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Summary
My ph.d. thesis consists of my two articles:

(I) S. Boldsen, Improved homological stability for the mapping class group
with integral or twisted coefficients, (59 pages), submitted for publica-
tion to Journal of Topology and available at arXiv:0904.3269.

(IT) S. Boldsen, Different versions of mapping class groups of surfaces, (18
pages), will soon be available at arXiv.

Both papers investigate the properties of the mapping class group of sur-
faces. Mapping class groups are central to many areas of mathematics; most
prominently to algebraic geometry, differential geometry and topology. It
also plays a role in various field theories from mathematical physic, and in
geometric group theory.

Let F,, denote the compact oriented surface of genus g with » boundary
circles, then the associated mapping class group, I'y ,, is

Fg,r = 71-OI)iff—i-(F’g,r; 8)7

the components of the group of orientation-preserving diffeomorphisms of
F, , keeping the boundary pointwise fixed.

The paper (I) has as its starting point a never published manuscript of
J. Harer, [Harer2|, from 1993. This manuscript states an improved stability
range for the homology of the mapping class group, but it rests upon certain
unproven statements. My goal from the outset was to prove these statements.

We compare different mapping class groups using the maps induced by
gluing a pair of pants onto one or two boundary circles, and extending the
diffeomorphism by the identity on the pair of pants,

20,1 : Fg,r ? Fg,r—l—lu Z:1,—1 : Fg,r ? Fg—l—l,r—l

Homology stability means these maps induce isomorphism on homology in
certain degrees. We now state our main results. The first result is:

Theorem 1. The map H,(I'y,) — H,(Lyt1,4m) induced by ¥, satisfies:
(1) Xo1 is an isomorphism for 2g > 3n, when r > 1

(11) X4y is surjective for 2g > 3n—1, and an isomorphism for 2g > 3n+2,
when r > 2.
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While Harer got his result only for homology with rational coefficients, we
have integer coefficients. Theorem 1 only holds for surfaces with boundary.
To get a result for closed surfaces, we use the map induced by gluing on a
disk to a boundary component, and obtain

Theorem 2. The map Hy(I'y1) — Hi(L'y) is surjective for 29 > 3k — 1,
and an isomorphism for 2g > 3k + 2.

This was not considered by Harer, but N. Ivanov has shown how to deduce
such a result from the one for surfaces with boundary.

We wish to obtain such a stability result, not only for trivial coefficients
but also for so-called coefficients systems of a finite degree. A coefficient
system is a functor V from € to the category of abelian groups without
infinite division. If the functor is constant, we say V' has degree 0. We
then define a coefficient system of degree k inductively, by requiring that the
maps V (F)—V (3, ;F) are split injective and their cokernels are coefficient
systems of degree k — 1, see Definition 4.4. As an example, the functor
H,(F;7Z) is a coefficients system of degree 1, and its kth exterior power
A*H,(F;Z), considered in [Morital|, has degree k.

Theorem 3. Let F' be a surface of genus g, and let V' be a coefficient system
of degree k. Then the map

Hy(L(F); V(F)) — Hy(D(EmF); V(EimF))
induced by ¥, satisfies:
(i) o1 is an isomorphism for 2g > 3n + k.

(i1) 11 is surjective for 2g > 3n + k — 1, and an isomorphism for 2g >
In+k+ 2.

Note that for the result for the integers is a special case of this. One reason
to study coefficient systems is that we can then calculate the homology of the
space of surfaces mapping into a background space X from |Cohen-Madsen|:

Syr(X,7) = {(Fyr. f) | Fyr SR™ x [a,b], 0 : US" — OF,, is a para-

metrization, f : F,, — X is continuous with fo¢ =~}

Define the coefficient system VX(F) = H,(Map(F/OF, X)). Let S,.(X,7)e
denote the connected path component corresponding to the trivial class 0 €
mo(X), and similarly for Q>°(CP™, A X, )e. Then
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Theorem 4. Let X be a simply connected space such that VX is without
infinite division for all m. Then for 2g > 3n + 3 and r > 1 we get an
1somorphism

Hyy (8, (X,7)e) = Hn(2(CPX A X))

In this paper, we first prove Theorem 1 for constant integral coefficients,
V = Z. Our proof of Theorem 1 in this case is much inspired by Harer’s
manuscript |[Harer2|. The rational stability results claimed by Harer are "one
degree better” than what is obtained here with integral coefficients. Before
discussing the discrepancy it is convenient to compare the stability with
Faber’s conjecture.

Let M, be Riemann’s moduli space; recall that H*(M,; Q) = H*(T';; Q).
From above we have maps

H*(T'g;Q) — H*(Ig1;Q) «— H*(T'o1; Q)
and by |Madsen-Weiss|,

H*(FOO717Q) :Q[/ﬁl,lﬁg,...]. (].)

The classes k; € H*(T',,) for r > 0 are the standard classes defined by
Miller, Morita and Mumford (k; is denoted e; by Morita).

The tautological algebra R*(M,) is the subring of H*(I'y; Q) generated
multiplicatively by the classes ;. Faber conjectured in [Faber| the complete
algebraic structure of R*(M,). Part of the conjecture asserts that it is a
Poincaré duality algebra (Gorenstein) of formal dimension 2g — 4, and that
it is generated by k1, ..., K[g/3, where [g/3] denotes g/3 rounded down. The
latter statement was proved by Morita (c¢f. [Morital| prop 3.4).

It follows from our theorems above that ky,..., K[43 are non-zero in
H*(T'y; Q) when * < 2[Z] — 2. More precisely, if g = 1,2 (mod 3) then
our results show that

H*(Ty;Q) = H (I'so1; Q)  for < 2[2], (2)

but if g = 0 (mod 3), our result only show the isomorphism for + < 2[] — 1.
In contrast, [Harer2| asserts the isomorphism for * < 2[2] for all g. We note
that is follows from (3) and Morita’s result that the best possible stability
range for H*(I'y; Q) is * < 2[§]. We are "one degree off” when g = 0 (mod 3).

The stability of |[Harer2| is based on three unproven assertions that I have
not been able to verify. I will discuss two of them below, and the third in
section 3.1.
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Boundary connected sum of surfaces with non-empty boundary defines
a group homomorphism I'g, X I'y s — I'gip r45-1, and hence a product in
homology

H*(Fg,r) ® H*(Fh,s> B *(Fg—i-h,r—i-s—l)v s> 0.

The classes x; are primitive with respect to this homology product, in the
sense that (k;,a-b) = 0 if both a and b have positive degree [Morita2|. Harer
proves in |Harer3] that H*(T'31;Q) = Q{r1}. Let &y € Ha(T'31;Q) be the
dual to k1, and let £," be the n’th power under the multiplication

H2(F3,1)®n B HZn(P?m,l)-

Then (k,",%,") = n!, so &{" # 0 in H**(I's,1;Q), cf. part (i) of Theorem 1.
Dehn twist around the (r+1)st boundary circle yields a group homomorphism
Z — I'1 441, and hence a class 7,41 € Hy(I'y 1 11).

We can now formulate two of Harer’s three assertions one needs in order
to improve the rational stability result by "one degree” when g = 0 (mod 3),
ie. from x < 2[%] — 1 to * < 2[§]. The assertions are:

(i) Ry =0in Hy,(T,,; Q) for g < 3n.
(1) Tr41-F," is non-zero in Coker(Hapi1(Pany105 Q) — Hons1(Tant1r41; Q).

The short paper (II) is about the connection between the topological
groups of either diffeomorphisms, homeomorphisms or homotopy equiva-
lences of a surface. The main result is that these groups have the same
connected components. This is basically a result that dates back to Baer in
the 1920ies, but it is hard to find in the written literature; there is no good
reference. This paper gives a short, self-contained exposition of this result
and its proof.

As defined above, the mapping class group of a surface F' is I'(F) =
mo(Diff L (F,0F)). We now also consider the group Diff(F,{0F}) of diffeo-
morphisms mapping OF to itself as a set. We compare the groups of dif-
feomorphisms to the corresponding groups of homeomorphisms, Top(F, 0F),
and homotopy equivalences, hAut(F,0F). Part (4) of the Theorem below
shows that it does not matter whether one considers diffeomorphisms, home-
omorphisms, or even homotopy equivalences, when working in the mapping
class group.

Theorem 5. Let F' be a compact surface and not a sphere, a disk, a cylinder,
a Mébius band, a torus, a Klein bottle, or RP%. Then there are bijections

(1) mo(DIff(F,{0F})) — mo(Top(F, {0F})) — mo(hAut(F,{0F}))
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(2) mo(Diff(F,0F)) — mo(Top(F, dF)) — mo(hAut(F,dF)),

(3) mo(Diffy (F, {9F})) — mo(Top,, (F, {0F})) — mo(hAut, (F,{0F})),

(4) mo(Diff (F,0F)) — mo(Top, (F,dF)) — mo(hAut, (F,dF)).

The proof uses mostly elementary topological tools, such as covering
spaces, tubular neighborhoods, and transversality. The main method is cut-
ting up the surface in elementary pieces, proving the results for those, and
carefully gluing them back together. This requires a few heavier tools, most
importantly the classification of surfaces, and a result of Smale that any dif-
feomorphism of the disc, which is identity on the boundary, is isotopic to the
identity relative to the boundary.
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Introduction

Let [y, denote the compact oriented surface of genus g with r boundary
circles, and let I'y . be the associated mapping class group,

Ly, = mDift, (F,,,0F,,),

the components of the group of orientation-preserving diffeomorphisms of
F,, keeping the boundary pointwise fixed. Gluing a pair of pants onto one
or two boundary circles induce maps

20,1 : Fg,r - Fg,r—l—lu Z:1,—1 : Fg,r — Fg—l—l,r—l

whose composite ¥ o := Xy _; 0 X corresponds to adding to Fy, a genus
one surface with two boundary circles. Using the mapping cone of 3 ;,
(4,7) = (0,1),(1,—1) or (1,0) we get a relative homology group, which fits
into the exact sequence

A Hn(zi,jrg,r) —_— Hn(2i7j1“g7r, Fg,r) e n_l(Fw) —_— ...

Homology stability results for the mapping class group can then be derived
from the vanishing the relative group (in some range).

We wish to show such a stability result for not only for trivial coefficients
but also for so-called coefficients systems of a finite degree. For this, we work
in Ivanov’s category € of marked surfaces, cf. |[Ivanovl| and §4.1 below for
details. The maps X, and Xy ; are functors on €, and ¥, _; is a functor on
a subcategory.

A coefficient system is a functor V' from € to the category of abelian
groups without infinite division. If the functor is constant, we say V has de-
gree 0. We then define a coefficient system of degree k inductively, by requir-
ing that the maps V(F)—V (%, ;F) are split injective and their cokernels
are coefficient systems of degree k — 1, see Definition 4.4. As an example,
the functor Hy(F';Z) is a coefficients system of degree 1, and its kth exterior
power A¥H,(F;Z), considered in |Morital], has degree k. To formulate our
stability result, we consider relative homology group with coefficients in V|

Rel) (S1,nF, F) = Hy (XD (F), D(F); V(S F), V(F)).
These groups again fit into a long exact sequence. Our main result is

Theorem 1. For F' a surface of genus g with at least 1 boundary component,
and V' a coefficient system of degree ky, we have

Rel) ($10F, F) =0 for 3n < 2g — ky,
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Rel) (201 F, F) =0 for 3n < 2g — ky.

Moreover, if F' has at least 2 boundary components, we have
Rel) ($1,1F, F) =0 for 3¢ < 29 — ky + 1.

As a corollary, we obtain that H, (I, ,; V(F},)) is independent of g and
r for 3n < 29 — ky — 2 and » > 1. For a more precise statement, see

Theorem 4.17. This uses that X ; is always injective, since the composition

30,1 30,-1 . . . . .
Iy, — I'y,p1 — I'y, is an isomorphism, where Yy _; is the map gluing a

disk onto a boundary component.

The proof of Theorem 1 with twisted coefficients uses the setup from
[Ivanov1|. His category of marked surfaces is slightly different from ours,
since we also consider surfaces with more than one boundary component and
thus get results for Xy ; and X; _;.

For constant coefficients, V' = Z, we also consider the map ¥y _; : I'g; —
I'; induced by gluing a disk onto the boundary circle, where our result is:

Theorem 2. The map
¥o-1: Hy(Ly1;Z) — Hy(T'y; Z)
1s surjective for 2g > 3k — 1, and an isomorphism for 2g > 3k + 2.

The proof of Theorem 2 follows |Ivanovl|, where a stability result for
closed surfaces is deduced from a stability theorem on surfaces with boundary.
We get an improved result, because Theorem 1 has a better bound than
Ivanov’s stability theorem (which has isomorphism for g > 2k).

In this paper, we first prove Theorem 1 for constant integral coefficients,
V = Z. Our proof of Theorem 1 in this case is much inspired by Harer’s
manuscript [Harer2|, which was never published. Harer’s manuscript is about
rational homology stability. The rational stability results claimed in [Harer2]
are "one degree better” than what is obtained here with integral coefficients.
Before discussing the discrepancy it is convenient to compare the stability
with Faber’s conjecture.

Let M, be Riemann’s moduli space; recall that H*(M,; Q) = H*(T';; Q).
From above we have maps

H*(Fg; @) I H*(Fg,l; Q) A H*(Foo,l; Q)
and by |Madsen-Weiss|,

H*(Foo,lg@) :@[/il,/ig,...]. (3)
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The classes k; € H*(T,,) for r > 0 are the standard classes defined by
Miller, Morita and Mumford (k; is denoted e; by Morita).

The tautological algebra R*(M,) is the subring of H*(I'y; Q) generated
multiplicatively by the classes ;. Faber conjectured in [Faber| the complete
algebraic structure of R*(M,). Part of the conjecture asserts that it is a
Poincaré duality algebra (Gorenstein) of formal dimension 2g — 4, and that
it is generated by k1, ..., K[g/3, where [g/3] denotes g/3 rounded down. The
latter statement was proved by Morita (c¢f. [Morital| prop 3.4).

It follows from our theorems above that i,...,k[/3 are non-zero in
H*(I'y; Q) when x < 2[4] — 2. More precisely, if g = 1,2 (mod 3) then
our results show that

H*(Tg;Q) = H'(I'e,1; Q) for < 2[F], (4)

but if g = 0 (mod 3), our result only show the isomorphism for x < 2[4] — 1.
In contrast, [Harer2| asserts the isomorphism for * < 2[Z] for all g. We note
that is follows from (3) and Morita’s result that the best possible stability
range for H*(I'y; Q) is * < 2[§]. We are "one degree off” when g = 0 (mod 3).

The stability of |[Harer2| is based on three unproven assertions that I have
not been able to verify. I will discuss two of them below, and the third in
section 3.1.

Boundary connected sum of surfaces with non-empty boundary defines
a group homomorphism I'y, x I'y, ¢ — I'g4pr45-1, and hence a product in
homology

H*(Fg,r) ® H*(Fh7s) B *(Fg+h,r+s—1)> r,s > 0.

The classes k; are primitive with respect to this homology product, in the
sense that (k;, a-b) = 0 if both a and b have positive degree [Morita2]. Harer
proves in [Harer3] that H*(T'31;Q) = Q{r1}. Let &y € Ho(T'31;Q) be the
dual to 1, and let %" be the n’th power under the multiplication

H2(F3,1)®" B H2n(r3n,1)-

Then (k)" &") = nl, so &{" # 0 in H**(T's,1;Q), cf. part (i) of Theorem 1.
Dehn twist around the (r+1)st boundary circle yields a group homomorphism
Z — I'1 441, and hence a class 7,41 € Hi(I'y 41)-

We can now formulate two of Harer’s three assertions one needs in order
to improve the rational stability result by "one degree” when g = 0 (mod 3),
i.e. from x < 2[§] — 1 to * < 2[§]. The assertions are:

(i) " =01in Hopn(Ty,; Q) for g < 3n.

(ZZ) T,«+1'Iv£1n is non-zero in COkeI"(Hgn_i_l(an_Hm; Q) — H2n+1 (F3n+1,,«+1; Q)

The third assertion one needs is stated in Remark 3.5.
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1 Homology of groups and spectral sequences

1.1 Relative homology of groups

For a group G, and Z|G]-modules M and M’, left and right modules, respec-
tively, we have the bar construction:

B,(M',G, M) =M (Z|G))*" @ M,
with the differential

(M@ @ - ®g,@m) = (Mg)R¢pR- g, @m
n—1
+ Z(—l)im/@)gl®~-'®gi9i+1®~-~®gn®m
i=1
+ ()" @ ® Q@ ga1 @ (gamn).

If either M or M’ are free Z[G]-modules, B.(M',G, M) is contractible. If
M’ = Z with trivial G-action, we write B,(G, M). Then the nth homology
group of G with coefficients in M is defined to be

H,(G; M) = H,(B,(G, M)) = Tor““(z, M).

There is a relative version of this. Suppose f : G — H is a group ho-
momorphism and ¢ : M — N is an f-equivariant map of Z[G]-modules.
One defines the relative homology H.(H,G; N, M) to be the homology of the

algebraic mapping cone of
(f,¢)s: Bi(G,M) — B,(H,N),
so that there is a long exact sequence

-+— H,(GyM) - H,(H;N) - H,(H,G; M,N) — H,_1(G; M) — - -

1.2 Spectral sequences of group actions

Suppose next that X is a connected simplicial complex with a simplicial
action of G. Let C,(X) be the cellular chain complex of X. Given a Z|G]-
module M, define the chain complex

0, n < 0;
CHX; M) =< M, n = 0; (5)
Cn(X)®z M, n>1;
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with differential 9 defined to be 9,_; ® idy; for n > 1, and equal to the
augmentation € ® idy,; for n = 1. Note if X is d-connected for some d > 1,
or more generally, if the homology H;(X) =0 for 1 <4 < d, then CI(X; M)
is exact for * < d + 1. This is used below in the spectral sequence.

Again there is a relative version. Let f : G — H, ¢ : M — N be
as above, and let X C Y be a pair of simplicial complexes with a simplicial
action of G and H, respectively, compatible with f in the sense that the
inclusion 7 : X — Y is f-equivariant. Assume in addition that the induced
map on orbits,

iy X)G—==Y/H (6)

is a bijection.

Definition 1.1. With GG, M and X as above, let o be a p-cell of X. Let G,
denote the stabiliser of o, and let M, = M, but with a twisted G,-action,
namely

wm— 4 9M if g acts orientation preservingly on o;
g | —gm, otherwise.

Theorem 1.2. Suppose X and Y are d- connected and that the orbit map
(6) is a bijection. Then there is a spectral sequence {Eﬁs}n converging to
zero forr +s < d+ 1, with

El,~ @ H.H, G, N, M,).

UGAT;l

Here A, = A,(X) denotes a set of representatives for the G-orbits of the
p-simplices in X .

Proof. Consider the double complex with chain groups
Crm = Fu(H) @zp) CLY, N) @ F,1(G) @z CF(X, M),

where F,,(G) = B, (G, Z|G)), and differentials (superscripts indicate horizon-
tal and vertical directions)

" = id®od), ®id® o,

b = ' @id® (f.® (i,0). + 05, ®id). (7)

Standard spectral sequence constructions give two spectral sequences
both converging to H.(Tot C'), where Tot C' is the total complex of C, ,,
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(Tot C)g @ Cpm and d™" = d" 4 d". The vertical spectral sequence
n+m=~k
(induced by d¥) has E' page:
Ev},s = HT(C&*)

= H, (F,(H) ®zm CH(Y;N)) & H, (Fy_1(G) @z CH(X; M)) .
Since the resolutions F, are free, this is zero where CJ(X; M) and CI(Y; N)
are exact, i.e. for r < d + 1. So this spectral sequence converges to zero
where r + s < d + 1, and we conclude that H,(Tot C') = 0 for « < d + 1.

The horizontal spectral sequence, which consequently also converges to
zero in total degrees < d + 1, has E! page

E}, = H, (F.(H) @z CH(Y,N) ® F._1(G) ©z¢) CH(X, M)) . (8)
For » > 1 we have

CIX, M) = Ca(X)@ua M= B ZG- o] Qye M

O'EA,,«,l(X)
~ P 7Z[G) ye,) M, = € nd§ M, (9)
€A, 0EA,_1

where A,(X) denotes the p-cells in X, and where A, C A,(X) is a set of
representatives for the G-orbits. Finally, Indg, M, = Z[G] ®zg,] M,.

By assumption (6), the image of A,_; under i also works as representa-
tives for the H-orbits of (r — 1)-cells in Y. Therefore we also have:

Cl(Y,N)= @ Indj N, (10)

O'EAT 1
We insert (9) and (10) into the formula (8) to get for r > 1:

E', = H,(F.(H)®zm CH(Y,N)® F._1(G) ®zc) CI(X,M))

= H, | F.(H) oy @ Wl N, © F(G) @z0) @ Wdf, M
UGAT-71 UGAT-71
~ H, (F.(H) @z Indf N, @& F._,(G) @z Ind&. M,)
O'EA’,«71
o H, (F.(H) @z, No & F.1(G) @z, Ms)
O'EA’,«71
o~ Hy(H,,Gy, N,, M,). (11)
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The final isomorphism above uses that F.(H) is also a Z[H,|-module. For
r =0,
Ey, = Hy(H,G; N, M).

Thus we set H, = H when o0 € A_; = {0}. O

For application in the proof of Theorem 4.15, we need to relax the con-
dition (6) to the situation where #; is only injective:

Theorem 1.3. With the assumptions of Theorem 1.2, but with iy : X/G —
Y/H is only injective, there is a spectral sequence {Efs}n converging to zero
forr+s<d+1, and

Ei,s = @ HS(Ho'?GU;NO’?MO')@ @ Hs(HaaNa)~

o€S,_1(X) o€l 1 (Y)

Here ¥,(X) denotes a set of representatives for the G-orbits of the p-cells in
X, and T',,(Y) denotes a set of representatives for those H-orbits which do
not come from n-cells in X under .

Proof. We can choose 3, (Y) =i(3,(X)) UL, (Y). In this case we obtain:

B~ @@ H(H, Gy, Ny M)e @ H(H,N,).

o€, 1 o€l—1(Y)

The first direct sum is obtained in the same way as in the bijective case. The
second consists of absolute homology, since the cells of I',,(Y") are not in orbit
with cells from X. O

We are primarily going to use the absolute case, Y = ()

Corollary 1.4. For a group G acting on a d-connected simplicial complex
X, and a G-module M, there is a spectral sequence converging to zero for
r+s<d+1, with
Eq}”g = @ HS(G0'7M0)7
O'EArfl

where A, is a set of representatives of the G-orbits of (r — 1)-cells in X.

In our applications, we often have a rotation-free group action, in the
following sense:

Definition 1.5. A simplicial group action of G on X is rotation-free if for
each simplex o of X, the elements of G, fixes o pointwise.
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Corollary 1.6. For rotation-free actions, the spectral sequence of Thm. 1.2
takes the form.:

0

El,~ @ H.H, G, N M)

UEAT*I

in the relative case, and

1
Er,s -

R
D
=
@
=

i the absolute case.

Proof. The extra assumption implies that each g € G, preserves the orien-
tation of o. Thus g acts on M, in the same way as on M, so M, and M are
identical as G,-modules. The same applies to V. ]

Remark 1.7. In some of our applications of the absolute version of the
spectral sequence, G acts both transitively and rotation-freely on the n-
simplices of X. In this case there is only one G-orbit, so we get

E}, = H,(Gy; M),

where o is any (r — 1)-cell in X.

1.3 The first differential

We will need a formula for the first differential d}, : E}, — E}_, ..
the construction of the spectral sequences of a double complex, d* is induced
from the vertical differentials d” on homology. In the absolute version of the

spectral sequence, assuming that G acts rotation-freely on X,

From

El,~ P H.(G, M).

UGAT;l

and it is not hard to se that the differential

d,: @@ HJ(G.,M)— & H.(G, M)

€A, TEA, 2

has the following description (see e.g. |Brown|, Chapter VII, Prop 8.1.) Let
o be an (r — 1)-simplex of X and 7 an (r — 2)-dimensional face of . We
have the boundary operator

8ZCT_1(X,M)—> T_Q(X’M>
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and we denote its (o, 7)th component by 9,, : M — M. This is a G,-map,
so together with the inclusion G, — G, it induces a map

Upr : Hi(Goy M) — H (G, M).

Up to a sign u,, is the inclusion, because X is a simplicial complex. Conse-
quently

,z
|
—

d(o) = . (—1)7(jth face of o).

Il
o

So if 7 is the ith face of o, then u,, = (—1)i. For 0 € A,_;, we cannot be
sure that 7 € A,_,, but there is a g(7) € G such that g(7)7 = 70 € A, _s.
The conjugation, g — ¢(7)gg(7)~!, induces a map from G, to G, and hence
an isomorphism,

Cotr) : Ho(Gry M) — H (G, M).
Now d! is given by

dl Hy(Go,M)= Z UgrCq(7)- (12)

T face of o

Denoting the ith face of o by 7;, this can be written:

—_

r—

H.(Go,M) = (_1)icg(n)’ (13)

i

dl

Il
o

2 Arc complexes and permutations

We write [, for a compact oriented surface of genus g with r boundary
components.

Definition 2.1. Let F be a surface with boundary. The mapping class group
D(F) = mo(Diff, (F, OF))

is the connected components of the group of orientation-preserving diffeomor-
phisms which are the identity on a small collar neighborhood of the boundary.
We write 'y, = I'(F},,).

To establish stability results about the homology of I'y,, we will make
extensive use of cutting along arcs in . These arcs will be the vertices in
simplicial complexes, the so-called arc complexes. The mapping class group
act on these arc complexes, and we can use the spectral sequences of section
1.2. The differentials in the spectral sequences are closely related to the
homomorphisms of Theorem 1 and Theorem 2 from the introduction.
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2.1 Definitions and basic properties

Let I be a surface with boundary. To define the ordering of the vertices used
in the arc complexes, we will need the orientation of OF. An orientation at a
point p € JF is determined by a tangent vector v, to the boundary circle at
p. Let w, be tangent to I at p, perpendicular to v, and pointing into F. We
call the orientation of OF at p determined by v, incoming if the pair (v,, w,)
is positively oriented, and outgoing if (v,,w,) is negatively oriented, and use
the same terminology for the connected component of OF that contains p.

Definition 2.2. Given a surface F' with non-empty boundary. Fix two points
bp and by in OF. If by and b; are on the same boundary component, the arc
complex we define is denoted C,(F;1). If by and by are on two different
boundary components of F', the resulting arc complex is denoted C,(F’;2).

o A wertexr of C.(F;1) is the isotopy class rel endpoints of an arc (image of
a curve) in F' starting in by and ending in by, which has a representative
that meets OF transversally and only in by and b;.

e An n-simplex avin C,(F'; 1) (called an arc simplex) is set of n+1 vertices,
such that there are representatives meeting each other transversally in
by and b; and not intersecting each other away from these two points.
We further require that the complement of the n+1 arcs be connected.

The set of arcs is ordered by using the incoming orientation of JF at
the starting point by, and we write a = («, . . ., ).

e Let A,(F;i) denote the set of n-simplices, and let C,(F, i) be the chain
complex with chain groups C,(F;i) = ZA,(F;i) and differentials d :
Cn(F;i) — Cp_1(F; i) given by:

n

d(a) = Z(—l)jaj(oz), where 0;(a) = (ag, ..., 0, ..., qp).

i=1

The mapping class group I'(F) acts on A, (F;) (by acting on the n 4 1
arcs representing an n-simplex), and thus on C,,(F’;i). This action is obvi-
ously compatible with the differentials d : C,,(F;i) — C,,—1(F; 1), so we can
consider the quotient complex with chain groups C,(F;q)/I'(F).

To apply the spectral sequence of the action of I'y . on C,(F},;7), we need
to know that the complex is highly-connected:

Theorem 2.3 (|Harerl|). The chain complex C.(Fy,;1) is (29 — 3 + i)-
connected.
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Definition 2.4. Given an arc simplex « in C.(F;i), we denote by N(«)
the union of a small, open normal neighborhood of a with an open collar
neighborhood of the boundary component(s) of F' containing by and b;. Then
the cut surface F), is given by

F,=F\ N(a).

For a surface S, let 405 denote the number of boundary components of
S. Then we have the following

$0(F,) = tON(a) + 1 — 2i. (14)

Lemma 2.5. Given an n-simplex v in C,(F;4), the Euler characteristic of
the cut surface F, s
X(Fa) = x(F)+n+1

Proof. We prove the formula inductively by removing one arc aq at a time,
so it suffices to show that x(F,,) = x(F) + 1. Give F the structure of a
CW complex with ag as a 1-cell (glued onto the O-cells by and b;). When we
cut along ag, we get two copies of ag; that is, an additional 1-cell and two
additional O-cells. Using the standard formula for the Euler characteristic of
a CW complex, we see that it increases by 1. O

2.2 Permutations

Let ¥,41 denote the group of permutations of the set {0,1,...,n}. T will
write a permutation o € ¥, as 0 = [0(0) (1) ... o(n)]; e.g. [021] in X3 is
the permutation fixing 0 and interchanging 1 and 2.

To each n-arc simplex « in one of the arc complexes C,(F;i) we as-
sign a permutation P(a) in ¥,.; as follows: Recall that the arcs in a =
(v, a1, - . ., avy) are ordered using the incoming orientation of OF at the start-
ing point by. We use the outgoing orientation in the end point b; to read off
the positions of the n+1 arcs at by: «a; is the o(j)’th arc at by, for j =0,...,n.
In other words, the arcs at b; will be ordered (a,-1(9), W11y, - - - Qg-1(n))-
This gives the permutation o = P(«). See Example 2.6 below.

So we have a map P : A, (F;i) — X,11. Since v € I'(F) keeps a small
neighborhood of OF fixed, this induces a well-defined map

P:AL(F;0)/T(F) — Y.

There are several reasons why it is useful to look at the permutation P(«)
of an arc simplex a. One is that P(a) determines the number of boundary
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components of the cut surface F,, as we shall see below. Before explaining
this, we will need a few preliminary remarks.

Let a be an arc in C,(F;7). We orient it from by to by, and let t,(a) be
the (positive) tangent vector at p € a. A normal vector v, to « at p is called
positive if (vy,t,(a)) is a positive basis of T,F’. We say that the right-hand
side of « is the part of the normal tube given by the positive normal vectors.

When drawing pictures to aid the geometric intuition, we always indi-
cate the orientation of F' and OF (with arrows). Also, the orientation of
I will always be the same, namely the orientation induced by the standard
orientation of this paper. This has the advantage that orientation-depending
properties like the right-hand side will be consistent throughout the picture,
even if we draw two different areas of one surface.

Example 2.6. Let o = (ag, a1, a2) be a 2-simplex in C,(F,,;1), with per-
mutation P(«) = [120]. Close to by and by we see the situation depicted on
Figure 1, with the orientations of OF at by and b; used for determining the
permutation as indicated.

F \\/ﬁ\ //i—l\\ )
(%) aq (D) aq (%) Qg

Figure 1: An arc with permutation [120] in C,(F;1).

We want to find the number of boundary components of F,. This goes as
follows. Pick an arc, say ag, at by and start coloring the right-hand side of it
(here, we color it dark grey), following the arc all the way to b;. See Figure 2.
Here, continue to the left-hand side of the next arc; in our case it is as. Note
that in general this means going from a,-1(j) to a,-1¢;_1) (see the definition);
in this example 7 = 1. Color the left-hand side of as, reaching by again and
continuing to the right-hand side of the arc next to as. In this algorithm the
boundary component(s) containing by and by also counts as arcs, as shown
in the figure. Continue in this fashion until you get back where you started
(i.e. the right-hand side of ag). This closed, dark grey loop constitutes one
boundary component of F,. Start over again with a different color (here
light grey) at another arc, and you get a picture as in Figure 2. So there are
2+ (r —1) = r + 1 boundary components of (F,,), for « € C\.(F;1) with
P(a) =1[120].

We could consider the same permutation in C,(F},;2), and we would get
a different picture (Figure 3). So there are 3 + (r — 2) = r + 1 boundary
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F %LN /LN O
(&%) (651 Qo (651 (%)) (%)

Figure 2: Boundary components of F,, for a in C,(F;1).

components of (Fy ), for a € C(F;2) with P(a) = [120].

F %}K %%LK )
a7 aq (D) o7 (%)) Qg

Figure 3: Boundary components of F, for a in C,(F’;2).

The method of the above example gives a formula albeit a rather cum-
bersome one — for 0N («), and thus by (14) for the number of boundary
components of F, in terms of P(«a):

Proposition 2.7. Let £0S denote the number of boundary components in S,
and let oy, € Xy be given by o, = [12 --- k—10]. Then

(i) If 0 € Coa(F31) then 89N (0) = Cye (o Pla) oplyP(a) + 1

(17) If a € C,—1(F;2) then tON (o) = Cyc <anP(a)_1U;1P(a)> +2,

Here Cyc : ¥, — N denotes the number of disjoint cycles in the given per-
mutation, and for T € Xy, T € Ygiq is given by T = [0, 7 + 1], that is

(o j=0,
T(j)_{T(j—l)Jrl, i=1,... k.

In particular, 0N () depends only on P(«).

Proof. This is simply a way to formulate the method described in Example
2.6. Let us look at C.(F;2) first, so by and b; are in different boundary
components. As in the example, we start on the right-hand side of one
of the arcs at by, follow it (using P(«)), then at b; we go left to the next
arc (using o~!). Now we follow the right side of that arc (using P(a)™!)
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ending at by, and we must now go left to the next arc (using o). Thus the
permutation P(a)o~'P(a)~ o captures how the boundary of N(a) behaves,
and a boundary component in dN(«) clearly corresponds to a cycle in the
permutation. Remembering the two extra components corresponding to the
components of IN(«) containing by and by, this proves (ii).

For C.(F;1), by and by lie on the same boundary component. We wish
to use (ii), so we consider a new surface F and a new arc simplex, a@ =

(qo, a1, ..., Q) in CL(F,2), which are constructed from F' and « as follows.
Qo
Ca O O o
Qp (03] [6%) aq Qp [6%) éél 5[2 6&3 6&2 @1 5[3

Figure 4: Constructing F' and é& from F and o

We take the boundary component of F' containing by and b;, and close up
part of it between by and by so we get two boundary components, cf. Figure 4.
Then &g will be the arc from by to by consisting of the part of the old boundary
component which was first (i.e. right-most) in the incoming ordering at by
(cf. Figure 4), and &; = o for 1 < j <n. By this construction, 0N («) =
$ON (&) — 1, since we count two boundary components for & € C,(F;2), and

we should count only one. Clearly P(&) = @, and the result now follows
from (i1). O

I would like to thank my brother, Jens Boldsen, for help with the above
proposition.

Proposition 2.8. The permutation map
P:AL(F;0)/T(F) — Y41
1S 1njective.

Proof. We have to show that given two n-arc simplices @ and  with P(a) =
P(f3), there exists v € I' such that ya = 3. Consider the cut surfaces F,
and Fj. Since the permutations are the same, [}, and Fj3 have the same
number of boundary components, by Prop. 2.7 above. Now since we have
parameterizations of the boundary components and the curves ay,...,a,
this gives a diffeomorphism ¢ : 9(F,) — 0(F}3). The Euler characteristic of
F, and Fj are also the same, according to Lemma 2.5. This implies that F,
and Fj have the same genus. By the classification of surfaces with boundary,
F, = Fj3via an orientation preserving diffeomorphism ® extending ¢. Gluing
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both Fi, and Fj up again gives a diffeomorphism ® : F — F taking o to
(. Thus a and [ are conjugate under v = [Cb] in the mapping class group
[(F). O

Whether P is surjective depends on the genus g, cf. Corollary 2.17 below.

Remark 2.9. The proof of this proposition also shows that the action of
G(F) on C.(F;1) is rotation-free, cf. Def. 1.5. For given o € A, (F';i) and
7=l €T,

2.3 Genus

Definition 2.10 (Genus). To an arc simplex a we associate the number
S(a) = genus(N(«)), cf. Def. 2.4. We call S(«) the genus of a.

Note that Harer calls this quantity the species of a.
Lemma 2.11. For a € A, (F;1i), we have
X(N(a)) = =(n+1)

Proof. In C,(F;1), N(«) has aUp, 5, S* as a retract. Now there is a homotopy
taking b, to by along S', so up to homotopy, this is a wedge of n + 2 copies
of S! coming from «ay, . .., a, and from the boundary component. This gives
the result. For C,(F;2) the argument is similar. O

Proposition 2.12. Let 105 denote the number of boundary components in a
surface S. Let i =1,2. Then for any o € A, (Fy,;1), the following relations
hold:

(i) S(a)=1%(n+3—10N(a)),
(i1) #0(Fa) =7 +n — S(a) + 3 — 2i,
(7ii) genus(F,) =g+ S(a) — (n+2—1i),

Proof. (i) As S(«) is the genus of N(«), we can derive this from the Euler
characteristic of N(«), which by Lemma 2.11 is —(n+ 1). Using the formula
X(N(a)) =2 —25(a) — 40N () gives the result.

(1) This follows from (i) and (14).
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(797) As in (i) we use the connection between Euler characteristic, genus
and number of boundary components, together with (i) and (i7):

genus(F,) = 3(— x(Fo) —t0(F,) +2)
= (- (@2-29-7)—(n+1)— (ON(a) +r — 2i) + 2)
= 1294+ (n+1—HON(a) +2) +2i —2—2(n+ 1))
g+ S(a)—(n+2—1)
O

Consequently all information about F,, can be extracted from §0(F,), so
it is important that we can compute this quantity:

Lemma 2.13. Given a € A, (F;i) be given, and let v € No(F;i) be an arc
such that o/ = aUv is an (n + 1)-simplex. Consider o € C,(F,;i). Then:

[ BO(F) + 1, ifve Ag(Fy;1);
PO(For) = { bO(F,) — 1, ifve Az(Fa;z).

Proof. Let k = $0(F,). Since all boundary components in F,, not intersect-
ing v correspond to boundary components in F,,, it is enough to consider
the situation close to v. There are two possibilities: Either v will start and
end on two different boundary components of F,,, so v € Ay(F,;2), or v will
start and end on the same boundary component of F,, so v € Ag(Fy;1). Cf.
Figure 5, where the boundary components of F, are indicated as in Example

2.6.
Y Y L] o
v v
F ~ v F F ~ v F

1
I
v
1
1
:
1
Y
1

N W N N
bl bl bl bl

Figure 5: Before and after cutting along the arc v — the two cases.

P .

Taking the case v € Ag(F,;2) (left-hand side of Figure 5), when we cut
along v we get one boundary component instead of two. So we get k — 1
boundary components in this case. In the case v € Ay(F,;1) (right-hand
side of Figure 5) cutting along v splits the boundary component into two, so
we get k + 1 boundary components. O
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Combining Lemma 2.13 and Prop. 2.12, we have proved,
Corollary 2.14. For a € Ao(F;i), let o = aUv as in Lemma 2.13. Then:

N S(Oé), Zf’j € AO(FOJI);
S(o) = { S(a)+1, ifve Ag(F2).

and

genus(Fy) { genus(Fy,) — 1, ifve Ag(Fu;l);

genus(F,), if v e Ao(Fa;2).

Lemma 2.15. Let o € Ay(F';i). Then S(a) =0 if and only if
(1) fori=1, Pla) =1id.
(11) fori =2, P(«) is a cyclic permutation, i.e. one of the following:

id,[12---n0],[23---n01],---,[n01---n-1].

Proof. We prove "only if”. The converse is clear, e.g. by Prop. 2.7 and Prop.
2.12 (7).

By Cor. 2.14, any subsimplex of a has genus equal to or lower than
S(a) = 0, so any subsimplex of & must have genus 0. If & € A, (F;1), this
means all 1-subsimplices must have permutation equal to the identity, and
this forces P(a) = id. If @ € A, (F;2) the condition on 1-subsimplices is
vacuous, but for a 2-subsimplex 3 of a, we see by Cor. 2.14 that S(5) = 0
implies that P(3) is either id, [120], or [201]. For this to hold for any
2-subsimplex of o, P(a) must be as stated in (ii). O

2.4 More about permutations

By Prop. 2.7, given € A, (F;i), the number 0N («) is a function only
of P(a) and i. By Prop. 2.12(7), the same is true for S(a). Thus, given a
permutation o € ¥,,1, we can calculate these quantities and simply define
the numbers f0N (o) and S(o) by the formulas of Prop. 2.7 and 2.12(3).
Now we are going to see that given a permutation o € X, 1, there exists
a € A, (F,, ;i) with P(a) = o if at all possible, that is, provided the formula
(7i1) of Prop. 2.12 for the genus of F,, gives a non-negative result. Rearrang-
ing this conditions we have the following lemma, also stated in [Harer2]:

Lemma 2.16. Given a permutation o € ¥,41, let s = S(o) as above. There
exists a« € Ao(F';1) with P(a) = o if and only if

s>n—g+2—1i. (15)
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Proof. Given a permutation o, one can try to construct an arc simplex «
inductively with P(«) = o by first choosing an arc ag € Ag(F;i) from by
to by, and cutting F' up along it. This will give us two copies of by and by,
respectively, one to the left of our arc and one to the right. The permutation
determines from which copy of by and b; a new arc will join.

Suppose we have constructed k41 < n+1 arcs as above, i.e. a k-simplex
B = (ag,...,ar), and consider the cut surface Fj. Inductively we assume
that Fj is connected. Now we must verify that when adding a new arc, v,
as in Lemma 2.13, the cut surface (Fj3), is connected. If this holds, S U v is
a (k + 1)-simplex, and we have completed the induction step.

There are two cases. First assume that v must join two different boundary
components of Fjz. Then (Fj), is connected, no matter how we choose v, since
Fjp is connected.

Secondly, if v connects two points on the same boundary component of
Fp, we choose v so that it winds around a genus-hole in Fj. This ensures
that (Fj), is connected, so we must prove that genus(F3) > 1. From Prop.
2.12, we know that genus(Fp) = g+ S(8) — (k+2—1), and we want to prove

S(B)—k>s—n+1. (16)
Using this, we can complete the induction step:
genus(Fg) =g+ S(B)—k—2+i>g+s—n—1+i>1

by assumption (15).

To prove (16), recall that S(/3) only depends on P([3), not on the surface
F. So consider another surface F’ with genus ¢’ > n. We can construct
B e Ag(F' 1) with P(p') = P((), as above. We can further construct
o € A,(F', i) with 5" as a subsimplex and P(a/) = o, simply by adding
n — k new arcs to 3 which each wind around a genus-hole in F’. This is
possible because ¢’ > n. We claim

S(a) < S(B) +n—k—1. (17)

Applying Cor. 2.14 n—k times to ', we obviously get S(a') < S(F')+n—k.
We get the extra —1, because the first time we add an arc v/ to ' we have
V'€ Ag(Fjp;1), since v € Ag(Fp, 1) by assumption. This proves (17). Since
P(3') = P(B) and P(/) = o, (17) implies s = S(o) < S(B) +n — k — 1.
This proves (16). O

Combining Prop. 2.8 and Lemma 2.16 we have proved,
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Corollary 2.17. The permutation map
P:AL(F;0)/T(F) — Y41
is bigective if n < g — 2+ 1. (|

Lemma 2.18 (|Harerd|). For F' = F,; with g > 2, the sequence

. dt . d! .
Copr1(£4) /[T (F) — Cp(F34) [T (F) — Cpa(F;4) /T(F)
15 split exact for 1 <p<g—2+41.

Proof. Let ZY, denote the chain complex with chain groups Z>.,, n > 1,
and differentials
0: 2% — 15,

given as follows: For o = [0(0) ---o(n)] € ¥,41, let
9i(0) =[0(0)---0(j —1)a(j+1)...0(n)],

where the set {0,1,...,n} \ {o(j)} is identified with {0,1,...,n —1} by
subtracting 1 from all numbers exceeding o(j). Then we define (o) =
> o(=1)0;(0) and extend linearly. Extending the permutation map P
linearly leads to the commutative diagram

Cn(F;l)/F(F) — Cyy (F34) JT(F) (18)
7301 9 len

i.e. a chain map C,(F;1)/T'(F) — ZX.. By Prop. 2.8, P is injective, so
C.(F;1)/T(F) is isomorphic to a subcomplex of ZX,, namely the subcomplex
generated by permutations o € 3,1 with S(o) satisfying the requirements
of Lemma 2.16. In particular, for n < g — 2 +1, the chain groups of Z, and
of C.(F;i)/T'(F) are identified.

Define D : 73, — Z¥,,1 by

D(e)=0c=1[0 o(0)+1 o(1)+1 --- oa(n)+1]. (19)

It is an easy consequence of the definitions that DO + 9D = 1, so D
is a contracting homotopy and ZX, is split exact. By the diagram (18),
C.(F;4)/T(F) is also split exact in the range where

Do P(CulF;)/T(F)) € P(Cosa(F3)/T(F))) (20)
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since D lifts to a contracting homotopy D of C,(F;i)/T(F).

We will first consider C,(F;1)/T'(F). By Cor. 2.17, P is bijective for
n < g—1, so (20) is satisfied for n < g —2. It remains to consider the degree
n = g — 1. We have the commutative diagram,

Cy(F;i) /T (F) —% Cy_y (F;0) [T(F) —2> Cy_o(F3i) JT(F)

[P -|r -|r

VAN 2 A 0 7%,

with the bottom sequence exact. We must show that
P o d(Cy(F:i)/T(F)) = (ZS,.1).

According to Cor. 2.17, P : Cy(F;1)/T(F) — ZX 41 hits everything except
what is generated by permutations o with S(¢) = 0. Thus we must show
d(0) € Im(Pod) =Im(0o P) for all o € 3,11 with S(0) =0. From Lemma
2.15 we know that the only such permutation is the identity. As

o1+ g) = Y (~1Y[01 -+ g—1) =

J=0

{ 0, if gis odd,

id, if g is even,

we are done if ¢ is odd, and the desired contracting homotopy D is obtained
by lifting D when S(a) > 0 and setting by D(a) = 0 when S(a) = 0.

If ¢ is even, consider 7 = [20134 --- g] € ¥,41. Then by Lemma 2.15
S(t) >0, and

() = [012---g—1]—[1023--- g—1]+[1023 -+ g—1]

+Zg:(—1)j[20134---g—1] =[012---g—1]=0[012---g].

Thus we can obtain a contracting homotopy D by taking D(a) = P~Y(7)
when S(«a) = 0.

For C,(F;2)/T'(F), Cor. 2.17 gives that P is bijective for n < g, so we are
left with j = g, where we use exactly the same method as above. We must
show that 0(c) € Im(0o P) for all 0 € ¥,45 with S(o) = 0. We only need to
consider o € Im(D), because Imd = Im(do D) by the equation 0D+ D9 = 1.
The only 0 € ¥ 42 with S(0) = 0 and P € ImD is the identity, according
to Lemma 2.15. Now we are in the same situation as above, so we can use
T=1[20134--- gg+1] € ¥ 45 which has genus S(7) > 0 in C.(F;2), since
qg > 2. ]



32 3 Homology stability of the mapping class group

3 Homology stability of the mapping class group

Let F' be a surface with boundary. Given F’ we can glue on a "pair of pants”,
Fy 3, to one or two boundary components. We denote the resulting surface by
>;,; I, the subscripts indicating the change in genus and number of boundary
components, respectively.

g Tpl

Figure 6: X F and DI O

These two operations induce homomorphisms between the mapping class
groups after extending a mapping class by the identity on the pair of pants;

)

Given a surface F', applying ¥y ; and then adding a disk at one of the pant
legs gives a surface diffeomorphic to F' (with a cylinder glued onto a boundary
component). It is easily seen that the induced composition

is the identity, so Yo ; induces an injection on homology
Hy(T(F)) = Ho(I'(Z01F)). (21)

For the proof of the stability theorems, the opposite operation is essential:
One expresses the surface F' as the result of cutting > F' or X; _1F along
an arc representing a O-simplex in one of the arc complexes of definition 2.2:

F = (ZO,lF)aa and F = (217_1F)5,
for v € Ag(X01F,2) and € Ag(X1 1 F, 1) as indicated below

Figure 7: « and (3.

A diffeomorphism of F, that fixes the points on the boundary pointwise
extends to a diffeomorphism of F' by adding the identity on N(«), and this
defines an inclusion I'(F,) — I" whose image is the stabilizer T',.
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3.1 The spectral sequence for the action of the mapping
class group

In this section, F' = F,, with ¢ > 2 and I' = I'(¥"). We shall consider the
spectral sequences EJ = qu(F; i) from section 1.2 associated to the action
of T on the arc complexes C.(F';i) for i = 1,2. By Cor. 1.6 and Thm. 2.3,
we have Ej , = H,(T') and

E, = @ H,(T,) =0, forp+q<2g—2+i, (22)

aeﬁpfl

where A, 1 C A, (F;1)is aset of representatives of the [-orbits of A,_;(F;4)
in C.(F;i).
The permutation map

P:A, 1 (F;9)/I — %,

is injective by Prop. 2.8. Let ip be the image, and T : ip - Zp_l —
A,_1(F;i) a section, P oT =id. Then

E;,q - @ E;,q(a)’ Eziq(a) - Hq(FT(U))' (23)
oefp
The first differential, dll,’q : E;’q — E;—an is described in section 1.3.
The diagrams

commute, where 0; omits entry j as in Def. 2.2 and the vertical arrows
divide out the I' action and compose with P. Thus for each o € ¥,.;, there
is g; € I' such that

g; - 0T (o) = T(9;0), (24)

and conjugation by g; induces an isomophism ¢, : I's, 1) — I'rs;0). The
induced map on homology is denoted 0; again, i.e.

(cg )«

incly J)
0j « Hy(U'r()) — HQ(FajT(U)> - Hq(FT(ajU)) : (25)
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Note that (c,;). does not depend on the choice of g; in (46): Another choice
g; gives Cgy = Cgrg=1Cay0 and g;gj e Iro,0) 8O Cgig:t induces the identity on
Hq(FT(ajo)). Then
p—1
d'=> (-1)9;. (26)
j=0
The proof of the main stability Theorem depends on a partial calculation
of the spectral sequence (22). More specifically, the first differential d* :
El, — Ej, is equivalent to a stability map Hy(T'y) — Hy(I'), so the
question becomes whether d! is an isomorphism resp. an epimorphism. In a
range of dimensions the spectral sequence converges to zero, so that d' must
be an isomorphism unless other (higher) differentials interfere. The next
three lemma are the key elements that give sufficient hold of the spectral
sequence. The first lemma gives the general induction step. The next two
lemmas about d' : E} , — E,_,  for p = 3,4 are necessary for the improved
stability.

Lemma 3.1. Let + = 1,2, and let k,j7 € N with k < g — 3+ 14. For any
ae A, 1(F;i) and all ¢ < k — j, assume that

H,(Ty) = Hy(T) is an isomorphism if p+q < k+1, (27)

H,(T,) — Hy(T) is surjective ifp+q=Fk+2. (28)
Then Equ(F;z') =0 forallp,qwithp+q=k+1andqg<k—j.

Proof. Let C,,(F;i) = C,(F;i)/T. By (22) and the assumptions, we get for
q<k—yj:
Epq = Cpa(Fii) @ Hy() ifp+q<k+1, (29)
E,,— Cpi(F;i)®@ Hy(I) ifp+qg=k+2.

Now we have the following commutative diagram, for a fixed pair p, ¢ with
g<k—jandp+qg=Fk+1:

dt dt
B g, B, (30

p—1,q

ok ST

Ty s(F3i) ® Hy(T) =T, 1(F; i) ® Hy(T) < T, (F; ) @ H,(T)

Using the formula (48) for d*, (cy,):(w) = w for w € H,(T'), since conjugation
induces the identity in H,(I'). Thus the bottom row of diagram (30) is just
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the sequence from Lemma 2.18, tensored with H,(I'). Since p < k+1 <
g — 2 + 1 that sequence is split exact, so the bottom row of (30) is exact.
We conclude that Equ =0 for all p,q with ¢ < k—jand p+qg=~k+1, as
desired. 0J

We next examine the chain complex
d! N d N d N d ,
- —5% B3 (Fi) == E; (F,i) == E{ (F,1) = E; ,(F, )

associated with C(F;4), but first we need an easy geometric proposition.
Recall from definition 2.4, that for « € A,(F;i) we write F,, = F'\ N(«) for
the surface cut along the arcs of a.

Proposition 3.2. Let o € A, (F'; i) with permutation P(a) = o, and assume
there is k,l < n such that o(k) =1+ 1 and o(k+ 1) = 1. Then there exists

fel(F) with f(ags1) = ag, flaw) =ay fori ¢ {k,k+ 1} and f|p, =idg,.

Proof. A (right) Dehn twist in an annulus in F' is an element of I'(F) given
by performing a full twist to the right inside the annulus, and extending
by the identity outside the annulus. Figure 8 shows a Dehn twist v in an
annulus, and its effect on a curve 3 intersecting the annulus.

NAT

Figure 8: A Dehn twist v in an annulus.

Consider the curves oy and oy ;. Take an annulus as depicted on Figure 9
below (in grey). By the requirements of the proposition it is easy to construct
the annulus so that it only intersects « in oy and ay.1. Let f be the Dehn
twist in this annulus. Since f is the identity outside the annulus, we have
fla;) = «; for all i ¢ {k,k+ 1} and f|r, = idg,. By Figure 9 it is easy to
see that f(ags1) = . O

The stabilizer I',, of @ € A,(F;4) depends up to conjugation only on the
orbit I'ar, i.e. on P(a) € ¥,.;. So when conjugation is of no importance
we shall for ¢ € ¥, write I', for any of the conjugate subgroups I, with
P(a)=o0. If T €3, is a face of 0 € ¥,,; then I, is conjugate to a subgroup
of I';, and there is a homomorphism

Hy(T's) — Hy(I';),

well-determined up to isomorphism of source and target.
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by

Oy 177 — Qg

bo
Figure 9: The Dehn twist f.

Lemma 3.3. Let ¢; and ¢y be the isomorphism classes
C1: Hq(r[ogl]) — Hq(r[lo})a G2t Hq(r[120}) - HQ(F[OH)

. . . 1 . 1 1 . . .
(1) If201 and cy are surjective, then d3 , : B3, — FE, , 1s surjective, and
E2’q - 0.

(13) If ¢y and co are injective, then
ds,: Es,([021])) @ E5,([120]) — Ej,
18 injective.

Proof. The target of d' is E} , = Ey ([01])® E; ([10]), and we first examine
the component
d3,: B3,((021]) — B, ,((01)). (31)

If 3 =T([021]) with § = (8o, 31, B), let v € T satisfy (5o, 7) = T((01)),
and write a = y03. Then

(cg)s E?:hq([OQ 1]) — Hy(Ty),
and the Ej ([01])-component of d3 , o (¢y). is the difference of

82:Hq(ra) - Hq(r(ao,m)) (32)
O HQ(FQ) B Hq(F(QO@Q)) - HQ(F(OZOJM))
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where f - (ag, as) = (ap, 7). By the previous proposition 3.2 we may choose
f such that f|r, =idg,. It follows that ¢y : I' — I restricts to the identity
on I'y, and hence that the two maps in (32) are equal. Thus the component
of d3, in (31) is zero. On the other hand, the component

d3, + By ,([021]) — Ej ,([10])

is equal to Jy, so it belongs to the isomorphism class ¢;. Thus it is surjective
resp. injective under the assumptions (i) resp. (7).
The restriction of dj , to E3 ,([120]),

d3 gt By ,([120]) — By ,([01]) & B ,([10]),

is treated in a similar fashion. This time there are two terms with opposite
signs in £ ([10]) which cancel by Prop. 3.2, and the component

dy  E3,([120]) — Ey,([01])
is in the isomorphism class of cy. This proves the lemma. ]

We next consider the situation of Lemma 3.3(ii) where ¢; and ¢y are
injective. If we further assume that g(F) > 3, then X3 = Y3 and ¥, =
¥4\ {id}. We consider the maps

¢s : Hy(Tpaso) — Ho(Tp20)
cy + Hy(Tps2y) — Hy(Tp10o) (33)
Cs Hq(r[oms}) — Hq(r[loQ})
¢+ Ho(Tps1z) — Hy(T'201)

Lemma 3.4. Let g > 3 and assume that ¢y and co of Lemma 3.3 are injective
and that the four maps in (33) are surjective. Then Egﬂ(F; i) =0 fori=1,2.

Proof. The group E?iq decomposes into six summands since ¥3 = ¥3. By
Lemma 3.3, to show that E§7q = (0 under the above conditions, it suffices to
check that d}l,q maps onto the four components not considered in Lemma 3.3.
More precisely, let

B, =E;,([012))& B ([210]) & B3 ,([102]) & Ej ,([201]).

We must show that the composition

1, o1 d 1 Proj &
d 'E4,q E3,q E3,q
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is surjective. the argument is quite similar to the proof of Lemma 3.3, using
Prop. 3.2 to cancel out elements. Then the components of d' can be described
as follows:

d'=-05 : E,([1230]) — E;,([012),
d'=00 : Ep,([0321]) — B,([210]),
d' =00 : E;,([0213]) — E5,([102)),
d' = (0o, =0s) : E3,((0312]) — E5,([201]) & E;,((012]).
It follows from the surjections in (33) that d' is surjective, and hence that

E} (F;i) = 0. =

Remark 3.5. Now we can state Harer’s third assertion needed to improve
our main stability Theorem by "one degree” (cf. the Introduction). It is easy
to show that d;%[l 0] is the zero map for all n. Then the homology class
[y"] of " with respect to d" is an element of E3,,. The assertion is

(#11) d3,,([7)"]) = x - [#)"] for some Dehn twist x around a simple closed
curve in F'. Here, - denotes the Pontryagin product in group homology.

3.2 The stability theorem for surfaces with boundary

In this section we prove the first of the two stability theorems listed in the
introduction. Our proof is strongly inspired by the 15 year old manuscript
|[Harer2|, but with two changes. We work with integral coefficients, and we
avoid the assertions made in [Harer2| discussed in the introduction. The
theorem we prove is

Theorem 3.6 (Main Theorem). Let F,, be a surface of genus g with r
boundary components.

(i) Letr >1 andleti =%, : 0y, — L'y,11. Then
it Hy(Dyr) — Hp(Dygri1)
15 an tsomorphism for 2g > 3k.
(it) Letr >2 andlet j =%y _1: Ty, — Iyy1,-1. Then
Jx t He(Dgp) — Hp(Dgy1,-1)
15 surjective for 2g > 3k — 1, and an isomorphism for 2g > 3k + 2.

Proof. The proof is by induction in the homology degree k. For k = 0 the
results are obvious, since Hy(G,Z) = 7Z for any group G. So assume now
k > 0 and that the theorem holds for homology degrees less than k.
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The case X,

In this case we know from (21) that ¥, is injective, so to prove that it is an
isomorphism it is enough to show surjectivity.

Assume 2g > 3k and write I' = I'y , ;1. We use that I'y, is the stabilizer
Iy, for a € Ag(F,, 11,2 as on Figure 7, I';, = I',. Now we use the spectral
sequence (22) associated with the action of I' on C,(F,,4+1;2), and we rec-
ognize the map i, : Hy(I'y) — Hy(T') as the differential d" : B}, — E,.
The spectral sequence converges to zero at Eg . So it suffices to show that
E]%,k—l—l—p is zero for all p > 2.

We begin by proving E3, , = 0 using Lemma 3.3 (i), noting that g > 2,
since k > 1. We must verify that ¢; and ¢y are surjective, and we will do this
inductively. Prop. 2.7 (or Example 2.6) and Prop. 2.12 calculate the genus
and the number of boundary components of I',. The figures below show the
relevant simplices 0 € A, (F,,41;2) so that the method in Example 2.6 can
easily be applied. The circles are the boundary components containing by
and by.

Fpop=Tyg-1,41, C}%@ Cio2y =Tg-1r, (}@C}
Loy =Ty141, OOQ Fpoog =Tg—2r42. Q@Q

We see that

1= 201)s: Hp1(Tyvy) — Hpo1(Dy—q,41),  and
co=(S1-1)s: Hi1(Dyopie) — Hi1(Lg141)

are both surjective by induction. So Eik_l = 0.

We now show that Eg’q =0forp+g=k+1and p>2,ie. q<k—2,
using Lemma 3.1, so we must verify (27) and (24). By Prop. 2.12 we have
Iy =y pistirip—2s—1, for a € Zp_l of genus s. So for ¢ < k — 2, we will
show by induction:

Hq(rg—p+s+1,r+p—2s—1) = Hq(rg,rJrl)a for p+g<k+1 (34)
H‘](FSJ—P+S+1,T+p—2s—1) — Hq(rg,r—l-l)v for p+q=Fk+2. (35)

The maps in (34) and (30) are induced from the composition

r (Zo,1)**! r (B1,—1)pe ! r
g—p+s+lr+p—2s—1— > Lg—pts+tlor+p—s L gr+1 .

The result follows by induction if

20g—p+s+1)>3¢ and 2(g—p+s+1)>3¢+2; forg<k—2.
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Let us prove (34). We know that 2¢g > 3k, and we have p 4+ q < k + 1.
Let g be fixed. Since more arcs (greater p) and smaller genus of « implies
a smaller genus of the cut surface F,, it suffices to show the inequality for
p+qg=k+1and s =0. In this case

20g—p+1)=2(g—k—-14q+1)>3k—2k+2¢=2q9+ k > 3q+2.

where in the last inequality we have used the assumption ¢ < k — 2. The
proof of (31) is similar. Now by Lemma 3.1, Eg’q =0forallp+qg=Fk+1
with ¢ <k — 2. This proves that d} , = (Xo,1). is surjective.

Surjectivity in the case ¥; _;

Assume 2g > 3k — 1, and write I' = I'j4y,4. Then I'(F,,) = I'g for
B € Ag(Fyr1,-1;1) as on Figure 7. In the spectral sequence (22) associated
with the action of I' on C,(Fy41,-1;1), we recognize the map (X;_1). :
Hy(Ty,) — Hp(Dgy1,-1) as the differential d , : B}, — Ej,. It suffices
to show that E> =0forp+¢g=k+1land ¢ <k -1

We first show that E227k_1 = (0 using Lemma 3.3. As before, the figures
below show the relevant simplices in A,(F,11,-1;1), and the oval is the
boundary component containing by and b;.

Loy =Tgr-1, @ Loy =Tg-1r, @

We see that

1 = (21,—1)* : Hk—l(rg—l,r) — Hk—l(rg,r—1>7 and

36
co = (3o1)s 1 Hpo1(Dgory) — Hio1(Tgo1041) (36)

are both surjective by induction. So E3, ; = 0.
Next we show that E??,k—z = 0 using Lemma 3.4. To verify the conditions,
we calculate as before,

F[01 2] — Fg—2,r+2>

I, = T'y1, for o € 33 the remaining 3 permutations in (33)

I, = I'y9,+1 for o € ¥, the remaining 4 permutations in (33).
We see that

cs = (Zo1): Hyp—o(Ty—orp1) — Hyp—o(Iy_2,42), and

. 37
;= (E1-1)s: Hpa(Tyo,11) — Hi—a(Ty—1,) for j =4,5,6. (37)
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Inductively we can verify that these four maps are surjective. The maps ¢;
and ¢y we calculated in (36), and we see by induction that they are injective
in homology degree k — 2. So by Lemma 3.4, E32,k—2 = 0.

Finally we prove that E; =0 for p4+¢ =k+1and ¢ < k — 3 using
Lemma 3.1. This is done as in The case X ; so we’ll skip the calculations,
and just show the final inequality:

20g—p+1) = 29—2k+1—q)+2 > 3k—1-2k+2q
k+2¢g—1>q¢q+3+2¢—1 = 3q+2.

So by Lemma 3.1, Eg’q =0forp+1=k+1and ¢ <k —3. We conclude
that (¥1,_1). = dj ;. is surjective.

Injectivity in the case X; _;

Assume 2g > 3k + 2 and let as in the above case I' = I'g4; ,—; and B}, =
By (Fyy1,-151). We will show that (3, 1), = d%,k is injective. Since BT,
converges to 0, it suffices to show that all differentials with target EY') are
trivial. This holds if we can show that E2 = 0 for all p+ ¢ = k + 2 with
q <k —1and that d3, : By, — EY} is trivial.

We first prove that dj, : Ej, — Ej, is trivial by proving that dy, :
Ej, — Ej is surjective, using Lemma 3.3. We have already calculated ¢;
and ¢y, cf. (36):

1 = (21,—1>* : Hk(rg—l,r) E— Hk(rg,r—l)u and
o= (201)«: Hp(Ty_1,) — Hip(Tyo1,r11)

In this case we cannot use induction, since the homology degree is k, but
we can use the surjectivity result for Xy ; and X; _; since we have already
proved this. So by Theorem 3.6 (i), ¢; and ¢y are surjective.

Next we prove that Eik_l = 0, using Lemma 3.4. We have already
calculated ¢; for j = 1,2,3,4,5,6 in the proof of surjectivity of (£, _1)., cf.
(36) and (37), and in this case we get

a= 1) Hia(Lgory) — Hia (D pma),
o= (201)s 1 Hpo1(Tgny) — Hip1(Tgo1041)
C3 = (20,1)* : Hk—l(rg—2,r+1) — Hk—l(rg—Z,r+2)> and
Cj = (217_1)* : Hk_l(l"g_27r+1) — Hk_l(Fg_l,r) for ] = 4,5,6.

Inductively we can verify that ¢; and ¢y are injective, and that ¢; for j =
3,4,5,6 are surjective. So by Lemma 3.4, E32,k—1 = 0.

Finally we prove that Eg’q =0forp+q=Fk+1and ¢ < k — 2 using
Lemma 3.1. As before we skip the calculations, and the final inequality is
the same as in Surjectivity in the case X; _;. O
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Remark 3.7. Another possibility for proving the above result is to use an-
other arc complex. Inspired by |Ivanovl| we consider a subcomplex of C'(F’; 1)
consisting of all n-simplices with a given permutation o,,, n > 0. Ivanov takes
o = id, which means the cut surfaces F, have minimal genus. For the in-
ductive assumption, it would be better to have maximal genus, which can be
achieved by taking o,, = [n n—1 --- 1 0]. Potentially, this could give a better
stability range, but it is not known how connected this subcomplex is, which
means that the proof above cannot be carried through.

3.3 The stability theorem for closed surfaces

In this section we study [ = ¥y : I'y; — I'y, the homomorphism induced
by gluing on a disk to the boundary circle. The main result is

Theorem 3.8.
Lo Hy(Tg1) — Hi(Ty)

1s surjective for 2g > 3k — 1, and an isomorphism for 2g > 3k + 2.

The proof we give is modelled on [Ivanovl|. See also [Cohen-Madsen].

Definition 3.9. Let F' be a surface, possibly with boundary. The arc com-
plex D,(F) has isotopy classes of closed, non-trivial, oriented, embedded
circles as vertices, and n + 1 distinct vertices (n > 0) form an n-simplex if
they have representatives (ap, ... q,) such that:

(i) a; Nay; =0 and oy NO(F) = 0,
(i) F'\ (Ui, ;) is connected.
We note that
(Fyr)a = Fy_1,49, for each vertex a in D(F,,). (38)

Indeed, for a vertex a, F,, := F'\ N(«) has two more boundary components
than F', but the same Euler characteristic, since F' = F'\ N(a) Usn(a) N (),
and x(N(a)) =0 = x(0N(«)). Then (38) follows from x(Fy,) =2 —2g —r.

We need the following connectivity result, which we state without proof:

Theorem 3.10 ([Harerl|). The arc complex D.(F,,) is (g — 2)-connected,
and Iy, acts transitively in each dimension.

We can now prove the stability theorem for closed surfaces:
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Proof of Theorem 3.8. We use the unaugmented spectral sequences associ-
ated with the action of I'(F;) on D.(F;), where F; = F,,; for i = 0,1. They
converge to the homology of I'(F;) in degrees less than or equal to g — 2.
Since I'(F;) acts transitively on the set of n-simplices,

E, o(Fy) = Hy(T(F))a, Za) = Hywo(D(F)),  fori=0,1; (39)

where « is p-simplex in D,(Fy), by identifying o with its image in D,(Fp)
under the inclusion [ : F; — Fj,.

We use Moore’s comparison theorem for spectral sequences, cf. |Cartan|:
If I, H(U(F1)as Zo) — Hy(I'(Fb)a,Zy) is an isomorphism for p+ g < m
and surjective for p + ¢ < m + 1, then [, : Hp(I'(F})) — Hi(I'(Fp)) is a
isomorphism for £ < m and surjective for £ < m + 1. To apply this, we will
compare H,(I'(F})a, Za) and Hy (I'((F}),)) for a fixed p-simplex a.

First we need to analyse I'(F}), for i = 0,1, and to ease the notation we
call the surface F' and write I' = I'(F"). Unlike for C\(F;4), the stabilizer T,
is not I'(F,). For v € T,

(7) v need not stabilize « pointwise and can thus permute the circles of «;
2 can change the orientation of any circle in «;

Y g y ;
144 can rotate each circle «v in a.

v

In order to take care of (i) and (i7), consider the exact sequence,
1—T,— Ty — (Z/2)"' x Dy — 1. (40)

Here f‘: C I'y consists of the mapping classes in I, fixing each vertex of «
and its orientation. We now compare I',, and I'(F},),

0 — 7Pt — T'(F,) — Ty — 1. (41)

We must explain the map ZP*' — T'(F,). Let a = (ay,...,q,), then the
cut surface F, has two boundary components, aj and a; , for each circle ;.
Then the standard generator e; = (0,...,0,1,0,...,0) € Z°™', j =0,...,p,
maps to the mapping class making a right Dehn twist on 04;-“ and a left
Dehn twist on a7, and identity everywhere else. This is extended to a group
homomorphism, i.e. —e; makes a left Dehn twist on oz;-|r and a right Dehn
twist on a; .

Let us see that (41) is exact. The hard part is injectivity of ZP™! —
['(F,), so we only show this. Assume m # n € ZP™' and say mo # ng.
For p > 1, the surface F, has at least four boundary components. Two of
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them come from cutting up along the circle ag, call one of these S. If p = 0,
then o = o, and F, has genus g — 1 > 2 by (38), since 2g > 3k + 3 > 6.
In both cases, there is a non-trivial loop v in F,, starting on S which does
not commute with the Dehn twist f around S in m(F,). Since F, has
boundary, m(F,) is a free group, so the subgroup (v, f) is also free. The
action of m € ZP* on v is f™~f~™ and since f and v does not commute,
froy fTme # froy fT when ng # m.

Consider [, : I'((F1)a) — I'((Fp)a). Both surfaces (F;), have non-empty
boundary, so we can use Main Theorem 3.6. We must relate [, to the maps
Y1 and ¥p _q, so let F denote a surface such that 2071(13’) = (F1)s. Then a
has one less boundary components than (F})a, so F' and (Fp), are isomorphic.
This gives the diagram:

1%

H.(D(F)) H.(I'((Fo)a))

(Z0,1)# /

H.(T((F1)a))

We see that [, is always surjective. By Theorem 3.6, (3o,1), : Ho(D'(F)) —
H (I'((F1)a)) is an isomorphism for 3s < 2(g —p — 1), so the same holds for
L.

The Lynden-Serre spectral sequence of (41) for F'is

E2(F) = Hy(Uo, Hy(Z")) = Hya(D(FL)). (42)

We showed above that [, : Hy (T'((F1)a)) — Hst(T((Fp)a)) is an isomor-
phism for 3(s +t) < 2(g —p — 1) and surjective always. Note that ZP™! lies
in the center of ['(F,), since the Dehn twists can take place as close to the
boundary of F,, as desired. By the Kiinneth formula, we have an isomorphism

E3,(F) = E3(F) ® Egy(F) = Hy(To) ® Hy(Z")
Now since I, : Hoi(T'((F1)a)) — Hst(I'((Fb)a)) is an isomorphism for
3(s+1t) <2(g—p—1) and always surjective, it follows by an easy inductive
argument that [, : Hy(I'(Fo)s) — Hs(I'(F1)s) is an isomorphism for 3s <
2(g — p — 1) and surjective for 3s < 2(g —p — 1) + 3.
The Lynden-Serre spectral sequence of (40) is

EB2,(F) 2 H, ((Z/2)"" % Spss H(Tai Za)) = Hrs(Tai Za). (43)

Since 1:; preserves the orientation of the simplices, we can drop the local
coordinates to obtain

E2(F) = Hy ((Z/2)"" X Spr, H(Ta) © Za)
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It follows from the above that [, : ENTQS(Fl) — Ef’s(Fo) is an isomorphism
for 3s < 2(¢g — p — 1) and surjective for 3s < 2(¢g —p — 1) + 3. Then by
Moore’s comparison theorem,

L Hq(F(Fl)a§ Za) - Hq(F(FO)a§ Za)

is an isomorphism for 3¢ < 2(g—p—1) and surjective for 3¢ < 2(g—p—1)+3.
Then in particular, it is an isomorphism for 3(p + ¢) < 2¢g — 2 and surjective
for 3(p +¢q) < 29 — 2+ 3. Now a final application of Moore’s comparison
theorem on the spectral sequence in (39) gives the desired result, as explained
in the beginning of the proof. O
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4 Stability with twisted coefficients

4.1 The category of marked surfaces

Definition 4.1. The category of marked surfaces € is defined as follows: The
objects are triples F, xq, (01 F, 0o F, ..., 0, F), where F'is a compact connected
orientable surface with non-empty boundary OF = 0;F U ---0,F, with a
numbering (01 F, ..., 0,.F) of the boundary components of F, and zq € O, F
is a marked point.

A morphism (¢, o) between marked surfaces (F, zq) and (G, yp) is an am-
bient isotopy class of an embedding ¢ : ' — G, where each boundary
component of F'is either mapped to the inside of G' or to a boundary com-
ponent of G. If ¥(x¢) € OG then 1(xg) = yo, else there is a embedded arc o
in G connecting xy and yg.

The objects of € is can be grouped

Oobe=JJobe,,,

g7r
where €, , consists of the surfaces with genus g and r» boundary components.

Definition 4.2. The morphisms X g, ¥o; in € are the embeddings ¥, ; :
F — %, ;F given by gluing onto 0, F' a torus with 2 disks cut out, or a pair
of pants, respectively, as on Figure 10. The embedded arc o is also shown
here. The boundary components of Y F" are numbered such that the new
boundary component from the pair of pants is 0,41(30 1 F).

The morphism ¥ _; in the subcategory of [[ ., Ob &, is the embedding
given by gluing a pair of pants onto 9,(F) and 95(F), as on Figure 10. The
numbering is that 0;(X, _1F) = 0,1 F for j > 1.

Or+1%0,1F)
F F ! F
N (] EEEN
o o O F P
Yol 2o X F

Figure 10: The morphisms X ¢, o1 £, and Xy 1 F\.

In the figure, the black rectangles are boundary components of F' or
¥ ;F, and the outer boundary component is always 0;F with the marked
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point indicated. On the figure of ¥; _1 F' the grey "tube” is a cylinder glued
onto Oy F.

Now we will see how 3; ; can be made into functors. First we define
the subcategory €(2) of € to be the category with objects [[,~, Ob&,, and
whose morphisms ¢ : F — S must restrict to an orientation-preserving
diffeomorphism ¢ : O, F' — 0,.S. Note that ¥, o and ¥y, are morphisms in
this category.

Y10 and Xg; are functors from € to itself, and ¥, _; is a functor from €(2)
to € in the following way: Given a morphism ¢ : ' — S we must specify
the morphism ¥, ;(¢), and this is done on the following diagram (drawn in
the case of ¥ ). Here, the grey line shows how X, is embedded in ¥;5
by ¥10(p). Notice how the arc o determines the embedding.

F 210 F e
' 21,0(90)1
S S
F 210 F =
—

Figure 11: The functor X .

Similar diagrams can be drawn for ¥,; and ¥; _;. In the latter case
Y1,-1(p) exists because when ¢ € €(2), ¢ : FF — S has not done anything
to O2(F'), so that ¥y 1 F' can be embedded in ¥; 15 just as on Figure 11.

4.2 Coefficient systems

We now define the coefficient systems we are interested in. We say that
an abelian group G is without infinite division if the following holds for all
g€ G: Ifn|gforallneZ then g =0. By n | g we mean g = nh for
some h € GG. Note that finitely generated abelian groups are without infinite
division.

Definition 4.3. A coefficient system is a functor from € to Abyiq, the cate-
gory of abelian groups without infinite division.
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We say that a constant coefficient system has degree 0 and make the
general

Definition 4.4. |Ivanovl| A coefficient system V has degree < k if the
map V(F)—V(%;;F) is split injective for (i,7) € {(1,0),(0,1), (1, —1)},
and the cokernel A, ;V is a coefficient system of degree < k — 1 for (4,5) €
{(1,0),(0,1)}. The degree of V is the smallest such k.

Example 4.5. (i) V(F) = H,(F,0F) is a coefficient system of degree 1.

(17) VI(F) = Hp(Map((F/OF),X). This is the coefficient system used in
|Cohen-Madsen|. It has degree < |%] if X is d-connected, which will
be proved in Theorem 5.3.

We write 3J; ;V for the functor F' ~» V (X, ;F'), where (¢, 7) € {(1,0), (0,1)}.

Lemma 4.6 (Ivanov). Let V be a coefficient system of degree < k. Then
Y10V and X1V are coefficient systems of degree < k.

Proof. See [Ivanovl]| for ¥, oV. The case ¥,V can be handled similarly. O

4.3 The inductive assumption

Below I will use the following notational conventions: F' denotes a surface in
¢, and unless otherwise specified, g is the genus of F. Y, refers to any of

Z1,07 E0,17 El,—l-

Definition 4.7. Given a morphism ¢ : FF — S, ® will denote a finite
composition of ¥p; and ¥; _; such that ®(¢) is defined, i.e. makes the
following diagram comutative

F—2%&(F)

S —20(9)

By a finite composition we mean ® = 3J; ; o---0; ; for some s > 0,
where (ig, jr) € {(0,1),(1,—1)} for each k =1,...,s. We say that such a @
is compatible with ¢ : FF — S.

To prove our main stability result for twisted coefficients, we will study
certain relative homology groups:
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Definition 4.8. Let ¢y : ' — S be a morphism of surfaces, and let ® be
compatible. Let V' be a coefficient system. Then we define

Rel, (S, F) = H,(D(S), D(F); V(2(S)), V((F))).
If & = id, we write Rel! (G, F) for Rel)"*(G, F).
Theorem 4.9 (Ivanov, Madsen-Cohen). For sufficiently large g:
(i) Rel} (S10F, F) = 0.
(i) Rely (S0 F, F) = 0.
(iii) Rel) (31,1F, F) =0.

Proof. For (i), see [Ivanovl|. For (i), see [Cohen-Madsen|. Their proof only
requires that the groups V(-) are without infinite division.
To prove (iii), we use the following long exact sequence,

Hq(F, V(F)) — Hq(zl,—lFa V(ZL_lF)) — Rel;/(Zl,_lF, F) —
Hy ((FVV(F) — Hy1(Z1, 1 F V(E 1 F))

Thus to see that Rel};(Zl,_lF, F) = 0 all we have to do is to see that the
first map is surjective and that the last map is injective. Both of these maps
are 3 _1, so they fit into the following diagram, for k € {q,q — 1}

Hy(F,V(F)) ==L Hy(F,V(F))

Hy(S,V)

where S is a surface with ¥,,S = F. Now by (i) and (éi), if ¢ is sufficiently
large, both the diagonal and the vertical map is an isomorphism, so >; _; is
also an isomorphism. O

Define ¢;,, by

(1, i (l,m) = (1,-1);
Elm = { 0, if (I,m) = (1,0) or (0, 1).

Inductive Assumption 4.10. The inductive assumption I, is the follow-
ing: For any coefficient system W of degree ky, any surface F' of genus g,
and any ® compatible with X, : F' — X, F', we have

Rell’®(S1mF, F) =0 for 29> 3q+ kw — €im,

if either ky < k, or kw =k and g < n.
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In the rest of this section I am going to assume I ,. Note that I} ,, for
all m € N is equivalent to [, . Thus the goal is to prove Iy, . Let V be
a given coefficient system of degree k.

Lemma 4.11 (Ivanov). Let F' be a surface of genus g. If 2g > 3q+k—1—¢;,,
then for (i, 7) € {(1,0), (0, 1)}

Rel}"® (Sym F, F) — Rel) ™ ®(3,, F, F)
18 surjective.

Proof. Since Relg’ziqu’(El,mF, F) = R,elqziva’q’(ELmF, F) we have the follow-
ing long exact sequence :

Rely® (S, F, F) — Rel}>5% (S, F, F') — Rel V(5. F, F)

Since A; ;V is a coeflicient system of degree k—1, the assumption I ,, implies
that RelqA”V’@(Zl,mF, F) =0, and the result follows. O

Theorem 4.12. Assume that h satisfies 2h > 3n+k —1—¢;,,, and that the
maps below are injective for all surfaces F' of genus g > h and ® compatible
with X, 0 ' — X F,

Rel)"®*-1(%, F, F) — RelV®(2,,21 1 F, % 1 F),
Rel>0V (%), F, F) — RelY (2,201 F, Yo, F).
Then for any compatible ®, RelV*(%;,,F, F) =0 for g > h.

Proof. Assume 29 > 3n+k —1—¢;,,. Write ® =3, ; o---0%; ;, where
(ir, jx) € {(1,—1),(0,1)}. Observe that we can write ® = ® o (3;_,)? for
some d, where ® =X, , o---0X,, ,, with (Mg, ux) € {(1,0),(0,1)}. Then
by the first assumption in the theorem, we get by induction in d:

RelV® (8 F, F) — Rel ' (21,,(21.1)4F, (21_1)F)

is injective. Thus it suffices to show Rel’® (3, ,,,(31._1)%F, (£1._1)4F) = 0.
Since genus((X,_1)?F) > g > h, it is certainly enough to show Rel!** (2, F, F) =
0, where @’ is a finite composition of ¥ o and ¥;. By Lemma 4.11, we get
inductively that

RelY (S F, F) — Rel"® (%, F, F)

is surjective, so it suffices to show that Rel! (¥;,,F, F) = 0. Now by the
second assumption in the Theorem, we know

RelZ0Y (3, F, F) — Rel) (31, X0 F, Yo 1 F)
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is injective. Since V' is a coefficient system of degree k, V(F) — V(X011 F)
and V(F) — V(3; _1 F) are split injective, so the composition,

Rel) (X F, F) — RelZ>V(%,,,F, F) — Rel! (21,,X01 F, 201 F)
— Rel7» V(5,501 F, Y01 F) — Rel), (2,21 0F, $10F)

is injective, where the second and the last maps are the maps in the assump-
tion and thus injective. Iterating this, we get an injective map

RelY (31, F, F) — RelY (X1,0(210)%F, (X1,0)%F)

for any d € N. But genus((X;9)*F) = g+d, so by Theorem 4.9, Rel) (¥, F, F)
injects into zero. This proves Rel!*(¥;,,F, F) = 0. O

4.4 The main theorem for twisted coefficients

In the proof of stability for relative homology groups, we will use the relative
version of the spectral sequence, cf. Theorem 1.2, E} = E} (3 ;F;2 — 1)
associated with the action of I'(¥; ;F') on the arc complex C,(X;;F;2 — i)
and the action of I'(3;,,,3; ;F') on the arc complex C\(%;,,%; jF;2 —i). Let
bo, b1 be the points in the definition of C.(X;;F;2 — 4); and bo, b1 be the
corresponding points for Cy(%;,,%; ;F;2 — ). We demand that by, bo lie in
the 1st boundary component, but is different from the marked point. To
define the spectral sequence, ¥, must induce a map

which we now define: If i = 0, by and b; lie in different boundary components,
and the map is given on o € A(X;;F) by a simple path v from by €
YimZijF to by € X;;F inside 3,5, ;F \ ¥;;F. Then the arcs of a are
extended by parallel copies of v that all start in bo. Note that in this case
Bl = by, so no extension is necessary here. If ¢ = 1, by and b; lie on the
same boundary component, and we choose disjoint paths for them to the
new marked boundary component, and extend as for ¢ = 0.
Now the spectral sequence (typically) has E' page:

E;,q = @E;,q(a>

oEY,
E,o(0) = HyT(S,50mF)s, 10 (i F)re);
V(DX i3 m s (F)), V(P jEs4(F)))
= R,el(‘]/’cbo((Ei,jELmF)El’mT(o)7 (Ei,jF)T(U)) (45)
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Here, ®, : (3; ;F)r(s) < i, F is the inclusion, which is a finite composition
of ¥o1 and 3y _;. Furthermore, I'; denotes the stabilizer of the (p—1)-simplex
o in I'. The direct sum is over the orbits of (p—1)-simplices o in C,.(X; jF';2—
i), whose images under %, ,,, are also (p —1)-simplices in C.(2;,,%; jF';2 —1).
In most cases, X ,, induces a bijection on the representatives of orbits of
(p—1)-simplices. Also recall that the set of orbits are in 1—1 correspondence
with a subset ip of the permutation group ¥,. Lemma 2.16 characterizes ip.
As a general remark, note that if a permutation is represented in C,(F;2—1),
then it is also represented in C\(%;,,,F'; 2—1), since genus(X;,, F') > genus(F).
So we will only check the condition for C\(F,2 — i).

In certain cases we will either not have 3, inducing bijection on the
representatives of orbits of (p — 1)-simplices, or they will not include the
permutation used in the standard proof. All such cases will be found in
Lemma 4.13 below and taken care of in the Inductive start section at the end
of the proof.

The first differential, d)  : E) — E}_, , is described in section 1.3.
The diagrams

A(F3i) 2= A (F i)

|

— 9, — .
Yo ——— %, j=0,...,p

commute, where 0; omits entry j as in Def. 2.2 and the vertical arrows
divide out the I' action and compose with P. Thus for each o € 3,,, there
is g; € I' such that

95 - 9;T(0) = T(9;0), (46)

and conjugation by g; induces an injection ¢y, : I'r(o) < I'r(g,0). The induced
map on homology is denoted 0; again, i.e.

95+ Hy(T (% X0m F)sy 1), (Zi i F)1(0); V) —

(ng )«

Hy(T(Zi jE0mE )5, 0,1(0), U(Ei i F o) V) — (47)
Hy(T(Zi jZmF)s,,,m0,0): T (ZiiF) 16,00 V)

Note that (c,,). does not depend on the choice of g; in (46): Another choice

;. o 7 -1 . . .
gj 8ives g = Cyryo1Cy;, and g;g9;" € I'r(s,0) 80 Corgt induces the identity on
the homology. Then

p—1

d'=> (-1)9;. (48)

=0
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Lemma 4.13. Letn > 1. The subset ip C X,, which s i 1 —1 correspon-
dence with a set of representatives of the orbits of A,_1(X; ;F;2—1), has the
following properties:

Surjegtivity of Xp1: Assume 2g > 3n+k —2 —¢;,,,. Then
Y, =2, for2<p<n+1and forp=mn+2 =3, unless:

e (Im)#(1,-1), n=1, g=1, k=0,1, or
e (Ibm)=(1,-1), n=1, ¢g=0, k=0, or
e (Il,m)=(1,-1), n=1, g=1, k=0,12.

Surjegtivity of ¥y _4: Assume 2g > 3n —l—_k: — 3 —¢€1m. Then
Y,=%,for2<p<n+1, andoe X, if S(o) > 1 forp=n+2<4,
unless:

e (Im)#(1,-1), n=1, g=0, k=0, or
e (Im)=(1,-1), n=1, ¢g=0, k=0,1, or
e (Im)=(1,-1), n=2, g=1, k=0.

Injectivity of ¥; _;: Assume 2g > 3n + k —eim. Then
Y,=%,for2<p<n+2 ando ek, if S(o) >1 forp=n-+3 =4,
unless:

e (Ibm)=(1,-1), n=1, ¢g=1, k=0.

Proof. We only prove the first of the three cases, as the other two are com-
pletely analogous. So assume 2g > 3n+k —2 —¢;,,,, and let 0 € ¥, be a
given permutation of genus s. Let 2 < p <n+ 1. By Lemma 2.16, 0 € fp if
and only if s > p—1—g. This inequality is certainly satisfied if p—1—g¢ < 0.
The hardest case is p = n + 1, so we must show n — g < 0. By assumption,

?
2ln—g)<2n—CBn+k—-2+¢,)=-—n—k+2+¢,, <0,

For n > 3 this holds. If n = 2, the assumption 29 > 3n + k — 2 — ¢, forces
g>2,s0n—g<0. Forn=1and (I,m) # (1,—1), we have g, = 0, so
g > 1, which means n — g < 0. Last for n = 1 and (I,m) = (1, —1), we have
€1,m = 1, so we get one exception, g = k = 0.

Now let p = n+2 = 3, so n = 1. The requirement in Lemma 2.16 is
p—1—g<0,ie g>2. Byassumption2g >3n+k—2—¢;,,,s0if g=1,
we have k —¢;,, —1 < 0. Now for ([,m) # (1,—1), the only exceptions are
k = 0,1, and for (I,m) = (1,—1), the only exceptions are k& = 0,1,2. If
g =0, we have k —¢;,, +1 <0, so the only exception is ([, m) = (1, —1) and
k = 0. This finishes the proof. O
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Proposition 4.14. Let o denote a simplex either in Ay (F; 1) with P(a) =
[10], or in Ag(F;2) with P(«) =[210]. Let g be the genus of F,, and let
be compatible with ¥y, : F' — Xy, F'. Then if 29 > 3¢ + kw — 1 — €1, the
maps Oy = 01 are equal as maps from

RelT‘L/7q>a((El7mF)Zl’maa Foc)

Proof. Write ¢ = P(«). First note that dy and 0; have the same target,
since Jy(0) = 01(0) =: 7 by assumption. We can assume 7'(c) = « and
T(t) = OJpr. Then we can choose the element g = ¢; from (46), which
must satisfy ¢ - ;o = Oyx, to be as in Prop. 3.2. Then g commutes with
the stabilizers I'(X;,, F)aguars L'(F)agua, and thus also with I'(%; ,, F'), and
D(F)a.

We now extend the arcs of « to arcs in ®F as follows: If o € Aq(F;1)
we use (44) to obtain & = ®(a) € A (PF;1). If a € Ay(F;2), we extend,
if possible, the 1-simplex ap U ag to a 1-simplex @ € A(®F;1), i.e. the
extended arcs start and end on the same boundary component in ®F. If this
is not possible, we extend « to & € Ag(PF';2). These extensions must satisfy
the same requirements as (44) does. Then we make the same extensions for
B =Y ma to B in OY;,, F'. Now the conjugation (c,), acts as the identity
on

Hy (T (Bm ), T(F)a; V(B m E)3), V(PF)a))

If we are in the case @A;(PF; 1), then the inclusion map on the coeffi-
cients,

i 0 Hy(D(EmE)s (F)a; V((@El,mF)B), V({(®F)a)) — (49)

Hy(T(S1mF) g, T(F)a; V(OS, F), V(OF)) = Rel, ®* (S F)s, 0 Fa)
equals ;o on the coefficient systems, and by Lemma 4.11 it is surjective
since 29 > 3n + k — 1 — g, by assumption. Now as i, is surjective and
(cg)u 04y = i, We see that (c,), is the identity on Rel)"®*(%;,,F., Fl), and
thus 01 = (¢y)«00 = 0. For @ € Ay(PF;2) we do the same, except that we

use « instead of only ap U ay. In this case i, in (49) is going to be ¥y 03
on the coefficient systems, which again by Lemma 4.11 is surjective. O

By Theorem 4.12, to prove Iy ,; it is enough to prove:
Theorem 4.15. The map induced by ; ;,

Rel)"®03 (2, F, F) — Rell"® (3, ;% F, 8 i F)

satisfies:
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(1) ForX;; = X1, it is surjective for 29 > 3n+k—2—¢c;,,, and if & = id
it is an isomorphism for 2g > 3n+k —1—¢;,,. For k =0 it is always
injective.

(it) For X;; = Y41, it is surjective for 29 > 3n +k — 3 — €1m, and an
isomorphism for 2g > 3n +k — ;.

Proof. We prove the theorem by induction in the homology degree n. Assume
n > 1. The induction start n = 0 will be handled separately below, along
with all exceptional cases from Lemma 4.13. This means that in the main
proof, any permutation is represented by an arc simplex (in some special
cases only if its genus is > 1).

Surjectivity for X :

Assume 2g > 3n +k — 2 — g,,. We use the spectral sequence E;q =
E} (301F;2), and claim that E} = 0 for p+¢ = n+ 1 with p > 3. Note
that I'(X01 F) s = ['(30,1 F,), and genus(Xo1Fy) = g—p+1+S(0) > g—p+1.
We will use the assumption Iy ,,, and must show 2(g —p+1) > 3¢+ k — 1,
for p > 3. These inequalities follows from the one for p = 3, which is
2(g —2) > 3(n—2)+ k — €, and this holds by assumption.

Now all we need is to show that Ein_l = 0. We consider

Eypy = Eypy([01]) & By, 1 ([10])

We wish to show that d; : E?in_l — E217n_1 is surjective and thus E217n_1 =
0. We look at E3, () indexed by the permutation 7 = [210]. We will
show that d" restricted to E3,, () surjects onto Ey,, _,([10]) without hitting
By, 1([01]). Since S(7) =1, ¥o1F; is Fy_1,, and thus by Proposition 4.14,
Oy = 0;. We then see

d1:80—01+82:82

and 0y : Ej, (1) — Ej, 4[10] equals Xg; and so is surjective by induc-
tion, since 2(¢ — 1) > 3(n — 1) + k — 2 — &,,;. All that remains is to hit
Ej,,1([01]) surjectively, regardless of Ej, ,([10]). Consider the following
component of d':

0o+ By 1([201]) — By, ([01]).

This is the map induced by X; _;. By induction this map is surjective, since
2(9—2) > 3(n—1)+k—3—ey,, by assumption. This proves that E3 _, = 0.
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Injectivity for > ;:

Assume 2g > 3n +k — 1 — g;,,. For this proof we take another approach.
Consider the following composite map,

Rel) (S F, F) — Rel2*tY (5, F, F)
=% Rel) (S, 30,1 F, Ko F)

= Rel}]/(zo,—lzl,mzo,lFu o,-120.1F)
= Rel) (S, F, F) (50)

Here p : Fy, — Fj,_; is the map that glues a disk onto a the unmarked
boundary circle created by ¥ ;. Since the composite map (50) is induced by
gluing on a cylinder to the marked boundary circle of ¥; ,,F" and F', it is an
isomorphism. Now by Lemma 4.11, since 2g > 3n+k—1—¢;,,, the first map
is surjective, so Y ; is forced to be injective. Note with constant coefficients
(k = 0), the first map is the identity, so here ¥, is always injective.

Surjectivity for X, _;:

Assume 2g > 3n + k — 3 — €,,. We use the spectral sequence E;q =
E! (31,1F;1). We show E! = 0if p+¢=mn+1and p > 4, using assump-
tion I ,. We know ['(3 1 F), = ['((¥1,.1F),), and genus((Xy _1F),) =
g—p+1+S(c) > g—p+1. So we must show 2(¢g—p+1) > 3¢+k —e,, for
all p+qg=n+1, p > 4. This follows if we show it for p = 4, which is easy:

209—3)=29—-6>3n+k—3—¢c,;  —6=3n—3)+k—cpy.

To show that the map dy : Ej, — EY, is surjective, we thus only need to
show that E3,_; =0 and E3, _, = 0. Consider Ej,_,:

By = By 1 ((01) & By, ([10)).

For o = [10], since S(o) = 1, we have genus((31, 1 F),) = g—p+1+S(0) = g.
Thus by Iy ,. E3,_1([10]) =0, since 29 > 3n+k—1—¢c,; = 3(n—1)+k+2—
€1m- Now consider the summand in E3, , indexed by 7 = [201] which has
genus 1. Then (X, _1F),; = F,_1,, so dy on this summand is exactly the map
induced by Yo, (since d; has 3 terms, only one of which hit Ej, ,([01])).
To show this is surjective onto Ezl,n_l, we use induction, and must check that
2(g—1) > 3(n—1)+k—eym, which follows by assumption. So d' is surjective
onto E21,n—1’ which implies that Ein_l = 0.

Consider Eé,n_z. As above, by Ij,, all summands are zero, except for
the one indexed by id = [012]. Consider Ej, ,(7’) indexed by 7/ = [3012],
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which has genus 1. Restricting d' to this summand, only one term hits
Ej, 5([012]). As above, one checks that this restriction of d" is exactly the
map induced by X 1, so by induction it is surjective.

Injectivity for >; _;:

Assume 2g > 3n+k +2 —¢;,,,. We use the same spectral sequence as in the
surjectivity of ¥; _;. We claim E;,q =0ifp+qg=n-+2and p> 4. Again,
LX) 1 F)e =T(X1,1F;), and genus(Xy 1 F,) = g—p+1+S(0) > g—p+1.
So we must show 2(¢ —p+1) > 3¢+ k+2—¢,  forallp+qg=n+2,p >4,
and this follows from 2g > 3n 4+ k + 2 — ¢,,,;, as above.

To show that the map d, : Elln — E&n is injective, we thus only need
to show that Ein_l = 0 and d' : Ezln — Elln is the zero-map. That
E3,_, = 0 is proved precisely as for E3, , in surjectivity for ¥; 1, so we
omit it. To show d' : Ej,, — EJ is the zero-map, note that £}, has two
summands, Ej,([01]) and Ej, ([10]). We get that d' is zero on Ej,([10]),
since d; = 9y — 0, = 0 by Proposition 4.14. Next we consider d' : E%n —
Ej,,. If we can show this is surjective onto Ej, ([01]), we are done. Again
we use the summand Ej, (7), where 7 = [201]. The restricted differential
d' : Ej,(r) — E;,([01]) is exactly the map induced by g1, so we can
show it is surjective, since we have already proved the Theorem for ¥ ;. The
relevant inequality is 2(g —1) > 3n+k —&;,,,, which holds by assumption. So
d": E;, — Ef, is the zero-map, and we have shown that d, : E},, — Ef
is injective.

Induction start and special cases:

Here we handle the the inductive start n = 0, along with the cases missing
in the general argument above, namely the exceptions from Lemma 4.13.

The induction start n = 0. For n = 0 and & = 0, we always get
Rely ®(SymF, F) = 0 since Hy(F,V(F)) — Ho(XmF, V(S F)) is an iso-
morphism when the coefficients are constant. So the theorem holds in this
case. Now let n = 0 and let k£ be arbitrary. By considering the spectral
sequence, see Figure 12, we see that Y ; is automatically surjective, since
the spectral sequence always converges to zero at (0,0).

Ei,j dt
TN AT

Figure 12: The spectral sequence for n = 0.
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For the sake of the case n = 1, note that the surjectivity argument for
Y0,1 when n = 0 also works for any k£ when using the spectral sequence for
absolute homology for the action of I'(Fy,41) on Cu(Fo,r11;2).

For X 1, the injectivity argument used above holds for all n. So we must
show that ¥; _; is injective. For g > 1, the argument from above works,
since there are arc simplices representing all the permutations used above.
The problem is thus g = 0, which means k£ = 0, 1, but we will also show the
result for k£ = 2 since we will need in the case n = 1 below.

As the complex we use, C,(F},_1;1), is connected, the spectral sequence
converges to 0 for p + ¢ < 1, so we can apply that spectral sequence.
We must show that d' = d%,o in Figure 12 is the zero map. We con-
sider (I,m) € {(1,0),(1,—1)} and (I,m) = (0,1) separately. For X,
E} o = E;,([10]), since the permutation [01] has genus 0 and is by Lemma
2.16 neither represented in Cy(Fy,_1;1) nor Cy(3g 1 Fy,—1;1). Now the argu-
ment used to show injectivity of 3; _; in general works here, too.

For $1 or %y 1, B}y = E3o([10]) @ E},([01]) where E},([01]) is the
absolute homology group,

E2l,o([0 1)) = Ho(T(ZimFrr—1)rqo1)); V (BimFi-1)),

since [01] is represented in Cy (X1 _1F1,—1;1) and Cy (X4 0F7,-1;1), but not
in C,(F1,_1;1), see Theorem 1.3. For Ej(([10]), the general argument for
injectivity of ¥ _; shows that d},([10]) is zero. That d* : E},([01]) is the
zero map will follow if we show that E~§’0 hits E~2170([0 1]) surjectively. But the
d'-component E}([201]) — E},([01]) is just S in the absolute case for

n=0,g=0and k < 2. This d'-component is surjective onto £3([01]), by
the remark on surjectivity for n = 0.

Surjectivity when n = 1. Now let n = 1 and £ < 2. Consider the
relative spectral sequence, as depicted in Figure 13. If we show that the map
d3, : B3y — Eg, is zero, we have shown surjectivity. We will show that
Ej o = 0. Recall by Theorem 1.3, E}, = E;(([01]) ® E3,([10]), where

Rel:)/’q)" (F(Fg+i+l,r+j+m)2m,10’ F(Fg-l-i,r-l—j)a)’ if o € ilfm N il;
Ezl,o(o') = Ho(F(Fg+i+l,r+j+m)2m,m§ V(L(Fytitirtjem))), o€ ilfm \il?
0, if o ¢ ill’m.
(51)
and X, ill’m are the subsets of >; in 1 — 1 correspondence with the orbits of
Ay (% ;F;2 —1) and Ay(X,,,%; ;F; 2 — i), respectively.
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T~

— S~ e

Figure 13: The spectral sequence for n = 1.

Surjectivity of 3; ; when n = 1. Assume (I,m) = (0,1), ¢ = 0 and
k = 0. Then by Lemma 2.16 only [10] is represented as an arc simplex, and
by (51) above, E21’0 is a relative homology group of degree 0 with constant
coefficients, so E2170 = 0.

The remaining exceptions are (I,m) # (0,1), ¢ = 0 and & < 1. By
Lemma 2.16, [10] is represented as an arc simplex in both Fj,;, ., and
Fi,_1, so E34([10]) = 0 by Theorem 4.12. Now [01] is only represented
in Fiiyyqm, so by (51), E34([10]) is an absolute homology group. To kill
it, consider E3,([201]),. which is also an absolute homology group. The
restricted differential and d' : E5([201]) — E3,([01]) equals Xg;, so it
is surjective by the case n = 0, which as remarked also holds for absolute
homology group.

Surjectivity of Y;; when n = 1. First assume g = 1. The possible
permutations [01] and [10] are by Lemma 2.16 represented as 1-simplices
in both arc complexes. Thus E2170 is a direct sum of two relative homology
groups in degree 0 with coefficients of degree £ < 2. Then by the Induction
start n = 0, o, and X;_; are injective for ¢ > 0, so by Theorem 4.12,
El, =0,

For (m,l) = (1,—1), we have the special case ¢ = k = 0. We will
show Hl(FLT, FO,T—}—l) == 0, by ShOWiIlg 217_1 . Hl(rom_,_l; Z) — Hl(FLT; Z) is
surjective, and thus that any map into Hy(I'y,,T'o,+1) is surjective. We use
[Harer3|, Lemma 1.1 and 1.2, which give sets of generators for Hy(I'g ,+1;Z)
and Hy(I'y,;7Z), as follows. Let 7; be the Dehn twist around each boundary
component 0;F,, for ¢ =1,...,r, and let x be the Dehn twist on any non-
separating simple closed curve v in Fy,. Then Hy(I'1,;Z) is generated by
To,...,Tr, . We remark that Harer states this for Q-coefficients, but in H;
his proof also holds for Z-coefficients. We can choose the curve v as the image
of 02Fy 41 under 34 ;. Similarly in I'g, 1, we have Dehn twists 7/ around
each boundary component 0;Fp ., and these are among the generators for
Hy(Toyy152). Then ¥y maps 7/, +— 7; for i = 2,...,r by construction of
Y11, and 74— x by the choice of v. So ¥y 1 : Hi(Do 413 Z) — Hy(T'y,;Z)
is surjective.



60 4 Stability with twisted coefficients

Injectivity of ¥; 1 when n = 1. The only exception is (I,m) = (1, —1),
g =1 and k = 0. For this we will use a different argument, drawing on the
stability Theorem for Z-coefficients. Consider the following exact sequence:

Hl(rl,r; V) — Hl(r2,r—1; V) — Rel}/(rlr—la Fl,r)
— Hy(T1,3 V) — Ho(Typ—1;V) (52)
Since k = 0 we have constant coefficients, so we can use Theorem 3.6.
Since 2-1 > 3 -1 — 1, the first map in (52) is surjective, and the last map

is an isomorphism. Thus Rel}/(lﬂg’,n_l, I';,) = 0 and any map from it is thus
injective. This finishes the special cases when n = 1.

Surjectivity of ¥; _; when n = 2. Again we have only one exception,
namely (I,m) = (1,—1), g = 1 and k = 0. It suffices to show E3; = 0
and E?%,o = 0. For Eil the argument in Surjectivity of 31 _1 works since
all the permutations used there are in 3. So consider E3,. Here for all

permutations 7 except [012] we have 7 € $3 N X5™ (for this notation, see
(51). Thus for these 7 we know that Ej.(7) = 0, since it is a relative

homology group in degree 0 with constant coefficients. But [012] € i;’_l\ig,
50 E34([012]) is an absolute homology group. However, this group is hit
surjectively by Ej[3012], since the restricted differential equals ¥ (see
the remark for n. = 0). Thus E3; = 0, as desired. O

Remark 4.16. As a Corollary to this result, we can be a bit more specific
about what happens when stability with Z-coefficients fails, ¢f. Theorem 3.6.
More precisely,

(7) The cokernels of the maps

Z0,1 . H2n+1(F3n+1,r) B Hk(F3n+1,r+1)
Z0,1 . H2n+2(F3n+2,r) B Hk(F3n+2,r+1)

are independent of r > 1.
(17) Let r > 2. Then the cokernel of the map
Z1,—1 : H2n+l(r3n,r) B Hk(r?m-l—l,r—l)
is independent of r.

Proof. Since X ; is always injective, it fits into the following long exact
sequence,

H2n+1(r3n+1,r) — H2n+1(r3n+1,r+1) — R‘el§n+1(F3n+l,r+17 F3n+1,r) — 0.
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Since 2(3n + 2) > 3(2n + 2) — 2, we get by Theorem 4.15 that the cokernel
is independent of 7. The other case is similar. For (ii) we get

1,21
Hq(r3n,r> —1> Hq(r3n+1,r—1> —_— Relg(Fi}n-i-l,T’—la F?m,r) - q—l(F3n,r)

| ie

DI
Hq(r3n,r+1> L> Hq(r3n+1,r) - Requ(F3n+1,r7 F3n,r+1) - q—l(r3n,r+1>

(We have written ¢ = 2n + 1 to save space.) As the last two vertical maps
are isomorphisms, the cokernels of the first map in the top and bottom rows
are equal. O

The above Theorem finishes the inductive proof of the assumption I, .
The reason for proving the inductive assumption is that we now get the
following Main Theorem for homology stability with twisted coefficients:

Theorem 4.17. Let F be a surface of genus g, and let V' be a coefficient
system of degree k. Let (I,m) = (1,0), (0,1) or (1,—1). Then the map

H,(F;V(F)) — Hy (30 F V(S F))
induced by ¥ ,,, satisfies:
(1) For Xy, = X1, it is an isomorphism for 2g > 3n + k.

(i1) For Xy, = Y10 or X1._1, it is surjective for 29 > 3n+k — €, and an
isomorphism for 2g > 3n + k + 2.

Proof. Consider the following exact sequence
Rel) (S F, F) — Hy(F; V) — Hy (S F5 50, V) — Rel) (5, F, F).

To show surjectivity, we must prove that RelY (2, F, F') = 0. By Ij ;1 this
is the case when 2g > 3n+ k. To show injectivity, we first note that as usual,
Yo,1 is always injective. For 3y _;, we get by I} 1o that Rel,‘{H(Zl’mF, F)=0
when 2g > 3(n+1) + k + 2. Finally, 3 o = 31 _1X; and thus also injective

when 29 > 3(n+1) + k + 2. O
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5 Stability of the space of surfaces

In [Cohen-Madsen|, Cohen and Madsen consider the following type of coef-
ficients
Vi (F) = H,(Map(F/OF, X))

for X a fixed topological space.

Lemma 5.1. Let K = K(G; k) be an Filenberg-MacLane space with k > 2.
Assume H,(K) is without infinite division. Then V. is a coefficient system
of degree < |75 ].

_n_

Proof. To prove VX is a coefficient system of degree < | %5, we must prove
that the groups VX(F) are without infinite division, and that V. has the
right degree.

We consider the degree first, and the proof is by induction on n. Take
¥ = Y. the other cases are similar. We have the following homotopy
cofibration:

S'AS' — NF/ONF — F/OF
Taking Map(—, K) leads to the following fibration:

Map(F/OF, K) — Map(SF/OSF, K) — Q(K) x Q(K)  (53)

Since K = K(G, k) is an infinite loop space it has a multiplication, and con-
sequently so has each space in the fibration (64) above. Thus the total space
is up to homotopy the product of the base and the fiber. Using Kiinneth’s
formula, we get:

VE(EF) = é VE (F)® H(Q(K) x Q(K)) (54)

1=0

Note for n = 0 this says that Y induces an isomorphism, so Vi (F') has degree
0. This was the induction start.

Now since Q(K) = K(G,k—1) is (k—2)-connected and k > 2, Hy(Q2(K) x
Q(K)) =Z and H;(QUK) x Q(K)) =0 for j < k — 2. This means that the
cokernel of ¥ is:

AV (F) = D VIL(F) @ Hi(QK) x Q(K))

i=k—1

Since the degree of a direct sum is the maximum of the degrees of its com-
ponents, we get by induction that the degree of A(VE(F))is < L"_(k_l)J =

k-1
| 23] — 1. This shows that the degree of VX is < [Z5].
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It remains to show that VX(F) is an abelian group without infinite divi-
sion for any surface F'. To prove this, we use a double induction in n and F'.
There are two base cases.

First consider n = 0, F any surface. From (54) we see that Vj* does not
depend on the surface F. So we can calculate VJ*(F) using F' = D a disk:

7, k> 2;

V() = HuMap(D/0D. ) = Zlma()] = { iy 75

This is an abelian group without infinite division.
Secondly, let F' = D be a disk, and n any natural number. We see
V(D) = H,(Map(D/0D,K))= H,(Map(5* K))
= H,(Map(5", Q*(K)) = H,(Q*(K))
and according to our assumptions on H,(K), this is without infinite division.
The general case now follows from induction using (54) and its counter-

part for X = ¥, along with the fact that any surface I’ with boundary can
be obtained from a disk D using ;¢ and X ; finitely many times. O

To prove the next theorem we need a couple of lemmas:

Lemma 5.2. Let V and W be coefficient systems of degrees < s and < t,
respectively. Then VW is a coefficient system of degree < s+t, and VoW
is a coefficient system of degree < max(s,t).

Proof. Since V' is a coefficient system, we have the split exact sequence:
0— V(F)— V(XF) — A(V(F)) — 0.
Likewise for W. Then for the tensor product we get the split exact sequence:

0 — V(F)@W(F) — V(SF) @ W(SF)
— AV(F) @ W(F) & V(F) & AW/(F)) — 0.

O

Theorem 5.3. Let X be a k-connected space, k > 1. If VX(F) is without
infinite division for any surface F, then V.X is a coefficient system of degree

< [%])-

Proof. First note: If we prove the assertion concerning the degree as in Def.
4.4 (not including without infinite division), then since VX is assumed with-
out infinite division, the cokernels A;;(V,X) (and their cokernels, etc) are
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automatically without infinite division, since they are direct summands of
VX,

The proof uses Postnikov towers and Lemma 5.1 above. The Postnikov
tower of X is a sequence {X,, — X,,,_1}, -, with each term a fibration

K(mm(X),m) — X — X1 (55)

The proof is by induction in m, so assume for [ < m that VXt is a coeffi-
cient system of degree < [7]. To make the induction work, we also assume
inductively that the splitting s; we then have by definition,

51

0 VX YV = A(VX)—0

n

is a natural transformation from A(VX1) to VX

Now we take the induction step. Let F be a surface. Then using
Map(F, —) on (55) yields a new fibration

Map(F, K(m,(X),m)) — Map(F, X,,,) — Map(F, X;,—1).
Serre’s spectral sequence for this fibration has E?-term:

EL(F) = H,(Map(F, X, 1)) ® H,(Map(F, K (m, (X),m))
= Vo (F) @ V(). (56)

Now X,,,_1 is k-connected, since X is, and K (m,,(X), m) is at least k-connected.
Then by induction and Lemma 5.2, Eit is a coefficient system of degree
<+ 1) < 15

We now want to prove that E7, is a coefficient system of degree <[]
for all » > 2, by induction in r. Let V; Ay 4 V5 be groups in the
E" term of the spectral sequence, where d denotes the rth differential, and
say V has degree < q. We assume by induction in r that the splittings for
V, Vi and V4 (see (57)) are natural transformations. For r = 2 this holds
according to (56) by induction in m and by (54) (the Eilenberg-MacLane
space case). We want to show that the homology of V' with respect to d,
H(V), is a coefficient system of degree < ¢, and that the splitting for H(V)
is also natural. Suppose by another induction that this holds for coefficient
systems of degrees < q.

Then consider the following diagram, where X as usual denotes either
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Y0 0r Yo .
0 vV, —2- 21, == A, 0 (57)
Pl
0 V-V = A 0

oo
0 Vo —2= NV == A, 0

We know XV = V @ A, and similarly for V; and V5. By our induction
hypothesis in 7 we get that the splittings in the right-most squares above
commute with d. Then the homology with respect to d satisfies H(XV) =
H(V)@® H(A), and the splitting for H(V') is again natural. This shows that
the cokernel A(H(V)) of ¥ is H(A). Since A is a coefficient system of degree
< q— 1, we get by induction in the degree that H(V) is a coefficient system
of degree < ¢. For the degree-induction start, if V' is constant, H (V) is also
constant.

To finish the induction in m we must prove that the splitting s, :
A(V,¥m) — XV Xm is a natural transformation. By the above, E7, is a
coefficient system of degree < [2] for all r, so the same is true for Eg5.
Since the spectral sequence converges to VnXm(F) for n = s +t, we get that
VXm(F) is a coefficient system of degree < [%].

The inverse limit of the Postnikov tower lim._ X, is weakly homotopy
equivalent to X, and the result follows. O

The space of surfaces mapping into a background space X with boundary
conditions v is defined as follows: Let X be a space with base point xg € X,
and let v : [[S* — X be r loops in X. Then

Sy (X,7) = {(Fyrr . f) | Fyr SR x [a,b], 0 : US' — OF,, is a para-

metrization, f : F,,, — X is continuous with fo¢ =~}

Assume now X is simply-connected. Then we observe that the homotopy
type of S, (X, ) does not depend on 7: For consider the space of surfaces
with no boundary conditions, call it S;,(X). The restriction map to the
boundary of the surfaces,

Sgr(X;7) = Sgr(X) — (LX)

is a Serre fibration. Here, LX = Map(S!, X) is the free loop space, so as X
is simply-connected, (LX)" is connected, so the fiber is independent of the
choice of v € (LX)". So when X is simply-connected, we use the abbreviated
notation S, (X) = S, (X, ) for any choice of ~.
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Theorem 5.4. Let X be a simply-connected space such that VX is without
infinite division for all m < n. Then

H,, (890 (X))
15 independent of g and r for 29 > 3n+ 3 and r > 1.

Proof. Let X be either ;5 or ;. From the definition we observe that
Sg,r(X) &= Emb(Fgw, ROO) XDiff(Fg’ha) Map(FW, X),

and since Emb(F,,,R*>) is contractible, we get

Sy (X) = E(Diff(Fy ., 0)) X i, ..0) Map(Fy,r, X).
So there is an obvious fibration sequence
Map(Fy,,, X) — S,(X) — B(Diff(F,,,0),
and thus we can apply Serre’s spectral sequence, which has E? term:
E?, = Hy(B(Diff(F,,,0); H(Map(F,,, X)))

where the coefficients are local. The path components of Diff(F} ,,0) are
contractible, so we get an isomorphism

Eg,t = HS(F(Fg,r)§ Ht(Map(Fg,ra X))) (58)
Consider the map induced by ¥ on this spectral sequence
5.t Hy(D(Fy,); H(Map(Fy, X)) — H,(D(SF,,); H(Map(SF,,, X))

By Theorem 5.3 and 4.17, we know that this map is surjective for 2g > 3s+t,
and an isomorphism for 2g > 3s+t+2. We use Zeeman’s comparison theorem
to carry the result to E*°. To get the optimum stability range, we must find
the maximal N = N(g) € Z such that for ¢t > 1,

s+t<N = 2g>3s+t+2 (isomorphism)
s+t=N+1 = 29g>3s+t (surjectivity)

Zeeman’s comparison theorem then says that Y, induces isomorphism on
B for s+t < N(g) and a surjection for s+ = N(g)+ 1. Since the spectral
sequence converges to H, (S, (X)), we get stability for n < N(g).

Clearly, the hardest requirement is t = 0 (surjectivity), where we get the
inequality 2g > 3N + 3. One checks that this satisfies all the other cases. So
H,(S,,(X)) is independent of g, r for 2g > 3n + 3. O
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Using this we can improve the stability range in Cohen-Madsen’s sta-
bility result for the homology of the space of surfaces to the following, cf
|Cohen-Madsen| Theorem 0.1:

Theorem 5.5. Let X be a simply connected space such that VX is without
infinite division for all m. Then for 2g > 3n + 3 and r > 1 we get an
isomorphism

Ho(Syr(X)a) = Ho(0°(CP=, A X)),
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6 Different versions of mapping class groups of
surfaces

6.1 Introduction

Let F' be a compact connected smooth surface, possibly with boundary and
not necessarily oriented. The objects of study in this paper are

Diff(F,{0F}) = {¢: (F,0F) — (F,0F) | ¢ is a diffeomorphism} ,
Top(F,{0F}) = {¢:(F,0F) — (F,0F) | ¢ is a homeomorphism} ,
hAut(F,{0F}) = {p:(F,0F) — (F,0F) | ¢ is a homotopy equivalence} .

The main theorem of this paper is the following:

Theorem 6.1. Let F' be a compact surface and not a sphere, a disk, a cylin-
der, a Mdbius band, a torus, a Klein bottle, or RP?. Then

mo(DIff(F, {0F })) — mo(Top(F, {0F})) — mo(hAut(F, {0F}))

are bijections.

This result is far from new, but this paper will present a thorough and
self-contained proof of the following bijection

7o(Diff(F, {OFY})) — mo(hAut(F, {0F1})). (59)

To get the Main Theorem from this result, we will use the result of [Epstein|
Thm 6.4 without proof.

We consider slightly different versions of the groups, where we assume F
is oriented in the last two groups:

Diff(F,0F) = {p € Diff(F,{0F}) | plor = id},
Diff (F,{0F}) = {¢ € Diff(F,{0F}) | ¢ is orientation-preserving} ,
Diff, (F,0F) = Diff(F,dF) N Diff,(F, {0F}),

and similar for Top and hAut. By orientation-preserving we mean that the
orientation class [F,0F] € Hy(F,0F) is preserved by ¢.. From the Main
Theorem we easily deduce

Theorem 6.2. Let F' be a compact surface and not a sphere, a disk, a cylin-
der, a Mébius band, a torus, a Klein bottle, or RP?. Then there are bijections

(1) mo(Diff(F,F)) — mo(Top(F, OF)) — mo(hAut(F, dF)),
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(2) mo(DifE (F, {OF})) > mo(Top,, (F. {OF})) — mo(hAut (F, {OF})),

(3) mo(Diff (F,dF)) — mo(Top, (F,dF)) — mo(hAut, (F,dF)).

The standard definition of the mapping class group of a surface F' is
[(F) = mo(Dift (F, 0F)). The last part of Theorem 6.2 shows that it does not
matter whether one considers diffeomorphisms, homeomorphisms, or even ho-
motopy equivalences, when working in the mapping class group.

It is a pleasure to thank Jgrgen Tornehave for many fruitful discussions and
help during my work on this paper.

6.2 Preliminaries

Definition 6.3. An isotopy ¢ of F'is a path in Top(F,{0F}), i.e. ¥ :
F x I — F is continuous map such that ¢, = ¢(—,t) : ' — F is a
homeomorphism for all ¢ € I, and we say that ¥ and 1, are isotopic.

An isotopy is smooth if we can exchange homeomorphism with diffeomor-
phism in the above. We then say that ¢y and 1), are smoothly isotopic.

Lemma 6.4. Let f : S' — S an orientation preserving diffeomorphism.
Then f is smoothly isotopic to the identity via a smooth isotopy f, : S*x 1 —
St such that the function F : S x I — S* x I given by F(z,t) = (fi(2),t)
s a diffeomorphism, and

ft(Z) = { f(Z)’ fO’f‘ 0<t<e,

| =z, forl—e<t<1.

Proof. Since f is smooth it defines a smooth function f : R — R by lifting
f under the universal covering exp : R — S!. Now take a smooth bump
function p : I — I satistying

0, t<e,
p(t)_{ 1, t>1-e

Let F:Rx I — R be given by F(x,t) = p(t)f(x) + (1 — p(t))z. This now
defines an isotopy from f to the identity, and F(exp(z),t) = (exp(F(z,t)),t)
is a diffeomorphism. O

The idea of the following proof is due to J. Alexander.

Lemma 6.5. Let D be a disk and N a collar neighborhood of the boundary.
Suppose f : D — D 1is a homotopy equivalence which restricts to an ori-
entation preserving diffeomorphism of N of the form f(z,t) = (f(z),t) for
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(z,t) € N. Then f is homotopic to a diffeomorphism relative to a smaller
collar neighborhood.

Proof. We can assume f : D — D, where D = {z € R*||2| <1 +¢},
and N ={ze€D|1—¢e<|z|] <1+¢e}. The tubular coordinates on N are
s € [0,2n] and ¢t € (—e,e]. We first construct a homotopy ¢,, z € [0, 1], which
is constant in x outside N, from f to a function g such that g(s,0) = (s,0)
in tubular coordinates. We use the isotopy f.(s) from Lemma 6.4, and set

Pa(5,1) = (faq1p)(9),1), € (—€,¢]

in tubular coordinates. Then ¢y = f and ¢1(s,0) = (s,0), and @, is the
identity on a collar neighborhood of D by Lemma 6.4.
We now make a homotopy ¢,, = € [0,1], from g to the function h satis-

fying
o ={ 27 2
Let D' ={z € D | |z] <1}, and define the solid cone
C={(z,2) CDxI||z| <1—2x}
with bottom D’ x {0} and top (0, 1), and set
(1 —2)f(:%), (z2)€C,

U (2) =<z, (z,z) e (D' x I)\ C,
9(2), (z,2) € (D\ D) x 1.

This is clearly continuous and constitutes a homotopy from g to h through
maps which are the identity on a collar neighborhood of 9D, since g is.
We claim h : D — D is a diffeomorphism. Clearly, h : D' — D’ is a
diffeomorphism, and by Lemma 6.4, h is smooth on D, and for |z| > 1, h =g
is a diffeomorphism D\ D' — D\ D'. O

A result we will use repeatedly is the following smooth version of the
Schonflies curve theorem.

Lemma 6.6. Let f : St — F be a smoothly embedded simple closed curve
homotopic to zero in a surface F. Then the closure of the interior of f(S1)
1$ a smoothly embedded disk in F'.

Proof. By Thm 1.7 in [Epstein| we know that f separates F into two compo-
nents, and that one of them (call it D’) is homeomorphic to a disk D?. Thus
D' is a connected orientated smooth 2-manifold with 1 boundary component
and with Euler characteristic x(D’) = 1. Now by the classification of smooth
surfaces, D’ is a smooth disk. O
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Definition 6.7. Let a be a smoothly embedded 1-submanifold in a surface
F'. By the surface cut up along «, denoted F'\ o, we will mean the surface
with boundary F'\ N(a), where N(«) is a tubular neighborhood of « in F.

Lemma 6.8. Let « : (I,0I) — (F,0F) be a simple curve in a surface
F. If the cut-up surface F \ «(I) is disconnected, then the induced map
o, Hi(I,01) — Hy(F,0F) is the zero map.

Proof. Let @ = a(I) C F, and consider the long exact sequence for the triple
(OF,a UOF, F):

Hy(&UOF,0F) —=~ H,(F,0F) —X~ H\(F,a U OF) — Hy(a U OF, oF)

Here Hy(a U OF,0F) = 0, so j, is surjective. Also H|(F,0F) = Z*>™~1 for
F = F,,. Since F'\ & is not connected, we can write F'\ & = Fy U [, and
by excision,

H{(F,aUO0F) = H{(FyUF,,0Fy U0F,) = H\(Fy,0F)) ® H(F,, 0F,)
o~ 72q1+r1-1 D 7292 +r2—1

Here g = g1 + g2 and r + 1 = r; 4+ o, so since j, is surjective, we conclude
that j, is an isomorphism. Thus ¢, = 0, and the following diagram shows
that a, = 0:

Hy(I,01) —=— H,(F,0F)

H,(a U dF,0F)

6.3 Surjectivity

In this section we will prove that the map in (59) is surjective, i.e. a homotopy
equivalence of a surface F'is homotopic to a diffeomorphism. We first prove
this for surfaces with non-empty boundary, and then use this to obtain the
proof for closed surfaces. The result for surfaces with non-empty boundary
is strongly inspired by [Hempel.

Theorem 6.9. Let F' and G be compact surfaces with non-empty boundaries.
Suppose m (F') is non-trivial. Let f : (F,0F) — (G,0G) be a map such
that f. : m(F) — m(G) is injective and flop : OF — O0G is a smooth
embedding. Then there is a homotopy f; : (F,0F) — (G,0G) with fo = f
and fi1 : F'— G a diffeomorphism.
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Proof. First consider each boundary component J of F', and K of G where
f(J) € K. We can assume each J and K has a collar neighborhood of
the form J x [0,¢] and K x [0,¢], where the map f has the form f(z,t) =
(fls(x),t), by gluing on small cylinders, extending f as desired, and smooth-
ing out. Since f is continuous, it is homotopic to a smooth map, and we can
choose the homotopy to be constant on the collar neighborhoods, so we can
assume that f is smooth an embedding on a neighborhood of JF.

We are going to cut up G by a non-separating arc « (i.e. an embedded
connected 1-manifold with boundary) connecting two boundary components
of G in the image of f. We would like to cut up ' by f~'(«). To do this we
must ensure that f~!(«) is also an embedded 1-manifold. This holds if f is
transverse to a. By Thom’s transversality theorem, f can be approximated
by a smooth map ¢ transverse to a arbitrarily close to f. Even better, g
can be chosen such that g|4 = f|4 for a closed subset A C F' on which the
transversality condition on f is already satisfied. If we choose the arc o to
have the form o = (g, t), t € [0,¢] on the collars K x [0, ] for some x¢ € K,
then clearly we can take A = (J;c. ) J % [0,€] in the above. Since the
transverse map ¢ is arbitrarily close to f, they are homotopic, and we can
assume f is transverse to a.

Since f|or : OF — OG is an embedding we can see that f~!(a) must
consist of one arc in F' and possibly a number of embedded circles, and as
I is compact, there is a finite number of circles. Since f, is injective, the
circles must be null-homotopic in F', thus they must each bound a disk Dy in
F. Taking a slightly larger disk D O Dy, then f(0D) must be contained in
a tubular neighborhood of a. Since 9D is disjoint from f~*(a), all of f(0D)
is to the same side of « in the tubular neighborhood.

Now D is a disk and f(0D) is contained in a disk £ C G on one side of
« in the tubular neighborhood. Thus we can make a map h : D — G with
h(D) C E and such that f|sp = h|sp. This gives a map H : S* — G hy
mapping the lower hemisphere by f and the upper hemisphere by h. Since
G is not S? or RP?, we know m3(G) = 0, so the map H can be extended to
a map D® — G, thus giving a homotopy from f to h. This will reduce the
number of circles in the preimage, and we can thus assume that f~'(«a) is
just an arc in F. By transversality we can assume that we have a tubular
neighborhood of f~!(a) mapping to a tubular neighborhood of «.

We can now cut F along f~'(a) and G along «, to obtain F' and G.
After cutting up F' and G along an arc, we will actually have manifolds with
corners, F and G. But clearly we can smooth out these corners inside the
collar neighborhoods where f : F — @ is smooth.

Now we would like to show that the process will not separate F'. Consider
the situation when we cut up along a non-separating arc o in G. We can



6.3 Surjectivity 75

parametrise « and think of it as a function « : (/,0) — (G,0G). This
induces a map a. : Hi(1,01;Zy) — H1(G,0G;Zy). The condition that «
is nonseparating translates as «, # 0. By the above we can assume that
f~Y«) is a single arc, which we parametrize as & : (I,01) — (F,0F):

(1,01)

/\

(F,0F) (G,9G)

On homology this induces the commutative diagram

Hy(I,0I;Z,)

/\

H,(F,0F; Z,) (G, 0G; )

But since a, # 0 we get &, # 0 and thus by Lemma 6.8, & C F' is nonsepa-
rating.

Now we show that f, : m (F) — m(G) is still injective after cutting up.
We use that F' is homotopic to F'UI, where I is a small interval connecting
two points by, b; € OF. Using that F is connected we choose a path .J
in [ from by to b1, such that I U J form a loop. Now [’ ~ Fv st (by
contracting J in F to a point). Then i, : m;(F) — 7y (F) is injective, since
i : m(F) — m(F) = m(F) % Z is just the inclusion in the first factor by
van Kampen’s theorem. Now it follows from the commutative diagram

m (BY "> (F)
fe Fa
m(G) === (G)

that f, : 7 (F) — m1(G) is also injective.

It remains to show that by cutting up F' and G they have to become
disks at the same time. Firstly if G is a disk, then f, : m(F) — {1} is
injective, so m(F') = {1}, and this implies that F' is also a disk (since F'
is a surface with boundary). Conversely, if G is not a disk then neither is
F. since given a non-separating arc « in G we have shown above that there
exists a non-separating arc in F'.

We are down to the case where f is a map from a disk to a disk that is
smooth in a collar of the boundary, and this case is handled by Lemma 6.6.
We can glue the resulting smooth maps on the pieces together again, since
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the collar neighborhoods of the boundary of each piece (where the map is
smooth) are fixed by the homotopy from Lemma 6.6. So we are done. O

Corollary 6.10. Let F' and G be compact surfaces with non-empty bound-
aries. Suppose m(F) is non-trivial. Let f : (F,0F) — (G,0G) be a map
such that f, : m(F) — m(G) is injective and f|yop) : N(OF) — N(0G)
is a smooth embedding, where N(—) denotes a neighborhood. Then there is
a homotopy f; : (F,0F) — (G,0G) with fo = f and fi : F — G a
diffeomorphism, such that f; = fy on a neighborhood of OF.

Proof. Use the proof above, but skip the first part which proves that f|yr) :
N(OF) — N(OG) can be made into a smooth embedding. O

Lemma 6.11. Let fy, f1 : S' — F be disjoint non-trivial two-sided embed-
dings in the surface F'. Assume there exist m,n € Z such that f}' and f"
represent the same free homotopy class in F. Then there is an embedding
0 :S'x I — F such that @lsixpy = fi fori=0,1, so fy and f, bound a
cylinder.

Proof. This is a special case of |[Epstein|, Lemma 2.4.

We start by cutting F' up along f; and then gluing a disk onto each
of the two new boundary components; let M be the connected component
containing f; in the resulting surface. Since f is null-homotopic in M, then
so is f§ and thus f{". Now we will show that f; is null-homotopic in M, so
that it bounds a disk in M. First if OM # (), then m (M) is a free group
and thus if f{* = 1 then f; = 1. Else m(M) is a free group modulo the
relation 9 = II7_,[a;,b;] € 7 (M) (oriented case) or @ = I1%_,a? € m (M)
(unoriented case). If fi" = 1 but f; # 1, m (M) will have torsion, and by
|[Lyndon-Schupp| Prop. 5.18, the only case that allows for torsion is the
unoriented case with ¢ = 1. Then the component of M containing f; is an
R P2, but then there are no non-trivial two-sided embeddings of S*. So there
can be no torsion, and f; = 1 in m (M).

The disk in M bounded by f; contains either one or two of the disks
glued onto fy to form M, since f; was non-trivial in F. If the disk bounded
by f; in M contains just one glued-on disk, then f; and f; together bound a
disk blown up at one point; a cylinder in F'. In particular, if f; is separating,
then the disk bounded by f; in M contains just one glued-on disk, so we
are done. Now if the disk bounded by f; in M contains two of the glued-on
disks, then f; was separating in F', since we obtain F' from M by removing
the glued-on disks and gluing up along their boundaries. The cylinder can
thus be obtained if we interchange fy and f. O
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The condition in the preceding Theorem 6.9 about the map f being an
embedding on the boundary is not essential if f is a homotopy equivalence,
as we show next:

Lemma 6.12. Suppose f : (F,0F) — (G,0G) induces an isomorphism
fe:m(F) — m(G), and suppose F is compact with OF # 0 and is neither
a disk, a cylinder nor a Mobius band. Then the following holds:

(¢) For all boundary components J C OF and K C 0G such that f(J) C K,

the composite Z = m(J) 7, m(K) = Z is multiplication by +1,
and no two different boundary components in F are taken to the same
boundary component in G.

(17) f is homotopic to a map g : (F,0F) — (G, 0G) with g|or : OF — 0G
an embedding.

Proof. Let J C F be a boundary component, and let K C G be the boundary
component with f(J) C K. We have a commutative diagram,

m(J) K (60)

f\J
m (F) —>7r1 G)
Here, the vertical map m(J) — m(F) is injective, since it is a non-zero
map (as F'is not a disk) from 7 (J) = Z into the free group m(F). Then
(f]7)« is multiplication by an integer n # 0.

If /" has more than 1 boundary component, we can choose generators for
m (F') such that the generator of m;(J) goes to a generator of 7 (F) under
the left vertical map in (60). Since f, is an isomorphism, it takes generators
to generators, and thus it follows by commutativity that n = +1.

If I only has the one boundary component .J, then the generator a of
71(J) maps to either & = T1%_, [a;, b;] € m1(F') (oriented case) or 0 = I17_,a? €
m (F') (unoriented case). If f.(a) = a™ for a generator x of m(K), we get
by commutativity that f,(0) € m(G) would be an nth power of something.
Since f, : m (F) — m(G) is an isomorphism, 0 itself would be an nth power
of some element. In case @ = a?, F is a Mbius band, so this cannot happen.
In all other cases we get n = +1.

We have shown that (f|;). : m1(J) — m(K) is an isomorphism. Thus we
can homotope f in a collar neighborhood around J such that f|;:J — K
is a diffeomorphism. We do this for every boundary component of F.

All that is left is to check that no two boundary components Ji, .Jy of
F map to the same boundary component K in G. If that were the case,
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the elements of m;(F) generating (/1) and m;(J3) would both map to a
generator of m(K), i.e. would coincide up to a sign, since f, : m(F) —
7m1(G) is an isomorphism. Then by Lemma 6.11, F' would be a cylinder,
which it is not. U

Theorem 6.13. Let F' and G be compact surfaces, and let f: F — G be a
homotopy equivalence. Assume neither F' nor G is a disk, a sphere, a cylin-
der, a Mdbius band, a torus, a Klein bottle, or RP%. Then f is homotopic to
a diffeomorphism.

Proof. 1If F' and G have non-empty boundary, Lemma 6.12 and Theorem 6.9
give the result. So assume that F' and G are closed surfaces.

Let B C G be a non-separating, 2-sided simple closed curve in G. Since f
is homotopic to a smooth map which is transverse to B, we can assume that
f is smooth and transverse to B. Consider the components of f~(B). By
transversality and compactness, this is a finite set of disjoint 1-submanifolds
of F'. As in the proof of Theorem 6.9, we can homotope f so that no com-
ponent in f~1(B) bounds a disk. For any 1-sided simple closed curve 7 in
f~Y(B), take a small tubular neighborhood M of v such that f(M) C N,
where N is a tubular neighborhood of B. Since M \ v is connected and
f(M\~)C N\ B, it follows that M \ v maps to the same side of the 2-sided
curve B under f. This implies that we can homotope f in M to a function
not hitting B. So we can assume that no component of f~!(B) is a 1-sided
simple closed curve.

Now let Hy, H; be two components of f~1(B), and let hg, h; : St — F
be parametrizations of Hy and Hy, respectively. Then

7~ m(H) -5 mn(B) =2z

is multiplication by some m; € Z. Note that m; # 0 since h; is nontrivial in
F and f is injective on 7 (F). This gives that f.(he") = fo(R]™) € m(G),
and since f is injective on my(F'), hg' = h{"™ € m(F). Then by Lemma
6.11 they bound a cylinder (if hy and h; bound a cylinder then so do hy and
hi). This cylinder might contain components of f~!(B), but since there are
finitely many such components, we can take a cylinder whose intersection
with f~1(B) is precisely its ends, call them hy and h; again.

Now the cylinder gives a homotopy ¢ : S' x I — F from hg to h;, and
thus foc:S' x I — G is a homotopy in G, with f(c(S'x]0,1[)) N B = 0.
Thus we get a continuous map f/g/c : S1x I — G\ B into the cut-up surface
G\ B. This is a homotopy between non-zero powers of boundary components
of G\ B. Now by Lemma 6.11, if these two boundary components are distinct,
G\ B would be a cylinder. But this is impossible, since G is neither a torus
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nor a Klein bottle. This implies that both ends of the cylinder is mapped
to the same boundary component in G \ B, and thus we can change f by
a homotopy to remove hy and hy; from f~!(B) without changing f~1(B)
otherwise. We can now assume that f~!(B) is a single closed curve, since
f~YB) = 0 implies that f, : m(F) — m(G) factors through m (G \ B)
but m (G \ B) — m(G) is not surjective. We can finally see that the
curve f~1(B) is non-separating by Lemma 6.8, since B is non-separating and
fe: Hi(F) — H;(G) is a group homomorphism.

Consider f|: N(f~'(B)) — N(B), where N(—) denotes a tubular neigh-
borhood. Then, using a method as in the proof of Lemma 6.4 on f~!(B) and
a bump function to extend to N(f~(B)), one can see that f is homotopic
to a map g with g7*(B) = f~!(B), such that g|y(,-1(5) is a smooth covering
map (the number of sheets will be the degree of f: f~1(B) — B). So now
we assume that f is a smooth covering map on a neighborhood of f~(B).

Since f, : m(F \ f7Y(B)) — m(G \ B) is injective (|[Lyndon-Schupp|

e~

prop 5.1), we can choose a covering p: G\ B — G \ B and lift f as in the
diagram,

G\ B (61)
T
F\f(B)-1~G\B

such that f, : m(F \ f~(B)) = 7 (G \ B). Moreover, p is a finite-sheet
covering, since f maps (a parametrization of) f~!(B) to a non-zero multiple
of (a parametrization of) B, and the number of sheets is locally constant. So

—_——

G\ B is compact.
Now in a neighborhood of the boundary of F\f~YB), f is a covering map,
and f, is an isomorphism on 7;. So f is an embedding on a neighborhood of

the boundary. By Corollary 6.10 on f : F\fY(B) — G\ B, f is homotopic
to a diffeomorphism, relative to a neighborhood of the boundary. Glue up
this diffeomorphism to a map ¢ : F' — G which will be homotopic to f, and
be both a homotopy equivalence and a smooth covering map. The last two
imply that ¢ is a diffeomorphism F' — G. O

6.4 Injectivity

In this section we will prove that the map in (59) is injective, i.e. if a
diffeomorphism is homotopic to the identity, it is smoothly isotopic to the
identity:.
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Definition 6.14. Let f,g : [ — F' be smooth embeddings into a surface
F. We say that f and g form an "eye” if the following is satisfied:

(7) f(I)Ug(l) bounds a disk in F.

(17) f‘[oﬁ[ = ghoﬁ[, fhl—s,l} = g|]1_5,1], and f is disjoint from g on |e,1 — €.

Lemma 6.15. Let f,g: I — F be two smooth embeddings into a surface F
which form an "eye”. Then there is a smooth isotopy vy of F with @y = idp
and p1 0 g = f. Furthermore, there is a small neighborhood N of the disk
bounded by f and g for which p; is the identity outside N for all t.

Proof. Let Ny be a tubular neighborhood of f([I), given by a normal vector
field £ to Ny. Let also N, be a tubular neighborhood of g(/) given by a
normal vector field &, such that Ny U N, is an annulus. This is possible since
f(I)Ug(l) bounds a disk in F.

There is a diffeomorphism ¢, : Ny — V; C R? such that ¢y o f is the
standard embedding / — R x {0}. We can take V; = I x] —¢,e[. We want
to extend vy to a diffeomorphism ¢y, : Ny U Ny — R? ie. ¢rg|n, = 1)y

First we note that inside Vy = I x| — ¢, e[ we have the image

G =s(9(1) N Ny).

By taking € small, we can ensure that G is the graph {(¢, h(t))} of a smooth
function A : [0,0[U]1 — 6,1] — [0,00[. We can extend v; to a map ¥,
defined on N; U g(I) such that ¢y, 0 g : I — R? is smooth, using bump
functions etc as usual, such that the image G; = @fg o g(I) is the graph
{(t,h(t)} of a function h : I — [0, co], see Figure 6.4.

Figure 14: The tubular neighborhood V; and the graph G of h in R%

We define a tubular neighborhood of G using the vector field ng =
(V1) (&glnpnn, ). Since ¢y is a diffeomorphism, 7g is a transverse vector field,
and so defines a tubular neighborhood Ng of G inside V;. Now we shrink V}
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to Ix] — &', &' where ¢’ < ¢ (thus also shrinking N;). Then we cover G| by
two open sets in R?, U covering G \ G, and U, whose intersection with U;
lie in N¢ and outside Vy, see Figure 6.4. Then we take a partition of unity
p1, p2 with respect to Uy, Us.

Figure 15: Neighborhoods U; and U, of Gy.

Let 7; be the standard normal vector field to Gy, defined on G; \ G.
Then we make a new vector field pin; + pang. Since pin; + pang is never 0
or tangent to G, this defines a tubular neighborhood V, of G;. This tubular
neighborhood coincides with Ng on Vy, and thus gives a diffeomorphism
Vg Ny UN, — V; UV, which extends ),

The inner boundary circle C of the annulus NyUN, bounds a disk D' C F,
and so the image 1;,(C) also bounds a disk Dgz C R?. Then we can extend
Yrglc to a map D' — Dge, which is necessarily a homotopy equivalence,
so by Lemma 6.6 we can replace it by a diffeomorphism ¢p : D' — Dpe,
such that ¢¥p/|c = ¥glc. The we can glue ¢ and 15, along C' to obtain a
diffeomorphism ¥ from D = D’ U N; U N, onto a disk in R?.

Now we can use a vertical flow in DU Ny U Ny (i.e. a pullback under
U of the obvious vertical flow in R?) to make Im(g) = Im(f), and lastly a
horizontal flow in Ny to make g = f. O

Lemma 6.16. Given two smoothly embedded arcs f,g : I — F' satisfying
fHO0, 1) ng(I) = f(I)Ng({0,1}) = 0. Then there is a smooth isotopy ¢y
of id|p such that @1 o f and g intersect transversally. Moreover o, is the
identity outside a tubular neighborhood of f.

Proof. Take an open tubular neighborhood of f, Ny, of constant radius,
where 7 : Ny — f(I) is the retraction. Inside N; take a closed tubular
neighborhood of f of constant radius, Nj. We cover g(l)nN N§ with sets
of the form Ny(a,b) = {x € N; | f~*(r(z)) €]a,b[}, where a < b € I, and
f(a), f(b) is outside g(I). Since g(I) N N§ is compact, we can assume that
it is a finite covering, Ny(a;,b;), i = 1,..., N, where a1 < as < -+ < ay.
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For each € F where f and ¢ intersect non-transversally, + € Ny(a;, b;)
for some 7. Now take the first such 2. Then we can choose another arc
G : 1 — Ny(a;,b;) such that g and g form an "eye” and ¢ and f intersect
transversally for all z € (1) N f(I) € Ny(a;, b;). Now by Lemma 6.15 there
is an isotopy from g to g in Ny(a;, b;), which is the identity outside Ny (a;, b;).
Doing this for each i, we obtain in finitely many steps an isotopy which is
the identity outside Ny, making f and g intersect transversally. O

Lemma 6.17. Let F' be a compact surface with F # RP?, S?, and let f be
a diffeomorphism of F.

(i) Let oy : S* — F\OF be a finite family of disjoint, non-trivial, pairwise
non-homotopic two-sided simple closed curves, with f o c; ~ «; for all
1. Then there is an smooth isotopy f; of F' such that fo = f and
f10a; = «a; and the identity extends to tubular neighborhoods.

(17) Let oy : I — F be a finite family of simple curves, disjoint except
possibly at endpoints, with foo; >~ «; and foa; = ay; near the endpoints
for all i. Let A C F be a union of disjoint non-trivial closed curves,
with f|a = id and o;(I)NA = o, (0I) for alli. Then there is an smooth
isotopy fi of F', such that fo = f, fi oa; = a; and the identity extends
to tubular neighborhoods. Furthermore f;|4 = id for all t.

Proof. (i) and (i7) can be proved by the same methods, so we handle the
two cases as one initially. But we will also use (i) to prove (ii). First, in
both cases we have a closed subset A C I with f|4 = id (in case (i), A
starts as ()). Consider a single curve a = a;. We will make an isotopy f; of
F such that fy = f, fioa = «, and f;|]4 = id for all t. Then we can let
Ay = AU (), and use the result for f; and A; on as, completing the proof
in a finite number of steps. So consider a curve « as in (i) or (i7), and let
[ = f o« be the image curve. By assumption, 5 ~ a.

In case (i), there are small neighborhoods Ny and N; of the start and
end points where « and 3 agree. Inside Ny and N; we can make an isotopy of
f which perturbs [ slightly, so that o and /3 agree near the start/end point,
and then become disjoint. By shrinking Ny and N; we can assume that «
and 3 are disjoint on Ny and ON;. Our goal is now to make a and [ disjoint
outside Ny and N;. From now on, we will ignore Ny and N; in the proof,
and only work with o and 3 outside them.

By Lemma 6.16 we can assume a and [ are transverse to each other.
Then o and S have finitely many intersection points by compactness. To
get an isotopy of F' taking [ to a;, we will first ensure that o and  have no
intersection points. To do this, consider the universal covering 7 : F—F.
We can model F' as an open disk in R2. Take a fixed lift 3 of 3.



6.4 Injectivity 83

We consider all the connected components of 77(a) that intersect 3.
There are finitely many such components, call them &y, since o and 3 have
finitely many intersection points. The q; are also transverse to B Now we
look for a pair of intersection points between B and an ¢;, such that the part
of the two curves between these points (a closed curve, call it o) bounds a
disk whose interior does not contain any points on B or oy, for any k. So o is
a simple closed curve in F bounding a disk. Projecting onto F', we get moo
(the parts of o and of 5 between two intersection points) also a simple closed
curve, which is null-homotopic, so according to Lemma 6.6, 7 o o bounds a
disk in F'. We can choose a curve 3 which form an "eye” with 8 and which
does not intersect « in a neighborhood of the disk bounded by moo. Then by
lemma 6.15 we can isotope 3 to (', so that there are two fewer intersection
points between o and (. Since there are finitely many intersection points,
this procedure terminates.

But we must show why we can always find such a ¢ in F. Since @y is
a connected component of 77!(a), each &, separates F. So if 6~ crosses
once, it must cross it again (let us choose the first time it does so), as it
is transverse to a;. Now F C R2, so the part of B and &; between these
two intersection points will bound a disk. If this disk contains parts of B
or ¢y’s, there will be a smaller disk inside which satisfies the requirements,
since there are finitely many intersection points. In this way we can isotope
B to a curve which does not intersect « (in case (i), except in Ny and Np).

In case (i), we now have two homotopic disjoint simple closed curves «
and 3. Then according to Lemma 1.4, they bound a cylinder. Recall that
the set A (fixed by f) consists of the curves already handled, i.e. a union of
non-trivial closed curves, none of which are homotopic to «, and thus not to
3, either. Thus A cannot intersect the cylinder bounded by « and (5 (in fact,
A cannot intersect a small open neighborhood of the cylinder). Then clearly
there is an isotopy f; of F, which is the identity on A, taking [ to «.

In case (ii), the two curves a and [ are homotopic and form a simple
closed curve, so again they bound a disk. Recall that A originally consisted
of non-trivial closed curves, so none of these can be inside the disk. As we
add curves to A, the circles get connected by arcs. None of these can intersect
a, since they were assumed to be disjoint from the start. As f is the identity
on A, they cannot intersect § = f o «, either. Thus A cannot cross the
boundary of the disk, so A and the disk are disjoint. Thus by lemma 6.15 we
can make an isotopy f; of F, which is the identity on A, so that f; o a = «.

Now we extend the result to tubular neighborhoods of the curves. We
make a tubular neighborhood M, of o, and by compactness identify it with
Stx]—e, e[ in case (i) and Ix]—¢, e[ in case (ii). Now for (x,t) in a smaller
neighborhood M; C M, of «, the projection the second coordinate pr, f,.(t) :=
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pr,(f(x,t)) has positive differential, and thus for all  the image of f,(t),
{2, t') | (2/,¥) = f.(t) for some t €]—¢, [} is the graph of a function h, (') =
x’. Now we can make tubular neighborhood M, such that M, C f(M;) and
by possibly shrinking it assume that M, = Ix]—6,8] or My = Stx]—4§,4].
For definiteness, say My = Ix]—0,d[. Choose a smooth bump function p(t)
with p(t) =1 for [t| < 26 and p(t) = 0 for |¢| = 4. Let

ooty = [ (el 5o (-l Dhalt). ) for (2, 0)€ 71 (01)
9o\ f(x,t) otherwise.

where ¢ is the second coordinate of f(z,t) as above. Then g, defines an
isotopy from f to a function g; with the property that ¢;(z,t) = (x,t) for
t' €}-2,2[. Now by stretching the parameter ¢’ in each interval {z} x]-4, 4],
we can assume that f is the identity on a (smaller) neighborhood. O
Corollary 6.18. If we in addition to the requirements in lemma 6.17 require
that f is the identity on OF, then the isotopy can be assumed also to be the
identity on OF.

Proof. All the steps in the proof can be done away from the boundary. [

Theorem 6.19. Let F' # S, RP? and let f, g € Diff(F,0F) be homotopic.
Then f and g are smoothly isotopic.

To prove this I use the following result from [Smale| without proof.

Theorem 6.20 (Smale). Let f € Diff(D? 0D?). Then f is smoothly isotopic
to the identity, and if f is the identity on the boundary then so is the isotopy.

Proof of Theorem 6.19. If we prove that f~!g is smoothly isotopic to the
identity, we will have a smooth isotopy from g to f. Thus we can restrict our
attention to the case f ~ id.

Choose a pair of pants/annular decomposition of the surface F, i.e. a
collection of disjoint simple closed curves o; : [ — F,i=1,...,n,in F. By
Lemma 6.17 (7), f is smoothly isotopic to a map g, which is the identity on
a tubular neighborhood of the «;. In each pair of pants P, chose two curves
that cut P up into a disk (for each annulus, choose one curve). By Lemma
6.17 (ii), there is an isotopy of F', which is the identity on the o, from g to a
map h fixing a tubular neighborhood of the two curves in each pair of pants.
Then we can use Smale’s Theorem 6.20 on each disk, getting an isotopy to
the identity. O

Corollary 6.21. In addition to the requirements of Theorem 6.19, assume
that f and g are the identity on OF. Then we can choose the isotopy to be
the identity on OF.
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Proof. This is done as in theorem 6.19, except that we use Corollary 6.18
instead of Lemma 6.17, and in addition use that the isotopy in theorem 6.20
can be chosen to be the identity on boundary. O

6.5 Proof of the Main Theorem

As explained in the introduction, we will use a result of Epstein to prove the
statement about Top(F, {0F'}):

Theorem 6.22 (Epstein). Let F' a compact surface and let f : FF — F
be a homeomorphism homotopic to the identity. Then f is isotopic to the
identity.

Proof. This is a part of |[Epstein| Thm 6.4, which states exactly this result,
but for maps preserving a basepoint. And clearly, by an isotopy we can
assume that f preserves any given point z(, and then f will be homotopic
to the identity through maps preserving x,. O

Now we are ready to prove the bijections of the Main Theorem 1.1:
mo(Diff(F, {0F})) — mo(Top(F, {0F})) — mo(hAut(F, {OF}))

Proof of Theorem 6.1. Suppose F'is not a sphere, a disk, a cylinder, a Mdbius
band, a torus, a Klein bottle, or RP?. Consider the composite map from (59),

mo(Diff(F, {OF})) — mo(hAut(F, {9F})). (62)

According to Theorem 6.13, the map is surjective, and by Theorem 6.19, it
is injective. Now all that is left is to show that

mo(Top(F,{0F})) — mo(hAut(F,{0F}))
is injective. But that is Theorem 6.22. U
We now deduce Theorem 6.2:

Proof of Theorem 6.2. Suppose F'is not a sphere, a disk, a cylinder, a Mdbius
band, a torus, a Klein bottle, or RP?.
Similar to the proof of Theorem 6.1, we consider the composite

mo(Diff(F, 0F)) — mo(hAut(F,0F)).

We can assume OF # (), otherwise this is the Main Theorem. By Cor. 6.10,
it is surjective, and by Cor. 6.21 it is injective. To prove the result, it suffices
to show that

mo(Diff(F, OF")) — mo(Top(F, OF)) (63)
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is surjective. Consider the following fibration,
Diff(F,0F)) — Diff(F, {0F}) — Diff(0F). (64)

Here, Diff(OF) is a semidirect product 3, x Diff(S'), where X, denotes the
symmetric group of permutations of n elements, and n is the number of
boundary components of F. We have of course a similar fibration for Top.

We use Diff(5) — Top(S'), and this implies
Diff(9F) — Top(OF). (65)

Now apply the long exact sequence of homotopy groups for the fibration (64)
and its counterpart for Top. Using (65) and the Main Theorem, we get by
the 5-lemma that the map (63) is surjective.

Now assume [ is oriented. We can write Diff(#, {0F}) as the disjoint
union

Diff(F, {0F}) = Diff (F, {0F}) U Diff_(F, {0F}),

where the latter denotes the orientation-reversing maps. Similarly for Top
and hAut. Since the maps in the Main Theorem respect this disjoint union,
we immediately get the second part of 6.2.

By the same argument we can deduce the last part of 6.2 from the first
part. U
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