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Abstract

The present paper characterizes various properties of chaos processes which
in particular includes processes where all time variables admit a Wiener chaos
expansion of a fixed finite order. The main focus is on the semimartingale
property, p-variation and continuity. The general results obtained are finally
used to characterize when a moving average is a semimartingale.
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1 Introduction

The present paper is concerned with various properties of chaos processes. Chaos
processes includes processes for which all coordinates belongs to a Wiener chaos
of a fixed finite order, infinitely divisible processes, Rademacher processes, linear
processes and more general processes which are limits of tetrahedral polynomials;
see Section 2 for more details. In Rosiński et al. (1993) continuity and zero-one laws
are derived for some classes of chaos processes. Houdré and Pérez-Abreu (1994) and
Janson (1997) provides good surveys on various aspects of chaos processes.

In the first part we extend important results for Gaussian to chaos processes. In
particular that of Jain and Monrad (1982) saying that if a separable Gaussian pro-
cess is of bounded variation then the L2-expansion converge in total variation norm
to the process. Together with the observation by Jeulin (1993) that the process in
this case is absolutely continuous with respect to a deterministic measure. Like-
wise the characterization of a stationary Gaussian processes of bounded variation,
Ibragimov (1973), and the canonical decomposition of a Gaussian quasimartingale,
Jain and Monrad (1982), together with the extension to Gaussian semimartingales,
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Stricker (1983), are generalized. Extensions of the result on Gaussian Dirichlet pro-
cesses obtained by Stricker (1988) are also given. Furthermore we prove that chaos
processes admitting a p-variation for some p ≥ 1 are almost surely continuous except
on an at most countable set, generalizing a result of Itô and Nisio (1968).

In the second part we study moving averages X = ϕ∗Y also known as stochastic
convolutions. When Y is a Brownian motion, Knight (1992) has characterized those
kernels ϕ for whichX is an FY -semimartingale, and Jeulin and Yor (1993) and Basse
(2009b) those ϕ for which X is an FX-semimartingale. Basse and Pedersen (2009)
have characterized those ϕ for which X is an FY -semimartingale in the case where
Y is Lévy process. Moreover, Basse (2008) extends Knight’s result to the spectral
representation of general Gaussian processes. Using the obtained decomposition
results we provide necessary and sufficient conditions on ϕ for X to be an FY -
semimartingale. This result covers in particular the case where dYt = σt dWt and σ
is Gaussian chaos process associated with the Brownian motion W .

2 Preliminaries
Let (Ω,B, P ) denote a complete probability space equipped with a filtration F =
(Ft)t∈[0,T ] satisfying the usual conditions. T > 0 is here a fixed positive number. A
càdlàg F -adapted process X = (Xt)t∈[0,T ] is called an F -semimartingale if it admits
a representation

Xt = X0 + At +Mt, t ∈ [0, T ], (2.1)

where M is a càdlàg F -local martingale starting at 0 and A is a càdlàg pro-
cess of bounded variation starting at 0. Furthermore, X is called a special F -
semimartingale if A in (2.1) can be chosen predictable and in this case the decom-
position is unique. A special F -semimartingale X with canonical decomposition
X = X0 + M + A, is said to belong to Hp for p ≥ 1 if E[[M ]

p/2
T + VA(T )p] < ∞.

VA(t) denotes the total variation of s 7→ As on [0, t] and [M ]t the quadratic variation
of M on [0, t]. For each càdlàg process X set DX = {t ∈ [0, T ] : P (Xt = Xt−) < 1}.
Then as it is well-known DX is at most countable and DX is empty if and only if X
is continuous in probability.

Variation of processes will be important. To simplify the notation we set for each
p ≥ 1, X = (Xt)t∈[0,T ] and τ = {0 ≤ t0 < · · · < tn ≤ T}

|τ | = max
1≤i≤n

|ti − ti−1| and V p,τ
X =

n∑

i=1

|Xti −Xti−1
|p.

We say that X admits a p-variation if there exists a right-continuous process [X](p)

such that for all t ∈ [0, T ] V p,τ
X → [X]

(p)
t in probability as |τ | → 0, where τ runs

through all subdivisions of [0, t]. Furthermore, X is said to be of bounded p-variation
if {V p,τ

X : τ subdivision of [0, T ]} is bounded in L0. If p = 2 we use the short-hand
notation [X] for the quadratic variation of X, that is [X] = [X](2). Observe that
VX(t) = [X]

(1)
t , if VX(T ) <∞ a.s.

If X admits a p-variation then it is also of bounded p-variation. Likewise if X
is of bounded p-variation it is also of bounded q-th variation for all q ≥ p since
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p 7→ (
∑n

i=1|ai|p)1/p is decreasing. If X is càdlàg and τn are subdivisions of [0, T ]
such that |τn| → 0 then

lim inf
n→∞

V p,τn
X ≥

∑

0<s≤T
|∆Xs|p, a.s.

Thus using
P (lim inf

n→∞
V p,τn
X > x) ≤ sup

n≥1
P (V p,τn

X > x), for all x > 0,

we have that
∑

0<s≤T |∆Xs|p <∞ a.s. if X is of bounded p-variation.
Throughout the following I denotes a set and for all i ∈ I, Hi is a family of

independent random variables. Set H = {Hi}i∈I . For each Banach space F and
i ∈ I let PdHi

(F ) denote the set of variables p(Z1, . . . , Zn) where n ≥ 1, Z1, . . . , Zn
different elements in Hi and p is an F -valued tetrahedral polynomial of order d.
Recall that p : Rn → F is called an F -valued tetrahedral polynomial of order d if
there exist x0, xi1,...,ik ∈ F and l ≥ 1 such that

p(z1, . . . , zn) = x0 +
d∑

k=1

∑

1≤i1<···<ik≤l
xi1,...,ik

k∏

j=1

zij .

Let PdH(F ) denote the closure in distribution of ∪i∈IPdHi
(F ), that is, PdH(F ) is the

set of all F -valued random elements X for which there exists a sequence (Xk)k≥1 ⊆
∪i∈IPdHi

(F ) converging weakly to X.
The following two conditions on H will be important:

(a) For q ∈ (0,∞) there exists β1, β2 > 0 such that for all Z ∈ ∪i∈IHi there exists
cZ > 0 satisfying

P (|Z| ≥ cZ) ≥ β1 and E[|Z|q, |Z| > s] ≤ β2s
qP (|Z| > s) s ≥ cZ .

(b) ⋃

i∈I
Hi ⊆ L1 and sup

i∈I
sup
Z∈Hi

(‖Z − E[Z]‖∞
‖Z − E[Z]‖2

)
= β3 <∞.

Notation, chaos processes. A real-valued stochastic process X = (Xt)t∈U is said
to be a chaos process of order d if (Xt1 , . . . , Xtn) ∈ PdH(Rn) for all n ≥ 1 and
t1, . . . , tn ∈ U . Furthermore X is said to be a chaos process if it is a chaos process
of order d for some d ≥ 1. A chaos process X is said to satisfy Cq for 0 < q < ∞,
if the associated H satisfies (a) for the given q and if d ≥ 2 all Z ∈ ∪i∈IHi are
symmetric. Moreover, X is said to satisfy C∞ if H satisfies (b).

Following Fernique (1997) a mapping N , from a vector space V into [0,∞], is
called a pseudo-seminorm if for all θ ∈ R and x, y ∈ V we have

N(θx) = |θ|N(x) and N(x+ y) ≤ N(x) +N(y).

The following result, which is taken from Basse (2009a, Theorem 2.7), is crucial for
this paper. Here d ≥ 1 and q > 0 are given numbers.

3



Theorem 2.1. Let U denote a countable set, X = (Xt)t∈U a chaos process of order d
satisfying Cq and N a lower semi-continuous pseudo-seminorm on RU equipped with
the product topology such that N(X) <∞ a.s. Then for all finite p ≤ q there exists
a real constant kp,q,d,β, only depending on p, q, d and the β’s from (a) and (b), such
that

‖N(X)‖q ≤ kp,q,d,β‖N(X)‖p <∞.

Three important examples of chaos processes satisfying Cq are given as follows:

(1): Let G denote a vector space of Gaussian random variables, and for d ≥ 1

PdG be the closure in probability of all random variables of the form p(Z1, . . . , Zn),
where n ≥ 1, Z1, . . . , Zn ∈ G and p : Rn → R is a polynomial of degree at most d
(not necessarily tetrahedral). X = (Xt)t∈U satisfying {Xt : t ∈ U} ⊆ PdG is then
called a Gaussian chaos process of order d, and it is in particular a chaos process
satisfying C∞ (see Basse (2009a)); in fact we may chose I = {0} and H0 to be
a Rademacher sequence. Recall that a Rademacher sequence is an independent,
identically distributed sequence (Zn)n≥1 such that P (Z1 = ±1) = 1

2
. The key

example of a Gaussian vector space G is

G =

{∫ ∞

0

h(s) dWs : h ∈ L2(R+, λ)

}
, (2.2)

where W is a Brownian motion and λ is the Lebesgue measure. In this case X is a
Gaussian chaos process of order d if and only if it has the following representation
in terms of multiple Wiener-Itô integrals

Xt =
d∑

k=0

∫

Rk
+

fk,t(s1, . . . , sk) dWs1 · · · dWsk
, t ∈ U, (2.3)

where fk,t ∈ L2(Rk
+). Processes of the form (2.3) appear as weak limits of U -

statistics, see Janson (1997, Chapter 11) and de la Peña and Giné (1999). For
a detailed survey on Gaussian chaos processes and expansions, see Janson (1997),
Nualart (2006) and Houdré and Pérez-Abreu (1994).

(2): Let X = (Xt)t∈U be given by

Xt =

∫

S

f(t, s) Λ(ds), t ∈ U, (2.4)

where Λ is an independently scattered infinitely divisible random measure (or ran-
dom measure for short) on some non-empty space S equipped with a δ-ring S,
and s 7→ f(t, s) are Λ-integrable deterministic functions in the sense of Rajput and
Rosiński (1989). The associated H = {Hi}i∈I is here described by

Hi = {Λ(A1), . . . ,Λ(An)}, i ∈ I,

for I denoting the set of all finite collections {A1, . . . , An} where A1, . . . , An are
disjoint sets in S. In this case X is a chaos process of order 1. For example if X
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is a symmetric α-stable process separable in L0, then X has a representation of the
form (2.4) and hence it follows that it is a chaos process of order 1 satisfying Cq for
all q < α. For further examples of random measures Λ for which X given by (2.4)
satisfies Cq see Basse (2009a).

(3): Assume that (Zn)n≥1 is a sequence of independent, identically distributed
random variables and x(t), xi1,...,ik(t) ∈ R are real numbers such that

Xt = x(t) +
d∑

k=1

∑

1≤i1<···<ik<∞
xi1,...,ik(t)

k∏

j=1

Zij ,

exists in probability for all t ∈ U , then X = (Xt)t∈U is a chaos process of order d
associated to I = {0} and H0 = {Zn : n ≥ 1}. If for some α > 0, x 7→ P (|Z1| > x) is
regulary varying with index −α then H satisfies (a) for all q ∈ (0, α); see Bingham
et al. (1989, Theorem 1.5.11). In particular, if Z1 follows a symmetric α-stable
distribution for some α ∈ (0, 2) then H satisfies (a) for all q ∈ (0, α). If the common
distribution is Poisson, exponential, gamma or Gaussian then H satisfies (a) for all
q > 0. Finally, H satisfies (b) if and only if Z1 is a.s. bounded.

3 Path properties
For all p ≥ 0 and all subset A of Lp denote by spanLp A the Lp-closure of the
linear span of A. Let X = (Xt)t∈[0,T ] be a square-integrable process for which
spanL2{Xt : t ∈ [0, T ]} is a separable Hilbert space with orthonormal basis (Ui)i≥1.
Let X(n)

t denote the n-th order L2-expansion of Xt given by

X
(n)
t =

n∑

j=1

fj(t)Uj, (3.1)

where fj(t) = E[UjXt] for j ≥ 1. Note that for t ∈ [0, T ], limnX
(n)
t = Xt in L2. The

above separability assumption is always satisfied if X is a càdlàg process satisfying
Cq for some q ∈ [2,∞].

If X is càdlàg and of integrable variation µX denotes the Lebesgue–Stieltjes
measure on [0, T ] induced by t 7→ E[VX(t)]. In this context we have the following
extension of Jain and Monrad (1982, Theorem 1.2) and Jeulin (1993) in the Gaussian
case. Here BV ([0, T ]) denotes the Banach space {f ∈ R[0,T ] : f càdlàg and Vf (T ) <
∞} equipped with the norm ‖f‖BV = Vf (T ) + |f(0)|.

Theorem 3.1. Let X = (Xt)t∈[0,T ] denote a càdlàg process of bounded variation
satisfying Cq for some q ∈ [2,∞]. Then there exists a subsequence (nk)k≥1 such that
X(nk) converges a.s. to X in BV ([0, T ]) and X is a.s. absolutely continuous with
respect to µX .

For an α-stable process X of the form (2.4) with 1 < α < 2, it is shown in Pérez-
Abreu and Rocha-Arteaga (1997, Theorem 4(b)) that if X is of bounded variation
and satisfies some additional assumption then it is absolutely continuous with re-
spect to µX . This situation is not covered by Theorem 3.1 since for such processes
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only Cq for q ∈ (0, α) is satisfied. If the sample paths of X are contained in a sepa-
rable subspace of BV ([0, T ]) Theorem 3.1 follows by Basse (2009a, Corollary 2.11).
On the other hand, Theorem 3.1 insures that almost all sample paths of X do belong
to a separable subspace of BV ([0, T ]), more precisely to the space of functions which
are absolutely continuous with respect to µX .

Theorem 3.1 is a direct consequence of Theorem 2.1 and the following lemma,
in which X, X(n) and fj are as above.

Lemma 3.2. Assume that X = (Xt)t∈[0,T ] is a càdlàg process of integrable variation
such that ‖Xs −Xu‖2 ≤ c‖Xs −Xu‖1 for all 0 ≤ s < u ≤ T and some c > 0. Then
each fj is absolutely continuous with respect to µX and limnE[VX−X(n)(T )] = 0.

Proof. For j ≥ 1 and 0 ≤ s < u ≤ T we have

|fj(s)− fj(u)| ≤ ‖Uj‖2‖Xs −Xu‖2 ≤ c‖Xs −Xu‖1,

which shows that each fj is absolutely continuous with respect to µX . Let ψj denote
the density of fj with respect to µX . We have

E[VX−X(n)(T )] ≤ sup
k≥1

ak∑

i=1

( ∞∑

j=n+1

(fj(t
k
i )− fj(tki−1))2

)1/2

, (3.2)

where τk = {0 = tk0 < · · · < tkak
= T} are nested subdivisions of [0, T ] satisfying

|τk| → 0. By Jeulin (1993, Lemme 3) the right-hand side of (3.2) equals

∫ T

0

( ∞∑

j=n+1

ψj(s)
2
)1/2

µX(ds).

Another application of Jeulin (1993, Lemme 3) yields

∫ T

0

( ∞∑

j=1

ψj(s)
2
)1/2

µX(ds)

= sup
k≥1

ak∑

i=1

( ∞∑

j=1

(fj(t
k
i )− fj(tki−1))2

)1/2

≤ cE[VX(T )] <∞.

Thus by Lebesgue’s dominated convergence theorem, limnE[VX−X(n)(T )] = 0. This
completes the proof.

The equivalence of the L1- and L2-norms of the increments of X is crucial for
Lemma 3.2 to be true. For example if X is a Poisson process with parameter λ > 0
then µX is proportional to the Lebesgue measure but all paths are step functions.

Corollary 3.3. Let X = (Xt)t∈[0,T ] be as in Theorem 3.1. Then for every Radon
measure µ on [0, T ] there exists a unique decomposition Xt = Yt +At of X, where Y
and A are càdlàg processes of bounded variation such that Y is absolutely continuous
with respect to µ and A is singular to µ and {Yt, At : t ∈ [0, T ]} ⊆ spanL0{Xt : t ∈
[0, T ]}.
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Proof. Let S0 = spanL0{Xt : t ∈ [0, T ]}. Since S0 is L2-closed the Un’s in (3.1)
belong to S0. For each j ≥ 1, decompose fj in (3.1) as fj = gj +hj, where gj, hj are
càdlàg functions of bounded variation, gj being absolutely continuous with respect
to µ and hj singular to µ. Set

Y
(n)
t =

n∑

j=1

gj(t)Uj and A
(n)
t =

n∑

j=1

hj(t)Uj, t ∈ [0, T ].

For all n, k ≥ 1,

VX(n)−X(k)(T ) = VY (n)−Y (k)(T ) + VA(n)−A(k)(T ). (3.3)

By Theorem 3.1 there exists a subsequence (nk)k≥1 such that limkX
(nk) = X in the

total variation norm on [0, T ] and so by completeness (3.3) implies that limk Y
(nk)

and limk A
(nk) exist in total variation norm a.s. Calling these limit processes Y and

A we have for all t ∈ [0, T ]

lim
k→∞

Y
(nk)
t = Yt and lim

k→∞
A

(nk)
t = At, a.s.,

showing that Yt, At ∈ S0. Moreover since the sets of functions which are absolutely
continuous with respect to µ respectively singular to µ are closed in BV ([0, T ]) the
proof of the corollary is complete.

Lemma 3.4. Let X denote a càdlàg process process of bounded p-th variation. Then
X admits an q-variation for all q > p and

[X]
(q)
t =

∑

0<s≤t
|∆Xs|q <∞, 0 ≤ t ≤ T.

Proof. Fixed q > p and set for 0 ≤ t ≤ T and n ≥ 1

Xn
t =

∑

0<s≤t
∆Xs1{|∆Xs|>1/n}, St =

∑

0<s≤t
|∆Xs|q.

Recall that St < ∞ a.s. since X is of bounded q-variation. For all n ≥ 1 Xn has
piecewise constant sample paths and so Xn admits a q-variation and

[Xn]
(q)
t =

∑

0<s≤t
|∆Xs|q1{|∆Xs|>1/n} −−−→

n→∞
St a.s., t ∈ [0, T ].

Therefore it reduces to show

lim
n→∞

lim sup
|τ |→0

P (|V q,τ
X − V q,τ

Xn | > ε) = 0 for all ε > 0. (3.4)

Writing X̃n
t for Xt −Xn

t we have for all n ≥ 1, t ∈ [0, T ] and subdivisions τ = {0 =
t0 < · · · < tk = t}

|V q,τ
X − V q,τ

Xn | ≤
k∑

i=1

∣∣|Xti −Xti−1
|q − |Xn

ti
−Xn

ti−1
|q
∣∣ ≤ q

k∑

i=1

Cq−1
i |X̃n

ti
− X̃n

ti−1
|,
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for some Ci’s between |Xn
ti
−Xti−1

| and |X̃n
ti
−X̃ti−1

|, and hence by Hölder’s inequality

|V q,τ
X − V q,τ

Xn | ≤ q
( k∑

i=1

Cq
i

)(q−1)/q( k∑

i=1

|X̃n
ti
− X̃n

ti−1
|q
)1/q

≤ q
(
V q,τ
X + V q,τ

Xn

)(q−1)/q(
max
1≤i≤k

|X̃n
ti
− X̃n

ti−1
|q−pV p,τ

X̃n

)1/q

≤ q2p/q
(
V q,τ
X + V q,τ

Xn

)(q−1)/q(
V p,τ
X + V p,τ

Xn

)1/q

max
1≤i≤k

|X̃n
ti
− X̃n

ti−1
|(q−p)/q.

Using that max1≤i≤k|X̃n
ti
− X̃n

ti−1
| < 2n−1 for |τ | sufficiently small we have

lim sup
|τ |→0

P (|V q,τ
X − V q,τ

Xn | > ε)

≤ lim sup
|τ |→0

P
(
q2p/q(V q,τ

X + St)
(q−1)/q(V p,τ

X + S
p/q
t )1/q2n−1 >

ε

2

)
,

which implies (3.4) since {V p,τ
X : τ} is bounded in L0.

Proposition 3.5. Let X denote a càdlàg process. Assume that it admits a p-
variation and satisfies Cq for some q ∈ [2p,∞] or that it is of bounded p-variation
and satisfies Cq for some q ∈ (2p,∞]. Then a.s. X is discontinuous only on DX ,
and hence X is a.s. continuous if and only if it is continuous in probability.

In the proof we need the following two remarks concerning any càdlàg process X:

(i) If X is of integrable variation then µX({t}) > 0 if and only if t ∈ DX .

(ii) If X admits a p-variation then ∆[X](p) = |∆X|p.

To prove (i) let t > 0 and choose (tn)n≥1 ⊆ [0, t) such that tn ↑ t. By Lebesgue’s
dominated convergence theorem we have

µX({t}) = lim
n→∞

E[VX(t)− VX(tn)] = E
[

lim
n→∞

(VX(t)− VX(tn))
]

= E[|∆Xt|],

which shows (i). For p = 2 (ii) follows by Jacod (1981, Lemme 3.11). The general
case can be proved by imitating Jacod’s proof.

Proof of Proposition 3.5. We may assume that X admits a p-variation. Indeed, if
X is of bounded p-variation and satisfies Cq for some q ∈ (2p,∞] then according to
Lemma 3.4 it admits a q

2
-variation.

Assume therefore that X admits a p-variation and satisfies Cq for a q ∈ [2p,∞].
Let 0 ≤ u < t ≤ T and choose subdivisions τn of [u, t] such that

lim
n→∞

V p,τn
X = [X]

(p)
t − [X](p)u , almost surely.

For f ∈ R[0,T ] let
N(f) = lim sup

n→∞
(V p,τn

f )1/p.
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Then N is a lower semicontinuous pseudo-seminorm, and since ([X]
(p)
t − [X]

(p)
u )1/p =

N(X) a.s. it follows by Theorem 2.1 that

‖[X]
(p)
t − [X](p)u ‖2 = ‖N(X)‖p2p ≤ kpp,2p‖N(X)‖pp = kpp,2p‖[X]

(p)
t − [X](p)u ‖1 <∞.

For u = 0 this gives that [X](p) is integrable and since it is increasing it is also of
integrable variation. Hence by Lemma 3.2 [X](p) is a.s. absolutely continuous with
respect to µ[X](p) and so by (i) [X](p) is continuous on Dc

[X](p) . Finally, by applying
(ii) it follows that X is continuous on Dc

X . Therefore, X has continuous sample
paths if and only if DX is empty, that is if X is continuous in probability.

For f : R→ R, let Wf : R→ [0,∞] denote its oscillation function given by

Wf (t) = lim
n→∞

sup
u,s∈[t−1/n,t+1/n]

|f(s)− f(u)|, t ∈ R.

Itô and Nisio (1968, Theorem 1) show that each separable Gaussian process which
is continuous in probability has a deterministic oscillation function. By Marcus
and Rosen (2006, Theorem 5.3.7) this is also true for Rademacher processes. Fur-
thermore, Cambanis et al. (1990) show that a very large class of infinitely divisible
processes also have this property. Thus for such processes Proposition 3.5 holds
even without the assumption of being of bounded p-variation. On the other hand
the following example shows that Gaussian chaos processes do not in general have
deterministic oscillation functions. Let (Yt)t≥0 denote a Gaussian process which is
continuous in probability and has oscillation function t 7→ α(t) ∈ (0,∞) and such
that Y0 is non-deterministic. Then X, given by Xt = Y0Yt, is a separable second-
order Gaussian chaos process continuous in probability with oscillation function
t 7→ |Y0|α(t).

3.1 The stationary increment case

According to e.g. Doob (1990), a centered and L2-continuous process X = (Xt)t∈R
with stationary increments has a spectral measure mX , which is the unique sym-
metric measure integrating s 7→ (1 + s2)−1 and satisfying

ΓX(t, u) := E[(Xt −X0)(Xu −X0)] =

∫

R

(eits − 1)(e−ius − 1)

s2
mX(ds).

Furthermore set vX(t) = ΓX(t, t), and if X is stationary denote by RX its auto
covariance function, and by nX the unique finite and symmetric measure satisfying

RX(t) = E[XtX0] =

∫

R

eits nX(ds), t ∈ R.

Proposition 3.6. Assume that X is an L2-continuous process with stationary incre-
ments satisfying condition Cq for some q ∈ [2,∞]. Then the following five conditions
are equivalent:

(i) X has a.s. càdlàg paths of bounded variation,
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(ii) X has a.s. absolutely continuous paths,

(iii) mX(R) <∞, (iv) ΓX ∈ C2(R2;R), (v) vX ∈ C2(R;R).

If X is stationary then (i)-(v) are also equivalent to
∫
R
t2 nX(dt) < ∞ or RX ∈

C2(R;R).

The Gaussian case is covered by Ibragimov (1973, Theorem 12). See also Doob
(1990, page 536) for general results about mean-square differentiability. A Hermite
process X with parameter (d,H) ∈ N× (1

2
, 1) is a Gaussian chaos process of order

d with stationary increments and the same covariance function as the fractional
Brownian motion with Hurst parameter H; see Maejima and Tudor (2007) for a
precise definition. The corresponding spectral measure is mX(ds) = cH |s|1−2H ds,
that is a non-finite measure, and so by Proposition 3.6X is not of bounded variation.

Proof. Assume (i), that is X has càdlàg paths of bounded variation. The stationary
increments implies that µX equals the Lebesgue measure up to a scaling constant.
Thus (i)⇒(ii) since by Theorem 3.1 X is absolutely continuous with respect to µX .
(ii)⇒(i) is obvious. Furthermore if X is càdlàg and of bounded variation then by
Proposition 3.7 below we have

∞ > sup
n≥1

(
n2vX(1/n)

)
≥ sup

n≥1

∫

R

(sin(s/n)

s/n

)2

mX(ds).

Hence by Fatou’s lemma mX(R) < ∞ and so (i)⇒(iii). (iii)⇒(iv)⇒(v) are easy.
To see that (v) implies (i) assume vX ∈ C2(R;R). Since vX is symmetric and
vX(0) = 0 we have v′X(0) = 0. Thus vX(t) = O(t2) as t → 0 and hence by
Proposition 3.7 X is of bounded 1-variation. To show that a.a. sample paths of X
are càdlàg and of bounded variation let τn be nested subdivisions of [a, b] such that
|τn| → 0. Using that an increasing sequence which is bounded in L0 is a.s. bounded,
supn≥1 V

1,τn
X < ∞ a.s. Since X has sample paths of bounded variation through

∪n≥1τn and is L2-continuous we may choose a right-continuous modification of X.
This modification will then have càdlàg paths of bounded variation, showing (i).
The stationary case follows by similarly arguments.

Proposition 3.7. Let p ≥ 1 and assume that X is an L2-continuous process with
stationary increments and satisfies Cq for some q ∈ [p,∞]. Then X is of bounded
p-variation if and only if vX(t) = O(t2/p) as t → 0. Furthermore, X admits a
p-variation zero, i.e. [X]

(p)
t ≡ 0, if and only if vX(t) = o(t2/p) as t→ 0.

Proof. Assume that X is of bounded p-variation. For all r ≤ v ≤ q there exists,
according to Theorem 2.1, a constant kr,v such that for all subdivisions τ

‖(V p,τ
X )1/p‖v ≤ kr,q‖(V p,τ

X )1/p‖r <∞. (3.5)

Since {(V p,τ
X )1/p : τ} is bounded in L0, (3.5) and Krakowiak and Szulga (1986,

Corollary 1.4) shows that supτ‖(V p,τ
X )1/p‖v <∞. In particular for v = p

∞ > sup
τ
E[V p,τ

X ] = sup
τ

k∑

i=1

E
[
|Xti −Xti−1

|p
]
,
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where τ = {0 = t0 < · · · < tk = T}. Using the equivalence of moments of X, see
Theorem 2.1, it now follows that X is of bounded p-variation if and only if

sup
τ

k∑

i=1

vX(ti − ti−1)p/2 <∞. (3.6)

This proves the first part of the statement since (3.6) is equivalent to vX(t) = O(t2/p).
Similar arguments show that X admits a p-variation zero if and only if

lim
|τ |→0

k∑

i=1

vX(ti − ti−1)p/2 = 0. (3.7)

Thus by observing that (3.7) is satisfied if and only if vX(t) = o(t2/p) the proof is
complete.

By definition vX(t) = t2H for a Hermite process X with parameters (d,H). Thus
by Proposition 3.7 X is of bounded p-variation if and only if p ≥ 1

H
. Moreover, X

has p-variation zero if and only if p > 1
H
. If X is Gaussian such that vX is concave

and α := limt→0 vX(t)/t2/p exists in R for some p ≥ 2 it is possible to show that X
admits a p-variation; see Marcus and Rosen (2006, Theorem 10.2.3). The special
case α = 0 is included in the above Proposition 3.7, however a generalization to
α > 0 is not straightforward since the proof here relies on Borell’s isoperimetric
inequality in which the Gaussian assumption is crucial.

4 Semimartingales
In this section we characterize the canonical decomposition of chaos semimartingales,
and in the next section this characterization is used to study when a moving average
is a semimartingale.

The canonical decomposition of Gaussian quasimartingales are characterized in
Jain and Monrad (1982) and their result is extended to Gaussian semimartingales
in Stricker (1983). Theorem 2.1 allows us to generalize this to a much larger setting.
The proof by Stricker (1983) relies on the fact that a càdlàg Gaussian process X,
and in particular Gaussian semimartingales, only has jumps on DX . If X is a chaos
process satisfying Cq for some q ∈ [4,∞] admitting a quadratic variation we know by
Proposition 3.5 that X has only jumps on DX , allowing us to proceed as in Stricker
(1983). However, in the case q ∈ [1, 4) we need a result by Meyer (1984).

We shall need the following notation: Given a filtration F , a process X is said
to be (F , q)-stable if (E[Xt|Fs])s,t∈[0,T ] is a chaos process satisfying Cq. In this case
set PC = spanL0{E[Xt|Fs] : s, t ∈ [0, T ]}.
Theorem 4.1. Let X = (Xt)t∈[0,T ] denote an (F , q)-stable chaos process for some
q ∈ [1,∞]. If X is an F-semimartingale then X ∈ Hp for all finite p ∈ [1, q] and
{At,Mt : t ∈ [0, T ]} ⊆ PC, where X = X0 +M+A is the F-canonical decomposition
of X. In particular A and M are chaos processes satisfying Cq.

Let Md and M c denote, respectively, the purely discontinuous and continuous
martingale component of M and Ac, Asc and Ad the absolutely continuous, singular
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continuous respectively discrete component of A. If q ∈ [4,∞] then X has a.s. only
jumps on DX and has therefore a.s. continuous paths if and only if it is continuous
in probability. Moreover, {M c

t ,M
d, Act , A

sc, Adt : t ∈ [0, T ]} ⊆ PC, and for each
t ∈ [0, T ] we have

Md
t =

∑

s∈(0,t]∩DX

∆Ms and Adt =
∑

s∈(0,t]∩DX

∆As, (4.1)

where both sums converge in Lp for all finite p ≤ q and the second converges also
absolutely a.s.

Proof. Consider subdivisions τn = {0 = tn0 < · · · < tn2n = T} where tni = Ti2−n for
i = 0, . . . , 2n. By passing to a subsequence we may assume that limn→∞ V

2,τn
X exists

a.s. For f : [0, T ] ∩Q→ R define

Φ(f) := sup
n≥1

√
V 2,τn
f . (4.2)

Then Φ is a lower semicontinuous pseudo-seminorm on R[0,T ]∩Q and Φ(X) <∞ a.s.
Since X is a chaos process satisfying Cq Theorem 2.1 shows that E[Φ(X)p] <∞ for
all finite p ≤ q. In particular Φ(X) is integrable and hence by Meyer (1984) X is a
special F -semimartingale. Denoting by A its bounded variation component Meyer
(1984) shows moreover that

SXn :=
2n∑

i=1

E[Xti −Xti−1
|Fti−1

] −−−→
n→∞

AT in the weak L1-topology. (4.3)

Since PC is L1-closed, (4.3) shows that AT ∈ PC. Similar arguments show that
{As : s ∈ [0, T ]} ⊆ PC and hence also {Ms : s ∈ [0, T ]} ⊆ PC. Since X is
(F , q)-stable this shows that A and M are chaos processes satisfying Cq. Thus by
arguing as above we have E[[M ]

p/2
T ] < ∞ for all finite p ≤ q. Moreover define for

f : [0, T ] ∩Q→ R
Ψ(f) := sup

n≥1
V 1,τn
f .

Then Ψ is a lower semicontinuous pseudo-seminorm on R[0,T ]∩Q and Ψ(A) <∞ a.s..
Hence by Theorem 2.1, E[VA(T )p] < ∞ for all finite p ≤ q implying that X ∈ Hp

for all finite p ≤ q.
To prove the second part assume q ≥ 4. By Corollary 3.3, Ac, Asc, Ad ⊆ PC,

since A ⊆ PC. We claim that DA ⊆ DX . Assume on the contrary there exists a
number t ∈ DA \DX . Then

∆At = E[∆At|Ft−] = −E[∆Mt|Ft−] = 0, a.s.

contradicting the assumption that t ∈ DA. HenceDA and therefore alsoDM are con-
tained in DX . By Proposition 3.5, A and M are continuous on Dc

A respectively Dc
M ,

implying that they are continuous on Dc
X . This shows that Ad is of the form (4.1).

Set

(Yt)t∈[0,T ] =

(∫ t

0

1Dc
X

(s) dMs

)

t∈[0,T ]

and (Ut)t∈[0,T ] =

(∫ t

0

1DX
(s) dMs

)

t∈[0,T ]

.
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Since (∆Yt)t∈[0,T ] = (1Dc
X

(t)∆Mt)t∈[0,T ] and M is continuous on Dc
X , Y is a continu-

ous martingale. On the other hand for every continuous bounded martingale N we
have

〈U,N〉t =

∫ t

0

1DX
(s) d〈M,N〉s = 0,

since 〈M,N〉 is continuous and DX is countable. Thus U is a purely discontinuous
martingale, and so U and Y are the purely discontinuous respectively the continuous
martingale component of M . Finally, since DX is countable,

Ut =
∑

s∈(0,t]∩DX

∆Ms,

where the sum converges in probability and therefore also in Lp for all finite p ≤ q
according to Theorem 2.1.

Essentially due to Föllmer (1981) a process X is called an F -Dirichlet processes
if it can be decomposed as

X = Y + A,

where Y is an F -semimartingale and A is F -adapted, continuous and has quadratic
variation zero. A Dirichlet process X is said to be special if it has a decomposition
X = Y + A where Y is a special semimartingale. In this case X has a unique
decomposition

X = X0 +M + Ac + Ad,

where M is a local martingale, Ad is a predictable pure jump process of bounded
variation and Ac is a continuous process of quadratic variation zero. We have the
following extension of Stricker (1988, Theorem 1):

Proposition 4.2. Let X denote an (F , q)-stable chaos process for some q ∈ [4,∞].
If X is an F-Dirichlet process then it is special, has almost surely only jumps on
DX and Mt, A

d
t , A

c
t ∈ PC for all t ∈ [0, T ]. Furthermore, M is a true martingale

belonging to Hp for all finite p ≤ q and Ad is a pure jump process of integrable
variation having almost surely only jumps on DX . Finally, Ac is of zero energy,
that is lim|τ |→0E

[
V 2,τ
Ac

]
= 0.

Proof. Let Φ be given as in (4.2). Arguing as in Theorem 4.1 it follows that
E[Φ(X)p] < ∞ for all finite p ≤ q. Hence by Stricker (1988, Theorem 1) X is
special and SXn → AT in the weak L1-topology, where At = Adt + Act . Since PC is
L1-closed we have AT ∈ PC and similarMt, At ∈ PC for all t ∈ [0, T ]. Assume there
exists t ∈ DA \DX . Due to the fact that A is F -predictable we have

∆At = E[∆At|Ft−] = −E[∆Mt|Ft−] = 0, a.s.

which contradicts t ∈ DA and soDA ⊆ DX . Furthermore, since A admits a quadratic
variation, Proposition 3.5 implies that A has a.s. only jumps on the countable set
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DA ⊆ DX . Using moreover that Ad is a pure jump process of bounded variation
and Ac is continuous we have that

Adt =
∑

0<s≤t
∆Ads =

∑

0<s≤t
∆As =

∑

s∈DX∩(0,t]

∆As,

and we conclude that Adt ∈ PC. The rest of the proof is now a straightforward
consequence of Theorem 2.1.

Remark 4.3.

(i) X is (F , q)-stable if

Xt =

∫ T

0

f(t, s) dMs, t ∈ [0, T ],

where M is a càdlàg F -martingale being also a chaos process satisfying Cq for
some q ∈ [1,∞], and f(t, ·) are deterministic functions for which the integrals
exist. The (F , q)-stability follows easily since for u, t ∈ [0, T ]

E[Xt|Fu] =

∫ u

0

f(t, s) dMs ∈ spanL0 {Ms : s ∈ [0, T ]} .

(ii) The (F , q)-stability of X is not automatic even when X is a Gaussian chaos
process of order d. However, if G is given by (2.2) thenX is (FW ,∞)-stable and
more generally this is true if each Fs is generated by elements in G; see Nualart
et al. (1990) for related results. Thus for d = 1 X is always (FX ,∞)-stable,
but when d ≥ 2 this may fail as the following example shows.

Example 4.4. Assume G is given by (2.2) for some Wiener process (Wt)t∈[0,3]. Let
X = (Xt)t∈[0,3] be the second-order Gaussian chaos process

Xt =
(
W 2

1 +W1

)
1[1,2)(t) +W21[2,3](t), t ∈ [0, 3].

Then (E[Xt|FXs ])s,t∈[0,3] is not a Gaussian chaos process. In fact, X is a special FX-
semimartingale but the FX-bounded variation component of X is not a Gaussian
chaos process.

To see this, note that X is a special FX-semimartingale since it is of integrable
variation. Moreover, the FX-bounded variation component of X is

At = E[∆X1|FX1−]1[1,3](t) + E[∆X2|FX2−]1[2,3](t)

= 1[1,3](t) +
(
W 2

1 +W1 − E[W1|W 2
1 +W1]

)
1[2,3](t).

So to show that A is not a Gaussian chaos process it is enough to show Y :=

E[W1|W 2
1 + W1] /∈ ∪∞d=1P

d

G. For each integrable random variable U , which is abso-
lutely continuous with density f > 0, we have

E
[
U
∣∣|U |

]
= |U |f(|U |)− f(−|U |)

f(|U |) + f(−|U |) . (4.4)
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Applying (4.4) with U = W1 + 1/2, we get

Y = − 1/2 + E[W1 + 1/2
∣∣|W1 + 1/2|]

= − 1/2 + |W1 + 1/2| tanh
(
|W1 + 1/2|/2

)
, (4.5)

where tanh(x) = (ex − e−x)/(ex + e−x). Since x 7→ ex
2/4 is convex we have

E[eY
2/4] ≤ E[E[eW

2
1 /4|W 2

1 +W1]] = E[eW
2
1 /4] <∞. (4.6)

For contradiction assume Y ∈ ∪∞d=1P
d

G. By (4.6) and Janson (1997, Theorem 6.12)
this implies Y ∈ P1

G = G +R. Moreover, (4.5) shows that Y ≥ −1/2 and hence Y
is constant. This contradict (4.5) and gives Y /∈ ∪∞d=1P

d

G. ♦

5 The semimartingale property of moving averages
This section is concerned with the semimartingale property of moving averages (also
known as stochastic convolutions). In Subsection 5.1 we treat the one-sided case and
in Subsection 5.2 the two-sided case is considered.

5.1 The one-sided case

In this subsection (Ft)t≥0 denotes a filtration and (Mt)t≥0 a square-integrable càdlàg
(Ft)t≥0-martingale. Set γM(t) = E[M2

t ] for t ≥ 0 and note that γM is càdlàg and
increasing and hence γ′M exists Lebesgue a.s. Let X = (Xt)t≥0 be given by

Xt =

∫ t

0

ϕ(t− s) dMs, t ≥ 0, (5.1)

where ϕ is a measurable deterministic function for which all the integrals exist, i.e.
ϕ(t− ·) ∈ L2(γM) for all t ≥ 0. In this set up we have the following theorem where
all locally integrability conditions are with respect to the Lebesgue measure λ.

Theorem 5.1. Assume that M is a chaos process satisfying Cq for some q ∈ [2,∞]
such that γ′M is bounded away from zero on some non-empty open interval. Then X
defined by (5.1) is an F-semimartingale if and only if ϕ is absolutely continuous on
R+ with a locally square-integrable density.

Extensions to q < 2 is not possible. To see this letM denote an α-stable motion with
α ∈ (1, 2). Then M is an FM -martingale satisfying Cq for all q < α, but Basse and
Pedersen (2009, Theorem 3.1) yields that X given by (5.1) is an FM -semimartingale
if and only if ϕ is absolutely continuous with an α-integrable density.

The proof of Theorem 5.1 relies on two lemmas. Here for each f : R → R and
h > 0 ∆hf denotes the function t 7→ (f(t+ h)− f(t))/h.

Lemma 5.2 (Hardy and Littlewood). Let f : R → R denote a locally integrable
function. Then (∆ 1

n
f)n≥1 is bounded in L2([a, b], λ) for all 0 ≤ a < b if and only if

f is absolutely continuous on R+ with a locally square-integrable density.
For every a ≥ 0 (∆ 1

n
f)n≥1 is bounded in L2([a,∞), λ) if and only if f is absolutely

continuous on [a,∞) with a square-integrable density.
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Lemma 5.3. Let F denote a filtration, Y an F-semimartingale and X be given by

Xt =

∫ t

0

ϕ(t− s) dYs, t ≥ 0,

where ϕ is absolutely continuous on R+ with a locally square-integrable density.
Then X is an F-semimartingale.

Proof. For fixed t > 0 we have

Xt = ϕ(0)Yt +

∫ t

0

(∫ t−s

0

ϕ′(u) du
)
dYs

= ϕ(0)Yt +

∫ t

0

(∫ t

0

1[s,t](u)ϕ′(u− s) du
)
dYs.

Since

R+ 3 s 7→
√∫ t

s

|ϕ′(u− s)|2 du =

√∫ t−s

0

|ϕ′(u)|2 du

is locally bounded, Protter (2004, Chapter IV, Theorem 65) shows that

Xt = ϕ(0)Yt +

∫ t

0

(∫ t

0

1[s,t](u)ϕ′(u− s) dYs
)
du

= ϕ(0)Yt +

∫ t

0

(∫ u

0

ϕ′(u− s) dYs
)
du, a.s.

Thus X has a modification which is an F -semimartingale.

Proof of Theorem 5.1. Assume X is an F -semimartingale. By assumption there
exists an interval (a, b) ⊆ R+ and an ε > 0 such that γ′M ≥ ε λ-a.s. on (a, b). By
Remark 4.3(i) X is (F , q)-stable and since q ≥ 1 it follows by Theorem 4.1 that X
is an F -quasimartingale on each compact interval and in particular

sup
n≥1

Nn∑

i=1

E[|E[Xi/n −X(i−1)/n|F(i−1)/n]|] <∞, for all N ≥ 1. (5.2)

By Theorem 2.1 there exists a constant C > 0 such that C‖U‖2 ≤ ‖U‖1 < ∞ for
all U ∈ PC. Moreover, for all a < u ≤ t we have

E[|E[Xt −Xu|Fu]|] = E
[∣∣∣
∫ u

0

(ϕ(t− s)− ϕ(u− s)) dMs

∣∣∣
]

≥ C
∥∥∥
∫ u

0

(ϕ(t− s)− ϕ(u− s)) dMs

∥∥∥
2

= C

∫ u

0

(
ϕ(t− s)− ϕ(u− s)

)2
γM(ds)

≥ C

∫ u

0

(
ϕ(t− s)− ϕ(u− s)

)2
γ′M(s) ds

= C

∫ u

0

(
ϕ(t− u+ s)− ϕ(s)

)2
γ′M(u− s) ds

≥ Cε

∫ u−a

(u−b)∨0

(
ϕ(t− u+ s)− ϕ(s)

)2
ds. (5.3)
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Put δ = (b− a)/4 and set lx = x+ (b+ 3a)/4 and rx = x+ (5b− a)/4 for x > 0. By
(5.2) and (5.3) we have

sup
n≥1

[rxn]+1∑

i=[lxn]+2

√∫ x+δ

(x−δ)∨0

(ϕ(1/n+ s)− ϕ(s))2 ds <∞,

showing that

sup
n≥1

n

√∫ x+δ

(x−δ)∨0

(ϕ(1/n+ s)− ϕ(s))2 ds <∞.

Thus {∆ 1
n
ϕ : n ≥ 1} is bounded in L2([(x− δ) ∨ 0, x+ δ], λ) and so by Lemma 5.2

we need only show that ϕ is locally integrable. But this follows immediately from
ϕ(t − ·) ∈ L2([0, t], γM) for all t ≥ 0 and γ′M ≥ ε λ-a.s. on (a, b). The reverse
implication follows by Lemma 5.3.

Let us rewrite Theorem 5.1 in the Gaussian chaos case. Define G by

G =

{∫ ∞

0

h(s) dWs : h ∈ L2(R+, λ)

}
,

for some Wiener process W and let X be given by

Xt =

∫ t

0

ϕ(t− s)σs dWs, t ≥ 0, (5.4)

where σ is FW -progressively measurable and not the zero-process, and ϕ is a mea-
surable deterministic function such that all the integrals exist. We have the following
corollary to Theorem 5.1:

Corollary 5.4. Let X be given by (5.4), where σ is a Gaussian chaos process which
is right- or left-continuous in probability. Then X is an FW -semimartingale if and
only if ϕ is absolutely continuous on R+ with a locally square-integrable density.

5.2 Two-sided case

Let now M = (Mt)t∈R denote a two-sided square-integrable F -martingale, in the
sense that F = (Ft)t∈R is an increasing family of σ-algebras,M is a square-integrable
càdlàg process such that for all−∞ < u ≤ t we have E[Mt−Mu|Fu] = 0 andMt−Mu

is Ft-measurable. Let γM(t) = sign(t)E[(Mt−M0)2] for all t ∈ R and note that γM
is increasing and càdlàg. Let X be given by

Xt =

∫ t

−∞

(
ϕ(t− s)− ψ(−s)

)
dMs, t ≥ 0, (5.5)

where ϕ and ψ are deterministic functions for which all the integrals are well-defined,
that is ϕ(t−·)−ψ(−·) is square-integrable with respect to the measure γM . Assume
there exists an interval (−∞, c) on which γM is absolutely continuous with

0 < lim inf
t→−∞

γ′M(t) ≤ lim sup
t→−∞

γ′M(t) <∞ and inf
t∈(a,b)

γ′M(t) > 0,

for some 0 ≤ a < b. Note that when M has stationary increments, and therefore
γM(t) = κt for some κ > 0, the conditions are trivially satisfied.
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Theorem 5.5. Let the setting be as just described and assume thatM is a chaos pro-
cess satisfying Cq for some q ∈ [2,∞]. Then X given by (5.5) is an F-semimartingale
if and only if ϕ is absolutely continuous on R+ with a square-integrable density.

Proof. Assume that X is an F -semimartingale. Since γ′M is bounded away from 0
on some interval of R+, it follows (just as in the proof of Theorem 5.1) that ϕ
is absolutely continuous on R+ with a locally square-integrable density. Choose
ε > 0 and c̃ < 0 such that ε ≤ γ′M on (−∞, c̃]. As in the proof of Theorem 5.1
{∆ 1

n
ϕ : n ≥ 1} is bounded in L2([−c̃ + 1,∞), λ) which by Lemma 5.2 implies that

ϕ is absolutely continuous on [−c̃ + 1,∞) with a square-integrable density. This
completes the proof of the only if -implication.

Assume now ϕ is absolutely continuous on R+ with a square-integrable density
and choose C > 0 and c̃ < 0 such that γ′M ≤ C on (−∞, c̃]. Let

Yt =

∫ t

c̃

(ϕ(t− s)− ψ(−s)) dMs, t ≥ 0.

By the same argument as in Lemma 5.3 it follows that Y is an F -semimartingale.
Thus it is enough to show that

Ut =

∫ c̃

−∞
(ϕ(t− s)− ψ(−s)) dMs, t ≥ 0,

is of bounded variation. For 0 ≤ u ≤ t we have

E[|Ut − Uu|] ≤ ‖Ut − Uu‖2 =
(∫ c̃

−∞
(ϕ(t− s)− ϕ(u− s))2 γM(ds)

)1/2

≤ C
(∫ c̃

−∞
(ϕ(t− s)− ϕ(u− s))2 ds

)1/2

= C
(∫ ∞

−c̃+u
(ϕ(t− u+ s)− ϕ(s))2 ds

)1/2

.

According to Lemma 5.2 this shows that U is of integrable variation on each compact
interval and the proof is complete.

Again we rewrite the result in a Gaussian the setting. More precisely consider
the following: Let G = {

∫
R
h(s) dWs : h ∈ L2(R, λ}, where W = (Wt)t∈R is a

two-sided Wiener process with W0 = 0. Let

FWt =

{
σ(Ws : s ∈ (−∞, t]) t ≥ 0

σ(Wt −Ws : s ∈ (−∞, t]) t < 0.

Consider a process X of the form

Xt =

∫ t

−∞

(
ϕ(t− s)− ψ(−s)

)
σs dWs, t ≥ 0,

where σ is (Ft)t∈R-progressively measurable Gaussian chaos process satisfying

0 < lim inf
t→−∞

E[σ2
t ] ≤ lim sup

t→−∞
E[σ2

t ] <∞ and inf
t∈(a,b)

E[σ2
t ] > 0,

for some 0 ≤ a < b. Theorem 5.5 now gives the following corollary:

Theorem 5.6. X is an FW -semimartingale if and only if ϕ is absolutely continuous
on R+ with a square-integrable density.
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