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Abstract

We present some new asymptotic results for functionals of higher order
differences of Brownian semi-stationary processes. In an earlier work [4] we
have derived a similar asymptotic theory for first order differences. However,
the central limit theorems were valid only for certain values of the smoothness
parameter of a Brownian semi-stationary process, and the parameter values
which appear in typical applications, e.g. in modeling turbulent flows in
physics, were excluded. The main goal of the current paper is the derivation
of the asymptotic theory for the whole range of the smoothness parameter by
means of using second order differences. We present the law of large numbers
for the multipower variation of the second order differences of Brownian semi-
stationary processes and show the associated central limit theorem. Finally,
we demonstrate some estimation methods for the smoothness parameter of a
Brownian semi-stationary process as an application of our probabilistic results.
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1 Introduction

Brownian semi-stationary processes (BSS) has been originally introduced in [7] for
modeling turbulent flows in physics. This class consists of processes (Xt)t∈R of the
form

Xt = µ+

∫ t

−∞
g(t− s)σsW (ds) +

∫ t

−∞
q(t− s)asds, (1.1)

where µ is a constant, g, q : R>0 → R are memory functions, (σs)s∈R is a càdlàg
intermittency process, (as)s∈R a càdlàg drift process and W is the Wiener measure.
When (σs)s∈R and (as)s∈R are stationary then the process (Xt)t∈R is also stationary,
which explains the name Brownian semi-stationary processes. In the following we
concentrate on BSS models without the drift part (i.e. a ≡ 0), but we come back
to the original process (1.1) in Example 3.8.

The path properties of the process (Xt)t∈R crucially depend on the behaviour
of the weight function g near 0. When g(x) ' xβ (here g(x) ' h(x) means that
g(x)/h(x) is slowly varying at 0) with β ∈ (−1

2
, 0)∪(0, 1

2
), X has r-Hölder continuous

paths for any r < β + 1
2

and, more importantly, X is not a semimartingale, because
g′ is not square integrable in the neighborhood of 0 (see e.g. [11] for a detailed study
of conditions under which Brownian moving average processes are semimartingales).
In the following, whenever g(x) ' xβ, the index β is referred to as the smoothness
parameter of X.

In practice the stochastic process X is observed at high frequency, i.e. the data
points Xi∆n , i = 0, . . . , [t/∆n] are given, and we are in the framework of infill
asymptotics, that is ∆n → 0. For modeling and for practical applications in physics
it is extremely important to infer the integrated powers of intermittency, i.e.

∫ t

0

|σs|pds, p > 0,

and to estimate the smoothness parameter β. A very powerful instrument for an-
alyzing those estimation problems is the normalized multipower variation that is
defined as

MPV (X, p1, . . . , pk)
n
t = ∆nτ

−p+
n

[t/∆n]−k+1∑

i=1

|∆n
iX|p1 · · · |∆n

i+k−1X|pk , (1.2)

where ∆n
iX = Xi∆n −X(i−1)∆n , p1, . . . , pk ≥ 0 and p+ =

∑k
l=1 pl, and τn is a certain

normalizing sequence which depends on the weight function g and n (to be defined
later). The concept of multipower variation has been originally introduced in [8] for
the semimartingale setting. Power and multipower variation of semimartingales has
been intensively studied in numerous papers; see e.g. [6], [8], [9], [10], [14], [16], [18],
[23] for theory and applications.

However, as mentioned above, BSS processes of the form (1.1) typically do not
belong to the class of semimartingales. Thus, different probabilistic tools are re-
quired to determine the asymptotic behaviour of the multipower variation MPV (X,
p1, . . . , pk)

n
t of BSS processes. In [4] we applied techniques from Malliavin calculus,
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which has been originally introduced in [19], [20] and [21], to show the consistency,
i.e.

MPV (X, p1, . . . , pk)
n
t − ρnp1,...,pk

∫ t

0

|σs|p
+

ds
u.c.p−−→ 0,

where ρnp1,...,pk is a certain constant and Y n u.c.p−−→ Y stands for supt∈[0,T ] |Y n
t −Yt|

P−−→ 0

(for all T > 0). This holds for all smoothness parameters β ∈ (−1
2
, 0) ∪ (0, 1

2
), and

we proved the associated (stable) central limit theorem for β ∈ (−1
2
, 0).

Unfortunately, the restriction to β ∈ (−1
2
, 0) in the central limit theorem is

not satisfactory for applications as, due to physical laws (e.g. Kolmogorov’s 2
3
-law)

and empirical findings, we usually have β ∈ (0, 1
2
). The theoretical reason for this

restriction is two-fold: (i) long memory effects which lead to non-normal limits for
β ∈ (1

4
, 1

2
) and more importantly (ii) a hidden drift in X which leads to an even

stronger restriction β ∈ (−1
2
, 0).

The main aim of this paper is to overcome both problems by considering mul-
tipower variations of higher order differences of BSS processes. We will show the
law of large numbers and prove the associated central limit theorem for all values
of the smoothness parameter β ∈ (−1

2
, 0) ∪ (0, 1

2
). Furthermore, we discuss possible

extensions to other type of processes. We apply the asymptotic results to estimate
the smoothness parameter β of a BSS process X. Let us mention that the idea of
using higher order differences to diminish the long memory effects is not new; we
refer to [13], [17] for theoretical results in the Gaussian framework. However, the
derivation of the corresponding theory for BSS processes is more complicated due
to their more involved structure.

This paper is organized as follows: in Section 2 we introduce our setting and
present the main assumptions on the weight function g and the intermittency σ.
Section 3 is devoted to limit theorems for the multipower variation of the second
order differences of BSS processes. In Section 4 we apply our asymptotic results to
derive three estimators (the realised variation ratio, the modified realised variation
ratio and the change-of-frequency estimator) for the smoothness parameter. Finally,
all proofs are collected in Section 5.

2 The setting and the main assumptions

We consider a filtered probability space (Ω,F ,F = (Ft)t∈R,P) on which we define a
BSS process X = (Xt)t∈R without a drift as

Xt = µ+

∫ t

−∞
g(t− s)σsW (ds), (2.1)

where W is an F-adapted Wiener measure, σ is an F-adapted càdlàg processes and
g ∈ L2(R>0). We assume that

∫ t

−∞
g2(t− s)σ2

sds <∞ a.s.
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to ensure that Xt <∞ almost surely. We introduce a Gaussian process G = (Gt)t∈R,
that is associated to X, as

Gt =

∫ t

−∞
g(t− s)W (ds). (2.2)

Notice that G is a stationary process with the autocorrelation function

r(t) = corr(Gs, Gs+t) =

∫∞
0
g(u)g(u+ t)du

||g||2L2

. (2.3)

We also define the variance function R of the increments of the process G as

R(t) = E(|Gs+t −Gs|2) = 2||g||2L2(1− r(t)). (2.4)

Now, we assume that the process X is observed at time points ti = i∆n with ∆n → 0,
i = 0, . . . , [t/∆n], and define the second order differences of X by

3n
iX = Xi∆n − 2X(i−1)∆n +X(i−2)∆n . (2.5)

Our main object of interest is the multipower variation of the second order differences
of the BSS process X, i.e.

MPV 3(X, p1, . . . , pk)
n
t = ∆n(τ3n )−p

+

[t/∆n]−2k+2∑

i=2

k−1∏

l=0

|3n
i+2lX|pl , (2.6)

where (τ3n )2 = E(|3n
iG|2) and p+ =

∑k
l=1 pl. To determine the asymptotic be-

haviour of the functional MPV 3(X, p1, . . . , pk)
n we require a set of assumptions

on the memory function g and the intermittency process σ. Below, the functions
LR, LR(4) , Lg, Lg(2) : R>0 → R are assumed to be continuous and slowly varying

at 0, f (k) denotes the k-th derivative of a function f and β denotes a number in
(−1

2
, 0) ∪ (0, 1

2
).

Assumption 1: It holds that

(i) g(x) = xβLg(x).

(ii) g(2) = xβ−2Lg(2)(x) and, for any ε > 0, we have g(2) ∈ L2((ε,∞)). Furthermore,

|g(2)| is non-increasing on the interval (a,∞) for some a > 0.

(iii) For any t > 0

Ft =

∫ ∞

1

|g(2)(s)|2σ2
t−sds <∞. (2.7)

Assumption 2: For the smoothness parameter β from Assumption 1 it holds that

(i) R(x) = x2β+1LR(x).

(ii) R
(4)

(x) = x2β−3L
R

(4)(x).

(iii) There exists a b ∈ (0, 1) such that

lim sup
x→0

sup
y∈[x,xb]

∣∣∣
L
R

(4)(y)

LR(x)

∣∣∣ <∞.
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Assumption 3-γ: For any p > 0, it holds that

E(|σt − σs|p) ≤ Cp|t− s|γp (2.8)

for some γ > 0 and Cp > 0.

Some remarks are in order to explain the rather long list of conditions.

• The memory function g: We remark that g(x) ' xβ implies g(2)(x) ' xβ−2 under
rather weak assumptions on g (due to the Monotone Density Theorem; see e.g. [12],
p.38). Furthermore, Assumption 1(ii) and Karamata’s Theorem (see again [12])
imply that ∫ 1

ε

|g(x+ 2∆n)− 2g(x+ ∆n) + g(x)|2dx ' ε2β−3∆4
n (2.9)

for any ε ∈ [∆n, 1). This fact will play an important role in the following discussion.
Finally, let us note that Assumptions 1(i)-(ii) and 2 are satisfied for the parametric
class

g(x) = xβ exp(−λx),

where β ∈ (−1
2
, 0) ∪ (0, 1

2
) and λ > 0, which is used to model turbulent flows

in physics (see [7]). This class constitutes the most important example in this
paper.

• The central decomposition and the concentration measure: Observe the decom-
position

3n
iX =

∫ i∆n

(i−1)∆n

g(i∆n − s)σsW (ds) (2.10)

+

∫ (i−1)∆n

(i−2)∆n

(
g(i∆n − s)− 2g((i− 1)∆n − s)

)
σsW (ds)

+

∫ (i−2)∆n

−∞

(
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)

)
σsW (ds) ,

and the same type of decomposition holds for 3Gn
i . We deduce that

(τ3n )2 =

∫ ∆n

0

g2(x)dx+

∫ ∆n

0

(
g(x+ ∆n)− 2g(x)

)2

dx

+

∫ ∞

0

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2

dx.

One of the most essential steps in proving the asymptotic results for the functionals
MPV 3(X, p1, . . . , pk)

n is the approximation 3n
iX ≈ σ(i−2)∆n3

n
iG. The justification

of this approximation is not trivial: while the first two summands in the decom-
position (2.10) depend only on the intermittency σ around (i − 2)∆n, the third
summand involves the whole path (σs)s≤(i−2)∆n . We need to guarantee that the
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influence of the intermittency path outside of (i − 2)∆n on the third summand of
(2.10) is asymptotically negligible. For this reason we introduce the measure

π3
n (A) =

∫
A

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2

dx

(τ3n )2
< 1, A ∈ B(R>0), (2.11)

and define π3
n (x) = π3

n ((x,∞)). To justify the negligibility of the influence of the
intermittency path outside of (i− 2)∆n we need to ensure that

π3
n (ε)→ 0

for all ε > 0. Indeed, this convergence follows from Assumptions 1(i)–(ii) (due
to (2.9)).

• The correlation structure: By the stationarity of the process G we deduce that

r3n (j) = corr(3n
iG,3

n
i+jG) (2.12)

=
−R((j + 2)∆n) + 4R((j + 1)∆n)− 6R(j∆n) + 4R(|j − 1|∆n)−R(|j − 2|∆n)

(τ3n )2
.

Since (τ3n )2 = 4R(∆n)−R(2∆n) we obtain by Assumption 2(i) the convergence

r3n (j)→ ρ3(j) =
−(j + 2)1+2β + 4(j + 1)1+2β − 6j1+2β + 4|j − 1|1+2β − |j − 2|1+2β

2
(
4− 21+2β

) .

(2.13)
We remark that ρ3 is the correlation function of the normalized second order frac-
tional noise (3n

i B
H/
√

var(3n
i B

H))i≥2, where BH is a fractional Brownian motion
with Hurst parameter H = β + 1

2
. Notice that

|ρ3(j)| ∼ j2β−3,

where we write aj ∼ bj when aj/bj is bounded. In particular, it implies that∑∞
j=1 |ρ3(j)| < ∞. This absolute summability has an important consequence: it

leads to standard central limit theorems for the appropriately normalized version of
the functional MPV 3(G, p1, . . . , pk)

n for all β ∈ (−1
2
, 0) ∪ (0, 1

2
).

• Sufficient conditions: Instead of considering Assumptions 1 and 2, we can alter-
natively state sufficient conditions on the correlation function r3n and the measure
π3
n directly, as it has been done for the case of first order differences in [4]. To en-

sure the consistency of MPV 3(X, p1, . . . , pk)
n
t we require the following assumptions:

there exists a sequence h(j) with

|r3n | ≤ h(j), ∆n

[1/∆n]∑

j=1

h2(j)→ 0, (2.14)
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and π3
n (ε) → 0 for all ε > 0 (cf. condition (LLN) in [4]). For the proof of the

associated central limit theorem we need some stronger conditions: r3n (j) → ρ3(j)
for all j ≥ 1, there exists a sequence h(j) with

|r3n | ≤ h(j),
∞∑

j=1

h2(j) <∞, (2.15)

Assumption 3-γ holds for some γ ∈ (0, 1] with γ(p ∧ 1) > 1
2
, p = max1≤i≤k(pi), and

there exists a constant λ > 1/(p ∧ 1) such that for all κ ∈ (0, 1) and εn = ∆κ
n we

have
π3
n (εn) = O

(
∆λ(1−κ)
n

)
. (2.16)

(cf. condition (CLT) in [4]). In Section 5 we will show that Assumptions 1 and 2
imply the conditions (2.14), (2.15) and (2.16).

3 Limit theorems

In this section we present the main results of the paper. Recall that the multipower
variation process is defined in (2.6) as

MPV 3(X, p1, . . . , pk)
n
t = ∆n(τ3n )−p

+

[t/∆n]−2k+2∑

i=2

k−1∏

l=0

|3n
i+2lX|pl

with τ 2
n = E(|3n

iG|2) and p+ =
∑k

l=1 pl. We introduce the quantity

ρnp1,...,pk = E
( k−1∏

l=0

∣∣∣3
n
i+2lG

τ3n

∣∣∣
pl
)
. (3.1)

Notice that in the case k = 1, p1 = p we have that ρnp = E(|U |p) with U ∼ N(0, 1).
We start with the consistency of the functional MPV 3(X, p1, . . . , pk)

n
t .

Theorem 3.1. Let the Assumptions 1 and 2 hold. Then we obtain

MPV 3(X, p1, . . . , pk)
n
t − ρnp1,...,pk

∫ t

0

|σs|p
+

ds
u.c.p−−→ 0. (3.2)

Proof. See Section 5.

As we have mentioned in the previous section, under Assumption 2(i) we deduce
the convergence r3n (j) → ρ3(j) for all j ≥ 1 (see (2.13)). Consequently, it holds
that

ρnp1,...,pk → ρp1,...,pk = E
( k−1∏

l=0

∣∣∣ 3n
i+2lB

H

√
var(3n

i+2lB
H)

∣∣∣
pl
)
, (3.3)

where BH is a fractional Brownian motion with Hurst parameter H = β+ 1
2

(notice
that the right-hand side of (3.3) does not depend on n, because BH is a self-similar
process). Thus, we obtain the following result.
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Lemma 3.2. Let the Assumptions 1 and 2 hold. Then we obtain

MPV 3(X, p1, . . . , pk)
n
t

u.c.p−−→ ρp1,...,pk

∫ t

0

|σs|p
+

ds. (3.4)

Next, we present a multivariate stable central limit for the family (MPV 3(X,
pj1, . . . , p

j
k)
n)1≤j≤d of multipower variations. We say that a sequence of d-dimensional

processes Zn converges stably in law to a d-dimensional process Z, where Z is
defined on an extension (Ω′,F ′,P′) of the original probability (Ω,F ,P), in the space
D([0, T ])d equipped with the uniform topology (Zn st−→ Z) if and only if

lim
n→∞

E(f(Zn)V ) = E′(f(Z)V )

for any bounded and continuous function f : D([0, T ])d → R and any bounded F -
measurable random variable V . We refer to [1], [15] or [22] for a detailed study of
stable convergence.

Theorem 3.3. Let the Assumptions 1, 2 and 3-γ be satisfied for some γ ∈ (0, 1]
with γ(p ∧ 1) > 1

2
, p = max1≤i≤k,1≤j≤d(p

j
i ). Then we obtain the stable convergence

∆−1/2
n

(
MPV 3(X, pj1, . . . , p

j
k)
n
t − ρnpj1,...,pjk

∫ t

0

|σs|p
+
j ds
)

1≤j≤d
st−→
∫ t

0

A1/2
s dW ′

s, (3.5)

where W ′ is a d-dimensional Brownian motion that is defined on an extension of the
original probability space (Ω,F ,P) and is independent of F , A is a d×d-dimensional
process given by

Aijs = µij|σs|p
+
i +p+j , 1 ≤ i, j ≤ d, (3.6)

and the d× d matrix µ = (µij)1≤i,j≤d is defined as

µij = lim
n→∞

∆−1
n cov

(
MPV 3(BH , pi1, . . . , p

i
k)
n
1 ,MPV 3(BH , pj1, . . . , p

j
k)
n
1

)
(3.7)

with BH being a fractional Brownian motion with Hurst parameter H = β + 1
2
.

Proof. See Section 5.

We remark that the conditions of Theorem 3.3 imply that max1≤i≤k,1≤j≤d(p
j
i ) >

1
2

since γ ∈ (0, 1].

Remark 3.4. Notice that the limit process in (3.5) is mixed normal, because the
Brownian motion W ′ is independent of the process A. In fact, we can transform the
convergence result of Theorem 3.3 into a standard central limit theorem due to the
properties of stable convergence; we demonstrate this transformation in Section 4
(see also [2] for more details). We remark that the limit in (3.7) is indeed finite; see
Theorem 2 in [4] and its proof for more details.

Remark 3.5. In general, the convergence in (3.5) does not remain valid when
ρn
pj1,...,p

j
k

is replaced by its limit ρpj1,...,p
j
k

defined by (3.3). However, when the rate of

convergence associated with (3.3) is faster than ∆
−1/2
n , we can also use the quantity
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ρpj1,...,p
j
k

without changing the stable central limit theorem in (3.5). This is the case
when the convergence

∆−1/2
n (r3n (j)− ρ3(j))→ 0

holds for any j ≥ 1. Obviously, the latter depends on the behaviour of the slowly
varying function LR from Assumption 2(i) near 0. It can be shown that for our main
example

g(x) = xβ exp(−λx),

where β ∈ (−1
2
, 0)∪ (0, 1

4
) and λ > 0, ρn

pj1,...,p
j
k

can indeed be replaced by the quantity
ρpj1,...,p

j
k

without changing the limit in Theorem 3.3 (see [2] for more details).

Remark 3.6 (Second order differences vs. increments). Let us demonstrate some
advantages of using second order differences 3n

iX instead of using first order incre-
ments ∆n

iX.

(i) First, taking second order differences weakens the autocorrelations which leads
to normal limits for the normalized version of the functional MPV 3(G, p1, . . . , pk)

n

(and hence to mixed normal limits for MPV 3(X, p1, . . . , pk)
n) for all β ∈ (−1

2
, 0) ∪

(0, 1
2
). This can be explained as follows: to obtain normal limits it has to hold that

∞∑

j=1

|ρ3(j)|2 <∞

where ρ3(j) is defined in (2.13) (it relies on the fact that the function |x|p −
E(|N(0, 1)|p) has Hermite rank 2; see also condition (2.15)). This is clearly sat-
isfied for all β ∈ (−1

2
, 0) ∪ (0, 1

2
), because we have that |ρ3(j)| ∼ j2β−3.

In the case of using first order increments ∆n
iX we obtain the correlation function

ρ of the fractional noise (BH
i −BH

i−1)i≥1 with H = β+ 1
2

as the limit autocorrelation
function (see e.g. (4.15) in [4]). As |ρ(j)| ∼ j2β−1 it holds that

∞∑

j=1

|ρ(j)|2 <∞

only for β ∈ (−1
2
, 0) ∪ (0, 1

4
).

(ii) As we have mentioned in the previous section, we need to ensure that π3
n (ε)→ 0,

where the measure π3
n is defined by (2.11), for all ε > 0 to show the law of large num-

bers. But for proving the central limit theorem we require a more precise treatment
of the quantity

π3
n (ε) =

∫ ∞

ε

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2

dx

(τ3n )2
.

In particular, we need to show that the above quantity is small enough (see con-
dition (2.16)) to prove the negligibility of the error that is due to the first order
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approximation 3n
iX ≈ σ(i−2)∆n3

n
iG. The corresponding term in the case of incre-

ments is essentially given as

πn(ε) =

∫ ∞

ε

(
g(x+ ∆n)− g(x)

)2

dx

τ 2
n

,

where τ 2
n = E(|∆n

iG|2) (see [4]). Under the Assumptions 1 and 2 the denominators
(τ3n )2 and τ 2

n have the same order, but the nominator of π3
n (ε) is much smaller

than the nominator of πn(ε). This has an important consequence: the central
limit theorems for the multipower variation of the increments of X hold only for
β ∈ (−1

2
, 0) while the corresponding results for the second order differences hold for

all β ∈ (−1
2
, 0) ∪ (0, 1

2
).

Another advantage of using second order differences 3n
iX is the higher robustness

to the presence of smooth drift processes. Let us consider the process

Yt = Xt +Dt, t ≥ 0, (3.8)

where X is a BSS model of the form (2.1) and D is a stochastic drift. We obtain
the following result.

Proposition 3.7. Assume that the conditions of Theorem 3.3 hold and D ∈ Cv(R≥0)
for some v ∈ (1, 2), i.e. D ∈ C1(R≥0) (a.s.) and D′ has (v − 1)-Hölder continuous
paths (a.s.). When v − β > 1 then

∆−1/2
n

(
MPV 3(Y, pj1, . . . , p

j
k)
n
t − ρnpj1,...,pjk

∫ t

0

|σs|p
+
j ds
)

1≤j≤d
st−→
∫ t

0

A1/2
s dW ′

s,

where the limit process is given in Theorem 3.3. That is, the central limit theorem
is robust to the presence of the drift D.

Proof. Proposition 3.7 follows by a direct application of the Cauchy-Schwarz and
Minkovski inequalities (see Proposition 6 in [4] for more details).

The idea behind Proposition 3.7 is rather simple. Notice that 3n
iX = OP(∆

β+1/2
n )

(this follows from Assumption 2) whereas 3n
iD = OP(∆v

n). It can be easily seen that
the drift process D does not influence the central limit theorem if v − β − 1

2
> 1

2
,

because ∆
−1/2
n is the rate of convergence; this explains the condition of Proposi-

tion 3.7.
Notice that we obtain better robustness properties than in the case of first order

increments: we still have ∆n
iX = OP(∆

β+1/2
n ), but now ∆n

iD = OP(∆n). Thus, the
drift process D is negligible only when β < 0, which is obviously a more restrictive
condition.

Example 3.8. Let us come back to the original BSS process from (1.1), which is
of the form (3.8) with

Dt =

∫ t

−∞
q(t− s)asds.

10



For the ease of exposition we assume that

q(x) = xβ1{x∈(0,1)}, β > −1,

and the drift process a is càdlàg and bounded. Observe the decomposition

Dt+ε −Dt =

∫ t+ε

t

q(t+ ε− s)asds+

∫ t

−∞
(q(t+ ε− s)− q(t− s))asds.

We conclude that the process D has Hölder continuous paths of order (β + 1) ∧ 1.
Consequently, Theorem 3.1 is robust to the presence of the drift process D when
β > β − 1

2
. Furthermore, for β ≥ 0 we deduce that

D′t = q(0)at +

∫ ∞

0

q′(s)at−sds.

By Proposition 3.7 we conclude that Theorem 3.3 is robust to the presence of D
when the process a has Hölder continuous paths of order bigger than β.

Remark 3.9. (Higher order differences) Clearly, we can also formulate asymptotic
results for multipower variation of q-order differences of BSS processes X. Define

MPV (q)(X, p1, . . . , pk)
n
t = ∆n(τ (q)

n )−p
+

[t/∆n]−qk+q∑

i=q

k−1∏

l=0

|∆(q)n
i+qlX|pl ,

where ∆
(q)n
i X is the q-order difference starting at i∆n and (τ

(q)
n )2 = E(|∆(q)n

i G|2).
Then the results of Theorem 3.1 and 3.3 remain valid for the class MPV (q)(X,
p1, . . . , pk)

n with ρnp1,...,pk defined as

ρnp1,...,pk = E
( k−1∏

l=0

∣∣∣
∆

(q)n
i+qlG

τ
(q)
n

∣∣∣
pl
)
.

The Assumptions 1 and 2 have to be modified as follows: (a) g(2) has to be replaced
by g(q) in Assumption 1(ii) and 1(iii), and (b) R

(4)
has to be replaced by R

(2q)
in

Assumption 2(ii).
However, let us remark that going from second order differences to q-order dif-

ferences with q > 2 does not give any new theoretical advantages (with respect to
robustness etc.). It might though have some influence in finite samples.

Remark 3.10. (An extension to other integral processes) In [4] and [5] we considered
processes of the form

Zt = µ+

∫ t

0

σsdGs, (3.9)

where (Gs)s≥0 is a Gaussian process with centered and stationary increments. Define

R(t) = E(|Gs+t −Gs|2)

and assume that Assumption 2 holds for R (we use the same notations as for the
process (2.1) to underline the parallels between the models (3.9) and (2.1)). We

11



remark that the integral in (3.9) is well-defined in the Riemann-Stieltjes sense when
the process σ has finite r-variation with r < 1/(1/2 − β) (see [4] and [24]), which
we assume in the following discussion. We associate τ3n and MPV 3(Z, p1, . . . , pk)

n
t

with the process Z by (2.6). Then Theorem 3.1 remains valid for the model (3.9)
and Theorem 3.3 also holds if we further assume that Assumption 3-γ is satisfied
for some γ ∈ (0, 1] with γ(p ∧ 1) > 1

2
, p = max1≤i≤k,1≤j≤d(p

j
i ).

We remark that the justification of the approximation 3n
i Z = σ(i−2)∆n3

n
iG is

easier to provide for the model (3.9) (see e.g. [4]). All other proof steps are performed
in exactly the same way as for the model (2.1).

Remark 3.11. (Some further extensions) We remark that the use of the power
functions in the definition of MPV 3(X, p1, . . . , pk)

n
t is not essential for the proof of

Theorem 3.1 and 3.3. In principle, both theorems can be proved for a more general
class of functionals

MPV 3(X,H)nt = ∆n

[t/∆n]−2k+2∑

i=2

H
(3n

iX

τ3n
, . . . ,

3n
i+2(k−1)X

τ3n

)
,

where H : Rk → R is a measurable even function with polynomial growth (cf.
Remark 2 in [4]). However, we dispense with the exact exposition.

Another useful extension of Theorem 3.3 is a joint central limit theorem for
functionals MPV 3(X, p1, . . . , pk)

n
t computed at different frequencies (this result will

be applied in Section 4.3). For r ≥ 1, define the multipower variation computed at
frequency r∆n as

MPV 3
r (X, p1, . . . , pk)

n
t = ∆n(τ3n,r)

−p+
[t/∆n]−2k+2∑

i=2r

k−1∏

l=0

|3n,r
i+2lrX|pl , (3.10)

where 3
n,r
i X = Xi∆n−2X(i−r)∆n +X(i−2r)∆n and (τ3n,r)

2 = E(|3n,r
i G|2). Then, under

the conditions of Theorem 3.3, we obtain the stable central limit theorem

∆−1/2
n

(
MPV 3

r1
(X, p1, . . . , pk)

n
t − ρn,r1p1,...,pk

∫ t
0
|σs|p+ds

MPV 3
r2

(X, p1, . . . , pk)
n
t − ρn,r2p1,...,pk

∫ t
0
|σs|p+ds

)
st−→
∫ t

0

|σs|p
+

µ1/2dW ′
s,

(3.11)
where W ′ is a 2-dimensional Brownian motion independent of F ,

ρn,rp1,...,pk = E
( k−1∏

l=0

∣∣∣
3
n,r
i+2lrG

τ3n,r

∣∣∣
pl
)

and the 2× 2 matrix µ = (µij)1≤i,j≤2 is defined as

µij = lim
n→∞

∆−1
n cov

(
MPV 3

ri
(BH , p1, . . . , pk)

n
1 ,MPV 3

rj
(BH , p1, . . . , pk)

n
1

)

with BH being a fractional Brownian motion with Hurst parameter H = β + 1
2
.

Clearly, an analogous result can be formulated for any d-dimensional family (rj; p
j
1,

. . . , pjk)1≤j≤d.
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4 Estimation of the smoothness parameter

In this section we apply our probabilistic results to obtain consistent estimates of the
smoothness parameter β ∈ (−1

2
, 0) ∪ (0, 1

2
). We propose three different estimators

for β: the realised variation ratio (RV R3), the modified realised variation ratio
(RV R

3
) and the change-of-frequency estimator (COF3). Throughout this section

we assume that
∆−1/2
n (r3n (j)− ρ3(j))→ 0 (4.1)

for any j ≥ 1, where r3n (j) and ρ3(j) are defined in (2.12) and (2.13), respectively.
This condition guarantees that ρnpj1,...,p

j
k

can be replaced by the quantity ρpj1,...,p
j
k

in
Theorem 3.3 without changing the limit (see Remark 3.5). Recall that the condition
(4.1) holds for our canonical example

g(x) = xβ exp(−λx)

when β ∈ (−1
2
, 0) ∪ (0, 1

4
) and λ > 0.

4.1 The realised variation ratio

We define the realised variation ratio based on the second order differences as

RV R3n
t =

MPV 3(X, 1, 1)nt
MPV 3(X, 2, 0)nt

. (4.2)

This type of statistics has been successfully applied in semimartingale models to test
for the presence of the jump part (see e.g. [9]). In the BSS framework the statistic
RV R3n

t is used to estimate the smoothness parameter β.
Let us introduce the function ψ : (−1, 1)→ ( 2

π
, 1) given by

ψ(x) =
2

π
(
√

1− x2 + x arcsinx). (4.3)

We remark that ψ(x) = E(U1U2), where U1, U2 are two standard normal vari-
ables with correlation x. Let us further notice that while the computation of
MPV 3(X, p1, . . . , pk)

n
t requires the knowledge of the quantity τ3n (and hence the

knowledge of the memory function g), the statistic RV R3n
t is purely observation

based since

RV R3n
t =

∑[t/∆n]−2
i=2 |3n

iX||3n
i+2X|∑[t/∆n]

i=2 |3n
iX|2

.

Our first result is the consistency of RV R3n
t , which follows directly from Theorem 3.1

and Lemma 3.2.

Proposition 4.1. Assume that the conditions of Theorem 3.1 hold. Then we obtain

RV R3n
t

u.c.p−−→ ψ(ρ3(2)) , (4.4)

where ρ3(j) is defined by (2.13).
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Note that

ρ3(2) =
−41+2β + 4 · 31+2β − 6 · 21+2β + 4

2
(
4− 21+2β

) ,

ρ3(2) = ρ3β (2) is invertible as a function of β ∈ (−1
2
, 0) ∪ (0, 1

2
), it is positive for

β ∈ (−1
2
, 0) and negative for β ∈ (0, 1

2
).

Obviously, the function ψ is only invertible on the interval (−1, 0) or (0, 1).
Thus, we can recover the absolute value of ρ3(2), but not its sign (which is not a
big surprise, because we use absolute values of the second order differences in the
definition of RV R3n

t ). In the following proposition we restrict ourselves to β ∈ (0, 1
2
)

as those values typically appear in physics.

Proposition 4.2. Assume that the conditions of Theorem 3.3 and (4.1) hold. Let
β ∈ (0, 1

2
), ρ3β (2) : (0, 1

2
) → (−1, 0), ψ : (−1, 0) → ( 2

π
, 1) and set f = ψ ◦ ρ3β (2).

Then we obtain for h = f−1

h(RV R3n
t )

u.c.p−−→ β, (4.5)

and

∆
−1/2
n (h(RV R3n

t )− β)MPV 3(X, 2, 0)nt√
1
3
|h′(RV R3n

t )|(1,−RV R3n
t )µ(1,−RV R3n

t )TMPV 3(X, 4, 0)nt

d−−→ N(0, 1), (4.6)

for any t > 0, where µ = (µij)1≤i,j≤2 is given by

µ11 = lim
n→∞

∆−1
n var

(
MPV 3(BH , 1, 1)n1

)
,

µ12 = lim
n→∞

∆−1
n cov

(
MPV 3(BH , 1, 1)n1 ,MPV 3(BH , 2, 0)n1

)
,

µ22 = lim
n→∞

∆−1
n var

(
MPV 3(BH , 2, 0)n1

)
,

with H = β + 1
2
.

Proposition 4.2 is a direct consequence of Theorem 3.3, of the delta-method for
stable convergence and of the fact that the true centering ψ(r3n (2)) in (3.5) can be
replaced by its limit ψ(ρ3(2)), because of the condition (4.1) (see Remark 3.5). We
note that the normalized statistic in (4.6) is again self-scaling, i.e. we do not require
the knowledge of τ3n , and consequently we can immediately build confidence regions
for the smoothness parameter β ∈ (0, 1

2
).

Remark 4.3. The constants βij, 1 ≤ i, j ≤ 2, can be expressed as

µ11 = var(|Q1||Q3|) + 2
∞∑

k=1

cov(|Q1||Q3|, |Q1+k||Q3+k|),

µ12 = cov(Q2
2, |Q1||Q3|) + 2

∞∑

k=0

cov(Q2
1, |Q1+k||Q3+k|),

µ22 = var(Q2
1) + 2

∞∑

k=1

cov(Q2
1, Q

2
1+k) = 2 + 4

∞∑

k=1

|ρ3(k)|2,
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with Qi = 3n
i B

H/
√

var(3n
i B

H). The above quantities can be computed using
formulas for absolute moments of the multivariate normal distributions (see [2] for
more details).

4.2 The modified realised variation ratio

Recall that the restriction β ∈ (0, 1
2
) is required to formulate Proposition 4.2. To

obtain estimates for all values β ∈ (−1
2
, 0) ∪ (0, 1

2
) let us consider a modified (and,

in fact, more natural) version of RV R3n
t :

RV R
3n

t =

∑[t/∆n]−2
i=2 3n

iX3n
i+2X∑[t/∆n]

i=2 |3n
iX|2

. (4.7)

Notice that RV R
3n

t is an analogue of the classical autocorrelation estimator. The
following result describes the asymptotic behaviour of RV R

3n

t .

Proposition 4.4. Assume that the conditions of Theorem 3.3 and (4.1) hold, and
let h = (ρ3β (2))−1. Then we obtain

h(RV R
3n

t )
u.c.p−−→ β, (4.8)

and, with MPV
3

(X, 1, 1)nt = ∆n(τ3n )−2
∑[t/∆n]−2

i=2 3n
iX3n

i+2X,

∆
−1/2
n (h(RV R

3n

t )− β)MPV 3(X, 2, 0)nt√
1
3
|h′(RV R3n

t )|(1,−RV R3n

t )µ(1,−RV R3n

t )TMPV 3(X, 4, 0)nt

d−−→ N(0, 1), (4.9)

for any t > 0, where µ = (µij)1≤i,j≤2 is given by

µ11 = lim
n→∞

∆−1
n var

(
MPV

3
(BH , 1, 1)n1

)
,

µ12 = lim
n→∞

∆−1
n cov

(
MPV

3
(BH , 1, 1)n1 ,MPV 3(BH , 2, 0)n1

)
,

µ22 = lim
n→∞

∆−1
n var

(
MPV 3(BH , 2, 0)n1

)
,

with H = β + 1
2
.

Remark 4.5. Proposition 4.4 follows from Remark 3.11, since H(x, y) = xy is an
even function. In fact, its proof is much easier than the corresponding result of
Theorem 3.3. The most essential step is the joint central limit theorem for the
nominator and the denominator of RV R

3n

t when X = G (i.e. σ ≡ 1). The latter
can be shown by using Wiener chaos expansion and Malliavin calculus. Let H be a
separable Hilbert space generated by the triangular array (3n

iG/τ
3
n )n≥1,1≤i≤[t/∆n]

with a scalar product 〈·, ·〉H induced by the covariance function of the process
(3n

iG/τ
3
n )n≥1,1≤i≤[t/∆n]. Setting χni = 3n

iG/τ
3
n we deduce the identities

∆1/2
n

[t/∆n]−2∑

i=2

(
χni χ

n
i+2 − ρ3(2)

)
= I2(f (1)

n ), f (1)
n = ∆1/2

n

[t/∆n]−2∑

i=2

χni ⊗ χni+2,

∆1/2
n

[t/∆n]∑

i=2

(
|χni |2 − 1

)
= I2(f (2)

n ), f (2)
n = ∆1/2

n

[t/∆n]∑

i=2

(χni )⊗2,
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where I2 is the second multiple integral. The joint central limit theorem for the
above statistics follows from [20] once we show the contraction conditions

||f (1)
n ⊗1 f

(1)
n ||H⊗2 → 0, ||f (2)

n ⊗1 f
(2)
n ||H⊗2 → 0,

and identify the asymptotic covariance structure by computing 2 limn→∞〈f (i)
n , f

(j)
n 〉H⊗2

for 1 ≤ i, j ≤ 2. We refer to the appendix of [3] for a more detailed proof of such
central limit theorems.

Remark 4.6. The constants βij, 1 ≤ i, j ≤ 2, are now much easier to compute.
They are given as

µ11 = var(Q1Q3) + 2
∞∑

k=1

cov(Q1Q3, Q1+kQ3+k)

= 1 + |ρ3(2)|2 + 2
∞∑

k=1

(|ρ3(k)|2 + ρ3(k + 2)ρ3(|k − 2|),

µ12 = cov(Q2
2, Q1Q3) + 2

∞∑

k=0

cov(Q2
1, Q1+kQ3+k)

= 2|ρ3(1)|2 + 4
∞∑

k=1

ρ3(k)ρ3(k + 2),

µ22 = var(Q2
1) + 2

∞∑

k=1

cov(Q2
1, Q

2
1+k) = 2 + 4

∞∑

k=1

|ρ3(k)|2,

with Qi = 3n
i B

H/
√
var(3n

i B
H). This follows from a well-known formula

cov(Z1Z2, Z3Z4) = cov(Z1, Z3) cov(Z2, Z4) + cov(Z2, Z3) cov(Z1, Z4)

whenever (Z1, Z2, Z3, Z4) is normal.

4.3 Change-of-frequency estimator

Another idea of estimating β is to change the frequency ∆n at which the second order
differences are built. We recall that (τ3n )2 = 4R(∆n)−R(2∆n) and consequently we
obtain the relationship

(τ3n )2 ' ∆2β+1
n

by Assumption 2(i). Observing the latter we define the statistic

COF n
t =

∑[t/∆n]
i=4 |3n,2

i X|2
∑[t/∆n]

i=2 |3n
iX|2

, (4.10)

that is essentially the ratio of MPV 3(X, 2, 0)nt computed at frequencies ∆n and 2∆n.
Recall that (τ3n,2)2 = E(|3n,2

i G|2) = 4R(2∆n)−R(4∆n) and observe

(τ3n,2)2

(τ3n )2
→ 22β+1.
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As a consequence we deduce the convergence

COF n
t

u.c.p−−→ 22β+1.

The following proposition is a direct consequence of (3.11) and the properties of
stable convergence.

Proposition 4.7. Assume that the conditions of Theorem 3.3 and (4.1) hold, and
let h(x) = (log(x)− 1)/2. Then we obtain

h(COF n
t )

u.c.p−−→ β, (4.11)

and

∆
−1/2
n (h(COF n

t )− β)MPV 3(X, 2, 0)nt√
1
3
|h′(COF n

t )|(1,−COF n
t )µ(1,−COF n

t )TMPV 3(X, 4, 0)nt

d−−→ N(0, 1), (4.12)

for any t > 0, where µ = (µij)1≤i,j≤2 is given by

µ11 = lim
n→∞

∆−1
n var

(
MPV 3

2 (BH , 2, 0)n1
)
,

µ12 = lim
n→∞

∆−1
n cov

(
MPV 3

2 (BH , 2, 0)n1 ,MPV 3(BH , 2, 0)n1
)
,

µ22 = lim
n→∞

∆−1
n var

(
MPV 3(BH , 2, 0)n1

)
,

with H = β + 1
2
.

Let us emphasize that the normalized statistic in (4.12) is again self-scaling. We
recall that the approximation

(τ3n,2)2

(τ3n )2
− 22β+1 = o(∆1/2

n ),

which follows from (4.1), holds for our main example g(x) = xβ exp(−λx) when
β ∈ (−1

2
, 0) ∪ (0, 1

4
) and λ > 0.

Remark 4.8. Observe the identity

Xi∆n − 2X(i−2)∆n +X(i−4)∆n = 3n
iX − 23n

i−1X + 3n
i−2X.

The latter implies that

µ11 = 2 + 2−4β

∞∑

k=1

|ρ3(k + 2)− 4ρ3(k + 1) + 6ρ3(k)− 4ρ3(|k − 1|) + ρ3(|k − 2|)|2,

µ12 = 2−2β(ρ3(1)− 1) + 21−2β

∞∑

k=0

|ρ3(k + 2)− 2ρ3(k + 1) + ρ3(k)|2,

µ22 = 2 + 4
∞∑

k=1

|ρ3(k)|2.
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5 Proofs

Let us start by noting that the intermittency process σ is assumed to be càdlàg, and
thus σ− is locally bounded. Consequently, w.l.o.g. σ can be assumed to be bounded
on compact intervals by a standard localization procedure (see e.g. Section 3 in [6]
for more details). We also remark that the process F defined by (2.7) is continuous.
Hence, F is locally bounded and can be assumed to be bounded on compact intervals
w.l.o.g. by the same localization procedure.

Below, all positive constants are denoted by C or Cp if they depend on some
parameter p. In the following we present three technical lemmas.

Lemma 5.1. Under Assumption 1 we have that

E(|3n
iX|p) ≤ Cp(τ

3
n )p , i = 2, . . . , [t/∆n] (5.1)

for all p > 0.

Proof of Lemma 5.1. Recall that due to Assumption 1(ii) the function |g(2)| is non-
increasing on (a,∞) for some a > 0 and assume w.l.o.g. that a > 1. By the
decomposition (2.10) and Burkholder’s inequality we deduce that

E(|3n
iX|p) ≤ Cp

(
(τ3n )p+E

(∫ ∞

0

(
g(s+2∆n)−2g(s+∆n)+g(s)

)2

σ2
(i−2)∆n−sds

)p/2)
,

since σ is bounded on compact intervals. We immediately obtain the estimates
∫ 1

0

(
g(s+ 2∆n)− 2g(s+ ∆n) + g(s)

)2

σ2
(i−2)∆n−sds ≤ C(τ3n )2 ,

∫ a

1

(
g(s+ 2∆n)− 2g(s+ ∆n) + g(s)

)2

σ2
(i−2)∆n−sds ≤ C∆2

n ,

because g(2) is continuous on (0,∞) and σ is bounded on compact intervals. On the
other hand, since |g(2)| is non-increasing on (a,∞), we deduce that

∫ ∞

a

(
g(s+ 2∆n)− 2g(s+ ∆n) + g(s)

)2

σ2
(i−2)∆n−sds ≤ ∆2

nF(i−2)∆n .

Finally, the boundedness of the process F implies (5.1).

Next, for any stochastic process f and any s > 0, we define the (possibly infinite)
measure

π3n
f,s (A) =

∫

A

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2

f 2
s−xdx

(τ3n )2
, A ∈ B(R>0), (5.2)

and set π3n
f,s(x) = πnf,s({y : y > x}).

Lemma 5.2. Under Assumption 1 it holds that

sup
s∈[0,t]

π3n
σ,s(ε) ≤ Cπ3

n (ε) (5.3)

for any ε > 0, where the measure π3
n is given by (2.11).
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Proof of Lemma 5.2. Recall again that |g(2)| is non-increasing on (a,∞) for some
a > 0, and assume w.l.o.g. that a > ε. Since the processes σ and F are bounded we
deduce exactly as in the previous proof that

∫ ∞

ε

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2

σ2
s−xdx

=

∫ a

ε

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2

σ2
s−xdx

+

∫ ∞

a

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2

σ2
s−xdx ≤ C(π3

n (ε) + ∆2
n).

This completes the proof of Lemma 5.2.

Finally, the last lemma gives a bound for the correlation function r3n (j).

Lemma 5.3. Under Assumption 2 there exists a sequence (h(j))j≥1 such that

|r3n (j)| ≤ h(j),
∞∑

j=1

h(j) <∞, (5.4)

for all j ≥ 1.

Proof of Lemma 5.3. This result follows directly from Lemma 1 in [3]. Recall that
r3n (j)→ ρ3(j) and

∑∞
j=1 |ρ3(j)| <∞, so the assertion is not really surprising.

Observe that Lemma 5.3 implies the conditions (2.14) and (2.15).

5.1 Proof of Theorem 3.1

In the following we will prove Theorem 3.1 and 3.3 only for k = 1, p1 = p. The
general case can be obtained in a similar manner by an application of the Hölder
inequality.

Note that MPV 3(X, p)nt is increasing in t and the limit process of (3.4) is con-
tinuous in t. Thus, it is sufficient to show the pointwise convergence

MPV 3(X, p)nt
P−−→ mp

∫ t

0

|σs|pds,

where mp = E(|N(0, 1)|p). We perform the proof of Theorem 3.1 in two steps.

• The crucial approximation: First of all, we prove that we can use the approxima-
tion 3n

iX ≈ σ(i−2)∆n3
n
iG without changing the limit of Theorem 3.1, i.e. we show

that

∆n(τ3n )−p
[t/∆n]∑

i=2

(
|3n

iX|p − |σ(i−2)∆n3
n
iG|p

)
P−−→ 0. (5.5)
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An application of the inequality ||x|p−|y|p| ≤ p|x− y|(|x|p−1 + |y|p−1) for p > 1 and
||x|p − |y|p| ≤ |x − y|p for p ≤ 1, (5.1) and the Cauchy-Schwarz inequality implies
that the above convergence follows from

∆n(τ3n )−2

[t/∆n]∑

i=2

E(|3n
iX − σ(i−2)∆n3

n
iG|2) −→ 0. (5.6)

Observe the decomposition

3n
iX − σ(i−2)∆n3

n
iG = Ani +Bn,ε

i + Cn,ε
i

with

Ani =

∫ i∆n

(i−1)∆n

g(i∆n − s)(σs − σ(i−2)∆n)W (ds)

+

∫ (i−1)∆n

(i−2)∆n

(
g(i∆n − s)− 2g((i− 1)∆n − s)

)
(σs − σ(i−2)∆n)W (ds)

Bn,ε
i =

∫ (i−2)∆n

(i−2)∆n−ε

(
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)

)
σsW (ds)

− σ(i−2)∆n

∫ (i−2)∆n

(i−2)∆n−ε
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)W (ds)

Cn,ε
i =

∫ (i−2)∆n−ε

−∞

(
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)

)
σsW (ds)

− σ(i−2)∆n

∫ (i−2)∆n−ε

−∞
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)W (ds)

Lemma 5.2 and the boundedness of σ imply that

∆n(τ3n )−2

[t/∆n]∑

i=2

E(|Cn,ε
i |2) ≤ Cπ3

n (ε), (5.7)

and by (2.9) and Assumption 2(i) we deduce that

∆n(τ3n )−2

[t/∆n]∑

i=2

E(|Cn,ε
i |2) −→ 0,

as n→∞, for all ε > 0. Next, set v(s, η) = sup{|σs − σr|2| r ∈ [−t, t], |r − s| ≤ η}
for s ∈ [−t, t] and denote by ∆σ the jump process associated with σ. We obtain the
inequality

∆n(τ3n )−2

[t/∆n]∑

i=2

E(|Ani |2) ≤ ∆n

[t/∆n]∑

i=2

E(v((i− 2)∆n, 2∆n)) (5.8)

≤ λ+ ∆nE
( ∑

s∈[−t,t]
|∆σs|21{|∆σs|≥λ}

)
= θ(λ, n)
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for any λ > 0. We readily deduce that

lim
λ→0

lim sup
n→∞

θ(λ, n) = 0.

Next, observe the decomposition Bn,ε
i = Bn,ε

i (1) +Bn,ε
i (2) with

Bn,ε
i (1) =

∫ (i−2)∆n

(i−2)∆n−ε

(
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)

)

× (σs − σ(i−2)∆n−ε)W (ds)

Bn,ε
i (2) = (σ(i−2)∆n−ε − σ(i−2)∆n)

×
∫ (i−2)∆n

(i−2)∆n−ε
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)W (ds).

We deduce that

∆n(τ3n )−2

[t/∆n]∑

i=2

E(|Bn,ε
i (1)|2) ≤ ∆n

[t/∆n]∑

i=2

E(v((i− 2)∆n, ε)), (5.9)

∆n(τ3n )−2

[t/∆n]∑

i=2

E(|Bn,ε
i (2)|2) ≤ ∆n

[t/∆n]∑

i=2

E(v((i− 2)∆n, ε)
2)

1
2 .

By using the same arguments as in (5.8) we conclude that both terms converge to
zero and we obtain (5.6), which completes the proof of Theorem 3.1.

• The blocking technique: Having justified the approximation 3n
iX ≈ σ(i−2)∆n3

n
iG

in the previous step, we now apply a blocking technique for σ(i−2)∆n3
n
iG: we divide

the interval [0, t] into big sub-blocks of the length l−1 and freeze the intermittency
process σ at the beginning of each big sub-block. Later we let l tend to infinity.

For any fixed l ∈ N, observe the decomposition

MPV 3(X, p)nt −mp

∫ t

0

|σs|pds = ∆n(τ3n )−p
[t/∆n]∑

i=2

(
|3n

iX|p−|σ(i−2)∆n3
n
iG|p

)
+Rn,l

t ,

where

Rn,l
t = ∆n(τ3n )−p

( [t/∆n]∑

i=2

|σ(i−2)∆n3
n
iG|p −

[lt]∑

j=1

|σ j−1
l
|p
∑

i∈Il(j)
|3n

iG|p
)

+
(

∆n(τ3n )−p
[lt]∑

j=1

|σ j−1
l
|p
∑

i∈Il(j)
|3n

iG|p −mpl
−1

[lt]∑

j=1

|σ j−1
l
|p
)

+mp

(
l−1

[lt]∑

j=1

|σ j−1
l
|p −

∫ t

0

|σs|pds
)
,
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and

Il(j) =
{
i| i∆n ∈

(j − 1

l
,
j

l

]}
, j ≥ 1.

Notice that the third summand in the above decomposition converges to 0 in prob-
ability due to Riemann integrability of σ. By Theorem 1 in [4] we know that
MPV 3(G, p)nt

u.c.p−−→ mpt, because the condition (2.14) is satisfied (see Lemma 5.3).
This implies the negligibility of the second summand in the decomposition when we
first let n→∞ and then l→∞. As σ is càdlàg and bounded on compact intervals,
we finally deduce that

lim
l→∞

lim sup
n→∞

P(|Rn,l
t | > ε) = 0 ,

for any ε > 0. This completes the proof of the second step and of Theorem 3.1.

5.2 Proof of Theorem 3.3

Here we apply the same scheme of the proof as for Theorem 3.1. We start with
the justification of the approximation 3n

iX ≈ σ(i−2)∆n3
n
iG and proceed with the

blocking technique.

• The crucial approximation: Here we prove that

∆1/2
n (τ3n )−p

[t/∆n]∑

i=2

(
|3n

iX|p − |σ(i−2)∆n3
n
iG|p

)
P−−→ 0. (5.10)

Again we apply the inequality ||x|p − |y|p| ≤ p|x − y|(|x|p−1 + |y|p−1) for p > 1,
||x|p − |y|p| ≤ |x− y|p for p ≤ 1 and (5.1) to deduce that

∆1/2
n (τ3n )−p

[t/∆n]∑

i=2

E
(∣∣∣|3n

iX|p − |σ(i−2)∆n3
n
iG|p

∣∣∣
)
|

≤ ∆1/2
n (τ3n )−(p∧1) ×

[t/∆n]∑

i=2

(
E(|3n

iX − σ(i−2)∆n3
n
iG|2)

) p∧1
2 .

Now we use a similar decomposition as in the proof of Theorem 3.1:

3n
iX − σ(i−2)∆n3

n
iG = Ani +Bn,ε

(1)
n

i +
l∑

j=1

Cn,ε
(j)
n ,ε

(j+1)
n

i ,

where Ani , Bn,ε
(1)
n

i are defined as above, 0 < ε
(1)
n < · · · < ε

(l)
n < ε

(l+1)
n =∞ and

Cn,ε
(j)
n ,ε

(j+1)
n

i

=

∫ (i−2)∆n−ε(j)n

(i−2)∆n−ε(j+1)
n

(
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)

)
σsW (ds)

− σ(i−2)∆n

∫ (i−2)∆n−ε(j)n

(i−2)∆n−ε(j+1)
n

g(i∆n − s)

− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)W (ds).
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An application of Assumptions 1, 2 and 3-γ, for γ ∈ (0, 1] with γ(p ∧ 1) > 1
2
, and

Lemma 5.2 implies that (recall that σ is bounded on compact intervals)

∆1/2
n (τ3n )−p

[t/∆n]∑

i=2

(
E(|Ani |2)

) p∧1
2 ≤ C∆

γ(p∧1)− 1
2

n , (5.11)

∆1/2
n (τ3n )−p

[t/∆n]∑

i=2

(
E(|Bn,ε

(1)
n

i |2)
) p∧1

2 ≤ C∆−1/2
n |ε(1)

n |γ(p∧1),

∆1/2
n (τ3n )−p

[t/∆n]∑

i=2

(
E(|Cn,ε

(j)
n ,ε

(j+1)
n

i |2)
) p∧1

2

≤ C∆−1/2
n |ε(j+1)

n |γ(p∧1)|π3
n (ε(j+1)

n )− π3
n (ε(j)

n )| p∧12 ,

∆1/2
n (τ3n )−p

[t/∆n]∑

i=2

(
E(|Cn,ε

(l)
n ,ε

(l+1)
n

i |2)
) p∧1

2 ≤ C∆−1/2
n π3

n (ε(l)
n )

p∧1
2 ,

for 1 ≤ j ≤ l− 1. In [4] (see Lemma 3 therein) we have proved the following result:

if the condition (2.16) is satisfied then there exist sequences 0 < ε
(1)
n < · · · < ε

(l)
n <

ε
(l+1)
n = ∞ such that all terms on the right-hand side of (5.11) converge to 0. Set
λ = (3−2β)(1− δ) for some δ > 0 such that λ > 1/(p∧1). This is possible, because
3− 2β ∈ (2, 4) and the assumptions of Theorem 3.3 imply that p > 1/2. We obtain
that

π3
n (εn) ≤ C∆λ(1−κ)

n ,

for any εn = ∆κ
n, κ ∈ (0, 1), by (2.9) and Assumption 2(i). Thus, we deduce (2.16)

which implies the convergence of (5.10).

• The blocking technique: Again we only consider the case d = 1, k = 1 and p1 = p.
We recall the decomposition from the proof of Theorem 3.1:

∆−1/2
n

(
MPV 3(X, p)nt −mp

∫ t

0

|σs|pds
)

(5.12)

= ∆−1/2
n

(
∆n(τ3n )−p

[lt]∑

j=1

|σ j−1
l
|p
∑

i∈Il(j)
|3n

iG|p −mpl
−1

[t/l∆n]∑

j=1

|σ j−1
l
|p
)

+ ∆1/2
n (τ3n )−p

[t/∆n]∑

i=2

(
|3n

iX|p − |σ(i−2)∆n3
n
iG|p

)
+R

n,l

t ,

where

R
n,l

t = ∆1/2
n (τ3n )−p

( [t/∆n]∑

i=2

|σ(i−2)∆n3
n
iG|p −

[lt]∑

j=1

|σ j−1
l
|p
∑

i∈Il(j)
|3n

iG|p
)

+mp∆
−1/2
n

(
l−1

[lt]∑

j=1

|σ j−1
l
|p −

∫ t

0

|σs|pds
)
.
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Note that the negligibility of the second summand in the decomposition (5.12) has
been shown in the previous step. The convergence

lim
l→∞

lim sup
n→∞

P(|Rn,l

t | > ε) = 0,

for any ε > 0, has been shown in [3] (see the proof of Theorem 7 therein). Finally, we
concentrate on the first summand of the decomposition (5.12). By Remark 11 in [4]

we know that (Gt,∆
−1/2
n (MPV 3(G, p)nt −mpt)) ⇒ (Gt,

√
µW ′

t), where µ is defined
by (3.7), because r3n (j)→ ρ3(j) and condition (2.15) holds (see again Lemma 5.3).
An application of the condition D′′ from Proposition 2 in [1] shows that

∆−1/2
n (MPV 3(G, p)nt −mpt)

st−→ √µW ′
t .

Now we deduce by the properties of stable convergence:

∆−1/2
n

(
∆n(τ3n )−p

[lt]∑

j=1

|σ j−1
l
|p
∑

i∈Il(j)
|3n

iG|p −mpl
−1

[t/l∆n]∑

j=1

|σ j−1
l
|p
)

st−→ √µ
[lt]∑

j=1

|σ j−1
l
|p∆l

jW
′,

for any fixed l. On the other hand, we have that

√
µ

[lt]∑

j=1

|σ j−1
l
|p∆l

jW
′ P−−→ √µ

∫ t

0

|σs|pdW ′
s

as l→∞. This completes the proof of Theorem 3.3.
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