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Summary 5SummaryMy ph.d. thesis 
onsists of my two arti
les:(I) S. Boldsen, Improved homologi
al stability for the mapping 
lass groupwith integral or twisted 
oe�
ients, (59 pages), submitted for publi
a-tion to Journal of Topology and available at arXiv:0904.3269.(II) S. Boldsen, Di�erent versions of mapping 
lass groups of surfa
es, (18pages), will soon be available at arXiv.Both papers investigate the properties of the mapping 
lass group of sur-fa
es. Mapping 
lass groups are 
entral to many areas of mathemati
s; mostprominently to algebrai
 geometry, di�erential geometry and topology. Italso plays a role in various �eld theories from mathemati
al physi
, and ingeometri
 group theory.Let Fg,r denote the 
ompa
t oriented surfa
e of genus g with r boundary
ir
les, then the asso
iated mapping 
lass group, Γg,r, is
Γg,r = π0Di�+(Fg,r; ∂),the 
omponents of the group of orientation-preserving di�eomorphisms of

Fg,r keeping the boundary pointwise �xed.The paper (I) has as its starting point a never published manus
ript ofJ. Harer, [Harer2℄, from 1993. This manus
ript states an improved stabilityrange for the homology of the mapping 
lass group, but it rests upon 
ertainunproven statements. My goal from the outset was to prove these statements.We 
ompare di�erent mapping 
lass groups using the maps indu
ed bygluing a pair of pants onto one or two boundary 
ir
les, and extending thedi�eomorphism by the identity on the pair of pants,
Σ0,1 : Γg,r −→ Γg,r+1, Σ1,−1 : Γg,r −→ Γg+1,r−1Homology stability means these maps indu
e isomorphism on homology in
ertain degrees. We now state our main results. The �rst result is:Theorem 1. The map Hn(Γg,r) −→ Hn(Γg+l,r+m) indu
ed by Σl,m satis�es:

(i) Σ0,1 is an isomorphism for 2g ≥ 3n, when r ≥ 1

(ii) Σ1,−1 is surje
tive for 2g ≥ 3n−1, and an isomorphism for 2g ≥ 3n+2,when r ≥ 2.



6 SummaryWhile Harer got his result only for homology with rational 
oe�
ients, wehave integer 
oe�
ients. Theorem 1 only holds for surfa
es with boundary.To get a result for 
losed surfa
es, we use the map indu
ed by gluing on adisk to a boundary 
omponent, and obtainTheorem 2. The map Hk(Γg,1) −→ Hk(Γg) is surje
tive for 2g ≥ 3k − 1,and an isomorphism for 2g ≥ 3k + 2.This was not 
onsidered by Harer, but N. Ivanov has shown how to dedu
esu
h a result from the one for surfa
es with boundary.We wish to obtain su
h a stability result, not only for trivial 
oe�
ientsbut also for so-
alled 
oe�
ients systems of a �nite degree. A 
oe�
ientsystem is a fun
tor V from C to the 
ategory of abelian groups withoutin�nite division. If the fun
tor is 
onstant, we say V has degree 0. Wethen de�ne a 
oe�
ient system of degree k indu
tively, by requiring that themaps V (F )−→V (Σi,jF ) are split inje
tive and their 
okernels are 
oe�
ientsystems of degree k − 1, see De�nition 4.4. As an example, the fun
tor
H1(F ; Z) is a 
oe�
ients system of degree 1, and its kth exterior power
ΛkH1(F ; Z), 
onsidered in [Morita1℄, has degree k.Theorem 3. Let F be a surfa
e of genus g, and let V be a 
oe�
ient systemof degree k. Then the map

Hn(Γ(F );V (F )) −→ Hn(Γ(Σl,mF );V (Σl,mF ))indu
ed by Σl,m satis�es:
(i) Σ0,1 is an isomorphism for 2g ≥ 3n+ k.

(ii) Σ1,−1 is surje
tive for 2g ≥ 3n + k − 1, and an isomorphism for 2g ≥
3n+ k + 2.Note that for the result for the integers is a spe
ial 
ase of this. One reasonto study 
oe�
ient systems is that we 
an then 
al
ulate the homology of thespa
e of surfa
es mapping into a ba
kground spa
e X from [Cohen-Madsen℄:

Sg,r(X, γ) =
{
(Fg,r, ϕ, f) | Fg,r ⊆ R∞ × [a, b], ϕ : ⊔S1 −→ ∂Fg,r is a para-metrization, f : Fg,r −→ X is 
ontinuous with f ◦ ϕ = γ}De�ne the 
oe�
ient system V X

n (F ) = Hn(Map(F/∂F,X)). Let Sg,r(X, γ)•denote the 
onne
ted path 
omponent 
orresponding to the trivial 
lass 0 ∈
π2(X), and similarly for Ω∞(CP∞−1 ∧X+)•. Then



Summary 7Theorem 4. Let X be a simply 
onne
ted spa
e su
h that V X
m is withoutin�nite division for all m. Then for 2g ≥ 3n + 3 and r ≥ 1 we get anisomorphism

Hn(Sg,r(X, γ)•) ∼= Hn(Ω
∞(CP∞−1 ∧X+)•).In this paper, we �rst prove Theorem 1 for 
onstant integral 
oe�
ients,

V = Z. Our proof of Theorem 1 in this 
ase is mu
h inspired by Harer'smanus
ript [Harer2℄. The rational stability results 
laimed by Harer are �onedegree better� than what is obtained here with integral 
oe�
ients. Beforedis
ussing the dis
repan
y it is 
onvenient to 
ompare the stability withFaber's 
onje
ture.LetMg be Riemann's moduli spa
e; re
all that H∗(Mg; Q) ∼= H∗(Γg; Q).From above we have maps
H∗(Γg; Q) −→ H∗(Γg,1; Q)←− H∗(Γ∞,1; Q)and by [Madsen-Weiss℄,

H∗(Γ∞,1; Q) = Q[κ1, κ2, . . .]. (1)The 
lasses κi ∈ H2i(Γg,r) for r ≥ 0 are the standard 
lasses de�ned byMiller, Morita and Mumford (κi is denoted ei by Morita).The tautologi
al algebra R∗(Mg) is the subring of H∗(Γg; Q) generatedmultipli
atively by the 
lasses κi. Faber 
onje
tured in [Faber℄ the 
ompletealgebrai
 stru
ture of R∗(Mg). Part of the 
onje
ture asserts that it is aPoin
aré duality algebra (Gorenstein) of formal dimension 2g − 4, and thatit is generated by κ1, . . . , κ[g/3], where [g/3] denotes g/3 rounded down. Thelatter statement was proved by Morita (
f. [Morita1℄ prop 3.4).It follows from our theorems above that κ1, . . . , κ[g/3] are non-zero in
H∗(Γg; Q) when ∗ ≤ 2[g

3
] − 2. More pre
isely, if g ≡ 1, 2 (mod 3) thenour results show that

H∗(Γg; Q) ∼= H∗(Γ∞,1; Q) for ∗ ≤ 2[g
3
], (2)but if g ≡ 0 (mod 3), our result only show the isomorphism for ∗ ≤ 2[g

3
]− 1.In 
ontrast, [Harer2℄ asserts the isomorphism for ∗ ≤ 2[g

3
] for all g. We notethat is follows from (3) and Morita's result that the best possible stabilityrange for H∗(Γg; Q) is ∗ ≤ 2[g

3
]. We are �one degree o�� when g ≡ 0 (mod 3).The stability of [Harer2℄ is based on three unproven assertions that I havenot been able to verify. I will dis
uss two of them below, and the third inse
tion 3.1.



8 SummaryBoundary 
onne
ted sum of surfa
es with non-empty boundary de�nesa group homomorphism Γg,r × Γh,s −→ Γg+h,r+s−1, and hen
e a produ
t inhomology
H∗(Γg,r)⊗H∗(Γh,s) −→ H∗(Γg+h,r+s−1), r, s > 0.The 
lasses κi are primitive with respe
t to this homology produ
t, in thesense that 〈κi, a · b〉 = 0 if both a and b have positive degree [Morita2℄. Harerproves in [Harer3℄ that H2(Γ3,1; Q) = Q {κ1}. Let κ̌1 ∈ H2(Γ3,1; Q) be thedual to κ1, and let κ̌ n

1 be the n'th power under the multipli
ation
H2(Γ3,1)

⊗n −→ H2n(Γ3n,1).Then 〈κ n
1 , κ̌

n
1 〉 = n!, so κ̌ n

1 6= 0 in H2n(Γ3n,1; Q), 
f. part (i) of Theorem 1.Dehn twist around the (r+1)st boundary 
ir
le yields a group homomorphism
Z −→ Γ1,r+1, and hen
e a 
lass τr+1 ∈ H1(Γ1,r+1).We 
an now formulate two of Harer's three assertions one needs in orderto improve the rational stability result by �one degree� when g ≡ 0 (mod 3),i.e. from ∗ ≤ 2[g

3
]− 1 to ∗ ≤ 2[g

3
]. The assertions are:

(i) κ̌ n
1 = 0 in H2n(Γg,r; Q) for g < 3n.

(ii) τr+1·κ̌
n
1 is non-zero in Coker(H2n+1(Γ3n+1,r; Q) −→ H2n+1(Γ3n+1,r+1; Q).The short paper (II) is about the 
onne
tion between the topologi
algroups of either di�eomorphisms, homeomorphisms or homotopy equiva-len
es of a surfa
e. The main result is that these groups have the same
onne
ted 
omponents. This is basi
ally a result that dates ba
k to Baer inthe 1920ies, but it is hard to �nd in the written literature; there is no goodreferen
e. This paper gives a short, self-
ontained exposition of this resultand its proof.As de�ned above, the mapping 
lass group of a surfa
e F is Γ(F ) =

π0(Di�+(F, ∂F )). We now also 
onsider the group Di�(F, {∂F}) of di�eo-morphisms mapping ∂F to itself as a set. We 
ompare the groups of dif-feomorphisms to the 
orresponding groups of homeomorphisms, Top(F, ∂F ),and homotopy equivalen
es, hAut(F, ∂F ). Part (4) of the Theorem belowshows that it does not matter whether one 
onsiders di�eomorphisms, home-omorphisms, or even homotopy equivalen
es, when working in the mapping
lass group.Theorem 5. Let F be a 
ompa
t surfa
e and not a sphere, a disk, a 
ylinder,a Möbius band, a torus, a Klein bottle, or RP 2. Then there are bije
tions
(1) π0(Di�(F, {∂F}))

∼=
−→ π0(Top(F, {∂F}))

∼=
−→ π0(hAut(F, {∂F}))
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(2) π0(Di�(F, ∂F ))

∼=
−→ π0(Top(F, ∂F ))

∼=
−→ π0(hAut(F, ∂F )),

(3) π0(Di�+(F, {∂F}))
∼=
−→ π0(Top+(F, {∂F}))

∼=
−→ π0(hAut+(F, {∂F})),

(4) π0(Di�+(F, ∂F ))
∼=
−→ π0(Top+(F, ∂F ))

∼=
−→ π0(hAut+(F, ∂F )).The proof uses mostly elementary topologi
al tools, su
h as 
overingspa
es, tubular neighborhoods, and transversality. The main method is 
ut-ting up the surfa
e in elementary pie
es, proving the results for those, and
arefully gluing them ba
k together. This requires a few heavier tools, mostimportantly the 
lassi�
ation of surfa
es, and a result of Smale that any dif-feomorphism of the dis
, whi
h is identity on the boundary, is isotopi
 to theidentity relative to the boundary.Referen
es[Cohen-Madsen℄ R. Cohen and I. Madsen, Surfa
es in a ba
kgroundspa
e and the homology of the mapping 
lass groups, arXivmath.GT/0601750 (2006).[Faber℄ C. Faber, A 
onje
tural des
ription of the tautologi
al ring of themoduli spa
e of 
urves, Aspe
ts Math 33, vieweg 1999.[Harer1℄ J. L. Harer, Stability of the homology of the mapping 
lass group oforientable surfa
es, Ann. of Math. Vol 121 (1985) 215-249.[Harer2℄ J. L. Harer, Improved homology stability for the homology of themapping 
lass groups of surfa
es, preprint (1993).[Harer3℄ J. L. Harer, The third homology group of the moduli spa
e of 
urves,Duke Math. J. Volume 63, Number 1 (1991), 25-55.[Morita1℄ S. Morita, Generators for the tautologi
al algebra of the modulispa
e pf 
urves, Topology 42 (2003) 787-819.[Morita2℄ S. Morita, Chara
teristi
 Classes of surfa
e Bundles, Inv. Math.90, No 3 (1987) 551-577.



Part IImproved homologi
al stabilityfor the mapping 
lass group withintegral or twisted 
oe�
ients



Introdu
tion 11Introdu
tionLet Fg,r denote the 
ompa
t oriented surfa
e of genus g with r boundary
ir
les, and let Γg,r be the asso
iated mapping 
lass group,
Γg,r = π0Di�+(Fg,r, ∂Fg,r),the 
omponents of the group of orientation-preserving di�eomorphisms of

Fg,r keeping the boundary pointwise �xed. Gluing a pair of pants onto oneor two boundary 
ir
les indu
e maps
Σ0,1 : Γg,r −→ Γg,r+1, Σ1,−1 : Γg,r −→ Γg+1,r−1whose 
omposite Σ1,0 := Σ1,−1 ◦ Σ0,1 
orresponds to adding to Fg,r a genusone surfa
e with two boundary 
ir
les. Using the mapping 
one of Σi,j ,

(i, j) = (0, 1), (1,−1) or (1, 0) we get a relative homology group, whi
h �tsinto the exa
t sequen
e
. . . −→ Hn(Σi,jΓg,r) −→ Hn(Σi,jΓg,r,Γg,r) −→ Hn−1(Γg,r) −→ . . .Homology stability results for the mapping 
lass group 
an then be derivedfrom the vanishing the relative group (in some range).We wish to show su
h a stability result for not only for trivial 
oe�
ientsbut also for so-
alled 
oe�
ients systems of a �nite degree. For this, we workin Ivanov's 
ategory C of marked surfa
es, 
f. [Ivanov1℄ and §4.1 below fordetails. The maps Σ1,0 and Σ0,1 are fun
tors on C, and Σ1,−1 is a fun
tor ona sub
ategory.A 
oe�
ient system is a fun
tor V from C to the 
ategory of abeliangroups without in�nite division. If the fun
tor is 
onstant, we say V has de-gree 0. We then de�ne a 
oe�
ient system of degree k indu
tively, by requir-ing that the maps V (F )−→V (Σi,jF ) are split inje
tive and their 
okernelsare 
oe�
ient systems of degree k − 1, see De�nition 4.4. As an example,the fun
tor H1(F ; Z) is a 
oe�
ients system of degree 1, and its kth exteriorpower ΛkH1(F ; Z), 
onsidered in [Morita1℄, has degree k. To formulate ourstability result, we 
onsider relative homology group with 
oe�
ients in V ,

RelVn (Σl,mF, F ) = Hn(Σl,mΓ(F ),Γ(F );V (Σl,mF ), V (F )).These groups again �t into a long exa
t sequen
e. Our main result isTheorem 1. For F a surfa
e of genus g with at least 1 boundary 
omponent,and V a 
oe�
ient system of degree kV , we have
RelVn (Σ1,0F, F ) = 0 for 3n ≤ 2g − kV ,
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tion
RelVn (Σ0,1F, F ) = 0 for 3n ≤ 2g − kV .Moreover, if F has at least 2 boundary 
omponents, we have

RelVq (Σ1,−1F, F ) = 0 for 3q ≤ 2g − kV + 1.As a 
orollary, we obtain that Hn(Γg,r;V (Fg,r)) is independent of g and
r for 3n ≤ 2g − kV − 2 and r ≥ 1. For a more pre
ise statement, seeTheorem 4.17. This uses that Σ0,1 is always inje
tive, sin
e the 
omposition
Γg,r

Σ0,1

−→ Γg,r+1
Σ0,−1

−→ Γg,r is an isomorphism, where Σ0,−1 is the map gluing adisk onto a boundary 
omponent.The proof of Theorem 1 with twisted 
oe�
ients uses the setup from[Ivanov1℄. His 
ategory of marked surfa
es is slightly di�erent from ours,sin
e we also 
onsider surfa
es with more than one boundary 
omponent andthus get results for Σ0,1 and Σ1,−1.For 
onstant 
oe�
ients, V = Z, we also 
onsider the map Σ0,−1 : Γg,1 −→
Γg indu
ed by gluing a disk onto the boundary 
ir
le, where our result is:Theorem 2. The map

Σ0,−1 : Hk(Γg,1; Z) −→ Hk(Γg; Z)is surje
tive for 2g ≥ 3k − 1, and an isomorphism for 2g ≥ 3k + 2.The proof of Theorem 2 follows [Ivanov1℄, where a stability result for
losed surfa
es is dedu
ed from a stability theorem on surfa
es with boundary.We get an improved result, be
ause Theorem 1 has a better bound thanIvanov's stability theorem (whi
h has isomorphism for g > 2k).In this paper, we �rst prove Theorem 1 for 
onstant integral 
oe�
ients,
V = Z. Our proof of Theorem 1 in this 
ase is mu
h inspired by Harer'smanus
ript [Harer2℄, whi
h was never published. Harer's manus
ript is aboutrational homology stability. The rational stability results 
laimed in [Harer2℄are �one degree better� than what is obtained here with integral 
oe�
ients.Before dis
ussing the dis
repan
y it is 
onvenient to 
ompare the stabilitywith Faber's 
onje
ture.LetMg be Riemann's moduli spa
e; re
all that H∗(Mg; Q) ∼= H∗(Γg; Q).From above we have maps

H∗(Γg; Q) −→ H∗(Γg,1; Q)←− H∗(Γ∞,1; Q)and by [Madsen-Weiss℄,
H∗(Γ∞,1; Q) = Q[κ1, κ2, . . .]. (3)



Introdu
tion 13The 
lasses κi ∈ H2i(Γg,r) for r ≥ 0 are the standard 
lasses de�ned byMiller, Morita and Mumford (κi is denoted ei by Morita).The tautologi
al algebra R∗(Mg) is the subring of H∗(Γg; Q) generatedmultipli
atively by the 
lasses κi. Faber 
onje
tured in [Faber℄ the 
ompletealgebrai
 stru
ture of R∗(Mg). Part of the 
onje
ture asserts that it is aPoin
aré duality algebra (Gorenstein) of formal dimension 2g − 4, and thatit is generated by κ1, . . . , κ[g/3], where [g/3] denotes g/3 rounded down. Thelatter statement was proved by Morita (
f. [Morita1℄ prop 3.4).It follows from our theorems above that κ1, . . . , κ[g/3] are non-zero in
H∗(Γg; Q) when ∗ ≤ 2[g

3
] − 2. More pre
isely, if g ≡ 1, 2 (mod 3) thenour results show that

H∗(Γg; Q) ∼= H∗(Γ∞,1; Q) for ∗ ≤ 2[g
3
], (4)but if g ≡ 0 (mod 3), our result only show the isomorphism for ∗ ≤ 2[g

3
]− 1.In 
ontrast, [Harer2℄ asserts the isomorphism for ∗ ≤ 2[g

3
] for all g. We notethat is follows from (3) and Morita's result that the best possible stabilityrange for H∗(Γg; Q) is ∗ ≤ 2[g

3
]. We are �one degree o�� when g ≡ 0 (mod 3).The stability of [Harer2℄ is based on three unproven assertions that I havenot been able to verify. I will dis
uss two of them below, and the third inse
tion 3.1.Boundary 
onne
ted sum of surfa
es with non-empty boundary de�nesa group homomorphism Γg,r × Γh,s −→ Γg+h,r+s−1, and hen
e a produ
t inhomology

H∗(Γg,r)⊗H∗(Γh,s) −→ H∗(Γg+h,r+s−1), r, s > 0.The 
lasses κi are primitive with respe
t to this homology produ
t, in thesense that 〈κi, a · b〉 = 0 if both a and b have positive degree [Morita2℄. Harerproves in [Harer3℄ that H2(Γ3,1; Q) = Q {κ1}. Let κ̌1 ∈ H2(Γ3,1; Q) be thedual to κ1, and let κ̌ n
1 be the n'th power under the multipli
ation

H2(Γ3,1)
⊗n −→ H2n(Γ3n,1).Then 〈κ n

1 , κ̌
n
1 〉 = n!, so κ̌ n

1 6= 0 in H2n(Γ3n,1; Q), 
f. part (i) of Theorem 1.Dehn twist around the (r+1)st boundary 
ir
le yields a group homomorphism
Z −→ Γ1,r+1, and hen
e a 
lass τr+1 ∈ H1(Γ1,r+1).We 
an now formulate two of Harer's three assertions one needs in orderto improve the rational stability result by �one degree� when g ≡ 0 (mod 3),i.e. from ∗ ≤ 2[g

3
]− 1 to ∗ ≤ 2[g

3
]. The assertions are:

(i) κ̌ n
1 = 0 in H2n(Γg,r; Q) for g < 3n.

(ii) τr+1·κ̌
n
1 is non-zero in Coker(H2n+1(Γ3n+1,r; Q) −→ H2n+1(Γ3n+1,r+1; Q).The third assertion one needs is stated in Remark 3.5.
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151 Homology of groups and spe
tral sequen
es1.1 Relative homology of groupsFor a group G, and Z[G]-modulesM and M ′, left and right modules, respe
-tively, we have the bar 
onstru
tion:
Bn(M

′, G,M) = M ′ ⊗ (Z[G])⊗n ⊗M,with the di�erential
dn(m

′ ⊗ g1 ⊗ · · · ⊗ gn ⊗m) = (m′g1)⊗ g2 ⊗ · · · ⊗ gn ⊗m

+
n−1∑

i=1

(−1)im′ ⊗ g1 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn ⊗m

+ (−1)nm′ ⊗ g1 ⊗ · · · ⊗ gn−1 ⊗ (gnm).If either M or M ′ are free Z[G]-modules, B∗(M ′, G,M) is 
ontra
tible. If
M ′ = Z with trivial G-a
tion, we write B∗(G,M). Then the nth homologygroup of G with 
oe�
ients in M is de�ned to be

Hn(G;M) = Hn(B∗(G,M)) ∼= TorZGn (Z,M).There is a relative version of this. Suppose f : G −→ H is a group ho-momorphism and ϕ : M −→ N is an f -equivariant map of Z[G]-modules.One de�nes the relative homology H∗(H,G;N,M) to be the homology of thealgebrai
 mapping 
one of
(f, ϕ)∗ : B∗(G,M) −→ B∗(H,N),so that there is a long exa
t sequen
e

· · · → Hn(G;M)→ Hn(H ;N)→ Hn(H,G;M,N)→ Hn−1(G;M)→ · · ·1.2 Spe
tral sequen
es of group a
tionsSuppose next that X is a 
onne
ted simpli
ial 
omplex with a simpli
iala
tion of G. Let C∗(X) be the 
ellular 
hain 
omplex of X. Given a Z[G]-module M , de�ne the 
hain 
omplex
C†n(X;M) =





0, n < 0;
M, n = 0;
Cn−1(X)⊗Z M, n ≥ 1; (5)



16 1 Homology of groups and spe
tral sequen
eswith di�erential ∂†n de�ned to be ∂n−1 ⊗ idM for n > 1, and equal to theaugmentation ε ⊗ idM for n = 1. Note if X is d-
onne
ted for some d ≥ 1,or more generally, if the homology Hi(X) = 0 for 1 ≤ i ≤ d, then C†∗(X;M)is exa
t for ∗ ≤ d+ 1. This is used below in the spe
tral sequen
e.Again there is a relative version. Let f : G −→ H , ϕ : M −→ N beas above, and let X ⊆ Y be a pair of simpli
ial 
omplexes with a simpli
iala
tion of G and H , respe
tively, 
ompatible with f in the sense that thein
lusion i : X −→ Y is f -equivariant. Assume in addition that the indu
edmap on orbits,
i♯ : X/G

∼= // Y/H (6)is a bije
tion.De�nition 1.1. With G, M and X as above, let σ be a p-
ell of X. Let Gσdenote the stabiliser of σ, and let Mσ = M , but with a twisted Gσ-a
tion,namely
g ∗m =

{
gm, if g a
ts orientation preservingly on σ;
−gm, otherwise.Theorem 1.2. Suppose X and Y are d- 
onne
ted and that the orbit map(6) is a bije
tion. Then there is a spe
tral sequen
e {

En
r,s

}
n

onverging tozero for r + s ≤ d+ 1, with

E1
r,s
∼=

⊕

σ∈∆̄r−1

Hs(Hσ, Gσ;Nσ,Mσ).Here ∆̄p = ∆̄p(X) denotes a set of representatives for the G-orbits of the
p-simpli
es in X.Proof. Consider the double 
omplex with 
hain groups

Cn,m = Fn(H)⊗Z[H] C
†
m(Y,N)⊕ Fn−1(G)⊗Z[G] C

†
m(X,M),where Fn(G) = Bn(G,Z[G]), and di�erentials (supers
ripts indi
ate horizon-tal and verti
al dire
tions)

dhm = id⊗ ∂Ym ⊕ id⊗ ∂Xm
dvn = ∂Hn ⊗ id⊕ (

f∗ ⊗ (i, ϕ)∗ + ∂Gn−1 ⊗ id) . (7)Standard spe
tral sequen
e 
onstru
tions give two spe
tral sequen
esboth 
onverging to H∗(TotC), where TotC is the total 
omplex of C∗,∗,
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(TotC)k =

⊕

n+m=k

Cn,m and dTot = dh + dv. The verti
al spe
tral sequen
e(indu
ed by dv) has E1 page:
E1
r,s = Hr(Cs,∗)

= Hr

(
Fs(H)⊗Z[H] C

†
∗(Y ;N)

)
⊕Hr

(
Fs−1(G)⊗Z[G] C

†
∗(X;M)

)
.Sin
e the resolutions F∗ are free, this is zero where C†∗(X;M) and C†∗(Y ;N)are exa
t, i.e. for r ≤ d + 1. So this spe
tral sequen
e 
onverges to zerowhere r + s ≤ d+ 1, and we 
on
lude that H∗(TotC) = 0 for ∗ ≤ d+ 1.The horizontal spe
tral sequen
e, whi
h 
onsequently also 
onverges tozero in total degrees ≤ d+ 1, has E1 page

E1
r,s = Hs

(
F∗(H)⊗Z[H] C

†
r(Y,N)⊕ F∗−1(G)⊗Z[G] C

†
r(X,M)

)
. (8)For r ≥ 1 we have

C†r(X,M) = Cr−1(X)⊗Z[G] M ∼=
⊕

σ∈∆r−1(X)

Z[G · σ]⊗Z[G] M

∼=
⊕

σ∈∆̄r−1

Z[G]⊗Z[Gσ ] Mσ =
⊕

σ∈∆̄r−1

IndGGσ
Mσ, (9)where ∆p(X) denotes the p-
ells in X, and where ∆̄p ⊆ ∆p(X) is a set ofrepresentatives for the G-orbits. Finally, IndGGσ

Mσ = Z[G]⊗Z[Gσ ] Mσ.By assumption (6), the image of ∆̄r−1 under i also works as representa-tives for the H-orbits of (r − 1)-
ells in Y . Therefore we also have:
C†r(Y,N) ∼=

⊕

σ∈∆̄r−1

IndHHσ
Nσ. (10)We insert (9) and (10) into the formula (8) to get for r ≥ 1:

E1
r,s = Hs

(
F∗(H)⊗Z[H] C

†
r(Y,N)⊕ F∗−1(G)⊗Z[G] C

†
r(X,M)

)

∼= Hs


F∗(H)⊗Z[H]

⊕

σ∈∆̄r−1

IndHHσ
Nσ ⊕ F∗−1(G)⊗Z[G]

⊕

σ∈∆̄r−1

IndGGσ
Mσ




∼=
⊕

σ∈∆̄r−1

Hs

(
F∗(H)⊗Z[H] IndHHσ

Nσ ⊕ F∗−1(G)⊗Z[G] IndGGσ
Mσ

)

∼=
⊕

σ∈∆̄r−1

Hs

(
F∗(H)⊗Z[Hσ ] Nσ ⊕ F∗−1(G)⊗Z[Gσ ] Mσ

)

∼=
⊕

σ∈∆̄r−1

Hs(Hσ, Gσ, Nσ,Mσ). (11)



18 1 Homology of groups and spe
tral sequen
esThe �nal isomorphism above uses that F∗(H) is also a Z[Hσ]-module. For
r = 0,

E1
0,s = Hs(H,G;N,M).Thus we set Hσ = H when σ ∈ ∆̄−1 = {∅}.For appli
ation in the proof of Theorem 4.15, we need to relax the 
on-dition (6) to the situation where i♯ is only inje
tive:Theorem 1.3. With the assumptions of Theorem 1.2, but with i♯ : X/G −→

Y/H is only inje
tive, there is a spe
tral sequen
e {
En
r,s

}
n

onverging to zerofor r + s ≤ d+ 1, and

E1
r,s
∼=

⊕

σ∈Σr−1(X)

Hs(Hσ, Gσ;Nσ,Mσ)⊕
⊕

σ∈Γr−1(Y )

Hs(Hσ, Nσ).Here Σp(X) denotes a set of representatives for the G-orbits of the p-
ells in
X, and Γn(Y ) denotes a set of representatives for those H-orbits whi
h donot 
ome from n-
ells in X under i♯.Proof. We 
an 
hoose Σn(Y ) = i(Σn(X)) ∪ Γn(Y ). In this 
ase we obtain:

E1
r,s
∼=

⊕

σ∈Σr−1

Hs(Hσ, Gσ, Nσ,Mσ)⊕
⊕

σ∈Γr−1(Y )

Hs(Hσ, Nσ).The �rst dire
t sum is obtained in the same way as in the bije
tive 
ase. These
ond 
onsists of absolute homology, sin
e the 
ells of Γn(Y ) are not in orbitwith 
ells from X.We are primarily going to use the absolute 
ase, Y = ∅:Corollary 1.4. For a group G a
ting on a d-
onne
ted simpli
ial 
omplex
X, and a G-module M , there is a spe
tral sequen
e 
onverging to zero for
r + s ≤ d+ 1, with

E1
r,s =

⊕

σ∈∆̄r−1

Hs(Gσ,Mσ),where ∆̄r−1 is a set of representatives of the G-orbits of (r − 1)-
ells in X.In our appli
ations, we often have a rotation-free group a
tion, in thefollowing sense:De�nition 1.5. A simpli
ial group a
tion of G on X is rotation-free if forea
h simplex σ of X, the elements of Gσ �xes σ pointwise.



1.3 The �rst di�erential 19Corollary 1.6. For rotation-free a
tions, the spe
tral sequen
e of Thm. 1.2takes the form:
E1
r,s
∼=

⊕

σ∈∆̄r−1

Hs(Hσ, Gσ, N,M)in the relative 
ase, and
E1
r,s
∼=

⊕

σ∈∆̄r−1

Hs(Gσ,M)in the absolute 
ase.Proof. The extra assumption implies that ea
h g ∈ Gσ preserves the orien-tation of σ. Thus g a
ts on Mσ in the same way as on M , so Mσ and M areidenti
al as Gσ-modules. The same applies to N .Remark 1.7. In some of our appli
ations of the absolute version of thespe
tral sequen
e, G a
ts both transitively and rotation-freely on the n-simpli
es of X. In this 
ase there is only one G-orbit, so we get
E1
r,s
∼= Hs(Gσ;M),where σ is any (r − 1)-
ell in X.1.3 The �rst di�erentialWe will need a formula for the �rst di�erential d1

r,s : E1
r,s −→ E1

r−1,s. Fromthe 
onstru
tion of the spe
tral sequen
es of a double 
omplex, d1 is indu
edfrom the verti
al di�erentials dv on homology. In the absolute version of thespe
tral sequen
e, assuming that G a
ts rotation-freely on X,
E1
r,s
∼=

⊕

σ∈∆̄r−1

Hs(Gσ,M).and it is not hard to se that the di�erential
d1
r,s :

⊕

σ∈∆̄r−1

Hs(Gσ,M) −→
⊕

τ∈∆̄r−2

Hs(Gτ ,M).has the following des
ription (see e.g. [Brown℄, Chapter VII, Prop 8.1.) Let
σ be an (r − 1)-simplex of X and τ an (r − 2)-dimensional fa
e of σ. Wehave the boundary operator

∂ : Cr−1(X,M) −→ Cr−2(X,M)



20 2 Ar
 
omplexes and permutationsand we denote its (σ, τ)th 
omponent by ∂στ : M −→M . This is a Gσ-map,so together with the in
lusion Gσ −→ Gτ it indu
es a map
uστ : H∗(Gσ,M) −→ H∗(Gτ ,M).Up to a sign uστ is the in
lusion, be
ause X is a simpli
ial 
omplex. Conse-quently
∂(σ) =

r−1∑

j=0

(−1)j(jth fa
e of σ).So if τ is the ith fa
e of σ, then uστ = (−1)i. For σ ∈ ∆̄r−1, we 
annot besure that τ ∈ ∆̄r−2, but there is a g(τ) ∈ G su
h that g(τ)τ = τ0 ∈ ∆̄r−2.The 
onjugation, g 7→ g(τ)gg(τ)−1, indu
es a map from Gτ to Gτ0 and hen
ean isomorphism,
cg(τ) : H∗(Gτ ,M)

∼=
−→ H∗(Gτ0 ,M).Now d1 is given by

d1 |H∗(Gσ ,M)=
∑

τ fa
e of σ uστcg(τ). (12)Denoting the ith fa
e of σ by τi, this 
an be written:
d1|H∗(Gσ ,M) =

r−1∑

i=0

(−1)icg(τi). (13)2 Ar
 
omplexes and permutationsWe write Fg,r for a 
ompa
t oriented surfa
e of genus g with r boundary
omponents.De�nition 2.1. Let F be a surfa
e with boundary. The mapping 
lass group
Γ(F ) = π0(Di�+(F, ∂F ))is the 
onne
ted 
omponents of the group of orientation-preserving di�eomor-phisms whi
h are the identity on a small 
ollar neighborhood of the boundary.We write Γg,r = Γ(Fg,r).To establish stability results about the homology of Γg,r, we will makeextensive use of 
utting along ar
s in Fg,r. These ar
s will be the verti
es insimpli
ial 
omplexes, the so-
alled ar
 
omplexes. The mapping 
lass groupa
t on these ar
 
omplexes, and we 
an use the spe
tral sequen
es of se
tion1.2. The di�erentials in the spe
tral sequen
es are 
losely related to thehomomorphisms of Theorem 1 and Theorem 2 from the introdu
tion.
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 properties 212.1 De�nitions and basi
 propertiesLet F be a surfa
e with boundary. To de�ne the ordering of the verti
es usedin the ar
 
omplexes, we will need the orientation of ∂F . An orientation at apoint p ∈ ∂F is determined by a tangent ve
tor vp to the boundary 
ir
le at
p. Let wp be tangent to F at p, perpendi
ular to vp and pointing into F . We
all the orientation of ∂F at p determined by vp in
oming if the pair (vp, wp)is positively oriented, and outgoing if (vp, wp) is negatively oriented, and usethe same terminology for the 
onne
ted 
omponent of ∂F that 
ontains p.De�nition 2.2. Given a surfa
e F with non-empty boundary. Fix two points
b0 and b1 in ∂F . If b0 and b1 are on the same boundary 
omponent, the ar

omplex we de�ne is denoted C∗(F ; 1). If b0 and b1 are on two di�erentboundary 
omponents of F , the resulting ar
 
omplex is denoted C∗(F ; 2).
• A vertex of C∗(F ; i) is the isotopy 
lass rel endpoints of an ar
 (image ofa 
urve) in F starting in b0 and ending in b1, whi
h has a representativethat meets ∂F transversally and only in b0 and b1.
• An n-simplex α in C∗(F ; i) (
alled an ar
 simplex) is set of n+1 verti
es,su
h that there are representatives meeting ea
h other transversally in
b0 and b1 and not interse
ting ea
h other away from these two points.We further require that the 
omplement of the n+1 ar
s be 
onne
ted.The set of ar
s is ordered by using the in
oming orientation of ∂F atthe starting point b0, and we write α = (α0, . . . , αn).
• Let ∆n(F ; i) denote the set of n-simpli
es, and let C∗(F, i) be the 
hain
omplex with 
hain groups Cn(F ; i) = Z∆n(F ; i) and di�erentials d :
Cn(F ; i) −→ Cn−1(F ; i) given by:

d(α) =

n∑

j=1

(−1)j∂j(α), where ∂j(α) = (α0, . . . , α̂j , . . . , αn).The mapping 
lass group Γ(F ) a
ts on ∆n(F ; i) (by a
ting on the n + 1ar
s representing an n-simplex), and thus on Cn(F ; i). This a
tion is obvi-ously 
ompatible with the di�erentials d : Cn(F ; i) −→ Cn−1(F ; i), so we 
an
onsider the quotient 
omplex with 
hain groups Cn(F ; i)/Γ(F ).To apply the spe
tral sequen
e of the a
tion of Γg,r on C∗(Fg,r; i), we needto know that the 
omplex is highly-
onne
ted:Theorem 2.3 ([Harer1℄). The 
hain 
omplex C∗(Fg,r; i) is (2g − 3 + i)-
onne
ted.
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omplexes and permutationsDe�nition 2.4. Given an ar
 simplex α in C∗(F ; i), we denote by N(α)the union of a small, open normal neighborhood of α with an open 
ollarneighborhood of the boundary 
omponent(s) of F 
ontaining b0 and b1. Thenthe 
ut surfa
e Fα is given by
Fα = F \N(α).For a surfa
e S, let ♯∂S denote the number of boundary 
omponents of

S. Then we have the following
♯∂(Fα) = ♯∂N(α) + r − 2i. (14)Lemma 2.5. Given an n-simplex α in C∗(F ; i), the Euler 
hara
teristi
 ofthe 
ut surfa
e Fα is
χ(Fα) = χ(F ) + n + 1Proof. We prove the formula indu
tively by removing one ar
 α0 at a time,so it su�
es to show that χ(Fα0

) = χ(F ) + 1. Give F the stru
ture of aCW 
omplex with α0 as a 1-
ell (glued onto the 0-
ells b0 and b1). When we
ut along α0, we get two 
opies of α0; that is, an additional 1-
ell and twoadditional 0-
ells. Using the standard formula for the Euler 
hara
teristi
 ofa CW 
omplex, we see that it in
reases by 1.2.2 PermutationsLet Σn+1 denote the group of permutations of the set {0, 1, . . . , n}. I willwrite a permutation σ ∈ Σn as σ = [σ(0) σ(1) . . . σ(n)]; e.g. [0 2 1] in Σ3 isthe permutation �xing 0 and inter
hanging 1 and 2.To ea
h n-ar
 simplex α in one of the ar
 
omplexes C∗(F ; i) we as-sign a permutation P (α) in Σn+1 as follows: Re
all that the ar
s in α =
(α0, α1, . . . , αn) are ordered using the in
oming orientation of ∂F at the start-ing point b0. We use the outgoing orientation in the end point b1 to read o�the positions of the n+1 ar
s at b1: αj is the σ(j)'th ar
 at b1, for j = 0, . . . , n.In other words, the ar
s at b1 will be ordered (ασ−1(0), ασ−1(1), . . . , ασ−1(n)).This gives the permutation σ = P (α). See Example 2.6 below.So we have a map P : ∆n(F ; i) −→ Σn+1. Sin
e γ ∈ Γ(F ) keeps a smallneighborhood of ∂F �xed, this indu
es a well-de�ned map

P : ∆n(F ; i)/Γ(F ) −→ Σn+1.There are several reasons why it is useful to look at the permutation P (α)of an ar
 simplex α. One is that P (α) determines the number of boundary
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omponents of the 
ut surfa
e Fα, as we shall see below. Before explainingthis, we will need a few preliminary remarks.Let α be an ar
 in C∗(F ; i). We orient it from b0 to b1, and let tp(α) bethe (positive) tangent ve
tor at p ∈ α. A normal ve
tor vp to α at p is 
alledpositive if (vp, tp(α)) is a positive basis of TpF . We say that the right-handside of α is the part of the normal tube given by the positive normal ve
tors.When drawing pi
tures to aid the geometri
 intuition, we always indi-
ate the orientation of F and ∂F (with arrows). Also, the orientation of
F will always be the same, namely the orientation indu
ed by the standardorientation of this paper. This has the advantage that orientation-dependingproperties like the right-hand side will be 
onsistent throughout the pi
ture,even if we draw two di�erent areas of one surfa
e.Example 2.6. Let α = (α0, α1, α2) be a 2-simplex in C∗(Fg,r; 1), with per-mutation P (α) = [1 2 0]. Close to b0 and b1 we see the situation depi
ted onFigure 1, with the orientations of ∂F at b0 and b1 used for determining thepermutation as indi
ated.

r rb0 b1F 	−→ ←−
�

�
�

@
@

@

�
�

�

@
@

@
α0 α1 α2 α1 α0 α2Figure 1: An ar
 with permutation [1 2 0] in C∗(F ; 1).We want to �nd the number of boundary 
omponents of Fα. This goes asfollows. Pi
k an ar
, say α0, at b0 and start 
oloring the right-hand side of it(here, we 
olor it dark grey), following the ar
 all the way to b1. See Figure 2.Here, 
ontinue to the left-hand side of the next ar
; in our 
ase it is α2. Notethat in general this means going from ασ−1(j) to ασ−1(j−1) (see the de�nition);in this example j = 1. Color the left-hand side of α2, rea
hing b0 again and
ontinuing to the right-hand side of the ar
 next to α2. In this algorithm theboundary 
omponent(s) 
ontaining b0 and b1 also 
ounts as ar
s, as shownin the �gure. Continue in this fashion until you get ba
k where you started(i.e. the right-hand side of α0). This 
losed, dark grey loop 
onstitutes oneboundary 
omponent of Fα. Start over again with a di�erent 
olor (herelight grey) at another ar
, and you get a pi
ture as in Figure 2. So there are

2 + (r − 1) = r + 1 boundary 
omponents of (Fg,r)α for α ∈ C∗(F ; 1) with
P (α) = [1 2 0].We 
ould 
onsider the same permutation in C∗(Fg,r; 2), and we would geta di�erent pi
ture (Figure 3). So there are 3 + (r − 2) = r + 1 boundary
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r rb0 b1F 	−→ ←−

�
�

�

@
@

@

�
�

�

@
@

@
α0 α1 α2 α1 α0 α2Figure 2: Boundary 
omponents of Fα for α in C∗(F ; 1).
omponents of (Fg,r)α for α ∈ C∗(F ; 2) with P (α) = [1 2 0].

r rb0 b1F 	−→ ←−
�

�
�

@
@

@

�
�

�

@
@

@
α0 α1 α2 α1 α0 α2Figure 3: Boundary 
omponents of Fα for α in C∗(F ; 2).The method of the above example gives a formula � albeit a rather 
um-bersome one � for ♯∂N(α), and thus by (14) for the number of boundary
omponents of Fα in terms of P (α):Proposition 2.7. Let ♯∂S denote the number of boundary 
omponents in S,and let σk ∈ Σk be given by σk = [1 2 · · · k−1 0]. Then

(i) If α ∈ Cn−1(F ; 1) then ♯∂N(α) = Cy
(σn+1P̂ (α)
−1

σ−1
n+1P̂ (α)

)
+ 1.

(ii) If α ∈ Cn−1(F ; 2) then ♯∂N(α) = Cy
(σnP (α)−1σ−1
n P (α)

)
+ 2,Here Cy
 : Σk → N denotes the number of disjoint 
y
les in the given per-mutation, and for τ ∈ Σk, τ̂ ∈ Σk+1 is given by τ̂ = [0, τ + 1], that is

τ̂ (j) =

{
0, j = 0,
τ(j − 1) + 1, i = 1, . . . , k.In parti
ular, ♯∂N(α) depends only on P (α).Proof. This is simply a way to formulate the method des
ribed in Example2.6. Let us look at C∗(F ; 2) �rst, so b0 and b1 are in di�erent boundary
omponents. As in the example, we start on the right-hand side of oneof the ar
s at b0, follow it (using P (α)), then at b1 we go left to the nextar
 (using σ−1). Now we follow the right side of that ar
 (using P (α)−1)



2.2 Permutations 25ending at b0, and we must now go left to the next ar
 (using σ). Thus thepermutation P (α)σ−1P (α)−1σ 
aptures how the boundary of N(α) behaves,and a boundary 
omponent in ∂N(α) 
learly 
orresponds to a 
y
le in thepermutation. Remembering the two extra 
omponents 
orresponding to the
omponents of ∂N(α) 
ontaining b0 and b1, this proves (ii).For C∗(F ; 1), b0 and b1 lie on the same boundary 
omponent. We wishto use (ii), so we 
onsider a new surfa
e F̂ and a new ar
 simplex, α̂ =
(α̂0, α̂1, . . . , α̂n) in C∗(F̂ , 2), whi
h are 
onstru
ted from F and α as follows.

q qb0 b1
F �

��
@

@@
�

��
@

@@
α0 α1 α2 α1 α0 α2

 q qb0 b1
F̂�

��
@

@@
�

��
@

@@
α̂1 α̂2 α̂3 α̂2 α̂1 α̂3

α̂0

Figure 4: Constru
ting F̂ and α̂ from F and α.We take the boundary 
omponent of F 
ontaining b0 and b1, and 
lose uppart of it between b0 and b1 so we get two boundary 
omponents, 
f. Figure 4.Then α̂0 will be the ar
 from b0 to b1 
onsisting of the part of the old boundary
omponent whi
h was �rst (i.e. right-most) in the in
oming ordering at b0(
f. Figure 4), and α̂j = αj−1 for 1 ≤ j ≤ n. By this 
onstru
tion, ♯∂N(α) =

♯∂N(α̂)− 1, sin
e we 
ount two boundary 
omponents for α̂ ∈ C∗(F̂ ; 2), andwe should 
ount only one. Clearly P (α̂) = P̂ (α), and the result now followsfrom (ii).I would like to thank my brother, Jens Boldsen, for help with the aboveproposition.Proposition 2.8. The permutation map
P : ∆n(F ; i)/Γ(F ) −→ Σn+1is inje
tive.Proof. We have to show that given two n-ar
 simpli
es α and β with P (α) =

P (β), there exists γ ∈ Γ su
h that γα = β. Consider the 
ut surfa
es Fαand Fβ . Sin
e the permutations are the same, Fα and Fβ have the samenumber of boundary 
omponents, by Prop. 2.7 above. Now sin
e we haveparameterizations of the boundary 
omponents and the 
urves α0, . . . , αnthis gives a di�eomorphism ϕ : ∂(Fα) −→ ∂(Fβ). The Euler 
hara
teristi
 of
Fα and Fβ are also the same, a

ording to Lemma 2.5. This implies that Fαand Fβ have the same genus. By the 
lassi�
ation of surfa
es with boundary,
Fα ∼= Fβ via an orientation preserving di�eomorphism Φ extending ϕ. Gluing
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omplexes and permutationsboth Fα and Fβ up again gives a di�eomorphism Φ̄ : F −→ F taking α to
β. Thus α and β are 
onjugate under γ =

[
Φ̄

] in the mapping 
lass group
Γ(F ).Whether P is surje
tive depends on the genus g, 
f. Corollary 2.17 below.Remark 2.9. The proof of this proposition also shows that the a
tion of
G(F ) on C∗(F ; i) is rotation-free, 
f. Def. 1.5. For given α ∈ ∆n(F ; i) and
γ = [ϕ] ∈ Γα,2.3 GenusDe�nition 2.10 (Genus). To an ar
 simplex α we asso
iate the number
S(α) = genus(N(α)), 
f. Def. 2.4. We 
all S(α) the genus of α.Note that Harer 
alls this quantity the spe
ies of α.Lemma 2.11. For α ∈ ∆n(F ; i), we have

χ(N(α)) = −(n + 1)Proof. In C∗(F ; 1), N(α) has α∪b0,b1S1 as a retra
t. Now there is a homotopytaking b1 to b0 along S1, so up to homotopy, this is a wedge of n + 2 
opiesof S1 
oming from α0, . . . , αn and from the boundary 
omponent. This givesthe result. For C∗(F ; 2) the argument is similar.Proposition 2.12. Let ♯∂S denote the number of boundary 
omponents in asurfa
e S. Let i = 1, 2. Then for any α ∈ ∆n(Fg,r; i), the following relationshold:
(i) S(α) = 1

2

(
n+ 3− ♯∂N(α)

),
(ii) ♯∂(Fα) = r + n− S(α) + 3− 2i,

(iii) genus(Fα) = g + S(α)− (n+ 2− i),Proof. (i) As S(α) is the genus of N(α), we 
an derive this from the Euler
hara
teristi
 of N(α), whi
h by Lemma 2.11 is −(n+1). Using the formula
χ(N(α)) = 2− 2S(α)− ♯∂N(α) gives the result.
(ii) This follows from (i) and (14).
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(iii) As in (i) we use the 
onne
tion between Euler 
hara
teristi
, genusand number of boundary 
omponents, together with (i) and (ii):genus(Fα) = 1

2

(
− χ(Fα)− ♯∂(Fα) + 2

)

= 1
2

(
− (2− 2g − r)− (n+ 1)− (♯∂N(α) + r − 2i) + 2

)

= 1
2

(
2g + (n + 1− ♯∂N(α) + 2) + 2i− 2− 2(n + 1)

)

= g + S(α)− (n+ 2− i)Consequently all information about Fα 
an be extra
ted from ♯∂(Fα), soit is important that we 
an 
ompute this quantity:Lemma 2.13. Given α ∈ ∆n(F ; i) be given, and let ν ∈ ∆0(F ; i) be an ar
su
h that α′ = α ∪ ν is an (n+ 1)-simplex. Consider α′ ∈ C∗(Fα; i). Then:
♯∂(Fα′) =

{
♯∂(Fα) + 1, if ν ∈ ∆0(Fα; 1);
♯∂(Fα)− 1, if ν ∈ ∆0(Fα; 2).Proof. Let k = ♯∂(Fα). Sin
e all boundary 
omponents in Fα′ not interse
t-ing ν 
orrespond to boundary 
omponents in Fα, it is enough to 
onsiderthe situation 
lose to ν. There are two possibilities: Either ν will start andend on two di�erent boundary 
omponents of Fα, so ν ∈ ∆0(Fα; 2), or ν willstart and end on the same boundary 
omponent of Fα, so ν ∈ ∆0(Fα; 1). Cf.Figure 5, where the boundary 
omponents of Fα are indi
ated as in Example2.6.
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�Figure 5: Before and after 
utting along the ar
 ν � the two 
ases.Taking the 
ase ν ∈ ∆0(Fα; 2) (left-hand side of Figure 5), when we 
utalong ν we get one boundary 
omponent instead of two. So we get k − 1boundary 
omponents in this 
ase. In the 
ase ν ∈ ∆0(Fα; 1) (right-handside of Figure 5) 
utting along ν splits the boundary 
omponent into two, sowe get k + 1 boundary 
omponents.
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omplexes and permutationsCombining Lemma 2.13 and Prop. 2.12, we have proved,Corollary 2.14. For α ∈ ∆0(F ; i), let α′ = α∪ ν as in Lemma 2.13. Then:
S(α′) =

{
S(α), if ν ∈ ∆0(Fα; 1);
S(α) + 1, if ν ∈ ∆0(Fα; 2).and genus(Fα′) =

{ genus(Fα)− 1, if ν ∈ ∆0(Fα; 1);genus(Fα), if ν ∈ ∆0(Fα; 2).Lemma 2.15. Let α ∈ ∆0(F ; i). Then S(α) = 0 if and only if
(i) for i = 1, P (α) = id.

(ii) for i = 2, P (α) is a 
y
li
 permutation, i.e. one of the following:id, [1 2 · · ·n 0], [2 3 · · ·n 0 1], · · · , [n 0 1 · · ·n−1].Proof. We prove �only if�. The 
onverse is 
lear, e.g. by Prop. 2.7 and Prop.2.12 (i).By Cor. 2.14, any subsimplex of α has genus equal to or lower than
S(α) = 0, so any subsimplex of α must have genus 0. If α ∈ ∆n(F ; 1), thismeans all 1-subsimpli
es must have permutation equal to the identity, andthis for
es P (α) = id. If α ∈ ∆n(F ; 2) the 
ondition on 1-subsimpli
es isva
uous, but for a 2-subsimplex β of α, we see by Cor. 2.14 that S(β) = 0implies that P (β) is either id, [1 2 0], or [2 0 1]. For this to hold for any2-subsimplex of α, P (α) must be as stated in (ii).2.4 More about permutationsBy Prop. 2.7, given α ∈ ∆n(F ; i), the number ♯∂N(α) is a fun
tion onlyof P (α) and i. By Prop. 2.12(i), the same is true for S(α). Thus, given apermutation σ ∈ Σn+1, we 
an 
al
ulate these quantities and simply de�nethe numbers ♯∂N(σ) and S(σ) by the formulas of Prop. 2.7 and 2.12(i).Now we are going to see that given a permutation σ ∈ Σn+1, there exists
α ∈ ∆n(Fg,r; i) with P (α) = σ if at all possible, that is, provided the formula
(iii) of Prop. 2.12 for the genus of Fα gives a non-negative result. Rearrang-ing this 
onditions we have the following lemma, also stated in [Harer2℄:Lemma 2.16. Given a permutation σ ∈ Σn+1, let s = S(σ) as above. Thereexists α ∈ ∆0(F ; i) with P (α) = σ if and only if

s ≥ n− g + 2− i. (15)



2.4 More about permutations 29Proof. Given a permutation σ, one 
an try to 
onstru
t an ar
 simplex αindu
tively with P (α) = σ by �rst 
hoosing an ar
 α0 ∈ ∆0(F ; i) from b0to b1, and 
utting F up along it. This will give us two 
opies of b0 and b1,respe
tively, one to the left of our ar
 and one to the right. The permutationdetermines from whi
h 
opy of b0 and b1 a new ar
 will join.Suppose we have 
onstru
ted k+1 ≤ n+1 ar
s as above, i.e. a k-simplex
β = (α0, . . . , αk), and 
onsider the 
ut surfa
e Fβ. Indu
tively we assumethat Fβ is 
onne
ted. Now we must verify that when adding a new ar
, ν,as in Lemma 2.13, the 
ut surfa
e (Fβ)ν is 
onne
ted. If this holds, β ∪ ν isa (k + 1)-simplex, and we have 
ompleted the indu
tion step.There are two 
ases. First assume that ν must join two di�erent boundary
omponents of Fβ. Then (Fβ)ν is 
onne
ted, no matter how we 
hoose ν, sin
e
Fβ is 
onne
ted.Se
ondly, if ν 
onne
ts two points on the same boundary 
omponent of
Fβ, we 
hoose ν so that it winds around a genus-hole in Fβ. This ensuresthat (Fβ)ν is 
onne
ted, so we must prove that genus(Fβ) ≥ 1. From Prop.2.12, we know that genus(Fβ) = g+S(β)− (k+2− i), and we want to prove

S(β)− k ≥ s− n + 1. (16)Using this, we 
an 
omplete the indu
tion step:genus(Fβ) = g + S(β)− k − 2 + i ≥ g + s− n− 1 + i ≥ 1by assumption (15).To prove (16), re
all that S(β) only depends on P (β), not on the surfa
e
F . So 
onsider another surfa
e F ′ with genus g′ > n. We 
an 
onstru
t
β ′ ∈ ∆k(F

′, i) with P (β ′) = P (β), as above. We 
an further 
onstru
t
α′ ∈ ∆n(F

′, i) with β ′ as a subsimplex and P (α′) = σ, simply by adding
n − k new ar
s to β ′ whi
h ea
h wind around a genus-hole in F ′. This ispossible be
ause g′ > n. We 
laim

S(α′) ≤ S(β ′) + n− k − 1. (17)Applying Cor. 2.14 n−k times to β ′, we obviously get S(α′) ≤ S(β ′)+n−k.We get the extra −1, be
ause the �rst time we add an ar
 ν ′ to β ′ we have
ν ′ ∈ ∆0(F

′
β′; 1), sin
e ν ∈ ∆0(Fβ , 1) by assumption. This proves (17). Sin
e

P (β ′) = P (β) and P (α′) = σ, (17) implies s = S(σ) ≤ S(β) + n − k − 1.This proves (16).Combining Prop. 2.8 and Lemma 2.16 we have proved,
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omplexes and permutationsCorollary 2.17. The permutation map
P : ∆n(F ; i)/Γ(F ) −→ Σn+1is bije
tive if n ≤ g − 2 + i.Lemma 2.18 ([Harer4℄). For F = Fg,b with g ≥ 2, the sequen
e

Cp+1(F ; i)/Γ(F )
d1
−→ Cp(F ; i)/Γ(F )

d1
−→ Cp−1(F ; i)/Γ(F )is split exa
t for 1 ≤ p ≤ g − 2 + i.Proof. Let ZΣ∗ denote the 
hain 
omplex with 
hain groups ZΣn, n ≥ 1,and di�erentials

∂ : ZΣn+1 −→ ZΣngiven as follows: For σ = [σ(0) · · ·σ(n)] ∈ Σn+1, let
∂j(σ) = [σ(0) · · ·σ(j − 1) σ(j + 1) . . . σ(n)],where the set {0, 1, . . . , n} \ {σ(j)} is identi�ed with {0, 1, . . . , n− 1} bysubtra
ting 1 from all numbers ex
eeding σ(j). Then we de�ne ∂(σ) =∑n

j=0(−1)j∂j(σ) and extend linearly. Extending the permutation map Plinearly leads to the 
ommutative diagram
Cn(F ; i)/Γ(F ) d //

P
��

Cn−1(F ; i)/Γ(F )

P
��

ZΣn+1
∂ // ZΣn

(18)
i.e. a 
hain map C∗(F ; i)/Γ(F ) −→ ZΣ∗. By Prop. 2.8, P is inje
tive, so
C∗(F ; i)/Γ(F ) is isomorphi
 to a sub
omplex of ZΣ∗, namely the sub
omplexgenerated by permutations σ ∈ Σn+1 with S(σ) satisfying the requirementsof Lemma 2.16. In parti
ular, for n ≤ g− 2+ i, the 
hain groups of ZΣ∗ andof C∗(F ; i)/Γ(F ) are identi�ed.De�ne D : ZΣn −→ ZΣn+1 by

D(σ) = σ̂ = [0 σ(0)+1 σ(1)+1 · · · σ(n)+1]. (19)It is an easy 
onsequen
e of the de�nitions that D∂ + ∂D = 1, so Dis a 
ontra
ting homotopy and ZΣ∗ is split exa
t. By the diagram (18),
C∗(F ; i)/Γ(F ) is also split exa
t in the range where

D ◦ P
(
Cn(F ; i)/Γ(F )

)
⊆ P

(
Cn+1(F ; i)/Γ(F )

)
, (20)
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e D lifts to a 
ontra
ting homotopy D̄ of C∗(F ; i)/Γ(F ).We will �rst 
onsider C∗(F ; 1)/Γ(F ). By Cor. 2.17, P is bije
tive for
n ≤ g−1, so (20) is satis�ed for n ≤ g−2. It remains to 
onsider the degree
n = g − 1. We have the 
ommutative diagram,

Cg(F ; i)/Γ(F ) d //
� _

P
��

Cg−1(F ; i)/Γ(F ) d //

P∼=
��

Cg−2(F ; i)/Γ(F )

P∼=
��

ZΣg+1
∂ // ZΣg

∂ // ZΣg−1with the bottom sequen
e exa
t. We must show that
P ◦ d(Cg(F ; i)/Γ(F )) = ∂(ZΣg+1).A

ording to Cor. 2.17, P : Cg(F ; 1)/Γ(F ) −→ ZΣg+1 hits everything ex
eptwhat is generated by permutations σ with S(σ) = 0. Thus we must show

∂(σ) ∈ Im(P ◦ d) = Im(∂ ◦ P ) for all σ ∈ Σg+1 with S(σ) = 0. From Lemma2.15 we know that the only su
h permutation is the identity. As
∂([0 1 · · · g]) =

g∑

j=0

(−1)j [0 1 · · · g−1] =

{
0, if g is odd,id, if g is even,we are done if g is odd, and the desired 
ontra
ting homotopy D̄ is obtainedby lifting D when S(α) > 0 and setting by D̄(α) = 0 when S(α) = 0.If g is even, 
onsider τ = [2 0 1 3 4 · · · g] ∈ Σg+1. Then by Lemma 2.15

S(τ) > 0, and
∂(τ) = [0 1 2 · · · g−1]− [1 0 2 3 · · · g−1] + [1 0 2 3 · · · g−1]

+

g∑

j=3

(−1)j [2 0 1 3 4 · · · g−1] = [0 1 2 · · · g−1] = ∂[0 1 2 · · · g].Thus we 
an obtain a 
ontra
ting homotopy D̄ by taking D̄(α) = P−1(τ)when S(α) = 0.For C∗(F ; 2)/Γ(F ), Cor. 2.17 gives that P is bije
tive for n ≤ g, so we areleft with j = g, where we use exa
tly the same method as above. We mustshow that ∂(σ) ∈ Im(∂ ◦P ) for all σ ∈ Σg+2 with S(σ) = 0. We only need to
onsider σ ∈ Im(D), be
ause Im∂ = Im(∂◦D) by the equation ∂D+D∂ = 1.The only σ ∈ Σg+2 with S(σ) = 0 and P ∈ ImD is the identity, a

ordingto Lemma 2.15. Now we are in the same situation as above, so we 
an use
τ = [2 0 1 3 4 · · · g g+1] ∈ Σg+2 whi
h has genus S(τ) > 0 in C∗(F ; 2), sin
e
g ≥ 2.
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lass group3 Homology stability of the mapping 
lass groupLet F be a surfa
e with boundary. Given F we 
an glue on a �pair of pants�,
F0,3, to one or two boundary 
omponents. We denote the resulting surfa
e by
Σi,jF , the subs
ripts indi
ating the 
hange in genus and number of boundary
omponents, respe
tively.F FFigure 6: Σ0,1F and Σ1,−1F .These two operations indu
e homomorphisms between the mapping 
lassgroups after extending a mapping 
lass by the identity on the pair of pants;

Σi,j : Γ(F ) −→ Γ(Σi,jF ).Given a surfa
e F , applying Σ0,1 and then adding a disk at one of the pantlegs gives a surfa
e di�eomorphi
 to F (with a 
ylinder glued onto a boundary
omponent). It is easily seen that the indu
ed 
omposition
Γ(F ) −→ Γ(Σ0,1F ) −→ Γ(F )is the identity, so Σ0,1 indu
es an inje
tion on homology
Hn(Γ(F )) →֒ Hn(Γ(Σ0,1F )). (21)For the proof of the stability theorems, the opposite operation is essential:One expresses the surfa
e F as the result of 
utting Σ0,1F or Σ1,−1F alongan ar
 representing a 0-simplex in one of the ar
 
omplexes of de�nition 2.2:

F ∼= (Σ0,1F )α, and F ∼= (Σ1,−1F )β,for α ∈ ∆0(Σ0,1F, 2) and β ∈ ∆0(Σ1,−1F, 1) as indi
ated belowF ��) α F
QQk
βFigure 7: α and β.A di�eomorphism of Fα that �xes the points on the boundary pointwiseextends to a di�eomorphism of F by adding the identity on N(α), and thisde�nes an in
lusion Γ(Fα) −→ Γ whose image is the stabilizer Γα.



3.1 The spe
tral sequen
e 333.1 The spe
tral sequen
e for the a
tion of the mapping
lass groupIn this se
tion, F = Fg,r with g ≥ 2 and Γ = Γ(F ). We shall 
onsider thespe
tral sequen
es En
p,q = En

p,q(F ; i) from se
tion 1.2 asso
iated to the a
tionof Γ on the ar
 
omplexes C∗(F ; i) for i = 1, 2. By Cor. 1.6 and Thm. 2.3,we have E1
0,q = Hq(Γ) and
E1
p,q =

⊕

α∈∆̄p−1

Hq(Γα)⇒ 0, for p+ q ≤ 2g − 2 + i, (22)where ∆p−1 ⊆ ∆p−1(F ; 1) is a set of representatives of the Γ-orbits of∆p−1(F ; i)in C∗(F ; i).The permutation map
P : ∆p−1(F ; i)/Γ −→ Σpis inje
tive by Prop. 2.8. Let Σp be the image, and T : Σp

∼
−→ ∆p−1 →֒

∆p−1(F ; i) a se
tion, P ◦ T = id. Then
E1
p,q =

⊕

σ∈Σp

E1
p,q(σ), E1

p,q(σ) = Hq(ΓT (σ)). (23)The �rst di�erential, d1
p,q : E1

p,q −→ E1
p−1,q, is des
ribed in se
tion 1.3.The diagrams

∆p(F ; i)
∂j //

��

∆p(F ; i)

��

Σp+1

∂j // Σp j = 0, . . . , p
ommute, where ∂j omits entry j as in Def. 2.2 and the verti
al arrowsdivide out the Γ a
tion and 
ompose with P . Thus for ea
h σ ∈ Σp+1, thereis gj ∈ Γ su
h that
gj · ∂jT (σ) = T (∂jσ), (24)and 
onjugation by gj indu
es an isomophism cgj

: Γ∂jT (σ) −→ ΓT (∂jσ). Theindu
ed map on homology is denoted ∂j again, i.e.
∂j : Hq(ΓT (σ))

in
l∗ // Hq(Γ∂jT (σ))
(cgj

)∗
// Hq(ΓT (∂jσ)) . (25)
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lass groupNote that (cgj
)∗ does not depend on the 
hoi
e of gj in (46): Another 
hoi
e

g′j gives cg′j = cg′jg
−1

j
cgj

, and g′jg−1
j ∈ ΓT (∂jσ) so cg′jg−1

j
indu
es the identity on

Hq(ΓT (∂jσ)). Then
d1 =

p−1∑

j=0

(−1)j∂j . (26)The proof of the main stability Theorem depends on a partial 
al
ulationof the spe
tral sequen
e (22). More spe
i�
ally, the �rst di�erential d1 :
E1

1,q −→ E1
0,q is equivalent to a stability map Hq(Γα) −→ Hq(Γ), so thequestion be
omes whether d1 is an isomorphism resp. an epimorphism. In arange of dimensions the spe
tral sequen
e 
onverges to zero, so that d1 mustbe an isomorphism unless other (higher) di�erentials interfere. The nextthree lemma are the key elements that give su�
ient hold of the spe
tralsequen
e. The �rst lemma gives the general indu
tion step. The next twolemmas about d1 : E1

p,q −→ E1
p−1,q for p = 3, 4 are ne
essary for the improvedstability.Lemma 3.1. Let i = 1, 2, and let k, j ∈ N with k ≤ g − 3 + i. For any

α ∈ ∆p−1(F ; i) and all q ≤ k − j, assume that
Hq(Γα)

∼=

→ Hq(Γ) is an isomorphism if p+ q ≤ k + 1, (27)
Hq(Γα)։ Hq(Γ) is surje
tive if p+ q = k + 2. (28)Then E2

p,q(F ; i) = 0 for all p, q with p+ q = k + 1 and q ≤ k − j.Proof. Let Cn(F ; i) = Cn(F ; i)/Γ. By (22) and the assumptions, we get for
q ≤ k − j:

E1
p,q
∼= Cp−1(F ; i)⊗Hq(Γ) if p + q ≤ k + 1, (29)

E1
p,q ։ Cp−1(F ; i)⊗Hq(Γ) if p+ q = k + 2.Now we have the following 
ommutative diagram, for a �xed pair p, q with

q ≤ k − j and p+ q = k + 1:
E1
p−1,q

∼=
��

E1
p,q

d1oo

∼=
��

E1
p+1,q

d1oo

����

Cp−2(F ; i)⊗Hq(Γ) Cp−1(F ; i)⊗Hq(Γ)
d̄1oo Cp(F ; i)⊗Hq(Γ)

d̄1oo

(30)
Using the formula (48) for d̄1, (cgj

)∗(ω) = ω for ω ∈ H∗(Γ), sin
e 
onjugationindu
es the identity in H∗(Γ). Thus the bottom row of diagram (30) is just



3.1 The spe
tral sequen
e 35the sequen
e from Lemma 2.18, tensored with Hq(Γ). Sin
e p ≤ k + 1 ≤
g − 2 + i that sequen
e is split exa
t, so the bottom row of (30) is exa
t.We 
on
lude that E2

p,q = 0 for all p, q with q ≤ k − j and p + q = k + 1, asdesired.We next examine the 
hain 
omplex
. . . d1 // E1

3,q(F, i)
d1 // E1

2,q(F, i)
d1 // E1

1,q(F, i)
d1 // E1

0,q(F, i)asso
iated with C(F ; i), but �rst we need an easy geometri
 proposition.Re
all from de�nition 2.4, that for α ∈ ∆p(F ; i) we write Fα = F \N(α) forthe surfa
e 
ut along the ar
s of α.Proposition 3.2. Let α ∈ ∆n(F ; i) with permutation P (α) = σ, and assumethere is k, l < n su
h that σ(k) = l + 1 and σ(k + 1) = l. Then there exists
f ∈ Γ(F ) with f(αk+1) = αk, f(αi) = αi for i /∈ {k, k + 1} and f |Fα

= idFα
.Proof. A (right) Dehn twist in an annulus in F is an element of Γ(F ) givenby performing a full twist to the right inside the annulus, and extendingby the identity outside the annulus. Figure 8 shows a Dehn twist γ in anannulus, and its e�e
t on a 
urve β interse
ting the annulus.

r rβ

γβFigure 8: A Dehn twist γ in an annulus.Consider the 
urves αk and αk+1. Take an annulus as depi
ted on Figure 9below (in grey). By the requirements of the proposition it is easy to 
onstru
tthe annulus so that it only interse
ts α in αk and αk+1. Let f be the Dehntwist in this annulus. Sin
e f is the identity outside the annulus, we have
f(αi) = αi for all i /∈ {k, k + 1} and f |Fα

= idFα
. By Figure 9 it is easy tosee that f(αk+1) = αk.The stabilizer Γα of α ∈ ∆p(F ; i) depends up to 
onjugation only on theorbit Γα, i.e. on P (α) ∈ Σp+1. So when 
onjugation is of no importan
ewe shall for σ ∈ Σp+1 write Γσ for any of the 
onjugate subgroups Γα with

P (α) = σ. If τ ∈ Σp is a fa
e of σ ∈ Σp+1 then Γσ is 
onjugate to a subgroupof Γτ , and there is a homomorphism
Hq(Γσ) −→ Hq(Γτ ),well-determined up to isomorphism of sour
e and target.
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s
b0

sb1

←αk→αk+1

Figure 9: The Dehn twist f .Lemma 3.3. Let c1 and c2 be the isomorphism 
lasses
c1 : Hq(Γ[0 2 1]) −→ Hq(Γ[1 0]), c2 : Hq(Γ[1 2 0]) −→ Hq(Γ[0 1])

(i) If c1 and c2 are surje
tive, then d1
3,q : E1

3,q −→ E1
2,q is surje
tive, and

E2
2,q = 0.

(ii) If c1 and c2 are inje
tive, then
d1

3,q : E1
3,q([0 2 1])⊕ E1

3,q([1 2 0]) −→ E1
2,qis inje
tive.Proof. The target of d1 is E1

2,q = E1
2,q([0 1])⊕E1

2,q([1 0]), and we �rst examinethe 
omponent
d1

3,q : E1
3,q([0 2 1]) −→ E1

2,q([0 1]). (31)If β = T ([0 2 1]) with β = (β0, β1, β2), let γ ∈ Γ satisfy (γβ0, γβ1) = T ([0 1]),and write α = γβ. Then
(cg)∗ : E1

3,q([0 2 1])
∼=
−→ Hq(Γα),and the E1

2,q([0 1])-
omponent of d1
3,q ◦ (cg)∗ is the di�eren
e of

∂2 : Hq(Γα) −→ Hq(Γ(α0,α1)) (32)
∂1 : Hq(Γα) −→ Hq(Γ(α0,α2)) −→ Hq(Γ(α0,α1))
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tral sequen
e 37where f · (α0, α2) = (α0, α1). By the previous proposition 3.2 we may 
hoose
f su
h that f |Fα

= idFα
. It follows that cf : Γ −→ Γ restri
ts to the identityon Γα, and hen
e that the two maps in (32) are equal. Thus the 
omponentof d1

3,q in (31) is zero. On the other hand, the 
omponent
d1

3,q : E1
3,q([0 2 1]) −→ E1

2,q([1 0])is equal to ∂0, so it belongs to the isomorphism 
lass c1. Thus it is surje
tiveresp. inje
tive under the assumptions (i) resp. (ii).The restri
tion of d1
3,q to E1

3,q([1 2 0]),
d1

3,q : E1
3,q([1 2 0]) −→ E1

2,q([0 1])⊕ E1
2,q([1 0]),is treated in a similar fashion. This time there are two terms with oppositesigns in E1

2,q([1 0]) whi
h 
an
el by Prop. 3.2, and the 
omponent
d1

3,q : E1
3,q([1 2 0]) −→ E1

2,q([0 1])is in the isomorphism 
lass of c2. This proves the lemma.We next 
onsider the situation of Lemma 3.3(ii) where c1 and c2 areinje
tive. If we further assume that g(F ) ≥ 3, then Σ3 = Σ3 and Σ4 =
Σ4 \ {id}. We 
onsider the maps

c3 : Hq(Γ[1 2 3 0]) −→ Hq(Γ[1 2 0])

c4 : Hq(Γ[0 3 2 1]) −→ Hq(Γ[2 1 0]) (33)
c5 : Hq(Γ[0 2 1 3]) −→ Hq(Γ[1 0 2])

c6 : Hq(Γ[0 3 1 2]) −→ Hq(Γ[2 0 1])Lemma 3.4. Let g ≥ 3 and assume that c1 and c2 of Lemma 3.3 are inje
tiveand that the four maps in (33) are surje
tive. Then E2
3,q(F ; i) = 0 for i = 1, 2.Proof. The group E1

3,q de
omposes into six summands sin
e Σ3 = Σ3. ByLemma 3.3, to show that E2
3,q = 0 under the above 
onditions, it su�
es to
he
k that d1

4,q maps onto the four 
omponents not 
onsidered in Lemma 3.3.More pre
isely, let
Ẽ1

3,q = E1
3,q([0 1 2])⊕ E1

3,q([2 1 0])⊕E1
3,q([1 0 2])⊕ E1

3,q([2 0 1]).We must show that the 
omposition
d̄1 : E1

4,q
d1
−→ E1

3,q

proj
−→ Ẽ1

3,q
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lass groupis surje
tive. the argument is quite similar to the proof of Lemma 3.3, usingProp. 3.2 to 
an
el out elements. Then the 
omponents of d̄1 
an be des
ribedas follows:
d̄1 = −∂3 : E1

4,q([1 2 3 0]) −→ E1
3,q([0 1 2]),

d̄1 = ∂0 : E1
4,q([0 3 2 1]) −→ E1

3,q([2 1 0]),

d̄1 = ∂0 : E1
4,q([0 2 1 3]) −→ E1

3,q([1 0 2]),

d̄1 = (∂0,−∂3) : E1
4,q([0 3 1 2]) −→ E1

3,q([2 0 1])⊕ E1
3,q([0 1 2]).It follows from the surje
tions in (33) that d̄1 is surje
tive, and hen
e that

E1
3,q(F ; i) = 0.Remark 3.5. Now we 
an state Harer's third assertion needed to improveour main stability Theorem by �one degree� (
f. the Introdu
tion). It is easyto show that d1

2,2n[1 0] is the zero map for all n. Then the homology 
lass
[κ̌ n

1 ] of κ̌ n
1 with respe
t to d1 is an element of E2

2,2n. The assertion is
(iii) d2

2,2n([κ̌
n
1 ]) = x · [κ̌ n

1 ] for some Dehn twist x around a simple 
losed
urve in F . Here, · denotes the Pontryagin produ
t in group homology.3.2 The stability theorem for surfa
es with boundaryIn this se
tion we prove the �rst of the two stability theorems listed in theintrodu
tion. Our proof is strongly inspired by the 15 year old manus
ript[Harer2℄, but with two 
hanges. We work with integral 
oe�
ients, and weavoid the assertions made in [Harer2℄ dis
ussed in the introdu
tion. Thetheorem we prove isTheorem 3.6 (Main Theorem). Let Fg,r be a surfa
e of genus g with rboundary 
omponents.
(i) Let r ≥ 1 and let i = Σ0,1 : Γg,r −→ Γg,r+1. Then

i∗ : Hk(Γg,r) −→ Hk(Γg,r+1)is an isomorphism for 2g ≥ 3k.
(ii) Let r ≥ 2 and let j = Σ1,−1 : Γg,r −→ Γg+1,r−1. Then

j∗ : Hk(Γg,r) −→ Hk(Γg+1,r−1)is surje
tive for 2g ≥ 3k − 1, and an isomorphism for 2g ≥ 3k + 2.Proof. The proof is by indu
tion in the homology degree k. For k = 0 theresults are obvious, sin
e H0(G,Z) = Z for any group G. So assume now
k > 0 and that the theorem holds for homology degrees less than k.



3.2 The stability theorem for surfa
es with boundary 39The 
ase Σ0,1In this 
ase we know from (21) that Σ0,1 is inje
tive, so to prove that it is anisomorphism it is enough to show surje
tivity.Assume 2g ≥ 3k and write Γ = Γg,r+1. We use that Γg,r is the stabilizer
Γα for α ∈ ∆0(Fg,r+1;2 as on Figure 7, Γg,r = Γα. Now we use the spe
tralsequen
e (22) asso
iated with the a
tion of Γ on C∗(Fg,r+1; 2), and we re
-ognize the map i∗ : Hk(Γα) −→ Hk(Γ) as the di�erential d1 : E1

1,k −→ E1
0,k.The spe
tral sequen
e 
onverges to zero at En

0,k. So it su�
es to show that
E2
p,k+1−p is zero for all p ≥ 2.We begin by proving E2

2,k−1 = 0 using Lemma 3.3 (i), noting that g ≥ 2,sin
e k ≥ 1. We must verify that c1 and c2 are surje
tive, and we will do thisindu
tively. Prop. 2.7 (or Example 2.6) and Prop. 2.12 
al
ulate the genusand the number of boundary 
omponents of Γσ. The �gures below show therelevant simpli
es σ ∈ ∆∗(Fg,r+1; 2) so that the method in Example 2.6 
aneasily be applied. The 
ir
les are the boundary 
omponents 
ontaining b0and b1.
rr�


��
�

��

Γ[1 0] = Γg−1,r+1, rr�

��

�

��

Γ[0 2 1] = Γg−1,r,

rr�

��

�

��

Γ[0 1] = Γg−1,r+1, rr�

��

�

��

Γ[1 2 0] = Γg−2,r+2.We see that
c1 = (Σ0,1)∗ : Hk−1(Γg−1,r) −→ Hk−1(Γg−1,r+1), and
c2 = (Σ1,−1)∗ : Hk−1(Γg−2,r+2) −→ Hk−1(Γg−1,r+1)are both surje
tive by indu
tion. So E2

2,k−1 = 0.We now show that E2
p,q = 0 for p + q = k + 1 and p > 2, i.e. q ≤ k − 2,using Lemma 3.1, so we must verify (27) and (24). By Prop. 2.12 we have

Γα = Γg−p+s+1,r+p−2s−1, for α ∈ ∆p−1 of genus s. So for q ≤ k − 2, we willshow by indu
tion:
Hq(Γg−p+s+1,r+p−2s−1) ∼= Hq(Γg,r+1), for p+ q ≤ k + 1 (34)
Hq(Γg−p+s+1,r+p−2s−1)։ Hq(Γg,r+1), for p+ q = k + 2. (35)The maps in (34) and (30) are indu
ed from the 
omposition

Γg−p+s+1,r+p−2s−1
(Σ0,1)s+1

// Γg−p+s+1,r+p−s
(Σ1,−1)p−s−1

// Γg,r+1 .The result follows by indu
tion if
2(g − p+ s+ 1) ≥ 3q and 2(g − p+ s+ 1) ≥ 3q + 2; for q ≤ k − 2.
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lass groupLet us prove (34). We know that 2g ≥ 3k, and we have p + q ≤ k + 1.Let q be �xed. Sin
e more ar
s (greater p) and smaller genus of α impliesa smaller genus of the 
ut surfa
e Fα, it su�
es to show the inequality for
p+ q = k + 1 and s = 0. In this 
ase

2(g − p+ 1) = 2(g − k − 1 + q + 1) ≥ 3k − 2k + 2q = 2q + k ≥ 3q + 2.where in the last inequality we have used the assumption q ≤ k − 2. Theproof of (31) is similar. Now by Lemma 3.1, E2
p,q = 0 for all p + q = k + 1with q ≤ k − 2. This proves that d1

1,k = (Σ0,1)∗ is surje
tive.Surje
tivity in the 
ase Σ1,−1Assume 2g ≥ 3k − 1, and write Γ = Γg+1,r−1. Then Γ(Fg,r) = Γβ for
β ∈ ∆0(Fg+1,r−1; 1) as on Figure 7. In the spe
tral sequen
e (22) asso
iatedwith the a
tion of Γ on C∗(Fg+1,r−1; 1), we re
ognize the map (Σ1,−1)∗ :
Hk(Γg,r) −→ Hk(Γg+1,r−1) as the di�erential d1

1,k : E1
1,k −→ E1

0,k. It su�
esto show that E2
p,q = 0 for p+ q = k + 1 and q ≤ k − 1.We �rst show that E2

2,k−1 = 0 using Lemma 3.3. As before, the �guresbelow show the relevant simpli
es in ∆∗(Fg+1,r−1; 1), and the oval is theboundary 
omponent 
ontaining b0 and b1.
rr

�
�

�
�Γ[1 0] = Γg,r−1, rr

�
�

�
�Γ[0 2 1] = Γg−1,r,

rr
�
�

�
�Γ[0 1] = Γg−1,r+1, rr

�
�

�
�Γ[1 2 0] = Γg−1,r.We see that

c1 = (Σ1,−1)∗ : Hk−1(Γg−1,r) −→ Hk−1(Γg,r−1), and
c2 = (Σ0,1)∗ : Hk−1(Γg−1,r) −→ Hk−1(Γg−1,r+1)

(36)are both surje
tive by indu
tion. So E2
2,k−1 = 0.Next we show that E2

3,k−2 = 0 using Lemma 3.4. To verify the 
onditions,we 
al
ulate as before,
Γ[0 1 2] = Γg−2,r+2,
Γσ = Γg−1,r for σ ∈ Σ3 the remaining 3 permutations in (33)
Γσ = Γg−2,r+1 for σ ∈ Σ4 the remaining 4 permutations in (33).We see that
c3 = (Σ0,1)∗ : Hk−2(Γg−2,r+1) −→ Hk−2(Γg−2,r+2), and
cj = (Σ1,−1)∗ : Hk−2(Γg−2,r+1) −→ Hk−2(Γg−1,r) for j = 4, 5, 6.

(37)



3.2 The stability theorem for surfa
es with boundary 41Indu
tively we 
an verify that these four maps are surje
tive. The maps c1and c2 we 
al
ulated in (36), and we see by indu
tion that they are inje
tivein homology degree k − 2. So by Lemma 3.4, E2
3,k−2 = 0.Finally we prove that E2

p,q = 0 for p + q = k + 1 and q ≤ k − 3 usingLemma 3.1. This is done as in The 
ase Σ0,1 so we'll skip the 
al
ulations,and just show the �nal inequality:
2(g − p+ 1) = 2g − 2(k + 1− q) + 2 ≥ 3k − 1− 2k + 2q

= k + 2q − 1 ≥ q + 3 + 2q − 1 = 3q + 2.So by Lemma 3.1, E2
p,q = 0 for p + 1 = k + 1 and q ≤ k − 3. We 
on
ludethat (Σ1,−1)∗ = d1

1,k is surje
tive.Inje
tivity in the 
ase Σ1,−1Assume 2g ≥ 3k + 2 and let as in the above 
ase Γ = Γg+1,r−1 and En
p,q =

En
p,q(Fg+1,r−1; 1). We will show that (Σ1,−1)∗ = d1

1,k is inje
tive. Sin
e En
1,k
onverges to 0, it su�
es to show that all di�erentials with target En

1,k aretrivial. This holds if we 
an show that E2
p,q = 0 for all p + q = k + 2 with

q ≤ k − 1 and that d1
2,k : E1

2,k −→ E1
1,k is trivial.We �rst prove that d1

2,k : E1
2,k −→ E1

1,k is trivial by proving that d1
3,k :

E1
3,k −→ E1

2,k is surje
tive, using Lemma 3.3. We have already 
al
ulated c1and c2, 
f. (36):
c1 = (Σ1,−1)∗ : Hk(Γg−1,r) −→ Hk(Γg,r−1), and
c2 = (Σ0,1)∗ : Hk(Γg−1,r) −→ Hk(Γg−1,r+1)In this 
ase we 
annot use indu
tion, sin
e the homology degree is k, butwe 
an use the surje
tivity result for Σ0,1 and Σ1,−1 sin
e we have alreadyproved this. So by Theorem 3.6 (ii), c1 and c2 are surje
tive.Next we prove that E2

3,k−1 = 0, using Lemma 3.4. We have already
al
ulated cj for j = 1, 2, 3, 4, 5, 6 in the proof of surje
tivity of (Σ1,−1)∗, 
f.(36) and (37), and in this 
ase we get
c1 = (Σ1,−1)∗ : Hk−1(Γg−1,r) −→ Hk−1(Γg,r−1),
c2 = (Σ0,1)∗ : Hk−1(Γg−1,r) −→ Hk−1(Γg−1,r+1)
c3 = (Σ0,1)∗ : Hk−1(Γg−2,r+1) −→ Hk−1(Γg−2,r+2), and
cj = (Σ1,−1)∗ : Hk−1(Γg−2,r+1) −→ Hk−1(Γg−1,r) for j = 4, 5, 6.Indu
tively we 
an verify that c1 and c2 are inje
tive, and that cj for j =

3, 4, 5, 6 are surje
tive. So by Lemma 3.4, E2
3,k−1 = 0.Finally we prove that E2

p,q = 0 for p + q = k + 1 and q ≤ k − 2 usingLemma 3.1. As before we skip the 
al
ulations, and the �nal inequality isthe same as in Surje
tivity in the 
ase Σ1,−1.
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lass groupRemark 3.7. Another possibility for proving the above result is to use an-other ar
 
omplex. Inspired by [Ivanov1℄ we 
onsider a sub
omplex of C(F ; i)
onsisting of all n-simpli
es with a given permutation σn, n ≥ 0. Ivanov takes
σ = id, whi
h means the 
ut surfa
es Fα have minimal genus. For the in-du
tive assumption, it would be better to have maximal genus, whi
h 
an bea
hieved by taking σn = [n n−1 · · · 1 0]. Potentially, this 
ould give a betterstability range, but it is not known how 
onne
ted this sub
omplex is, whi
hmeans that the proof above 
annot be 
arried through.3.3 The stability theorem for 
losed surfa
esIn this se
tion we study l = Σ0,−1 : Γg,1 −→ Γg, the homomorphism indu
edby gluing on a disk to the boundary 
ir
le. The main result isTheorem 3.8.

l∗ : Hk(Γg,1) −→ Hk(Γg)is surje
tive for 2g ≥ 3k − 1, and an isomorphism for 2g ≥ 3k + 2.The proof we give is modelled on [Ivanov1℄. See also [Cohen-Madsen℄.De�nition 3.9. Let F be a surfa
e, possibly with boundary. The ar
 
om-plex D∗(F ) has isotopy 
lasses of 
losed, non-trivial, oriented, embedded
ir
les as verti
es, and n + 1 distin
t verti
es (n ≥ 0) form an n-simplex ifthey have representatives (α0, . . . αn) su
h that:
(i) αi ∩ αj = ∅ and αi ∩ ∂(F ) = ∅,

(ii) F \ (
⋃n
i=0 αi) is 
onne
ted.We note that
(Fg,r)α ∼= Fg−1,r+2, for ea
h vertex α in D(Fg,r). (38)Indeed, for a vertex α, Fα := F \N(α) has two more boundary 
omponentsthan F , but the same Euler 
hara
teristi
, sin
e F = F \N(α)∪∂N(α) N(α),and χ(N(α)) = 0 = χ(∂N(α)). Then (38) follows from χ(Fg,r) = 2− 2g− r.We need the following 
onne
tivity result, whi
h we state without proof:Theorem 3.10 ([Harer1℄). The ar
 
omplex D∗(Fg,r) is (g − 2)-
onne
ted,and Γg,r a
ts transitively in ea
h dimension.We 
an now prove the stability theorem for 
losed surfa
es:



3.3 The stability theorem for 
losed surfa
es 43Proof of Theorem 3.8. We use the unaugmented spe
tral sequen
es asso
i-ated with the a
tion of Γ(Fi) on D∗(Fi), where Fi = Fg,i for i = 0, 1. They
onverge to the homology of Γ(Fi) in degrees less than or equal to g − 2.Sin
e Γ(Fi) a
ts transitively on the set of n-simpli
es,
E1
p,q(Fi)

∼= Hq(Γ(Fi)α,Zα)⇒ Hp+q(Γ(Fi)), for i = 0, 1; (39)where α is p-simplex in Dp(F1), by identifying α with its image in Dp(F0)under the in
lusion l : F1 −→ F0.We use Moore's 
omparison theorem for spe
tral sequen
es, 
f. [Cartan℄:If l∗ : Hq(Γ(F1)α,Zα) −→ Hq(Γ(F0)α,Zα) is an isomorphism for p + q ≤ mand surje
tive for p + q ≤ m + 1, then l∗ : Hk(Γ(F1)) −→ Hk(Γ(F0)) is aisomorphism for k ≤ m and surje
tive for k ≤ m+ 1. To apply this, we will
ompare Hq(Γ(Fi)α,Zα) and Hq(Γ((Fi)α)) for a �xed p-simplex α.First we need to analyse Γ(Fi)α for i = 0, 1, and to ease the notation we
all the surfa
e F and write Γ = Γ(F ). Unlike for C∗(F ; i), the stabilizer Γαis not Γ(Fα). For γ ∈ Γα,
(i) γ need not stabilize α pointwise and 
an thus permute the 
ir
les of α;

(ii) γ 
an 
hange the orientation of any 
ir
le in α;
(iii) γ 
an rotate ea
h 
ir
le α in α.In order to take 
are of (i) and (ii), 
onsider the exa
t sequen
e,

1 −→ Γ̃α −→ Γα −→ (Z/2)p+1 ⋉ Σp+1 −→ 1. (40)Here Γ̃α ⊆ Γα 
onsists of the mapping 
lasses in Γα �xing ea
h vertex of αand its orientation. We now 
ompare Γ̃α and Γ(Fα),
0 −→ Zp+1 −→ Γ(Fα) −→ Γ̃α −→ 1. (41)We must explain the map Zp+1 −→ Γ(Fα). Let α = (α0, . . . , αp), then the
ut surfa
e Fα has two boundary 
omponents, α+

i and α−i , for ea
h 
ir
le αi.Then the standard generator ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zp+1, j = 0, . . . , p,maps to the mapping 
lass making a right Dehn twist on α+
j and a leftDehn twist on α−j , and identity everywhere else. This is extended to a grouphomomorphism, i.e. −ej makes a left Dehn twist on α+

j and a right Dehntwist on α−j .Let us see that (41) is exa
t. The hard part is inje
tivity of Zp+1 −→
Γ(Fα), so we only show this. Assume m 6= n ∈ Zp+1, and say m0 6= n0.For p ≥ 1, the surfa
e Fα has at least four boundary 
omponents. Two of



44 3 Homology stability of the mapping 
lass groupthem 
ome from 
utting up along the 
ir
le α0, 
all one of these S. If p = 0,then α = α0, and Fα has genus g − 1 ≥ 2 by (38), sin
e 2g ≥ 3k + 3 ≥ 6.In both 
ases, there is a non-trivial loop γ in Fα starting on S whi
h doesnot 
ommute with the Dehn twist f around S in π1(Fα). Sin
e Fα hasboundary, π1(Fα) is a free group, so the subgroup 〈γ, f〉 is also free. Thea
tion of m ∈ Zp+1 on γ is fm0γf−m0, and sin
e f and γ does not 
ommute,
fm0γf−m0 6= fn0γf−n0 when n0 6= m0.Consider l∗ : Γ((F1)α) −→ Γ((F0)α). Both surfa
es (Fi)α have non-emptyboundary, so we 
an use Main Theorem 3.6. We must relate l∗ to the maps
Σ0,1 and Σ1,−1, so let F̂ denote a surfa
e su
h that Σ0,1(F̂ ) = (F1)α. Then F̂has one less boundary 
omponents than (F1)α, so F̂ and (F0)α are isomorphi
.This gives the diagram:

H∗(Γ(F̂ ))
∼= //

(Σ0,1)∗ ''OOOOOOOOOOO
H∗(Γ((F0)α))

H∗(Γ((F1)α))

l∗

66mmmmmmmmmmmmmWe see that l∗ is always surje
tive. By Theorem 3.6, (Σ0,1)∗ : Hs(Γ(F̂ )) −→
Hs(Γ((F1)α)) is an isomorphism for 3s ≤ 2(g − p− 1), so the same holds for
l∗. The Lynden-Serre spe
tral sequen
e of (41) for F is

Ē2
s,t(F ) ∼= Hs(Γ̃α, Ht(Z

p+1))⇒ Hs+t(Γ(Fα)). (42)We showed above that l∗ : Hs+t(Γ((F1)α)) −→ Hs+t(Γ((F0)α)) is an isomor-phism for 3(s+ t) ≤ 2(g − p− 1) and surje
tive always. Note that Zp+1 liesin the 
enter of Γ(Fα), sin
e the Dehn twists 
an take pla
e as 
lose to theboundary of Fα as desired. By the Künneth formula, we have an isomorphism
Ē2
s,t(F ) ∼= Ē2

s,0(F )⊗ Ē2
0,t(F ) = Hs(Γ̃α)⊗Ht(Z

p+1)Now sin
e l∗ : Hs+t(Γ((F1)α)) −→ Hs+t(Γ((F0)α)) is an isomorphism for
3(s+ t) ≤ 2(g− p− 1) and always surje
tive, it follows by an easy indu
tiveargument that l∗ : Hs(Γ̃(F0)α) −→ Hs(Γ̃(F1)α) is an isomorphism for 3s ≤
2(g − p− 1) and surje
tive for 3s ≤ 2(g − p− 1) + 3.The Lynden-Serre spe
tral sequen
e of (40) is

Ẽ2
r,s(F ) ∼= Hr

(
(Z/2)p+1 ⋉ Σp+1;Hs(Γ̃α; Zα)

)
⇒ Hr+s(Γα; Zα). (43)Sin
e Γ̃α preserves the orientation of the simpli
es, we 
an drop the lo
al
oordinates to obtain

Ẽ2
r,s(F ) ∼= Hr

(
(Z/2)p+1 × Σp+1, Hs(Γ̃α)⊗ Zα

)
.



3.3 The stability theorem for 
losed surfa
es 45It follows from the above that l∗ : Ẽ2
r,s(F1) −→ Ẽ2

r,s(F0) is an isomorphismfor 3s ≤ 2(g − p − 1) and surje
tive for 3s ≤ 2(g − p − 1) + 3. Then byMoore's 
omparison theorem,
l∗ : Hq(Γ(F1)α; Zα) −→ Hq(Γ(F0)α; Zα)is an isomorphism for 3q ≤ 2(g−p−1) and surje
tive for 3q ≤ 2(g−p−1)+3.Then in parti
ular, it is an isomorphism for 3(p+ q) ≤ 2g− 2 and surje
tivefor 3(p + q) ≤ 2g − 2 + 3. Now a �nal appli
ation of Moore's 
omparisontheorem on the spe
tral sequen
e in (39) gives the desired result, as explainedin the beginning of the proof.



46 4 Stability with twisted 
oe�
ients4 Stability with twisted 
oe�
ients4.1 The 
ategory of marked surfa
esDe�nition 4.1. The 
ategory of marked surfa
es C is de�ned as follows: Theobje
ts are triples F, x0, (∂1F, ∂2F, . . . , ∂rF ), where F is a 
ompa
t 
onne
tedorientable surfa
e with non-empty boundary ∂F = ∂1F ∪ · · ·∂rF , with anumbering (∂1F, . . . , ∂rF ) of the boundary 
omponents of F , and x0 ∈ ∂1Fis a marked point.A morphism (ψ, σ) between marked surfa
es (F, x0) and (G, y0) is an am-bient isotopy 
lass of an embedding ψ : F −→ G, where ea
h boundary
omponent of F is either mapped to the inside of G or to a boundary 
om-ponent of G. If ψ(x0) ∈ ∂G then ψ(x0) = y0, else there is a embedded ar
 σin G 
onne
ting x0 and y0.The obje
ts of C is 
an be groupedObC =
∐

g,r

ObCg,r,where Cg,r 
onsists of the surfa
es with genus g and r boundary 
omponents.De�nition 4.2. The morphisms Σ1,0, Σ0,1 in C are the embeddings Σi,j :
F −→ Σi,jF given by gluing onto ∂1F a torus with 2 disks 
ut out, or a pairof pants, respe
tively, as on Figure 10. The embedded ar
 σ is also shownhere. The boundary 
omponents of Σ0,1F are numbered su
h that the newboundary 
omponent from the pair of pants is ∂r+1(Σ0,1F ).The morphism Σ1,−1 in the sub
ategory of ∐

r≥2 ObCg,r is the embeddinggiven by gluing a pair of pants onto ∂1(F ) and ∂2(F ), as on Figure 10. Thenumbering is that ∂j(Σ1,−1F ) = ∂j−1F for j > 1.
F

s σ s
Σ1,0F

F

s s
Σ0,1F

σ

∂r+1Σ0,1F

↓ F

s s
Σ1,−1F

σ∂2FFigure 10: The morphisms Σ1,0, Σ0,1F , and Σ1,−1F .In the �gure, the bla
k re
tangles are boundary 
omponents of F or
Σi,jF , and the outer boundary 
omponent is always ∂1F with the marked



4.2 Coe�
ient systems 47point indi
ated. On the �gure of Σ1,−1F the grey �tube� is a 
ylinder gluedonto ∂2F .Now we will see how Σi,j 
an be made into fun
tors. First we de�nethe sub
ategory C(2) of C to be the 
ategory with obje
ts ∐
r≥2 ObCg,r andwhose morphisms ϕ : F −→ S must restri
t to an orientation-preservingdi�eomorphism ϕ : ∂2F −→ ∂2S. Note that Σ1,0 and Σ0,1 are morphisms inthis 
ategory.

Σ1,0 and Σ0,1 are fun
tors from C to itself, and Σ1,−1 is a fun
tor from C(2)to C in the following way: Given a morphism ϕ : F −→ S we must spe
ifythe morphism Σi,j(ϕ), and this is done on the following diagram (drawn inthe 
ase of Σ1,0). Here, the grey line shows how Σ1,0 is embedded in Σ0,1Sby Σ1,0(ϕ). Noti
e how the ar
 σ determines the embedding.
F r -Σ1,0 F r r

?
ϕ

?
Σ1,0(ϕ)

F r r
S

-Σ1,0 F r r
S

rFigure 11: The fun
tor Σ1,0.Similar diagrams 
an be drawn for Σ0,1 and Σ1,−1. In the latter 
ase
Σ1,−1(ϕ) exists be
ause when ϕ ∈ C(2), ϕ : F −→ S has not done anythingto ∂2(F ), so that Σ1,−1F 
an be embedded in Σ1,−1S just as on Figure 11.4.2 Coe�
ient systemsWe now de�ne the 
oe�
ient systems we are interested in. We say thatan abelian group G is without in�nite division if the following holds for all
g ∈ G: If n | g for all n ∈ Z, then g = 0. By n | g we mean g = nh forsome h ∈ G. Note that �nitely generated abelian groups are without in�nitedivision.De�nition 4.3. A 
oe�
ient system is a fun
tor from C to Abwid, the 
ate-gory of abelian groups without in�nite division.



48 4 Stability with twisted 
oe�
ientsWe say that a 
onstant 
oe�
ient system has degree 0 and make thegeneralDe�nition 4.4. [Ivanov1℄ A 
oe�
ient system V has degree ≤ k if themap V (F )−→V (Σi,jF ) is split inje
tive for (i, j) ∈ {(1, 0), (0, 1), (1,−1)},and the 
okernel ∆i,jV is a 
oe�
ient system of degree ≤ k − 1 for (i, j) ∈
{(1, 0), (0, 1)}. The degree of V is the smallest su
h k.Example 4.5. (i) V (F ) = H1(F, ∂F ) is a 
oe�
ient system of degree 1.
(ii) V ∗k (F ) = Hk(Map((F/∂F ), X). This is the 
oe�
ient system used in[Cohen-Madsen℄. It has degree ≤ ⌊k

d
⌋ if X is d-
onne
ted, whi
h willbe proved in Theorem 5.3.We write Σi,jV for the fun
tor F  V (Σi,jF ), where (i, j) ∈ {(1, 0), (0, 1)}.Lemma 4.6 (Ivanov). Let V be a 
oe�
ient system of degree ≤ k. Then

Σ1,0V and Σ0,1V are 
oe�
ient systems of degree ≤ k.Proof. See [Ivanov1℄ for Σ1,0V . The 
ase Σ0,1V 
an be handled similarly.4.3 The indu
tive assumptionBelow I will use the following notational 
onventions: F denotes a surfa
e in
C, and unless otherwise spe
i�ed, g is the genus of F . Σl,m refers to any of
Σ1,0, Σ0,1, Σ1,−1.De�nition 4.7. Given a morphism ψ : F −→ S, Φ will denote a �nite
omposition of Σ0,1 and Σ1,−1 su
h that Φ(ψ) is de�ned, i.e. makes thefollowing diagram 
omutative

F
Φ //

ψ

��

Φ(F )

Φ(ψ)
���
�

�

S
Φ // Φ(S)By a �nite 
omposition we mean Φ = Σi1,j1 ◦ · · · ◦ Σis,js for some s ≥ 0,where (ik, jk) ∈ {(0, 1), (1,−1)} for ea
h k = 1, . . . , s. We say that su
h a Φis 
ompatible with ψ : F −→ S.To prove our main stability result for twisted 
oe�
ients, we will study
ertain relative homology groups:



4.3 The indu
tive assumption 49De�nition 4.8. Let ψ : F −→ S be a morphism of surfa
es, and let Φ be
ompatible. Let V be a 
oe�
ient system. Then we de�neRelV,Φn (S, F ) = Hn(Γ(S),Γ(F );V (Φ(S)), V (Φ(F ))).If Φ = id, we write RelVn (G,F ) for RelV,idn (G,F ).Theorem 4.9 (Ivanov, Madsen-Cohen). For su�
iently large g:
(i) RelVq (Σ1,0F, F ) = 0.

(ii) RelVq (Σ0,1F, F ) = 0.

(iii) RelVq (Σ1,−1F, F ) = 0.Proof. For (i), see [Ivanov1℄. For (ii), see [Cohen-Madsen℄. Their proof onlyrequires that the groups V (·) are without in�nite division.To prove (iii), we use the following long exa
t sequen
e,
Hq(F, V (F )) −→ Hq(Σ1,−1F, V (Σ1,−1F )) −→ RelVq (Σ1,−1F, F ) −→

Hq−1(F, V (F )) −→ Hq−1(Σ1,−1F, V (Σ1,−1F ))Thus to see that RelVq (Σ1,−1F, F ) = 0 all we have to do is to see that the�rst map is surje
tive and that the last map is inje
tive. Both of these mapsare Σ1,−1, so they �t into the following diagram, for k ∈ {q, q − 1}:
Hk(F, V (F ))

Σ1,−1 // Hk(F, V (F ))

Hk(S, V )

Σ0,1

OO
Σ1,0

66mmmmmmmmmmmmwhere S is a surfa
e with Σ0,1S = F . Now by (i) and (ii), if g is su�
ientlylarge, both the diagonal and the verti
al map is an isomorphism, so Σ1,−1 isalso an isomorphism.De�ne εl,m by
εl,m =

{
1, if (l,m) = (1,−1);
0, if (l,m) = (1, 0) or (0, 1).Indu
tive Assumption 4.10. The indu
tive assumption Ik,n is the follow-ing: For any 
oe�
ient system W of degree kW , any surfa
e F of genus g,and any Φ 
ompatible with Σl,m : F −→ Σl,mF , we haveRelW,Φq (Σl,mF, F ) = 0 for 2g ≥ 3q + kW − εl,m,if either kW < k, or kW = k and q < n.



50 4 Stability with twisted 
oe�
ientsIn the rest of this se
tion I am going to assume Ik,n. Note that Ik,m forall m ∈ N is equivalent to Ik+1,0. Thus the goal is to prove Ik,n+1. Let V bea given 
oe�
ient system of degree k.Lemma 4.11 (Ivanov). Let F be a surfa
e of genus g. If 2g ≥ 3q+k−1−εl,mthen for (i, j) ∈ {(1, 0), (0, 1)}RelV,Φq (Σl,mF, F ) −→ RelV,Σi,jΦ
q (Σl,mF, F )is surje
tive.Proof. Sin
e RelV,Σi,jΦ

q (Σl,mF, F ) = RelΣi,jV,Φ
q (Σl,mF, F ) we have the follow-ing long exa
t sequen
e :RelV,Φq (Σl,mF, F ) −→ RelV,Σi,jΦ

q (Σl,mF, F ) −→ Rel∆i,jV,Φ
q (Σl,mF, F )Sin
e ∆i,jV is a 
oe�
ient system of degree k−1, the assumption Ik,n impliesthat Rel∆i,jV,Φ

q (Σl,mF, F ) = 0, and the result follows.Theorem 4.12. Assume that h satis�es 2h ≥ 3n+ k− 1− εl,m and that themaps below are inje
tive for all surfa
es F of genus g ≥ h and Φ 
ompatiblewith Σl,m : F −→ Σl,mF ,RelV,ΦΣ1,−1

n (Σl,mF, F ) −→ RelV,Φn (Σl,mΣ1,−1F,Σ1,−1F ),RelΣ0,1V
n (Σl,mF, F ) −→ RelVn (Σl,mΣ0,1F,Σ0,1F ).Then for any 
ompatible Φ, RelV,Φn (Σl,mF, F ) = 0 for g ≥ h.Proof. Assume 2g ≥ 3n + k − 1− εl,m. Write Φ = Σi1,j1 ◦ · · · ◦ Σis,js, where

(ik, jk) ∈ {(1,−1), (0, 1)}. Observe that we 
an write Φ = Φ′ ◦ (Σ1,−1)
d forsome d, where Φ′ = Σλ1,µ1

◦ · · · ◦ Σλt,µt
with (λk, µk) ∈ {(1, 0), (0, 1)}. Thenby the �rst assumption in the theorem, we get by indu
tion in d:RelV,Φn (Σl,mF, F ) −→ RelV,Φ′

n (Σl,m(Σ1,−1)
dF, (Σ1,−1)

dF )is inje
tive. Thus it su�
es to show RelV,Φ′

n (Σl,m(Σ1,−1)
dF, (Σ1,−1)

dF ) = 0.Sin
e genus((Σ1,−1)
dF ) ≥ g ≥ h, it is 
ertainly enough to show RelV,Φ′

n (Σl,mF, F ) =
0, where Φ′ is a �nite 
omposition of Σ1,0 and Σ0,1. By Lemma 4.11, we getindu
tively that RelVn (Σl,mF, F ) −→ RelV,Φ′

n (Σl,mF, F )is surje
tive, so it su�
es to show that RelVn (Σl,mF, F ) = 0. Now by these
ond assumption in the Theorem, we knowRelΣ0,1V
n (Σl,mF, F ) −→ RelVn (Σl,mΣ0,1F,Σ0,1F )



4.4 The main theorem for twisted 
oe�
ients 51is inje
tive. Sin
e V is a 
oe�
ient system of degree k, V (F ) −→ V (Σ0,1F )and V (F ) −→ V (Σ1,−1F ) are split inje
tive, so the 
omposition,RelVn (Σl,mF, F ) −→ RelΣ0,1V
n (Σl,mF, F ) −→ RelVn (Σl,mΣ0,1F,Σ0,1F )

−→ RelΣ1,−1V
n (Σl,mΣ0,1F,Σ0,1F ) −→ RelVn (Σl,mΣ1,0F,Σ1,0F )is inje
tive, where the se
ond and the last maps are the maps in the assump-tion and thus inje
tive. Iterating this, we get an inje
tive mapRelVn (Σl,mF, F ) −→ RelVn (Σl,m(Σ1,0)

dF, (Σ1,0)
dF )for any d ∈ N. But genus((Σ1,0)

dF ) = g+d, so by Theorem 4.9, RelVn (Σl,mF, F )inje
ts into zero. This proves RelV,Φn (Σl,mF, F ) = 0.4.4 The main theorem for twisted 
oe�
ientsIn the proof of stability for relative homology groups, we will use the relativeversion of the spe
tral sequen
e, 
f. Theorem 1.2, E1
p,q = E1

p,q(Σi,jF ; 2 − i)asso
iated with the a
tion of Γ(Σi,jF ) on the ar
 
omplex C∗(Σi,jF ; 2 − i)and the a
tion of Γ(Σl,mΣi,jF ) on the ar
 
omplex C∗(Σl,mΣi,jF ; 2− i). Let
b0, b1 be the points in the de�nition of C∗(Σi,jF ; 2 − i); and b̃0, b̃1 be the
orresponding points for C∗(Σl,mΣi,jF ; 2 − i). We demand that b0, b̃0 lie inthe 1st boundary 
omponent, but is di�erent from the marked point. Tode�ne the spe
tral sequen
e, Σl,m must indu
e a map

Σl,m : C∗(Σi,jF ; 2− i) −→ C∗(Σl,mΣi,jF ; 2− i), (44)whi
h we now de�ne: If i = 0, b0 and b1 lie in di�erent boundary 
omponents,and the map is given on α ∈ ∆k(Σi,jF ) by a simple path γ from b̃0 ∈
Σl,mΣi,jF to b0 ∈ Σi,jF inside Σl,mΣi,jF \ Σi,jF . Then the ar
s of α areextended by parallel 
opies of γ that all start in b̃0. Note that in this 
ase
b̃1 = b1, so no extension is ne
essary here. If i = 1, b0 and b1 lie on thesame boundary 
omponent, and we 
hoose disjoint paths for them to thenew marked boundary 
omponent, and extend as for i = 0.Now the spe
tral sequen
e (typi
ally) has E1 page:

E1
p,q =

⊕

σ∈Σp

E1
p,q(σ)

E1
p,q(σ) = Hq(Γ(Σi,jΣl,mF )Σl,mT (σ),Γ(Σi,jF )T (σ);

V (ΦΣi,jΣl,mΣs,t(F )), V (ΦΣi,jΣs,t(F )))

= RelV,Φσ

q ((Σi,jΣl,mF )Σl,mT (σ), (Σi,jF )T (σ)) (45)



52 4 Stability with twisted 
oe�
ientsHere, Φσ : (Σi,jF )T (σ) →֒ Σi,jF is the in
lusion, whi
h is a �nite 
ompositionofΣ0,1 and Σ1,−1. Furthermore, Γσ denotes the stabilizer of the (p−1)-simplex
σ in Γ. The dire
t sum is over the orbits of (p−1)-simpli
es σ in C∗(Σi,jF ; 2−
i), whose images under Σl,m are also (p−1)-simpli
es in C∗(Σl,mΣi,jF ; 2− i).In most 
ases, Σl,m indu
es a bije
tion on the representatives of orbits of
(p−1)-simpli
es. Also re
all that the set of orbits are in 1−1 
orresponden
ewith a subset Σp of the permutation group Σp. Lemma 2.16 
hara
terizes Σp.As a general remark, note that if a permutation is represented in C∗(F ; 2−i),then it is also represented in C∗(Σl,mF ; 2−i), sin
e genus(Σl,mF ) ≥ genus(F ).So we will only 
he
k the 
ondition for C∗(F, 2− i).In 
ertain 
ases we will either not have Σl,m indu
ing bije
tion on therepresentatives of orbits of (p − 1)-simpli
es, or they will not in
lude thepermutation used in the standard proof. All su
h 
ases will be found inLemma 4.13 below and taken 
are of in the Indu
tive start se
tion at the endof the proof.The �rst di�erential, d1

p,q : E1
p,q −→ E1

p−1,q, is des
ribed in se
tion 1.3.The diagrams
∆p(F ; i)

∂j //

��

∆p(F ; i)

��

Σp+1

∂j // Σp j = 0, . . . , p
ommute, where ∂j omits entry j as in Def. 2.2 and the verti
al arrowsdivide out the Γ a
tion and 
ompose with P . Thus for ea
h σ ∈ Σp+1, thereis gj ∈ Γ su
h that
gj · ∂jT (σ) = T (∂jσ), (46)and 
onjugation by gj indu
es an inje
tion cgj

: ΓT (σ) →֒ ΓT (∂jσ). The indu
edmap on homology is denoted ∂j again, i.e.
∂j : Hq(Γ(Σi,jΣl,mF )Σl,mT (σ),Γ(Σi,jF )T (σ);V) →֒

Hq(Γ(Σi,jΣl,mF )Σl,m∂jT (σ),Γ(Σi,jF )∂jT (σ);V)
(cgj

)∗
−→ (47)

Hq(Γ(Σi,jΣl,mF )Σl,mT∂j(σ),Γ(Σi,jF )T∂j(σ);V)Note that (cgj
)∗ does not depend on the 
hoi
e of gj in (46): Another 
hoi
e

g′j gives cg′j = cg′jg
−1

j
cgj

, and g′jg−1
j ∈ ΓT (∂jσ) so cg′jg−1

j
indu
es the identity onthe homology. Then

d1 =

p−1∑

j=0

(−1)j∂j . (48)



4.4 The main theorem for twisted 
oe�
ients 53Lemma 4.13. Let n ≥ 1. The subset Σp ⊆ Σp, whi
h is in 1− 1 
orrespon-den
e with a set of representatives of the orbits of ∆p−1(Σi,jF ; 2− i), has thefollowing properties:Surje
tivity of Σ0,1: Assume 2g ≥ 3n+ k − 2− εl,m. Then
Σp = Σp for 2 ≤ p ≤ n + 1 and for p = n + 2 = 3, unless:
• (l,m) 6= (1,−1), n = 1, g = 1, k = 0, 1, or
• (l,m) = (1,−1), n = 1, g = 0, k = 0, or
• (l,m) = (1,−1), n = 1, g = 1, k = 0, 1, 2.Surje
tivity of Σ1,−1: Assume 2g ≥ 3n+ k − 3− εl,m. Then

Σp = Σp for 2 ≤ p ≤ n+ 1, and σ ∈ Σp if S(σ) ≥ 1 for p = n+ 2 ≤ 4,unless:
• (l,m) 6= (1,−1), n = 1, g = 0, k = 0, or
• (l,m) = (1,−1), n = 1, g = 0, k = 0, 1, or
• (l,m) = (1,−1), n = 2, g = 1, k = 0.Inje
tivity of Σ1,−1: Assume 2g ≥ 3n+ k − εl,m. Then

Σp = Σp for 2 ≤ p ≤ n+ 2, and σ ∈ Σp if S(σ) ≥ 1 for p = n+ 3 = 4,unless:
• (l,m) = (1,−1), n = 1, g = 1, k = 0.Proof. We only prove the �rst of the three 
ases, as the other two are 
om-pletely analogous. So assume 2g ≥ 3n + k − 2 − εl,m, and let σ ∈ Σp be agiven permutation of genus s. Let 2 ≤ p ≤ n+ 1. By Lemma 2.16, σ ∈ Σp ifand only if s ≥ p−1−g. This inequality is 
ertainly satis�ed if p−1−g ≤ 0.The hardest 
ase is p = n + 1, so we must show n− g ≤ 0. By assumption,

2(n− g) ≤ 2n− (3n+ k − 2 + εl,m) = −n− k + 2 + εl,m
?

≤ 0,For n ≥ 3 this holds. If n = 2, the assumption 2g ≥ 3n+ k − 2− εl,m for
es
g ≥ 2, so n − g ≤ 0. For n = 1 and (l,m) 6= (1,−1), we have εl,m = 0, so
g ≥ 1, whi
h means n− g ≤ 0. Last for n = 1 and (l,m) = (1,−1), we have
εl,m = 1, so we get one ex
eption, g = k = 0.Now let p = n + 2 = 3, so n = 1. The requirement in Lemma 2.16 is
p− 1− g ≤ 0, i.e. g ≥ 2. By assumption 2g ≥ 3n+ k − 2− εl,m, so if g = 1,we have k − εl,m − 1 ≤ 0. Now for (l,m) 6= (1,−1), the only ex
eptions are
k = 0, 1, and for (l,m) = (1,−1), the only ex
eptions are k = 0, 1, 2. If
g = 0, we have k− εl,m+ 1 ≤ 0, so the only ex
eption is (l,m) = (1,−1) and
k = 0. This �nishes the proof.



54 4 Stability with twisted 
oe�
ientsProposition 4.14. Let α denote a simplex either in ∆1(F ; 1) with P (α) =
[1 0], or in ∆2(F ; 2) with P (α) = [2 1 0]. Let g be the genus of Fα, and let Φbe 
ompatible with Σl,m : F −→ Σl,mF . Then if 2g ≥ 3q+ kW − 1− εl,m, themaps ∂0 = ∂1 are equal as maps from

RelV,Φα

n ((Σl,mF )Σl,mα, Fα).Proof. Write σ = P (α). First note that ∂0 and ∂1 have the same target,sin
e ∂0(σ) = ∂1(σ) =: τ by assumption. We 
an assume T (σ) = α and
T (τ) = ∂0α. Then we 
an 
hoose the element g = g1 from (46), whi
hmust satisfy g · ∂1α = ∂0α, to be as in Prop. 3.2. Then g 
ommutes withthe stabilizers Γ(Σl,mF )α0∪α1

, Γ(F )α0∪α1
and thus also with Γ(Σl,mF )α and

Γ(F )α.We now extend the ar
s of α to ar
s in ΦF as follows: If α ∈ ∆1(F ; 1)we use (44) to obtain α̃ = Φ(α) ∈ ∆1(ΦF ; 1). If α ∈ ∆2(F ; 2), we extend,if possible, the 1-simplex α0 ∪ α1 to a 1-simplex α̃ ∈ ∆1(ΦF ; 1), i.e. theextended ar
s start and end on the same boundary 
omponent in ΦF . If thisis not possible, we extend α to α̃ ∈ ∆2(ΦF ; 2). These extensions must satisfythe same requirements as (44) does. Then we make the same extensions for
β := Σl,mα to β̃ in ΦΣl,mF . Now the 
onjugation (cg)∗ a
ts as the identityon

Hn(Γ(Σl,mF )β,Γ(F )α;V ((ΦΣl,mF )β̃), V ((ΦF )α̃))If we are in the 
ase α̃∆1(ΦF ; 1), then the in
lusion map on the 
oe�-
ients,
i∗ : Hn(Γ(Σl,mF )β,Γ(F )α;V ((ΦΣl,mF )β̃), V ((ΦF )α̃)) −→ (49)

Hn(Γ(Σl,mF )β,Γ(F )α;V (ΦΣl,mF ), V (ΦF )) = RelV,Φα

n ((Σl,mF )Σl,mα, Fα)equals Σ1,0 on the 
oe�
ient systems, and by Lemma 4.11 it is surje
tivesin
e 2g ≥ 3n + k − 1 − εl,m by assumption. Now as i∗ is surje
tive and
(cg)∗ ◦ i∗ = i∗ we see that (cg)∗ is the identity on RelV,Φα

n (Σl,mFα, Fα), andthus ∂1 = (cg)∗∂0 = ∂0. For α̃ ∈ ∆2(ΦF ; 2) we do the same, ex
ept that weuse α instead of only α0 ∪ α1. In this 
ase i∗ in (49) is going to be Σ1,0Σ0,1on the 
oe�
ient systems, whi
h again by Lemma 4.11 is surje
tive.By Theorem 4.12, to prove Ik,n+1 it is enough to prove:Theorem 4.15. The map indu
ed by Σi,j,RelV,ΦΣi,j

n (Σl,mF, F ) −→ RelV,Φn (Σi,jΣl,mF,Σi,jF )satis�es:
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(i) For Σi,j = Σ0,1, it is surje
tive for 2g ≥ 3n+k−2−εl,m, and if Φ = idit is an isomorphism for 2g ≥ 3n+ k− 1− εl,m. For k = 0 it is alwaysinje
tive.

(ii) For Σi,j = Σ1,−1, it is surje
tive for 2g ≥ 3n + k − 3 − εl,m, and anisomorphism for 2g ≥ 3n + k − εl,m.Proof. We prove the theorem by indu
tion in the homology degree n. Assume
n ≥ 1. The indu
tion start n = 0 will be handled separately below, alongwith all ex
eptional 
ases from Lemma 4.13. This means that in the mainproof, any permutation is represented by an ar
 simplex (in some spe
ial
ases only if its genus is ≥ 1).Surje
tivity for Σ0,1:Assume 2g ≥ 3n + k − 2 − εl,m. We use the spe
tral sequen
e E1

p,q =
E1
p,q(Σ0,1F ; 2), and 
laim that E1

p,q = 0 for p + q = n + 1 with p ≥ 3. Notethat Γ(Σ0,1F )σ = Γ(Σ0,1Fσ), and genus(Σ0,1Fσ) = g−p+1+S(σ) ≥ g−p+1.We will use the assumption Ik,n, and must show 2(g− p+ 1) ≥ 3q+ k− εl,mfor p ≥ 3. These inequalities follows from the one for p = 3, whi
h is
2(g − 2) ≥ 3(n− 2) + k − εl,m, and this holds by assumption.Now all we need is to show that E2

2,n−1 = 0. We 
onsider
E1

2,n−1 = E1
2,n−1([0 1])⊕ E1

2,n−1([1 0])We wish to show that d1 : E1
3,n−1 −→ E1

2,n−1 is surje
tive and thus E1
2,n−1 =

0. We look at E1
3,n−1(τ) indexed by the permutation τ = [2 1 0]. We willshow that d1 restri
ted to E1

3,n−1(τ) surje
ts onto E1
2,n−1([1 0]) without hitting

E1
2,n−1([0 1]). Sin
e S(τ) = 1, Σ0,1Fτ is Fg−1,r, and thus by Proposition 4.14,

∂0 = ∂1. We then see
d1 = ∂0 − ∂1 + ∂2 = ∂2and ∂2 : E1

3,n−1(τ) −→ E1
2,n−1[1 0] equals Σ0,1 and so is surje
tive by indu
-tion, sin
e 2(g − 1) ≥ 3(n − 1) + k − 2 − εm,l. All that remains is to hit

E1
2,n−1([0 1]) surje
tively, regardless of E1

2,n−1([1 0]). Consider the following
omponent of d1:
∂0 : E1

3,n−1([2 0 1]) −→ E1
2,n−1([0 1]).This is the map indu
ed by Σ1,−1. By indu
tion this map is surje
tive, sin
e

2(g−2) ≥ 3(n−1)+k−3−εl,m by assumption. This proves that E2
2,n−1 = 0.
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oe�
ientsInje
tivity for Σ0,1:Assume 2g ≥ 3n + k − 1 − εl,m. For this proof we take another approa
h.Consider the following 
omposite map,RelVq (Σl,mF, F ) −→ RelΣ0,1V
q (Σl,mF, F )

Σ0,1

−→ RelVq (Σl,mΣ0,1F,Σ0,1F )
p∗
−→ RelVq (Σ0,−1Σl,mΣ0,1F,Σ0,−1Σ0,1F )

= RelVq (Σl,mF, F ) (50)Here p : Fg,r −→ Fg,r−1 is the map that glues a disk onto a the unmarkedboundary 
ir
le 
reated by Σ0,1. Sin
e the 
omposite map (50) is indu
ed bygluing on a 
ylinder to the marked boundary 
ir
le of Σl,mF and F , it is anisomorphism. Now by Lemma 4.11, sin
e 2g ≥ 3n+k−1−εl,m, the �rst mapis surje
tive, so Σ0,1 is for
ed to be inje
tive. Note with 
onstant 
oe�
ients(k = 0), the �rst map is the identity, so here Σ0,1 is always inje
tive.Surje
tivity for Σ1,−1:Assume 2g ≥ 3n + k − 3 − εl,m. We use the spe
tral sequen
e E1
p,q =

E1
p,q(Σ1,−1F ; 1). We show E1

p,q = 0 if p+ q = n+ 1 and p ≥ 4, using assump-tion Ik,n. We know Γ(Σ1,−1F )σ = Γ((Σ1,−1F )σ), and genus((Σ1,−1F )σ) =
g−p+1+S(σ) ≥ g−p+1. So we must show 2(g−p+1) ≥ 3q+k−εl,m forall p+ q = n + 1, p ≥ 4. This follows if we show it for p = 4, whi
h is easy:

2(g − 3) = 2g − 6 ≥ 3n+ k − 3− εm,l − 6 = 3(n− 3) + k − εm,l.To show that the map d1 : E1
1,n −→ E1

1,n is surje
tive, we thus only need toshow that E2
2,n−1 = 0 and E2

3,n−2 = 0. Consider E1
2,n−1:

E1
2,n−1 = E1

2,n−1([0 1])⊕ E1
2,n−1([1 0]).For σ = [1 0], sin
e S(σ) = 1, we have genus((Σ1,−1F )σ) = g−p+1+S(σ) = g.Thus by Ik,n, E1

2,n−1([1 0]) = 0, sin
e 2g ≥ 3n+k−1−εm,l = 3(n−1)+k+2−
εl,m. Now 
onsider the summand in E1

3,n−1 indexed by τ = [2 0 1] whi
h hasgenus 1. Then (Σ1,−1F )τ = Fg−1,r, so d1 on this summand is exa
tly the mapindu
ed by Σ0,1 (sin
e d1 has 3 terms, only one of whi
h hit E1
2,n−1([0 1])).To show this is surje
tive onto E1

2,n−1, we use indu
tion, and must 
he
k that
2(g−1) ≥ 3(n−1)+k−εl,m, whi
h follows by assumption. So d1 is surje
tiveonto E1

2,n−1, whi
h implies that E2
2,n−1 = 0.Consider E1

3,n−2. As above, by Ik,n, all summands are zero, ex
ept forthe one indexed by id = [0 1 2]. Consider E1
4,n−2(τ

′) indexed by τ ′ = [3 0 1 2],
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h has genus 1. Restri
ting d1 to this summand, only one term hits
E1

3,n−2([0 1 2]). As above, one 
he
ks that this restri
tion of d1 is exa
tly themap indu
ed by Σ0,1, so by indu
tion it is surje
tive.Inje
tivity for Σ1,−1:Assume 2g ≥ 3n+ k+ 2− εl,m. We use the same spe
tral sequen
e as in thesurje
tivity of Σ1,−1. We 
laim E1
p,q = 0 if p + q = n + 2 and p ≥ 4. Again,

Γ(Σ1,−1F )σ = Γ(Σ1,−1Fσ), and genus(Σ1,−1Fσ) = g−p+1+S(σ) ≥ g−p+1.So we must show 2(g− p+ 1) ≥ 3q+ k+ 2− εm,l for all p+ q = n+ 2, p ≥ 4,and this follows from 2g ≥ 3n+ k + 2− εm,l, as above.To show that the map d1 : E1
1,n −→ E1

0,n is inje
tive, we thus only needto show that E2
3,n−1 = 0 and d1 : E1

2,n −→ E1
1,n is the zero-map. That

E2
3,n−1 = 0 is proved pre
isely as for E2

3,n−2 in surje
tivity for Σ1,−1, so weomit it. To show d1 : E1
2,n −→ E1

1,n is the zero-map, note that E1
2,n has twosummands, E1

2,n([0 1]) and E1
2,n([1 0]). We get that d1 is zero on E1

2,n([1 0]),sin
e d1 = ∂0 − ∂1 = 0 by Proposition 4.14. Next we 
onsider d1 : E1
3,n −→

E1
2,n. If we 
an show this is surje
tive onto E1

2,n([0 1]), we are done. Againwe use the summand E1
3,n(τ), where τ = [2 0 1]. The restri
ted di�erential

d1 : E1
3,n(τ) −→ E1

2,n([0 1]) is exa
tly the map indu
ed by Σ0,1, so we 
anshow it is surje
tive, sin
e we have already proved the Theorem for Σ0,1. Therelevant inequality is 2(g−1) ≥ 3n+k−εl,m, whi
h holds by assumption. So
d1 : E1

2,n −→ E1
1,n is the zero-map, and we have shown that d1 : E1

1,n −→ E1
1,nis inje
tive.Indu
tion start and spe
ial 
ases:Here we handle the the indu
tive start n = 0, along with the 
ases missingin the general argument above, namely the ex
eptions from Lemma 4.13.The indu
tion start n = 0. For n = 0 and k = 0, we always getRelV,Φ0 (Σl,mF, F ) = 0 sin
e H0(F, V (F )) −→ H0(Σl,mF, V (Σl,mF )) is an iso-morphism when the 
oe�
ients are 
onstant. So the theorem holds in this
ase. Now let n = 0 and let k be arbitrary. By 
onsidering the spe
tralsequen
e, see Figure 12, we see that Σi,j is automati
ally surje
tive, sin
ethe spe
tral sequen
e always 
onverges to zero at (0, 0).

-
6r r r) )Σi,j d1Figure 12: The spe
tral sequen
e for n = 0.



58 4 Stability with twisted 
oe�
ientsFor the sake of the 
ase n = 1, note that the surje
tivity argument for
Σ0,1 when n = 0 also works for any k when using the spe
tral sequen
e forabsolute homology for the a
tion of Γ(F0,r+1) on C∗(F0,r+1; 2).For Σ0,1, the inje
tivity argument used above holds for all n. So we mustshow that Σ1,−1 is inje
tive. For g ≥ 1, the argument from above works,sin
e there are ar
 simpli
es representing all the permutations used above.The problem is thus g = 0, whi
h means k = 0, 1, but we will also show theresult for k = 2 sin
e we will need in the 
ase n = 1 below.As the 
omplex we use, C∗(F1,r−1; 1), is 
onne
ted, the spe
tral sequen
e
onverges to 0 for p + q ≤ 1, so we 
an apply that spe
tral sequen
e.We must show that d1 = d1

2,0 in Figure 12 is the zero map. We 
on-sider (l,m) ∈ {(1, 0), (1,−1)} and (l,m) = (0, 1) separately. For Σ0,1,
E1

2,0 = E1
2,0([1 0]), sin
e the permutation [0 1] has genus 0 and is by Lemma2.16 neither represented in C∗(F1,r−1; 1) nor C∗(Σ0,1F1,r−1; 1). Now the argu-ment used to show inje
tivity of Σ1,−1 in general works here, too.For Σ1,0 or Σ1,−1, E1

2,0 = E1
2,0([1 0]) ⊕ Ẽ1

2,0([0 1]) where Ẽ1
2,0([0 1]) is theabsolute homology group,

Ẽ1
2,0([0 1]) = H0(Γ(Σl,mF1,r−1)T ([0 1]);V (Σl,mF1,r−1)),sin
e [0 1] is represented in C∗(Σ1,−1F1,r−1; 1) and C∗(Σ1,0F1,r−1; 1), but notin C∗(F1,r−1; 1), see Theorem 1.3. For E1

2,0([1 0]), the general argument forinje
tivity of Σ1,−1 shows that d1
2,0([1 0]) is zero. That d1 : Ẽ1

2,0([0 1]) is thezero map will follow if we show that Ẽ1
3,0 hits Ẽ1

2,0([0 1]) surje
tively. But the
d1-
omponent Ẽ1

3,0([2 0 1]) −→ Ẽ1
2,0([0 1]) is just Σ0,1 in the absolute 
ase for

n = 0, g = 0 and k ≤ 2. This d1-
omponent is surje
tive onto Ẽ1
2,0([0 1]), bythe remark on surje
tivity for n = 0.Surje
tivity when n = 1. Now let n = 1 and k ≤ 2. Consider therelative spe
tral sequen
e, as depi
ted in Figure 13. If we show that the map

d2
2,0 : E2

2,0 −→ E2
0,1 is zero, we have shown surje
tivity. We will show that

E1
2,0 = 0. Re
all by Theorem 1.3, E1

2,0 = E1
2,0([0 1])⊕E1

2,0([1 0]), where
E1

2,0(σ) =





RelV,Φσ

0 (Γ(Fg+i+l,r+j+m)Σm,lσ,Γ(Fg+i,r+j)σ), if σ ∈ Σ
l,m

1 ∩ Σ1;
H0(Γ(Fg+i+l,r+j+m)Σm,lσ;V (Γ(Fg+i+l,r+j+m))), if σ ∈ Σ

l,m

1 \ Σ1;
0, if σ /∈ Σ

l,m

1 . (51)and Σ1, Σ
l,m

1 are the subsets of Σ1 in 1− 1 
orresponden
e with the orbits of
∆1(Σi,jF ; 2− i) and ∆1(Σl,mΣi,jF ; 2− i), respe
tively.
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6r r
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HHHHY
Σi,j

d2Figure 13: The spe
tral sequen
e for n = 1.Surje
tivity of Σ1,−1 when n = 1. Assume (l,m) = (0, 1), g = 0 and
k = 0. Then by Lemma 2.16 only [1 0] is represented as an ar
 simplex, andby (51) above, E1

2,0 is a relative homology group of degree 0 with 
onstant
oe�
ients, so E1
2,0 = 0.The remaining ex
eptions are (l,m) 6= (0, 1), g = 0 and k ≤ 1. ByLemma 2.16, [1 0] is represented as an ar
 simplex in both F1+l,r+m and

F1,r−1, so E1
2,0([1 0]) = 0 by Theorem 4.12. Now [0 1] is only representedin F1+l,r+m, so by (51), E1

2,0([1 0]) is an absolute homology group. To killit, 
onsider E1
3,0([2 0 1]),. whi
h is also an absolute homology group. Therestri
ted di�erential and d1 : E1

3,0([2 0 1]) −→ E1
2,0([0 1]) equals Σ0,1, so itis surje
tive by the 
ase n = 0, whi
h as remarked also holds for absolutehomology group.Surje
tivity of Σ0,1 when n = 1. First assume g = 1. The possiblepermutations [0 1] and [1 0] are by Lemma 2.16 represented as 1-simpli
esin both ar
 
omplexes. Thus E1

2,0 is a dire
t sum of two relative homologygroups in degree 0 with 
oe�
ients of degree k ≤ 2. Then by the Indu
tionstart n = 0, Σ0,1 and Σ1,−1 are inje
tive for g ≥ 0, so by Theorem 4.12,
E1

2,0 = 0.For (m, l) = (1,−1), we have the spe
ial 
ase g = k = 0. We willshow H1(Γ1,r,Γ0,r+1) = 0, by showing Σ1,−1 : H1(Γ0,r+1; Z) −→ H1(Γ1,r; Z) issurje
tive, and thus that any map into H1(Γ1,r,Γ0,r+1) is surje
tive. We use[Harer3℄, Lemma 1.1 and 1.2, whi
h give sets of generators for H1(Γ0,r+1; Z)and H1(Γ1,r; Z), as follows. Let τi be the Dehn twist around ea
h boundary
omponent ∂iF1,r, for i = 1, . . . , r, and let x be the Dehn twist on any non-separating simple 
losed 
urve γ in F1,r. Then H1(Γ1,r; Z) is generated by
τ2, . . . , τr, x. We remark that Harer states this for Q-
oe�
ients, but in H1his proof also holds for Z-
oe�
ients. We 
an 
hoose the 
urve γ as the imageof ∂2F0,r+1 under Σ1,−1. Similarly in Γ0,r+1, we have Dehn twists τ ′i aroundea
h boundary 
omponent ∂iF0,r+1, and these are among the generators for
H1(Γ0,r+1; Z). Then Σ1,−1 maps τ ′i+1 7→ τi for i = 2, . . . , r by 
onstru
tion of
Σ1,−1, and τ ′2 7→ x by the 
hoi
e of γ. So Σ1,−1 : H1(Γ0,r+1; Z) −→ H1(Γ1,r; Z)is surje
tive.
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oe�
ientsInje
tivity of Σ1,−1 when n = 1. The only ex
eption is (l,m) = (1,−1),
g = 1 and k = 0. For this we will use a di�erent argument, drawing on thestability Theorem for Z-
oe�
ients. Consider the following exa
t sequen
e:

H1(Γ1,r;V )։ H1(Γ2,r−1;V ) −→ RelV1 (Γ2,r−1,Γ1,r)

−→ H0(Γ1,r;V )
∼=
−→ H0(Γ2,r−1;V ) (52)Sin
e k = 0 we have 
onstant 
oe�
ients, so we 
an use Theorem 3.6.Sin
e 2 · 1 ≥ 3 · 1 − 1, the �rst map in (52) is surje
tive, and the last mapis an isomorphism. Thus RelV1 (Γ2,r−1,Γ1,r) = 0 and any map from it is thusinje
tive. This �nishes the spe
ial 
ases when n = 1.Surje
tivity of Σ1,−1 when n = 2. Again we have only one ex
eption,namely (l,m) = (1,−1), g = 1 and k = 0. It su�
es to show E2

2,1 = 0and E2
3,0 = 0. For E2

2,1 the argument in Surje
tivity of Σ1,−1 works sin
eall the permutations used there are in Σ2. So 
onsider E2
3,0. Here for allpermutations τ ex
ept [0 1 2] we have τ ∈ Σ3 ∩ Σl,m

3 (for this notation, see(51). Thus for these τ we know that E1
3,0(τ) = 0, sin
e it is a relativehomology group in degree 0 with 
onstant 
oe�
ients. But [0 1 2] ∈ Σ

1,−1

3 \Σ3,so E1
3,0([0 1 2]) is an absolute homology group. However, this group is hitsurje
tively by E1

4,0[3 0 1 2], sin
e the restri
ted di�erential equals Σ0,1 (seethe remark for n = 0). Thus E2
3,0 = 0, as desired.Remark 4.16. As a Corollary to this result, we 
an be a bit more spe
i�
about what happens when stability with Z-
oe�
ients fails, 
f. Theorem 3.6.More pre
isely,

(i) The 
okernels of the maps
Σ0,1 : H2n+1(Γ3n+1,r) −→ Hk(Γ3n+1,r+1)

Σ0,1 : H2n+2(Γ3n+2,r) −→ Hk(Γ3n+2,r+1)are independent of r ≥ 1.
(ii) Let r ≥ 2. Then the 
okernel of the map

Σ1,−1 : H2n+1(Γ3n,r) −→ Hk(Γ3n+1,r−1)is independent of r.Proof. Sin
e Σ0,1 is always inje
tive, it �ts into the following long exa
tsequen
e,
H2n+1(Γ3n+1,r) −→ H2n+1(Γ3n+1,r+1) −→ RelZ2n+1(F3n+1,r+1, F3n+1,r) −→ 0.
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ients 61Sin
e 2(3n + 2) ≥ 3(2n + 2) − 2, we get by Theorem 4.15 that the 
okernelis independent of r. The other 
ase is similar. For (ii) we get
Hq(Γ3n,r)

Σ1,−1//

��

Hq(Γ3n+1,r−1) //

��

RelZq (F3n+1,r−1, F3n,r) //

∼=
��

Hq−1(Γ3n,r)

∼=

��
Hq(Γ3n,r+1)

Σ1,−1 // Hq(Γ3n+1,r) // RelZq (F3n+1,r, F3n,r+1) // Hq−1(Γ3n,r+1)(We have written q = 2n + 1 to save spa
e.) As the last two verti
al mapsare isomorphisms, the 
okernels of the �rst map in the top and bottom rowsare equal.The above Theorem �nishes the indu
tive proof of the assumption In,k.The reason for proving the indu
tive assumption is that we now get thefollowing Main Theorem for homology stability with twisted 
oe�
ients:Theorem 4.17. Let F be a surfa
e of genus g, and let V be a 
oe�
ientsystem of degree k. Let (l,m) = (1, 0), (0, 1) or (1,−1). Then the map
Hn(F ;V (F )) −→ Hn(Σl,mF ;V (Σl,mF ))indu
ed by Σl,m satis�es:

(i) For Σl,m = Σ0,1, it is an isomorphism for 2g ≥ 3n+ k.
(ii) For Σl,m = Σ1,0 or Σ1,−1, it is surje
tive for 2g ≥ 3n+ k− εl,m, and anisomorphism for 2g ≥ 3n + k + 2.Proof. Consider the following exa
t sequen
eRelVn+1(Σl,mF, F ) −→ Hn(F ;V ) −→ Hn(Σl,mF ; Σl,mV ) −→ RelVn (Σl,mF, F ).To show surje
tivity, we must prove that RelVn (Σl,mF, F ) = 0. By Ik,n+1 thisis the 
ase when 2g ≥ 3n+k. To show inje
tivity, we �rst note that as usual,

Σ0,1 is always inje
tive. For Σ1,−1, we get by Ik,n+2 that RelVn+1(Σl,mF, F ) = 0when 2g ≥ 3(n+ 1) + k+ 2. Finally, Σ1,0 = Σ1,−1Σ0,1 and thus also inje
tivewhen 2g ≥ 3(n+ 1) + k + 2.



62 5 Stability of the spa
e of surfa
es5 Stability of the spa
e of surfa
esIn [Cohen-Madsen℄, Cohen and Madsen 
onsider the following type of 
oef-�
ients
V X
n (F ) := Hn(Map(F/∂F,X))for X a �xed topologi
al spa
e.Lemma 5.1. Let K = K(G; k) be an Eilenberg-Ma
Lane spa
e with k ≥ 2.Assume H∗(K) is without in�nite division. Then V K

n is a 
oe�
ient systemof degree ≤ ⌊ n
k−1
⌋.Proof. To prove V K
n is a 
oe�
ient system of degree ≤ ⌊ n

k−1
⌋, we must provethat the groups V K

n (F ) are without in�nite division, and that V K
n has theright degree.We 
onsider the degree �rst, and the proof is by indu
tion on n. Take

Σ = Σ1,0, the other 
ases are similar. We have the following homotopy
o�bration:
S1 ∧ S1 −→ ΣF/∂ΣF −→ F/∂FTaking Map(−, K) leads to the following �bration:Map(F/∂F,K) −→ Map(ΣF/∂ΣF,K) −→ Ω(K)× Ω(K) (53)Sin
e K = K(G, k) is an in�nite loop spa
e it has a multipli
ation, and 
on-sequently so has ea
h spa
e in the �bration (64) above. Thus the total spa
eis up to homotopy the produ
t of the base and the �ber. Using Künneth'sformula, we get:

V K
n (ΣF ) =

n⊕

i=0

V K
n−i(F )⊗Hi(Ω(K)× Ω(K)) (54)Note for n = 0 this says that Σ indu
es an isomorphism, so V K

0 (F ) has degree
0. This was the indu
tion start.Now sin
e Ω(K) = K(G, k−1) is (k−2)-
onne
ted and k ≥ 2, H0(Ω(K)×
Ω(K)) = Z and Hj(Ω(K) × Ω(K)) = 0 for j ≤ k − 2. This means that the
okernel of Σ is:

∆(V K
n (F )) =

n⊕

i=k−1

V K
n−i(F )⊗Hi(Ω(K)× Ω(K))Sin
e the degree of a dire
t sum is the maximum of the degrees of its 
om-ponents, we get by indu
tion that the degree of ∆(V K

n (F )) is ≤ ⌊n−(k−1)
k−1

⌋ =

⌊ n
k−1
⌋ − 1. This shows that the degree of V K

n is ≤ ⌊ n
k−1
⌋.



63It remains to show that V K
n (F ) is an abelian group without in�nite divi-sion for any surfa
e F . To prove this, we use a double indu
tion in n and F .There are two base 
ases.First 
onsider n = 0, F any surfa
e. From (54) we see that V K

0 does notdepend on the surfa
e F . So we 
an 
al
ulate V K
0 (F ) using F = D a disk:

V K
0 (F ) = H0(Map(D/∂D,K)) = Z[π2(K)] =

{
Z, k > 2;
Z[G], k = 2.This is an abelian group without in�nite division.Se
ondly, let F = D be a disk, and n any natural number. We see

V K
n (D) = Hn(Map(D/∂D,K)) = Hn(Map(S2, K))

= Hn(Map(S0,Ω2(K)) = Hn(Ω
2(K))and a

ording to our assumptions on H∗(K), this is without in�nite division.The general 
ase now follows from indu
tion using (54) and its 
ounter-part for Σ = Σ0,1, along with the fa
t that any surfa
e F with boundary 
anbe obtained from a disk D using Σ1,0 and Σ0,1 �nitely many times.To prove the next theorem we need a 
ouple of lemmas:Lemma 5.2. Let V and W be 
oe�
ient systems of degrees ≤ s and ≤ t,respe
tively. Then V ⊗W is a 
oe�
ient system of degree ≤ s+t, and V ⊕Wis a 
oe�
ient system of degree ≤ max(s, t).Proof. Sin
e V is a 
oe�
ient system, we have the split exa
t sequen
e:

0 −→ V (F ) −→ V (ΣF ) −→ ∆(V (F )) −→ 0.Likewise for W . Then for the tensor produ
t we get the split exa
t sequen
e:
0 −→ V (F )⊗W (F ) −→ V (ΣF )⊗W (ΣF )

−→ ∆(V (F ))⊗W (F )⊕ V (F )⊗∆(W (F )) −→ 0.Theorem 5.3. Let X be a k-
onne
ted spa
e, k ≥ 1. If V X
n (F ) is withoutin�nite division for any surfa
e F , then V X

n is a 
oe�
ient system of degree
≤ ⌊n

k
⌋.Proof. First note: If we prove the assertion 
on
erning the degree as in Def.4.4 (not in
luding without in�nite division), then sin
e V X

n is assumed with-out in�nite division, the 
okernels ∆i,j(V
X
n ) (and their 
okernels, et
) are
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e of surfa
esautomati
ally without in�nite division, sin
e they are dire
t summands of
V X
n .The proof uses Postnikov towers and Lemma 5.1 above. The Postnikovtower of X is a sequen
e {Xm −→ Xm−1}m≥k with ea
h term a �bration

K(πm(X), m) −→ Xm −→ Xm−1. (55)The proof is by indu
tion in m, so assume for l < m that V Xl
n is a 
oe�-
ient system of degree ≤ ⌊n

k
⌋. To make the indu
tion work, we also assumeindu
tively that the splitting sl we then have by de�nition,

0 // V Xl
n

// ΣV Xl
n

// ∆(V Xl
n )

slrr // 0is a natural transformation from ∆(V Xl
n ) to ΣV Xl

n .Now we take the indu
tion step. Let F be a surfa
e. Then usingMap(F,−) on (55) yields a new �brationMap(F,K(πm(X), m)) −→ Map(F,Xm) −→ Map(F,Xm−1).Serre's spe
tral sequen
e for this �bration has E2-term:
E2
s,t(F ) = Hs(Map(F,Xm−1))⊗Ht(Map(F,K(πm(X), m))

= V Xm−1

s (F )⊗ V
K(πm(X),m)
t (F ). (56)NowXm−1 is k-
onne
ted, sin
eX is, andK(πm(X), m) is at least k-
onne
ted.Then by indu
tion and Lemma 5.2, E2

s,t is a 
oe�
ient system of degree
≤ ⌊ s

k
⌋+ ⌊ t

k
⌋ ≤ ⌊ s+t

k
⌋.We now want to prove that Er

s,t is a 
oe�
ient system of degree ≤ ⌊s+t
k
⌋for all r ≥ 2, by indu
tion in r. Let V1

d
−→ V

d
−→ V2 be groups in the

Er term of the spe
tral sequen
e, where d denotes the rth di�erential, andsay V has degree ≤ q. We assume by indu
tion in r that the splittings for
V , V1 and V2 (see (57)) are natural transformations. For r = 2 this holdsa

ording to (56) by indu
tion in m and by (54) (the Eilenberg-Ma
Lanespa
e 
ase). We want to show that the homology of V with respe
t to d,
H(V ), is a 
oe�
ient system of degree ≤ q, and that the splitting for H(V )is also natural. Suppose by another indu
tion that this holds for 
oe�
ientsystems of degrees < q.Then 
onsider the following diagram, where Σ as usual denotes either



65
Σ1,0 or Σ0,1.

0 // V1
Σ //

d
��

ΣV1
//

d
��

∆1
//

d
��

ss
0

0 // V
Σ //

d
��

ΣV //

d
��

∆ //

d
��

ss
0

0 // V2
Σ // ΣV2

// ∆2
//ss
0

(57)
We know ΣV = V ⊕ ∆, and similarly for V1 and V2. By our indu
tionhypothesis in r we get that the splittings in the right-most squares above
ommute with d. Then the homology with respe
t to d satis�es H(ΣV ) =
H(V )⊕H(∆), and the splitting for H(V ) is again natural. This shows thatthe 
okernel ∆(H(V )) of Σ is H(∆). Sin
e ∆ is a 
oe�
ient system of degree
≤ q − 1, we get by indu
tion in the degree that H(V ) is a 
oe�
ient systemof degree ≤ q. For the degree-indu
tion start, if V is 
onstant, H(V ) is also
onstant.To �nish the indu
tion in m we must prove that the splitting sm :
∆(V Xm

n ) −→ ΣV Xm
n is a natural transformation. By the above, Er

s,t is a
oe�
ient system of degree ≤ ⌊s+t
k
⌋ for all r, so the same is true for E∞s,t.Sin
e the spe
tral sequen
e 
onverges to V Xm

n (F ) for n = s + t, we get that
V Xm
n (F ) is a 
oe�
ient system of degree ≤ ⌊n

k
⌋.The inverse limit of the Postnikov tower lim←Xm is weakly homotopyequivalent to X, and the result follows.The spa
e of surfa
es mapping into a ba
kground spa
e X with boundary
onditions γ is de�ned as follows: Let X be a spa
e with base point x0 ∈ X,and let γ :

∐
S1 −→ X be r loops in X. Then

Sg,r(X, γ) =
{
(Fg,r, ϕ, f) | Fg,r ⊆ R∞ × [a, b], ϕ : ⊔S1 −→ ∂Fg,r is a para-metrization, f : Fg,r −→ X is 
ontinuous with f ◦ ϕ = γ}Assume now X is simply-
onne
ted. Then we observe that the homotopytype of Sg,r(X, γ) does not depend on γ: For 
onsider the spa
e of surfa
eswith no boundary 
onditions, 
all it Sg,r(X). The restri
tion map to theboundary of the surfa
es,
Sg,r(X, γ) −→ Sg,r(X) −→ (LX)ris a Serre �bration. Here, LX = Map(S1, X) is the free loop spa
e, so as Xis simply-
onne
ted, (LX)r is 
onne
ted, so the �ber is independent of the
hoi
e of γ ∈ (LX)r. So when X is simply-
onne
ted, we use the abbreviatednotation Sg,r(X) = Sg,r(X, γ) for any 
hoi
e of γ.



66 5 Stability of the spa
e of surfa
esTheorem 5.4. Let X be a simply-
onne
ted spa
e su
h that V X
m is withoutin�nite division for all m ≤ n. Then

Hn(Sg,r(X))is independent of g and r for 2g ≥ 3n+ 3 and r ≥ 1.Proof. Let Σ be either Σ1,0 or Σ0,1. From the de�nition we observe that
Sg,r(X) ∼= Emb(Fg,r,R

∞)×Di�(Fg,r ,∂) Map(Fg,r, X),and sin
e Emb(Fg,r,R∞) is 
ontra
tible, we get
Sg,r(X) ∼= E(Di�(Fg,r, ∂))×Di�(Fg,r ,∂) Map(Fg,r, X).So there is an obvious �bration sequen
eMap(Fg,r, X) −→ Sg,r(X) −→ B(Di�(Fg,r, ∂),and thus we 
an apply Serre's spe
tral sequen
e, whi
h has E2 term:

E2
s,t = Hs(B(Di�(Fg,r, ∂);Ht(Map(Fg,r, X)))where the 
oe�
ients are lo
al. The path 
omponents of Di�(Fg,r, ∂) are
ontra
tible, so we get an isomorphism
E2
s,t
∼= Hs(Γ(Fg,r);Ht(Map(Fg,r, X))) (58)Consider the map indu
ed by Σ on this spe
tral sequen
e

Σ∗ : Hs(Γ(Fg,r);Ht(Map(Fg,r, X))) −→ Hs(Γ(ΣFg,r);Ht(Map(ΣFg,r, X)))By Theorem 5.3 and 4.17, we know that this map is surje
tive for 2g ≥ 3s+t,and an isomorphism for 2g ≥ 3s+t+2. We use Zeeman's 
omparison theoremto 
arry the result to E∞. To get the optimum stability range, we must �ndthe maximal N = N(g) ∈ Z su
h that for t ≥ 1,
s+ t ≤ N ⇒ 2g ≥ 3s+ t+ 2 (isomorphism)

s+ t = N + 1 ⇒ 2g ≥ 3s+ t (surje
tivity)Zeeman's 
omparison theorem then says that Σ∗ indu
es isomorphism on
E∞s,t for s+ t ≤ N(g) and a surje
tion for s+ t = N(g)+1. Sin
e the spe
tralsequen
e 
onverges to Hn(Sg,r(X)), we get stability for n ≤ N(g).Clearly, the hardest requirement is t = 0 (surje
tivity), where we get theinequality 2g ≥ 3N + 3. One 
he
ks that this satis�es all the other 
ases. So
Hn(Sg,r(X)) is independent of g, r for 2g ≥ 3n+ 3.
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70 Introdu
tion6 Di�erent versions of mapping 
lass groups ofsurfa
es6.1 Introdu
tionLet F be a 
ompa
t 
onne
ted smooth surfa
e, possibly with boundary andnot ne
essarily oriented. The obje
ts of study in this paper areDi�(F, {∂F}) = {ϕ : (F, ∂F ) −→ (F, ∂F ) | ϕ is a di�eomorphism} ,Top(F, {∂F}) = {ϕ : (F, ∂F ) −→ (F, ∂F ) | ϕ is a homeomorphism} ,hAut(F, {∂F}) = {ϕ : (F, ∂F ) −→ (F, ∂F ) | ϕ is a homotopy equivalen
e} .The main theorem of this paper is the following:Theorem 6.1. Let F be a 
ompa
t surfa
e and not a sphere, a disk, a 
ylin-der, a Möbius band, a torus, a Klein bottle, or RP 2. Then
π0(Di�(F, {∂F}))

∼=
−→ π0(Top(F, {∂F}))

∼=
−→ π0(hAut(F, {∂F}))are bije
tions.This result is far from new, but this paper will present a thorough andself-
ontained proof of the following bije
tion

π0(Di�(F, {∂F}))
∼=
−→ π0(hAut(F, {∂F})). (59)To get the Main Theorem from this result, we will use the result of [Epstein℄Thm 6.4 without proof.We 
onsider slightly di�erent versions of the groups, where we assume Fis oriented in the last two groups:Di�(F, ∂F ) = {ϕ ∈ Di�(F, {∂F}) | ϕ|∂F = id} ,Di�+(F, {∂F}) = {ϕ ∈ Di�(F, {∂F}) | ϕ is orientation-preserving} ,Di�+(F, ∂F ) = Di�(F, ∂F ) ∩ Di�+(F, {∂F}),and similar for Top and hAut. By orientation-preserving we mean that theorientation 
lass [F, ∂F ] ∈ H2(F, ∂F ) is preserved by ϕ∗. From the MainTheorem we easily dedu
eTheorem 6.2. Let F be a 
ompa
t surfa
e and not a sphere, a disk, a 
ylin-der, a Möbius band, a torus, a Klein bottle, or RP 2. Then there are bije
tions

(1) π0(Di�(F, ∂F ))
∼=
−→ π0(Top(F, ∂F ))

∼=
−→ π0(hAut(F, ∂F )),
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(2) π0(Di�+(F, {∂F}))

∼=
−→ π0(Top+(F, {∂F}))

∼=
−→ π0(hAut+(F, {∂F})),

(3) π0(Di�+(F, ∂F ))
∼=
−→ π0(Top+(F, ∂F ))

∼=
−→ π0(hAut+(F, ∂F )).The standard de�nition of the mapping 
lass group of a surfa
e F is

Γ(F ) = π0(Di�+(F, ∂F )). The last part of Theorem 6.2 shows that it does notmatter whether one 
onsiders di�eomorphisms, homeomorphisms, or even ho-motopy equivalen
es, when working in the mapping 
lass group.It is a pleasure to thank Jørgen Tornehave for many fruitful dis
ussions andhelp during my work on this paper.6.2 PreliminariesDe�nition 6.3. An isotopy ψ of F is a path in Top(F, {∂F}), i.e. ψ :
F × I −→ F is 
ontinuous map su
h that ψt = ψ(−, t) : F −→ F is ahomeomorphism for all t ∈ I, and we say that ψ0 and ψ1 are isotopi
.An isotopy is smooth if we 
an ex
hange homeomorphism with di�eomor-phism in the above. We then say that ψ0 and ψ1 are smoothly isotopi
.Lemma 6.4. Let f : S1 −→ S1 an orientation preserving di�eomorphism.Then f is smoothly isotopi
 to the identity via a smooth isotopy ft : S1×I −→
S1 su
h that the fun
tion F : S1 × I −→ S1 × I given by F (z, t) = (ft(z), t)is a di�eomorphism, and

ft(z) =

{
f(z), for 0 ≤ t < ε,
z, for 1− ε < t ≤ 1.Proof. Sin
e f is smooth it de�nes a smooth fun
tion f̃ : R −→ R by lifting

f under the universal 
overing exp : R −→ S1. Now take a smooth bumpfun
tion ρ : I −→ I satisfying
ρ(t) =

{
0, t ≤ ε,
1, t ≥ 1− ε.Let F̃ : R× I −→ R be given by F̃ (x, t) = ρ(t)f̃(x) + (1− ρ(t))x. This nowde�nes an isotopy from f̃ to the identity, and F (exp(x), t) = (exp(F̃ (x, t)), t)is a di�eomorphism.The idea of the following proof is due to J. Alexander.Lemma 6.5. Let D be a disk and N a 
ollar neighborhood of the boundary.Suppose f : D −→ D is a homotopy equivalen
e whi
h restri
ts to an ori-entation preserving di�eomorphism of N of the form f(z, t) = (f(z), t) for
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(z, t) ∈ N . Then f is homotopi
 to a di�eomorphism relative to a smaller
ollar neighborhood.Proof. We 
an assume f : D −→ D, where D = {z ∈ R2 | |z| ≤ 1 + ε},and N = {z ∈ D | 1− ε < |z| ≤ 1 + ε}. The tubular 
oordinates on N are
s ∈ [0, 2π] and t ∈ (−ε, ε]. We �rst 
onstru
t a homotopy ϕx, x ∈ [0, 1], whi
his 
onstant in x outside N , from f to a fun
tion g su
h that g(s, 0) = (s, 0)in tubular 
oordinates. We use the isotopy fx(s) from Lemma 6.4, and set

ϕx(s, t) = (fx(1− 1

ε
|t|)(s), t), t ∈ (−ε, ε]in tubular 
oordinates. Then ϕ0 = f and ϕ1(s, 0) = (s, 0), and ϕx is theidentity on a 
ollar neighborhood of ∂D by Lemma 6.4.We now make a homotopy ψx, x ∈ [0, 1], from g to the fun
tion h satis-fying

h(z) =

{
g(z), |z| > 1;
z, |z| ≤ 1.Let D′ = {z ∈ D | |z| ≤ 1}, and de�ne the solid 
one

C = {(z, x) ⊆ D × I| |z| ≤ 1− x}with bottom D′ × {0} and top (0, 1), and set
ψx(z) =





(1− x)f( z
1−x

), (z, x) ∈ C,
z, (z, x) ∈ (D′ × I) \ C,
g(z), (z, x) ∈ (D \D′)× I.This is 
learly 
ontinuous and 
onstitutes a homotopy from g to h throughmaps whi
h are the identity on a 
ollar neighborhood of ∂D, sin
e g is.We 
laim h : D −→ D is a di�eomorphism. Clearly, h : D′ −→ D′ is adi�eomorphism, and by Lemma 6.4, h is smooth on D, and for |z| > 1, h = gis a di�eomorphism D \D′ −→ D \D′.A result we will use repeatedly is the following smooth version of theS
hön�ies 
urve theorem.Lemma 6.6. Let f : S1 −→ F be a smoothly embedded simple 
losed 
urvehomotopi
 to zero in a surfa
e F . Then the 
losure of the interior of f(S1)is a smoothly embedded disk in F .Proof. By Thm 1.7 in [Epstein℄ we know that f separates F into two 
ompo-nents, and that one of them (
all it D′) is homeomorphi
 to a disk D2. Thus

D′ is a 
onne
ted orientated smooth 2-manifold with 1 boundary 
omponentand with Euler 
hara
teristi
 χ(D′) = 1. Now by the 
lassi�
ation of smoothsurfa
es, D′ is a smooth disk.



6.3 Surje
tivity 73De�nition 6.7. Let α be a smoothly embedded 1-submanifold in a surfa
e
F . By the surfa
e 
ut up along α, denoted F \ α, we will mean the surfa
ewith boundary F \N(α), where N(α) is a tubular neighborhood of α in F .Lemma 6.8. Let α : (I, ∂I) −→ (F, ∂F ) be a simple 
urve in a surfa
e
F . If the 
ut-up surfa
e F \ α(I) is dis
onne
ted, then the indu
ed map
α∗ : H1(I, ∂I) −→ H1(F, ∂F ) is the zero map.Proof. Let ᾱ = α(I) ⊆ F , and 
onsider the long exa
t sequen
e for the triple
(∂F, ᾱ ∪ ∂F, F ):
H1(ᾱ ∪ ∂F, ∂F )

i∗ // H1(F, ∂F )
j∗ // H1(F, ᾱ ∪ ∂F ) // H0(ᾱ ∪ ∂F, ∂F )Here H0(α ∪ ∂F, ∂F ) = 0, so j∗ is surje
tive. Also H1(F, ∂F ) ∼= Z2g+r−1 for

F = Fg,r. Sin
e F \ ᾱ is not 
onne
ted, we 
an write F \ ᾱ = F1 ⊔ F2, andby ex
ision,
H1(F, ᾱ ∪ ∂F ) ∼= H1(F1 ⊔ F2, ∂F1 ⊔ ∂F2) ∼= H1(F1, ∂F1)⊕H1(F2, ∂F2)

∼= Z2g1+r1−1 ⊕ Z2g2+r2−1.Here g = g1 + g2 and r + 1 = r1 + r2, so sin
e j∗ is surje
tive, we 
on
ludethat j∗ is an isomorphism. Thus i∗ = 0, and the following diagram showsthat α∗ = 0:
H1(I, ∂I)

α∗

��

α∗ // H1(F, ∂F )

H1(ᾱ ∪ ∂F, ∂F )

i∗
66mmmmmmmmmmmmm

6.3 Surje
tivityIn this se
tion we will prove that the map in (59) is surje
tive, i.e. a homotopyequivalen
e of a surfa
e F is homotopi
 to a di�eomorphism. We �rst provethis for surfa
es with non-empty boundary, and then use this to obtain theproof for 
losed surfa
es. The result for surfa
es with non-empty boundaryis strongly inspired by [Hempel℄.Theorem 6.9. Let F and G be 
ompa
t surfa
es with non-empty boundaries.Suppose π1(F ) is non-trivial. Let f : (F, ∂F ) −→ (G, ∂G) be a map su
hthat f∗ : π1(F ) −→ π1(G) is inje
tive and f |∂F : ∂F −→ ∂G is a smoothembedding. Then there is a homotopy ft : (F, ∂F ) −→ (G, ∂G) with f0 = fand f1 : F −→ G a di�eomorphism.



74 6 Di�erent versions of mapping 
lass groups of surfa
esProof. First 
onsider ea
h boundary 
omponent J of F , and K of G where
f(J) ⊆ K. We 
an assume ea
h J and K has a 
ollar neighborhood ofthe form J × [0, ε] and K × [0, ε], where the map f has the form f(x, t) =
(f |J(x), t), by gluing on small 
ylinders, extending f as desired, and smooth-ing out. Sin
e f is 
ontinuous, it is homotopi
 to a smooth map, and we 
an
hoose the homotopy to be 
onstant on the 
ollar neighborhoods, so we 
anassume that f is smooth an embedding on a neighborhood of ∂F .We are going to 
ut up G by a non-separating ar
 α (i.e. an embedded
onne
ted 1-manifold with boundary) 
onne
ting two boundary 
omponentsof G in the image of f . We would like to 
ut up F by f−1(α). To do this wemust ensure that f−1(α) is also an embedded 1-manifold. This holds if f istransverse to α. By Thom's transversality theorem, f 
an be approximatedby a smooth map g transverse to α arbitrarily 
lose to f . Even better, g
an be 
hosen su
h that g|A = f |A for a 
losed subset A ⊆ F on whi
h thetransversality 
ondition on f is already satis�ed. If we 
hoose the ar
 α tohave the form α = (x0, t), t ∈ [0, ε] on the 
ollars K × [0, ε] for some x0 ∈ K,then 
learly we 
an take A =

⋃
J∈π0(F ) J × [0, ε] in the above. Sin
e thetransverse map g is arbitrarily 
lose to f , they are homotopi
, and we 
anassume f is transverse to α.Sin
e f |∂F : ∂F −→ ∂G is an embedding we 
an see that f−1(α) must
onsist of one ar
 in F and possibly a number of embedded 
ir
les, and as

F is 
ompa
t, there is a �nite number of 
ir
les. Sin
e f∗ is inje
tive, the
ir
les must be null-homotopi
 in F , thus they must ea
h bound a disk D0 in
F . Taking a slightly larger disk D ⊇ D0, then f(∂D) must be 
ontained ina tubular neighborhood of α. Sin
e ∂D is disjoint from f−1(α), all of f(∂D)is to the same side of α in the tubular neighborhood.Now D is a disk and f(∂D) is 
ontained in a disk E ⊆ G on one side of
α in the tubular neighborhood. Thus we 
an make a map h : D −→ G with
h(D) ⊆ E and su
h that f |∂D = h|∂D. This gives a map H : S2 −→ G bymapping the lower hemisphere by f and the upper hemisphere by h. Sin
e
G is not S2 or RP 2, we know π2(G) = 0, so the map H 
an be extended toa map D3 −→ G, thus giving a homotopy from f to h. This will redu
e thenumber of 
ir
les in the preimage, and we 
an thus assume that f−1(α) isjust an ar
 in F . By transversality we 
an assume that we have a tubularneighborhood of f−1(α) mapping to a tubular neighborhood of α.We 
an now 
ut F along f−1(α) and G along α, to obtain F̂ and Ĝ.After 
utting up F and G along an ar
, we will a
tually have manifolds with
orners, F̂ and Ĝ. But 
learly we 
an smooth out these 
orners inside the
ollar neighborhoods where f : F̂ −→ Ĝ is smooth.Now we would like to show that the pro
ess will not separate F . Considerthe situation when we 
ut up along a non-separating ar
 α in G. We 
an



6.3 Surje
tivity 75parametrise α and think of it as a fun
tion α : (I, ∂I) −→ (G, ∂G). Thisindu
es a map α∗ : H1(I, ∂I; Z2) −→ H1(G, ∂G; Z2). The 
ondition that αis nonseparating translates as α∗ 6= 0. By the above we 
an assume that
f−1(α) is a single ar
, whi
h we parametrize as α̃ : (I, ∂I) −→ (F, ∂F ):

(I, ∂I)
α̃

yysssssssss
α

%%KKKKKKKKK

(F, ∂F )
f // (G, ∂G)On homology this indu
es the 
ommutative diagram

H1(I, ∂I; Z2)
α̃∗

vvmmmmmmmmmmmmm
α∗

((QQQQQQQQQQQQQ

H1(F, ∂F ; Z2)
f∗ // H1(G, ∂G; Z2)But sin
e α∗ 6= 0 we get α̃∗ 6= 0 and thus by Lemma 6.8, α̃ ⊆ F is nonsepa-rating.Now we show that f∗ : π1(F̂ ) → π1(Ĝ) is still inje
tive after 
utting up.We use that F is homotopi
 to F̂ ∪ I, where I is a small interval 
onne
tingtwo points b0, b1 ∈ ∂F̂ . Using that F̂ is 
onne
ted we 
hoose a path Jin F̂ from b0 to b1, su
h that I ∪ J form a loop. Now F ≃ F̂ ∨ S1 (by
ontra
ting J in F̂ to a point). Then i∗ : π1(F̂ ) −→ π1(F ) is inje
tive, sin
e

i∗ : π1(F̂ ) −→ π1(F ) = π1(F̂ ) ∗ Z is just the in
lusion in the �rst fa
tor byvan Kampen's theorem. Now it follows from the 
ommutative diagram
π1(F̂ )

� � i∗ //

f̂∗
��

π1(F )
� _

f∗

��

π1(Ĝ)
i∗ // π1(G)that f̂∗ : π1(F̂ ) −→ π1(Ĝ) is also inje
tive.It remains to show that by 
utting up F and G they have to be
omedisks at the same time. Firstly if G is a disk, then f∗ : π1(F ) −→ {1} isinje
tive, so π1(F ) = {1}, and this implies that F is also a disk (sin
e Fis a surfa
e with boundary). Conversely, if G is not a disk then neither is

F , sin
e given a non-separating ar
 α in G we have shown above that thereexists a non-separating ar
 in F .We are down to the 
ase where f is a map from a disk to a disk that issmooth in a 
ollar of the boundary, and this 
ase is handled by Lemma 6.6.We 
an glue the resulting smooth maps on the pie
es together again, sin
e
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lass groups of surfa
esthe 
ollar neighborhoods of the boundary of ea
h pie
e (where the map issmooth) are �xed by the homotopy from Lemma 6.6. So we are done.Corollary 6.10. Let F and G be 
ompa
t surfa
es with non-empty bound-aries. Suppose π1(F ) is non-trivial. Let f : (F, ∂F ) −→ (G, ∂G) be a mapsu
h that f∗ : π1(F ) −→ π1(G) is inje
tive and f |N(∂F ) : N(∂F ) −→ N(∂G)is a smooth embedding, where N(−) denotes a neighborhood. Then there isa homotopy ft : (F, ∂F ) −→ (G, ∂G) with f0 = f and f1 : F −→ G adi�eomorphism, su
h that ft = f0 on a neighborhood of ∂F .Proof. Use the proof above, but skip the �rst part whi
h proves that f |N(∂F ) :
N(∂F ) −→ N(∂G) 
an be made into a smooth embedding.Lemma 6.11. Let f0, f1 : S1 −→ F be disjoint non-trivial two-sided embed-dings in the surfa
e F . Assume there exist m,n ∈ Z+ su
h that fn0 and fm1represent the same free homotopy 
lass in F . Then there is an embedding
ϕ : S1 × I −→ F su
h that ϕ|S1×{i} = fi for i = 0, 1, so f0 and f1 bound a
ylinder.Proof. This is a spe
ial 
ase of [Epstein℄, Lemma 2.4.We start by 
utting F up along f0 and then gluing a disk onto ea
hof the two new boundary 
omponents; let M be the 
onne
ted 
omponent
ontaining f1 in the resulting surfa
e. Sin
e f0 is null-homotopi
 in M , thenso is fn0 and thus fm1 . Now we will show that f1 is null-homotopi
 in M , sothat it bounds a disk in M . First if ∂M 6= ∅, then π1(M) is a free groupand thus if fm1 = 1 then f1 = 1. Else π1(M) is a free group modulo therelation ∂ = Πg

i=1[ai, bi] ∈ π1(M) (oriented 
ase) or ∂ = Πg
i=1a

2
i ∈ π1(M)(unoriented 
ase). If fm1 = 1 but f1 6= 1, π1(M) will have torsion, and by[Lyndon-S
hupp℄ Prop. 5.18, the only 
ase that allows for torsion is theunoriented 
ase with g = 1. Then the 
omponent of M 
ontaining f1 is an

RP 2, but then there are no non-trivial two-sided embeddings of S1. So there
an be no torsion, and f1 = 1 in π1(M).The disk in M bounded by f1 
ontains either one or two of the disksglued onto f0 to form M , sin
e f1 was non-trivial in F . If the disk boundedby f1 in M 
ontains just one glued-on disk, then f0 and f1 together bound adisk blown up at one point; a 
ylinder in F . In parti
ular, if f0 is separating,then the disk bounded by f1 in M 
ontains just one glued-on disk, so weare done. Now if the disk bounded by f1 in M 
ontains two of the glued-ondisks, then f1 was separating in F , sin
e we obtain F from M by removingthe glued-on disks and gluing up along their boundaries. The 
ylinder 
anthus be obtained if we inter
hange f0 and f1.



6.3 Surje
tivity 77The 
ondition in the pre
eding Theorem 6.9 about the map f being anembedding on the boundary is not essential if f is a homotopy equivalen
e,as we show next:Lemma 6.12. Suppose f : (F, ∂F ) −→ (G, ∂G) indu
es an isomorphism
f∗ : π1(F ) −→ π1(G), and suppose F is 
ompa
t with ∂F 6= ∅ and is neithera disk, a 
ylinder nor a Möbius band. Then the following holds:

(i) For all boundary 
omponents J ⊆ ∂F andK ⊆ ∂G su
h that f(J) ⊆ K,the 
omposite Z ∼= π1(J)
f
−→ π1(K) ∼= Z is multipli
ation by ±1,and no two di�erent boundary 
omponents in F are taken to the sameboundary 
omponent in G.

(ii) f is homotopi
 to a map g : (F, ∂F ) −→ (G, ∂G) with g|∂F : ∂F −→ ∂Gan embedding.Proof. Let J ⊆ F be a boundary 
omponent, and letK ⊆ G be the boundary
omponent with f(J) ⊆ K. We have a 
ommutative diagram,
π1(J) � �

(f |J )∗
//

� _

��

π1(K)

��
π1(F )

∼=

f∗
// π1(G)

(60)
Here, the verti
al map π1(J) −→ π1(F ) is inje
tive, sin
e it is a non-zeromap (as F is not a disk) from π1(J) ∼= Z into the free group π1(F ). Then
(f |J)∗ is multipli
ation by an integer n 6= 0.If F has more than 1 boundary 
omponent, we 
an 
hoose generators for
π1(F ) su
h that the generator of π1(J) goes to a generator of π1(F ) underthe left verti
al map in (60). Sin
e f∗ is an isomorphism, it takes generatorsto generators, and thus it follows by 
ommutativity that n = ±1.If F only has the one boundary 
omponent J , then the generator α of
π1(J) maps to either ∂ = Πg

i=1[ai, bi] ∈ π1(F ) (oriented 
ase) or ∂ = Πg
i=1a

2
i ∈

π1(F ) (unoriented 
ase). If f∗(α) = xn for a generator x of π1(K), we getby 
ommutativity that f∗(∂) ∈ π1(G) would be an nth power of something.Sin
e f∗ : π1(F ) −→ π1(G) is an isomorphism, ∂ itself would be an nth powerof some element. In 
ase ∂ = a2
1, F is a Möbius band, so this 
annot happen.In all other 
ases we get n = ±1.We have shown that (f |J)∗ : π1(J) −→ π1(K) is an isomorphism. Thus we
an homotope f in a 
ollar neighborhood around J su
h that f |J : J −→ Kis a di�eomorphism. We do this for every boundary 
omponent of F .All that is left is to 
he
k that no two boundary 
omponents J1, J2 of

F map to the same boundary 
omponent K in G. If that were the 
ase,



78 6 Di�erent versions of mapping 
lass groups of surfa
esthe elements of π1(F ) generating π1(J1) and π1(J2) would both map to agenerator of π1(K), i.e. would 
oin
ide up to a sign, sin
e f∗ : π1(F ) −→
π1(G) is an isomorphism. Then by Lemma 6.11, F would be a 
ylinder,whi
h it is not.Theorem 6.13. Let F and G be 
ompa
t surfa
es, and let f : F −→ G be ahomotopy equivalen
e. Assume neither F nor G is a disk, a sphere, a 
ylin-der, a Möbius band, a torus, a Klein bottle, or RP 2. Then f is homotopi
 toa di�eomorphism.Proof. If F and G have non-empty boundary, Lemma 6.12 and Theorem 6.9give the result. So assume that F and G are 
losed surfa
es.Let B ⊆ G be a non-separating, 2-sided simple 
losed 
urve in G. Sin
e fis homotopi
 to a smooth map whi
h is transverse to B, we 
an assume that
f is smooth and transverse to B. Consider the 
omponents of f−1(B). Bytransversality and 
ompa
tness, this is a �nite set of disjoint 1-submanifoldsof F . As in the proof of Theorem 6.9, we 
an homotope f so that no 
om-ponent in f−1(B) bounds a disk. For any 1-sided simple 
losed 
urve γ in
f−1(B), take a small tubular neighborhood M of γ su
h that f(M) ⊆ N ,where N is a tubular neighborhood of B. Sin
e M \ γ is 
onne
ted and
f(M \ γ) ⊆ N \B, it follows that M \ γ maps to the same side of the 2-sided
urve B under f . This implies that we 
an homotope f in M to a fun
tionnot hitting B. So we 
an assume that no 
omponent of f−1(B) is a 1-sidedsimple 
losed 
urve.Now let H0, H1 be two 
omponents of f−1(B), and let h0, h1 : S1 −→ Fbe parametrizations of H0 and H1, respe
tively. Then

Z ∼= π1(Hi)
f
−→ π1(B) ∼= Zis multipli
ation by some mi ∈ Z. Note that mi 6= 0 sin
e hi is nontrivial in

F and f is inje
tive on π1(F ). This gives that f∗(hm1

0 ) = f∗(h
m0

1 ) ∈ π1(G),and sin
e f is inje
tive on π1(F ), hm1

0 = hm0

1 ∈ π1(F ). Then by Lemma6.11 they bound a 
ylinder (if h0 and h̄1 bound a 
ylinder then so do h0 and
h1). This 
ylinder might 
ontain 
omponents of f−1(B), but sin
e there are�nitely many su
h 
omponents, we 
an take a 
ylinder whose interse
tionwith f−1(B) is pre
isely its ends, 
all them h0 and h1 again.Now the 
ylinder gives a homotopy c : S1 × I −→ F from h0 to h1, andthus f ◦ c : S1 × I −→ G is a homotopy in G, with f(c(S1×]0, 1[)) ∩ B = ∅.Thus we get a 
ontinuous map f̃ ◦ c : S1×I −→ G\B into the 
ut-up surfa
e
G\B. This is a homotopy between non-zero powers of boundary 
omponentsofG\B. Now by Lemma 6.11, if these two boundary 
omponents are distin
t,
G \B would be a 
ylinder. But this is impossible, sin
e G is neither a torus



6.4 Inje
tivity 79nor a Klein bottle. This implies that both ends of the 
ylinder is mappedto the same boundary 
omponent in G \ B, and thus we 
an 
hange f bya homotopy to remove h0 and h1 from f−1(B) without 
hanging f−1(B)otherwise. We 
an now assume that f−1(B) is a single 
losed 
urve, sin
e
f−1(B) = ∅ implies that f∗ : π1(F ) −→ π1(G) fa
tors through π1(G \ B)but π1(G \ B) −→ π1(G) is not surje
tive. We 
an �nally see that the
urve f−1(B) is non-separating by Lemma 6.8, sin
e B is non-separating and
f∗ : H1(F ) −→ H1(G) is a group homomorphism.Consider f | : N(f−1(B)) −→ N(B), whereN(−) denotes a tubular neigh-borhood. Then, using a method as in the proof of Lemma 6.4 on f−1(B) anda bump fun
tion to extend to N(f−1(B)), one 
an see that f is homotopi
to a map g with g−1(B) = f−1(B), su
h that g|N(g−1(B)) is a smooth 
overingmap (the number of sheets will be the degree of f : f−1(B) −→ B). So nowwe assume that f is a smooth 
overing map on a neighborhood of f−1(B).Sin
e f∗ : π1(F \ f

−1(B)) −→ π1(G \ B) is inje
tive ([Lyndon-S
hupp℄prop 5.1), we 
an 
hoose a 
overing ρ : G̃ \B −→ G \B and lift f as in thediagram,
G̃ \B

ρ

��
F \ f−1(B)

f̃
99rrrrrrrrrr

f // G \B

(61)
su
h that f̃∗ : π1(F \ f

−1(B)) ∼= π1(G̃ \B). Moreover, ρ is a �nite-sheet
overing, sin
e f maps (a parametrization of) f−1(B) to a non-zero multipleof (a parametrization of) B, and the number of sheets is lo
ally 
onstant. So
G̃ \B is 
ompa
t.Now in a neighborhood of the boundary of F\f−1(B), f̃ is a 
overing map,and f̃∗ is an isomorphism on π1. So f̃ is an embedding on a neighborhood ofthe boundary. By Corollary 6.10 on f̃ : F \f−1(B) −→ G̃ \B, f̃ is homotopi
to a di�eomorphism, relative to a neighborhood of the boundary. Glue upthis di�eomorphism to a map g : F −→ G whi
h will be homotopi
 to f , andbe both a homotopy equivalen
e and a smooth 
overing map. The last twoimply that g is a di�eomorphism F −→ G.6.4 Inje
tivityIn this se
tion we will prove that the map in (59) is inje
tive, i.e. if adi�eomorphism is homotopi
 to the identity, it is smoothly isotopi
 to theidentity.



80 6 Di�erent versions of mapping 
lass groups of surfa
esDe�nition 6.14. Let f, g : I −→ F be smooth embeddings into a surfa
e
F . We say that f and g form an �eye� if the following is satis�ed:

(i) f(I) ∪ g(I) bounds a disk in F .
(ii) f |[0,ε[ = g|[0,ε[, f |]1−ε,1] = g|]1−ε,1], and f is disjoint from g on ]ε, 1− ε[.Lemma 6.15. Let f, g : I −→ F be two smooth embeddings into a surfa
e Fwhi
h form an �eye�. Then there is a smooth isotopy ϕt of F with ϕ0 = idFand ϕ1 ◦ g = f . Furthermore, there is a small neighborhood N of the diskbounded by f and g for whi
h ϕt is the identity outside N for all t.Proof. Let Nf be a tubular neighborhood of f(I), given by a normal ve
tor�eld ξf to Nf . Let also Ng be a tubular neighborhood of g(I) given by anormal ve
tor �eld ξg, su
h that Nf ∪Ng is an annulus. This is possible sin
e
f(I) ∪ g(I) bounds a disk in F .There is a di�eomorphism ψf : Nf −→ Vf ⊆ R2 su
h that ψf ◦ f is thestandard embedding I −→ R× {0}. We 
an take Vf = I×]− ε, ε[. We wantto extend ψf to a di�eomorphism ψfg : Nf ∪Ng →֒ R2, i.e. ψfg|Nf

= ψf .First we note that inside Vf = I×]− ε, ε[ we have the image
G = ψf (g(I) ∩Nf).By taking ε small, we 
an ensure that G is the graph {(t, h(t))} of a smoothfun
tion h : [0, δ[∪]1 − δ, 1] −→ [0,∞[. We 
an extend ψf to a map ψ̃fgde�ned on Nf ∪ g(I) su
h that ψ̃fg ◦ g : I −→ R2 is smooth, using bumpfun
tions et
 as usual, su
h that the image GI = ψ̃fg ◦ g(I) is the graph

{(t, h(t)} of a fun
tion h : I −→ [0,∞[, see Figure 6.4.

Figure 14: The tubular neighborhood Vf and the graph GI of h in R2.We de�ne a tubular neighborhood of G using the ve
tor �eld ηG =
(ψf)∗(ξg|Nf∩Ng

). Sin
e ψf is a di�eomorphism, ηG is a transverse ve
tor �eld,and so de�nes a tubular neighborhood NG of G inside Vf . Now we shrink Vf



6.4 Inje
tivity 81to I×] − ε′, ε′[ where ε′ < ε (thus also shrinking Nf). Then we 
over GI bytwo open sets in R2, U1 
overing GI \G, and U2 whose interse
tion with U1lie in NG and outside Vf , see Figure 6.4. Then we take a partition of unity
ρ1, ρ2 with respe
t to U1, U2.

Figure 15: Neighborhoods U1 and U2 of GI .Let ηI be the standard normal ve
tor �eld to GI , de�ned on GI \ G.Then we make a new ve
tor �eld ρ1ηI + ρ2ηG. Sin
e ρ1ηI + ρ2ηG is never 0or tangent to G, this de�nes a tubular neighborhood Vg of GI . This tubularneighborhood 
oin
ides with NG on Vf , and thus gives a di�eomorphism
ψfg : Nf ∪Ng −→ Vf ∪ Vg whi
h extends ψ̃fg.The inner boundary 
ir
le C of the annulusNf∪Ng bounds a diskD′ ⊆ F ,and so the image ψfg(C) also bounds a disk DR2 ⊆ R2. Then we 
an extend
ψfg|C to a map D′ −→ DR2 , whi
h is ne
essarily a homotopy equivalen
e,so by Lemma 6.6 we 
an repla
e it by a di�eomorphism ψD′ : D′ −→ DR2 ,su
h that ψD′ |C = ψfg|C . The we 
an glue ψD′ and ψfg along C to obtain adi�eomorphism Ψ from D = D′ ∪Nf ∪Ng onto a disk in R2.Now we 
an use a verti
al �ow in D′ ∪ Ng ∪ Nf (i.e. a pullba
k under
Ψ of the obvious verti
al �ow in R2) to make Im(g) = Im(f), and lastly ahorizontal �ow in Nf to make g = f .Lemma 6.16. Given two smoothly embedded ar
s f, g : I −→ F satisfying
f({0, 1}) ∩ g(I) = f(I) ∩ g({0, 1}) = ∅. Then there is a smooth isotopy ϕtof id|F su
h that ϕ1 ◦ f and g interse
t transversally. Moreover ϕt is theidentity outside a tubular neighborhood of f .Proof. Take an open tubular neighborhood of f , Nf , of 
onstant radius,where r : Nf −→ f(I) is the retra
tion. Inside Nf take a 
losed tubularneighborhood of f of 
onstant radius, N c

f . We 
over g(I) ∩ N c
f with setsof the form Nf (a, b) = {x ∈ Nf | f

−1(r(x)) ∈]a, b[}, where a < b ∈ I, and
f(a), f(b) is outside g(I). Sin
e g(I) ∩ N c

f is 
ompa
t, we 
an assume thatit is a �nite 
overing, Nf (ai, bi), i = 1, . . . , N , where a1 < a2 < · · · < aN .



82 6 Di�erent versions of mapping 
lass groups of surfa
esFor ea
h x ∈ F where f and g interse
t non-transversally, x ∈ Nf (ai, bi)for some i. Now take the �rst su
h i. Then we 
an 
hoose another ar

g̃ : I −→ Nf(ai, bi) su
h that g and g̃ form an �eye� and g̃ and f interse
ttransversally for all x ∈ g̃(I) ∩ f(I) ⊆ Nf (ai, bi). Now by Lemma 6.15 thereis an isotopy from g to g̃ in Nf(ai, bi), whi
h is the identity outside Nf (ai, bi).Doing this for ea
h i, we obtain in �nitely many steps an isotopy whi
h isthe identity outside Nf , making f and g interse
t transversally.Lemma 6.17. Let F be a 
ompa
t surfa
e with F 6= RP 2, S2, and let f bea di�eomorphism of F .

(i) Let αi : S1 −→ F \∂F be a �nite family of disjoint, non-trivial, pairwisenon-homotopi
 two-sided simple 
losed 
urves, with f ◦ αi ≃ αi for all
i. Then there is an smooth isotopy ft of F su
h that f0 = f and
f1 ◦ αi = αi and the identity extends to tubular neighborhoods.

(ii) Let αi : I −→ F be a �nite family of simple 
urves, disjoint ex
eptpossibly at endpoints, with f ◦αi ≃ αi and f ◦αi = αi near the endpointsfor all i. Let A ⊆ F be a union of disjoint non-trivial 
losed 
urves,with f |A = id and αi(I)∩A = αi(∂I) for all i. Then there is an smoothisotopy ft of F , su
h that f0 = f , f1 ◦ αi = αi and the identity extendsto tubular neighborhoods. Furthermore ft|A = id for all t.Proof. (i) and (ii) 
an be proved by the same methods, so we handle thetwo 
ases as one initially. But we will also use (i) to prove (ii). First, inboth 
ases we have a 
losed subset A ⊆ F with f |A = id (in 
ase (i), Astarts as ∅). Consider a single 
urve α = α1. We will make an isotopy ft of
F su
h that f0 = f , f1 ◦ α = α, and ft|A = id for all t. Then we 
an let
A1 = A∪α(I), and use the result for f1 and A1 on α2, 
ompleting the proofin a �nite number of steps. So 
onsider a 
urve α as in (i) or (ii), and let
β = f ◦ α be the image 
urve. By assumption, β ≃ α.In 
ase (ii), there are small neighborhoods N0 and N1 of the start andend points where α and β agree. Inside N0 and N1 we 
an make an isotopy of
f whi
h perturbs β slightly, so that α and β agree near the start/end point,and then be
ome disjoint. By shrinking N0 and N1 we 
an assume that αand β are disjoint on ∂N0 and ∂N1. Our goal is now to make α and β disjointoutside N0 and N1. From now on, we will ignore N0 and N1 in the proof,and only work with α and β outside them.By Lemma 6.16 we 
an assume α and β are transverse to ea
h other.Then α and β have �nitely many interse
tion points by 
ompa
tness. Toget an isotopy of F taking β to α, we will �rst ensure that α and β have nointerse
tion points. To do this, 
onsider the universal 
overing π : F̃ −→ F .We 
an model F̃ as an open disk in R2. Take a �xed lift β̃ of β.



6.4 Inje
tivity 83We 
onsider all the 
onne
ted 
omponents of π−1(α) that interse
t β̃.There are �nitely many su
h 
omponents, 
all them α̃k, sin
e α and β have�nitely many interse
tion points. The α̃k are also transverse to β̃. Now welook for a pair of interse
tion points between β̃ and an α̃i, su
h that the partof the two 
urves between these points (a 
losed 
urve, 
all it σ) bounds adisk whose interior does not 
ontain any points on β̃ or α̃k for any k. So σ isa simple 
losed 
urve in F̃ bounding a disk. Proje
ting onto F , we get π ◦ σ(the parts of α and of β between two interse
tion points) also a simple 
losed
urve, whi
h is null-homotopi
, so a

ording to Lemma 6.6, π ◦ σ bounds adisk in F . We 
an 
hoose a 
urve β ′ whi
h form an �eye� with β and whi
hdoes not interse
t α in a neighborhood of the disk bounded by π◦σ. Then bylemma 6.15 we 
an isotope β to β ′, so that there are two fewer interse
tionpoints between α and β ′. Sin
e there are �nitely many interse
tion points,this pro
edure terminates.But we must show why we 
an always �nd su
h a σ in F̃ . Sin
e α̃k isa 
onne
ted 
omponent of π−1(α), ea
h α̃k separates F̃ . So if β̃ 
rosses α̃ion
e, it must 
ross it again (let us 
hoose the �rst time it does so), as itis transverse to α̃i. Now F̃ ⊆ R2, so the part of β̃ and α̃i between thesetwo interse
tion points will bound a disk. If this disk 
ontains parts of β̃or α̃k's, there will be a smaller disk inside whi
h satis�es the requirements,sin
e there are �nitely many interse
tion points. In this way we 
an isotope
β to a 
urve whi
h does not interse
t α (in 
ase (ii), ex
ept in N0 and N1).In 
ase (i), we now have two homotopi
 disjoint simple 
losed 
urves αand β. Then a

ording to Lemma 1.4, they bound a 
ylinder. Re
all thatthe set A (�xed by f) 
onsists of the 
urves already handled, i.e. a union ofnon-trivial 
losed 
urves, none of whi
h are homotopi
 to α, and thus not to
β, either. Thus A 
annot interse
t the 
ylinder bounded by α and β (in fa
t,
A 
annot interse
t a small open neighborhood of the 
ylinder). Then 
learlythere is an isotopy ft of F , whi
h is the identity on A, taking β to α.In 
ase (ii), the two 
urves α and β are homotopi
 and form a simple
losed 
urve, so again they bound a disk. Re
all that A originally 
onsistedof non-trivial 
losed 
urves, so none of these 
an be inside the disk. As weadd 
urves to A, the 
ir
les get 
onne
ted by ar
s. None of these 
an interse
t
α, sin
e they were assumed to be disjoint from the start. As f is the identityon A, they 
annot interse
t β = f ◦ α, either. Thus A 
annot 
ross theboundary of the disk, so A and the disk are disjoint. Thus by lemma 6.15 we
an make an isotopy ft of F , whi
h is the identity on A, so that f1 ◦ α = α.Now we extend the result to tubular neighborhoods of the 
urves. Wemake a tubular neighborhood M0 of α, and by 
ompa
tness identify it with
S1×]−ε, ε[ in 
ase (i) and I×]−ε, ε[ in 
ase (ii). Now for (x, t) in a smallerneighborhoodM1 ⊂M0 of α, the proje
tion the se
ond 
oordinate prtfx(t) :=
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lass groups of surfa
esprt(f(x, t)) has positive di�erential, and thus for all x the image of fx(t),
{(x′, t′) | (x′, t′) = fx(t) for some t ∈]−ε, ε[} is the graph of a fun
tion hx(t′) =
x′. Now we 
an make tubular neighborhood M2 su
h that M2 ⊂ f(M1) andby possibly shrinking it assume that M2 = I×]−δ, δ[ or M2 = S1×]−δ, δ[.For de�niteness, say M2 = I×]−δ, δ[. Choose a smooth bump fun
tion ρ(t)with ρ(t) = 1 for |t| ≤ 1

2
δ and ρ(t) = 0 for |t| = δ. Let

gs(x, t) =

{ (
(1−s)hx(t

′)+s
(
ρ(t′)x+(1−ρ(t′))hx(t

′)
)
, t′

) for (x, t)∈ f−1(M2)
f(x, t) otherwise.where t′ is the se
ond 
oordinate of f(x, t) as above. Then gs de�nes anisotopy from f to a fun
tion g1 with the property that g1(x, t) = (x, t′) for

t′ ∈]− δ
2
, δ

2
[. Now by stret
hing the parameter t′ in ea
h interval {x}×]−δ, δ[,we 
an assume that f is the identity on a (smaller) neighborhood.Corollary 6.18. If we in addition to the requirements in lemma 6.17 requirethat f is the identity on ∂F , then the isotopy 
an be assumed also to be theidentity on ∂F .Proof. All the steps in the proof 
an be done away from the boundary.Theorem 6.19. Let F 6= S2,RP 2 and let f, g ∈ Di�(F, ∂F ) be homotopi
.Then f and g are smoothly isotopi
.To prove this I use the following result from [Smale℄ without proof.Theorem 6.20 (Smale). Let f ∈ Di�(D2, ∂D2). Then f is smoothly isotopi
to the identity, and if f is the identity on the boundary then so is the isotopy.Proof of Theorem 6.19. If we prove that f−1g is smoothly isotopi
 to theidentity, we will have a smooth isotopy from g to f . Thus we 
an restri
t ourattention to the 
ase f ≃ id.Choose a pair of pants/annular de
omposition of the surfa
e F , i.e. a
olle
tion of disjoint simple 
losed 
urves αi : I −→ F, i = 1, . . . , n, in F . ByLemma 6.17 (i), f is smoothly isotopi
 to a map g, whi
h is the identity ona tubular neighborhood of the αi. In ea
h pair of pants P , 
hose two 
urvesthat 
ut P up into a disk (for ea
h annulus, 
hoose one 
urve). By Lemma6.17 (ii), there is an isotopy of F , whi
h is the identity on the αi, from g to amap h �xing a tubular neighborhood of the two 
urves in ea
h pair of pants.Then we 
an use Smale's Theorem 6.20 on ea
h disk, getting an isotopy tothe identity.Corollary 6.21. In addition to the requirements of Theorem 6.19, assumethat f and g are the identity on ∂F . Then we 
an 
hoose the isotopy to bethe identity on ∂F .



6.5 Proof of the Main Theorem 85Proof. This is done as in theorem 6.19, ex
ept that we use Corollary 6.18instead of Lemma 6.17, and in addition use that the isotopy in theorem 6.20
an be 
hosen to be the identity on boundary.6.5 Proof of the Main TheoremAs explained in the introdu
tion, we will use a result of Epstein to prove thestatement about Top(F, {∂F}):Theorem 6.22 (Epstein). Let F a 
ompa
t surfa
e and let f : F −→ Fbe a homeomorphism homotopi
 to the identity. Then f is isotopi
 to theidentity.Proof. This is a part of [Epstein℄ Thm 6.4, whi
h states exa
tly this result,but for maps preserving a basepoint. And 
learly, by an isotopy we 
anassume that f preserves any given point x0, and then f will be homotopi
to the identity through maps preserving x0.Now we are ready to prove the bije
tions of the Main Theorem 1.1:
π0(Di�(F, {∂F}))

∼=
−→ π0(Top(F, {∂F}))

∼=
−→ π0(hAut(F, {∂F}))Proof of Theorem 6.1. Suppose F is not a sphere, a disk, a 
ylinder, a Möbiusband, a torus, a Klein bottle, or RP 2. Consider the 
omposite map from (59),

π0(Di�(F, {∂F})) −→ π0(hAut(F, {∂F})). (62)A

ording to Theorem 6.13, the map is surje
tive, and by Theorem 6.19, itis inje
tive. Now all that is left is to show that
π0(Top(F, {∂F})) −→ π0(hAut(F, {∂F}))is inje
tive. But that is Theorem 6.22.We now dedu
e Theorem 6.2:Proof of Theorem 6.2. Suppose F is not a sphere, a disk, a 
ylinder, a Möbiusband, a torus, a Klein bottle, or RP 2.Similar to the proof of Theorem 6.1, we 
onsider the 
omposite
π0(Di�(F, ∂F )) −→ π0(hAut(F, ∂F )).We 
an assume ∂F 6= ∅, otherwise this is the Main Theorem. By Cor. 6.10,it is surje
tive, and by Cor. 6.21 it is inje
tive. To prove the result, it su�
esto show that
π0(Di�(F, ∂F )) −→ π0(Top(F, ∂F )) (63)
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