. Since mn is an upper bound on the Hausdorff dimension of any set
contained in Matm,n(I), we get the result in this case. �

Proof of Corollary 1.8. This proof goes exactly as the proof of Corollary 1.7 with
Corollary 1.6 in place of Theorem 1.5. �

5. Concluding remarks

Although we have covered most possible cases to consider in the theory, there are
still a few open cases left. To conclude the paper, we summarise some of these open
problems.

The case when m = 1 has not been completely resolved, in the sense that the singly
metric asymptotic formula Theorem 1.1 has not been shown to be valid for m = 1. It
is natural to conjecture that it does indeed hold. In order to prove this, one would
need to prove a lemma in the spirit of Lemma 2.4, where the doubly metric resonant
neighbourhoods are replaced with the singly metric ones.

Of course, strict equality for all different values of q and q′ is not needed. In fact,
it would be possible to prove the result if we could prove an approximate equality
for q running in a sufficiently dense set in F[X]. We have not attempted to obtain
such a result in this paper and have only showed the doubly metric result for m = 1.
However, there is no reason to suspect that Theorem 1.1 breaks down for m = 1,
although proving it would add considerably to the technicality of the paper.

Another problem for m = 1, which is possibly more tractable, it the zero-one law
of Theorem 1.3 and the Hausdorff measure zero-infinity law of Theorem 1.5. Again,
the assumption that m ≥ 2 is somewhat artificial. In this case, it comes from the
fact that we deduced these theorems from the asymptotic formula, Theorem 1.1.
However, looking at the proof of the convergence case of Theorem 1.7, we find that
the assumption is not needed. This suggests that an alternative approach is perhaps
possible, and this is indeed the case.

In order to bypass the technical difficulties encountered when extending the asymp-
totic formula to this case, one is tempted to use the notion of ubiquitous systems, see
e.g. [1]. This can indeed be accomplished using only the tools from this paper in the
case m ≥ 2. In fact, we could in this case replace the equality in Lemma 2.3 with a ≤,
and would only need this lemma to hold for a suitably dense subset and up to a uni-
versal multiplicative constant on the right hand side. Obtaining such a result for the
case m = 1 would be considerably less technical than getting the asymptotic equality
needed for the asymptotic formula. Nevertheless, we have chosen not to pursue this
any further in this paper for the sake of the presentation.

A variant of inhomogeneous Diophantine approximation in the singly metric setup
puts the emphasis on the inhomogeneous term by fixing A and considering instead
the set of y for which certain inequalities have infinitely many solutions. This study
which goes back to Kurzweil [10] has recently had a revival in the case of real numbers.
Whether analogues of these results hold for formal power series appears to be open,
and investigating this remains a challenge.

Acknowledgements. I thank Maurice Dodson for encouraging me to write the present
paper.
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