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In the early 60ies stereology was a collection of mathematical methods to extract
spatial information of a material of interest from sections. Modern stereology may
be considered as “sampling inference for geometrical objects” [5, 9] thus emphasizing
the two main columns stereology rests upon: sampling theory and geometry. In this
first Section on integral geometry, we will discuss two of the most important geo-
metric concepts for stereology: kinematic integral formulas and results of Blaschke-
Petkantschin type. The proofs are exclusively based on invariance arguments and an
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This text is the extended version of two talks held at the Summer Academy
“Stochastic Geometry, Spatial Statistics and Random Fields” in the Soeller-
haus, Germany, in September 2009. It forms (with slight modifications) a
chapter of the Springer lecture notes “Lectures on Stochastic Geometry, Spa-
tial Statistics and Random Fields” and is a self-containing introduction into
integral geometry and its applications in stereology.

The most important integral geometric tools for stereological applications
are kinematic formulas and results of Blaschke-Petkantschin type. Therefore,
Crofton’s formula and the principal kinematic formula for polyconvex sets are
stated and shown using Hadwiger’s characterization of the intrinsic volumes.
Then, the linear Blaschke-Petkantschin formula is proved together with cer-
tain variants for flats containing a given direction (vertical flats) or contained
in an isotropic subspace. The proofs are exclusively based on invariance ar-
guments and an axiomatic description of the intrinsic volumes.

These tools are then applied in model-based stereology leading to unbiased
estimators of specific intrinsic volumes of stationary random sets from obser-
vations in a compact window or a lower dimensional flat. Also, Miles-formula
for stationary and isotropic Boolean models with convex particles are derived.
In design-based stereology, Crofton’s formula leads to an unbiased estimator
of intrinsic volumes from isotropic uniform random flats. To estimate the
Euler characteristic, which cannot be estimated using Crofton’s formula, the
disector design is presented. Finally we discuss design-unbiased estimation of
intrinsic volumes from vertical and from isotropic sections.
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axiomatic description of the intrinsic volumes. Section 2 is then devoted to Stere-
ology and describes in detail, how geometric identities lead to unbiased estimation
procedures. The influence from sampling theory will also be mentioned in that later
section.

1.1 Intrinsic volumes and kinematic integral formula

We start which a deliberately vague question on how to sample a set K C R?. In
order to avoid possibly costly measurements on the whole of K, we sample K with a
“randomly moved” sampling window M C R¢ and consider only the part of K that
is inside the moved window. To fix ideas, we assume that K and M are elements of
the family K of convex bodies (compact convex subsets) in R?, that the (orientation
preserving) motion is the composition of a translation with a random vector ¢ € R?
and a random rotation p € SO, (special orthogonal group). Assume further that
f + K — R is a functional which gives, for each observation, the measured value
(think of the volume). What is the expected value of f(K N p(M +€))?

To make this question meaningful, we have to specify the distributions of p and &.
One natural condition would be that the distribution of K'Np(M +¢&) is independent
of the location and orientation of M. In particular, this implies that p should
be right invariant: p o R and p have the same distribution for any deterministic
R € SO,;. The space SOy, identified with the family of all orthonormal matrices
in R™? with determinant 1 and endowed with the induced topology, becomes a
compact topological group. The theory of invariant measures implies that there
is a unique right invariant probability measure on SOy, which we denote by v.
This measure, also called normalized Haar measure, has even stronger invariance
properties: it is inversion invariant in the sense that p and p~! have the same
distribution. Together with the right invariance, this implies that v is also left
invariant in the obvious sense. The measure p is therefore the natural measure on
SOy, its role being comparable to the one of the Lebesgue measure vy on RY. We
will therefore just write dR = v(dR) when integrating with respect to this measure.
The matrix corresponding to the random rotation p can be constructed explicitly by
applying the Gram-Schmidt orthonormalization algorithm to a d-tuple (11,...,74)
formed by random i.i.d. uniform vectors in the unit sphere S*~'. Note that the
vectors 1y, . ..,nq are almost surely linearly independent.

Similar considerations for the random translation vector £ lead to the contra-
dictory requirement that the distribution of £ should be a multiple of the Lebesgue
measure g on R% In contrast to SO, the group R? is only locally compact but
not compact. We therefore have to modify our original question. In view of appli-
cations we assume that the moved window hits a fixed reference set A € K, which
contains K. Using the invariant measures defined above we then have

Jso, Jpa (K OV R(M + 2)) dedR
Ef(KNp(M +¢)) = fSOjOfRdl{AﬂR(M+x) e di (1)

where we assumed f(f)) = 0. Enumerator and denominator of this expression are
of the same form and we first consider the special case of the denominator with



M = B,(0),r>0,and A=K € K:

/ / 1{K N R(B,(0) + ) # 0} dz dR = va(K @ B, (0)).

By a fundamental result in convex geometry, this volume is a polynomial of degree
at most d in r > 0, usually written as

d
va(K @ B,(0) = Y 1" kaVi(K),

where ; denotes the volume of the j-dimensional unit ball. This result is the Steiner
formula. Tt defines important functionals, the intrinsic volumes Vy,...,Vy. They
include the volume Vy(K) = v4(K), the surface area 2V,_1(K) of the boundary
of K (when int K # () and the trivial functional Vo(K) = 1{K # (0}, also called
Euler(-Poincaré) characteristic x(K). The Steiner formula implies

d
/SO /]Rd Vo(K N R(B,(0) +x))dxdR = Zrd_j/id_jv-([()_

Already in this special case with M being a ball, the intrinsic volumes play an
essential role to express kinematic integrals explicitly. We will soon see that this
even holds true when Vj is replaced by a function f : K — R satisfying some natural
properties. To do so, we clarify basic properties of V; first.

It is easily seen from the Steiner formula that V; : K — R is invariant under
rigid motions and is homogeneous of degree j. Here, we call a function f: I — R

e invariant under rigid motions if f(R(K+x)) = f(K) forall K € IC, R € SO,,
and = € R, and

o homogeneous of degree j if f(aK) = ol f(K) for all K € K, a > 0.

Using convexity properties, V; can be shown to be additive and monotone (with
respect to set inclusion). Here f: K — R is

e additive if f()) =0 and
FUK U M) = £(I) + F(M) — (K 1 M)
for K, M € K with KU M € K (implying K N M # ().
e monotone if f(K) < f(M) for all K, M € K, K C M.

Already a selection of these properties is sufficient to characterize intrinsic volumes
axiomatically. This is the content of Hadwiger’s famous characterization theorem.

Theorem 1.1 (Hadwiger). Suppose f : K — R is additive, motion invariant and
monotone. Then there exist cg,...,cq > 0 with

d
f=Y ¢V,
=0



This shows that the intrinsic volumes are essentially the only functionals that
share some natural properties with the volume. We will use this result without proof.
It implies in particular, that under the named assumptions on f, we only have to
consider the enumerator of (1) for f = V}. In view of Hadwiger’s characterization
the following result gives a complete answer to our original question for a large class
of measurement functions f.

Theorem 1.2 (Principal kinematic formula). Let j € {0,...,d} and K,M € K.
Then

/SO /R (K NR(M + x))dz dR = Zcfj VUKWV gy (M),
d

where the constants are given by

rilky,

(2)

N s;lkg,

=1 i
In certain cases the formula remains valid even when the rotation integral is omitted.
This is trivially true for M = B,.(0), but also for j =d and j = d — 1.

Proof. We denote the left hand side of the principal kinematic formula by f(K, M).
The functional f(K, M) is symmetric in K and M due to the invariance properties
of v4, v and V. The homogeneity of V; and a substitution yield

flaK, aM) = o™ f(K,M), o> 0.

As f(K,-) is additive, motion invariant and monotone, Hadwiger’s characterization
theorem implies the existence of constants ¢y(K),...,cq(K) > 0 (depending on K)
with f(K,-) = 32¢_, cx(K)Vi. Hence, for o > 0,

d
Zc( M)« —ch Wi(aM) = f(K,aM)
k=0

- ad“f(lK, M) = o™ F(M, LK)

d
:Z K)o o > 0.

k=0

Comparison of the coefficients of these polynomials yields ¢, (M) = 0 for £ < j
and that ¢, (M) is proportional to Vy_j.;(M) for k > j. This gives the principal
kinematic formula with unknown constants. The constants are then determined by
appropriate choices for K and M, for which the integrals can be calculated explicitly;
see also the comment after Theorem 1.4. O

This solves our original question for f = V;. Formula (1) now gives

S T IV (K ) Vg (M)

EV;(KNJ(M +¢§)) = Zi—o kd V(A (M)

)
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if (9,€) has its natural distribution on {(R,z) : R(M + z) N A # (}. As invariant
integrations like in Theorem 1.2 do always lead to functionals in the linear span of
Vo, ..., Vy, an iterated version for k + 1 convex bodies can be shown by induction.

Theorem 1.3 (Iterated principal kinematic formula). Let j € {0,...,d}, k > 1,
and Kg, ..., K, € K. Then

/ // V](KoﬂR1<K1—|—JI1>ﬁﬂRk(Kk—i‘fL’k))dl‘ldedl‘dek
SOy JR4 SO, JR4
d

= Z C;'l:;z(.):('i"mk Vmo (KO) A mG (Kk)
mMo,...,Mp=J
mo+---+mp=kd+j

with constants given by (2).
For j = d and 7 = d — 1 the rotation integrals on the left hand side can be
omitted.

Theorem 1.2 has a counterpart where M is replaced by an affine subspace. For
k€ {0,...,d} let £¢ be the Grassmannian of all k-dimensional linear subspaces of
R?. The image measure of v on SO; under R — RLy, Ly € L¢ fixed, is a rotation
invariant probability measure on £¢, and integration with respect to it is denoted
by dL. Tt is the only rotation invariant distribution on £¢. Similarly, let £ be
the space of all (affine) k-dimensional flats in RY. The elements E € &I are called
k-flats and can be parametrized in the form E = R(Lo +x) with R € SOy, z € Ly,
and a fixed space Ly € L£¢. The function (R,z) — R(Lg + z) on SOy x Lg maps
the measure v ® v, to a motion invariant measure on 5,?. Integration with this
measure is denoted by dE. Up to a factor, this is the only motion invariant measure
on &L

We will later need families of subspaces containing or contained in a given space
L e ﬁz, 0<k<d:

Lh=

T

{MecLi:McCL}, ifo<r<k,
{MecL£i:-M>DL}, ifk<r<d

Again, there is a uniquely determined invariant probability measure on £L. We will
write dM when integrating with respect to it; the domain of integration will always
be clear from the context. For r < k existence and uniqueness of this probability
measure follow from identifying L with R¥. For r > k, this measure is obtained as

image of [ 22 A0 dM under M — M & L. An invariance argument also shows that
r—k

/ F(L, M) d]\/[dL:/ F(L,M)dLdM (3)
cidJk cdJrM

holds for any measurable f : {(L,M) € L& x £ : M € LE} — [0,00). The
corresponding family of incident flats will only be needed for 0 < r < k < d and is
defined as the space

EF={Fe& . FCE}
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of all r-flats contained in a fixed k-flat E. Integration with respect to the invariant
measure on this space will again be denoted by dF' and can be derived by identifying
E with R¥ as in the linear case.

We can now state the announced counterpart of Theorem 1.2 with M replaced
by a k-flat.

Theorem 1.4 (Crofton formula). For 0 < j <k < d and K € K we have
/ ViKNE)dE = &5y Vo (K)
gk

with c?”j*kﬂ given by (2).

This follows (apart from the value of the constant) directly from Hadwiger’s
characterization theorem, as the left hand side is additive, motion invariant, mono-
tone and homogeneous of degree d — k + j. The constant is derived by setting
K = By(0). That the same constants also appear in the principal kinematic formula
is not coincidental, but a consequence of a deeper connection between the principal
kinematic formula and Crofton integrals; see also the 2nd item of the paragraph
Further Reading at the end of this Section.

The results for V; can be extended to polyconver sets, i.e. sets in

R={KCR':3meN, Ki,... K, € K with K = | | K;}.
i=1
In fact, additivity suggests how to define V;(K U M) for two convex bodies K, M,
which not necessarily satisfy K UM € K. Induction then allows extension of V; on
R. That such an extension is well-defined (it does not depend on the representation
of K € R as a union of convex bodies) follows from a result of Groemer [11]. We
denote the extension of V; on R again by V;. Using induction on m, additivity
implies the inclusion-exclusion principle
Vi(KiU-- UKy =) (1) Y V(K n---nK,,)

r=1 1<i1 < <ip<m

for all m € N and Ki,...,K,, € R. This principle in particular implies that
Theorems 1.2, 1.3, and 1.4 remain valid with the convexity assumption replaced by
the assumption that all occuring sets are polyconvex.

Crofton’s formula allows to derive mean values like in (1), where the moved
convex body is replaced by a k-flat. A random k-flat E hitting a given reference
space A € B(R?) with the natural distribution

JyHE NA# 0} dE
B Jeg {E' N A% 0} dE

P(E € ") (4)

is called an IUR (isotropic uniform random) k-flat in A. For K € R with K C A,

Crofton’s formula for an IUR k-flat in A € R gives the mean value
Ck,dfk:Jrj Vdkarj (K)

EV(KNE)= 2% _
! colq " Vai(A)

(5)



for 0 < j < k < d. Hence, up to a known multiplicative constant depending on A,
the random variable V;(K N E) is an unbiased estimator of V;_,;(K). The relations
(5) are sometimes called fundamental stereological formulas. We will discuss them
and related stereological relations in more detail in Section 2.

It is not difficult to construct an IUR k-flat E in a compact set A. For k = 0
the flat F is a point, uniformly distributed in A. For k > 0 choose an r > 0
with A C B,(0) and a linear space Ly € L{. If p € SO, is a random rotation with
distribution v and 7 is independent of p with the uniform distribution on B, (0)NLg,
then E = p(Lo +n) is an IUR k-flat in B,.(0). Conditioning on the event EN A # ()
yields an IUR k-flat in A. The construction of an IUR k-flat can be simplified when
k =1 (IUR line) or kK = d—1 (IUR hyperplane). To obtain an IUR line in B,.(0) one
can choose a uniform vector n € S¥~ and, given 7, a uniform point ¢ € B,(0) N n*.
The line E parallel to n passing through ¢ then is an IUR line in B,.(0). In a similar
way, an [UR hyperplane can be constructed by representing it by one of its normals
and its closest point to 0. For d = 2 and d = 3, which are the most important cases
in applications, the construction of the random rotation p can thus be avoided.

It should be noted that an IUR k-flat in By (0) cannot be obtained by choosing
k + 1 ii.d. uniform points in B;(0) and considering their affine hull H. Although
H has almost surely dimension k, its distribution is not coinciding with the nat-
ural distribution of F in (4). The k-flat H is called point weighted k-flat, and its
(non-constant) density with respect to f(.) 1{E N B;(0) # 0}dE can be calculated
explicitly using the affine Blaschke-Petkantschin formula. As formulas of Blaschke-
Petkantschin type play an important role in stereology, we discuss them in detail in
the next section.

1.2 Blaschke-Petkantschin formulas

Suppose we have to integrate a function of g-tuples (zy,...,7,) of points in R?
with respect to the product measure v7. In several applications computations can
be simplified by first integrating over all ¢g-tuples of points in a g-dimensional lin-
ear subspace L (with respect to vJ) and subsequently integrating over all linear
subspaces with respect to the Haar measure fﬁgmm dL. The case ¢ = 1, d = 2

corresponds to the well-known integration in the plane using polar coordinates. The
Jacobian appearing in the general transformation formula turns out to be a power of

VQ(xlﬂ S 7x¢1) = VQ([[]?xl] PR [07xQ])v

where [0,21] @ --- @ [0, 2] is the parallelepiped spanned by the vectors zy, ..., x,.
To simplify notation, we will just write dx for integration with respect to Lebesgue
measure in R, as the appropriate dimension k can be read off from the domain of
integration under the integral sign.

Theorem 1.5 (Linear Blaschke-Petkantschin formula). Let ¢ € {1,...,d} and f :
(R4 — [0, 00) be measurable. Then

Fade =bo, [ [ #@) Vi) .

(RY)
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with
Wd—q+1 "~ Wd
bdq =
wl .. wq
where w; = jk; denotes the surface area of the unit ball in R.
For the proof, which is by induction on ¢, we use a generalization of the polar
coordinate formula.
Lemma 1.6. Let r € {0,...,d — 1}, Ly € L% be fived and f : R? — [0,00) be
measurable. Then

L C”C”/L/f Yd(x, L)Y dx dM,
0

7‘+1

where d(z, Lo) is the distance of x to Ly.

Proof. Let Lo(u) = {Lo 4+ au : a« > 0} be the positive hull of Ly and u. Then
Fubini’s theorem and spherical coordinates (in L)) yield

f(z)dz:/ flz+y)dydx
Rd Lo J L

L+
= / / / f(z 4+ au)a®™ " duda dx
Lo Se-1nLg

/ f(x)d(z, Lo) " dx du
sd=1nL¢ J Lo(u)

“"”/ /f d(z, Lo)™"" dx dM.
Lo

This concludes the proof of Lemma 1.6. O

Proof of Theorem 1.5. For ¢ = 1 the assertion reduces to Lemma 1.6 with » = 0.
We assume now that the assertion is true for some ¢ € N and all dimensions d, and
use the fact that

Vq+1(x1, ce ,[Eq+1) = Vq(xl, o ,Iq)d(l'q_H, L), (6)

if zq,...,24€ L, L € Eg. Fubini’s theorem, the induction hypothesis and Lemma
1.6 give

I:/‘ ﬂ@WZ/ flz,y)dxdy
(Ra)e+1 R4 J (RY)a

= baq / / f(a,y)Vy U (x) drdL dy
Rd Lg La

= byy / / fz,y) dyVi(z) dzdL
cd JLa JRA
:bdq‘*’(;—q / / / / f(z,y)d(y, L)1 dydMV;l’q(:z:) dx dL
cdJra ek, Jm

= / / / fz,y)d(y, L) 'VI U (z) dw dL dy dM,
cd  JIm S J e

= bdq



where the integrals over ¢ and (¢ 4+ 1)-dimensional subspaces may be interchanged
due to (3). From (6) and an application of the induction hypothesis for a g-fold
integral over the (¢ + 1)-dimensional space M with function f(-,y)V1(-,y) 971,
we get

I:bdq (@, )V i (2, 9) 7'V (2) dv dL dy dM
cd, LM JLa

b

bagtdi—g / / £ (@ 9V g (2, 9 s dy M
2b (¢+1)g Jcd, Ma

= bd (g+1) / / q+1 )d—q—l dzdM.
Ld Ma+1
This concludes the proof. O

Amazingly, this shows that the linear Blaschke-Petkantschin formula follows by
a relatively simple induction on ¢ and a suitable use of spherical coordinates in
subspaces of R

There are many formulas of Blaschke-Petkantschin type in the literature. Fol-
lowing [22] we can describe their common feature: Instead of integrating g-tuples
of geometric objects (usually points or flats) directly, a 'pivot’ is associated to this
tuple (usually span or intersection) and integration of the g-tuple is first restricted
to one pivot, followed by an integration over all possible pivots. For integrations
the natural measures are used, and a Jacobian comes in. In Theorem 1.5, the pivot
is the linear space (almost everywhere) spanned by the ¢ points z1,...,z,. As an
affine subspace of dimension ¢ is spanned by ¢ + 1 affine independent points, a sim-
ilar formula for affine ¢-flats is to be expected. Such a formula actually holds and
is called affine Blaschke-Petkantschin formula. Although its Jacobian is different
from the Jacobian in the linear case, the affine Blaschke-Petkantschin formula can
be directly derived from Theorem 1.5. We refer to [22, Theorem 7.2.7] for details
and give instead an example of another Blaschke-Petkantschin formula, where there
is only one initial geometric element, namely an affine k-flat. The pivot is a linear
space of dimension r > k containing it.

Theorem 1.7. Let 1 <k <r <d—1 andlet f: E — [0,00) be measurable. Then

f( _ Yok / F(E)d(o, E)Y*" dE dL.
Ld SL

Wr—k

Proof. If L € L is fixed, the restriction of the measure

/ / u € ()} dudM
£k Jsi-inpinm

on S*1' N Lt is invariant with respect to all rotations of Lt (leaving L fixed), and
must thus be a multiple of [, ;. 1{u € (-)} du. The factor is w,_i/wWa—-

Hence, integrating
/ Fla() + L)a** 1 da
0



with respect to this measure, and using spherical coordinates in L+ gives

flx+ L)dx = / / / flau+ L)a™* 1 da dudM.
L£L Jsd-inLinm Jo

Wr—k

Wd—k JrL

A back transformation of spherical coordinates appearing on the right in the (r —k)-
dimensional space L+ N M yields

= d—r
. flx+L)de = /LL /leM flx+ L) ||z|" dzdM.

Wr—k

Wd—k

Integration with respect to L € £¢ leads to

f(E)dE:wd_k/ / / Fla+ L) ||2|*" dedM dL
&g Wr—k Jcd Jok JLinM

:”dk// / f(z + L)d(x + L,0)* " dxdLdM
Wr—k Jed S JLEnM

_ Wik / F(E)d(o, E)" dE dM,
rd JeM

Wr—k

where (3) was used. This completes the proof. |

We also notice an example of a Blaschke-Petkantschin formula, where the pivot
is spanned by an initial geometric element and a fixed subspace. We only consider
initial geometric elements and fixed subspaces of dimension one here, although ver-
sions for higher dimensional planes (and ¢-fold integrals, ¢ > 1) exist. The Jacobian
appearing in the following relation is a power of the generalized determinant [L, Ly
of two subspaces L and Lg. In the special case we consider here, L and Lg are lines
and [L, Ly| is just the sine of the angle between them.

Lemma 1.8. Let Ly € L{ be a fized line. Then

Woldg—1

Wiy

f(L)dL = / f(L)[L, Lo)*™2dL dM
cd cho Jrm

holds for any measurable f : LI — [0, 00).

Proof. An invariance argument implies
/d f(span{z})1{||z|| < 1} dz = Kq /d f(L)dL,
R Ly

where span{z} is the line containing = and o. Using this and Lemma 1.6 twice, first
with r = 1 in R? and then with r = 0 in M, we get

f(L)dL = w7 / f(span{e})1{]jz] < 1} de
¢ Rd

_ Yot /£ . /M f(span{z})1{|l2]| < 1}d(z, Lo)"2 dx dM

2/€d

_ Walg-1

L [, 1@ [ 140ell < 1t 20" o] dodz b
£y0 e L

4/€d

10



The innermost integral is
_ - 2 _
L2l [ el de = 2L Lol
LNBi (o)

and the claim follows. O

An affine version of Lemma 1.8 is obtained by replacing f(L) by [, f(z+L)dz,
where now f is a nonnegative measurable function on £¢. Lemma 1.8 and Fubini’s
theorem then imply

ﬂ@M=W%/(// F(E)E, L™ dEdedM,  (7)
Sfl Wiy Eéo ML €1M+I

where [E, Lo] := [L, Lo|, if L € L is parallel to E € £

Further reading

1. Hadwiger’s characterization theorems (with either a monotonicity or a con-
tinuity assumption on f) can be found in the monograph [13]. A simplified
proof (for the characterization based on continuity) can be found in [14], see
also [15] or [3].

2. Hadwiger [13] showed a general kinematic formula, where the intrinsic volume
V; in the principal kinematic formula is replaced by an additive continuous
functional on K and the right hand side involves Crofton-type integrals with f
as functional. In particular, this shows that the constants in the principal kine-
matic formula are the same as in corresponding Crofton formulas, facilitating
their calculation.

3. There are numerous generalizations of the principal kinematic formula and the
Crofton formula. Local versions exist, where the intrinsic volumes are replaced
by support measures (generalized curvature measures). When the averaging
with respect to rotations is omitted, one obtains translative integral formulas;
see [21]. For instance, the principal kinematic formula in its translative form
still allows on the right hand side for a sum of d — j + 1 summands distin-
guishable by their homogeneity properties, but these summands depend on the
relative position of K and M. Iterated versions of the principal translative
formula exist, but in contrast to Theorem 1.3 new functionals appear when
the number of convex bodies is increased; see [27], where a translative formula
of Crofton-type and for half-spaces is derived as well. Integral geometric for-
mulas for convex cylinders can be seen as joint generalizations of the principal
kinematic formula and Crofton’s formula. Details can be found in [22].

We discussed integral geometric formulas for polyconvex sets. However, they
are valid for considerably larger set classes. Already Federer [10] showed that
the principal kinematic formula holds for sets of positive reach. Zahle [29] and
Rother & Zéhle [19] extended kinematic integral formulas to even larger set
classes containing the class of so-called Upg-sets. A set is an element of Upg if
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it can be written as locally finite union of sets of positive reach such that any
finite nonempty intersection of them has again positive reach. The mentioned
results even hold locally, that is, for curvature measures.

4. The idea to base proofs of Blaschke-Petkantschin formulas on invariance ar-
guments is due to Miles [16]. We followed mainly the presentation of his and
Petkantschin’s [18] results in [22]. Santalé’s monograph [20] is a general refer-
ence for Blaschke-Petkantschin formulas. His proofs use differential forms.

2 Stereology

The purpose of this lecture is to give an introduction into stereology with a special
emphasis on the usefulness of integral geometric tools. Stereology (gr.: “stereos”
means solid) is a sub-area of stochastic geometry and spatial statistics dealing with
the estimation of geometric characteristics (like volume, area, perimeter or particle
number) of a structure from samples. Typically samples are sections with or pro-
jections onto flats, intersections with full-dimensional test sets or combinations of
those.

2.1 Motivation

Unlike tomography, stereology is not aiming for a full-dimensional reconstruction
of the geometry of the structure, but rather trying to assess certain key properties.
This is what makes stereology extremely efficient and explains its widespread use in
many applied sciences. As estimation is based on samples of the structure, one has
to assure that these samples are in a certain sense representative for the structure as
a whole — at least concerning the geometric characteristics of interest. Stereologists
therefore assume that the structure is “statistically homogeneous”, a property that
only was vaguely defined in the early literature. The former East German stochastics
school of J. Mecke, D. Stoyan and collaborators (see [24] and the references therein)
made this concept rigorous by considering the structure Z C R as a random closed
set which is stationary (i.e. the distribution of Z+x is independent of z € R?). Often
it was also assumed that Z is also isotropic (the distribution of RZ is independent
of R € SO;). As (weak) model assumptions on Z are needed, this approach is
called the model-based approach . The stationarity assumption is appropriate in
many applications in geology, metallurgy and materials science. It is, however,
often hard to check in other disciplines and certainly inappropriate in anatomy and
soil science. In these cases the design-based approach has to be used, where the
structure of interest is considered deterministic, and the selection of the sample is
done in a controlled randomized way.

The Australian statisticians R. E. Miles and P. J. Davy [17], [9], [8] made this
rigorous by pointing out the strong analogy between stereology and sample surveys.
Sample surveys (think of opinion polls) infer properties of the whole population (e.g.
the total number of citizens voting for the democratic party) from a randomized
sample of the population. In a simplified stereological situation, where a feature
of interest K is contained in a reference space A, the space A corresponds to the
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®

total population, the intersection with a set L corresponds to a sample, and K
corresponds to the subpopulation of interest to us.

This analogy is more than a formal one and allows among other things to transfer
variance reducing methods like systematic random sampling, unequal probability
sampling and stratification to stereology. We return to design-based stereology in a
later section, and start with model-based methods.

Figure 1: General setting in stereology

2.2 Model-based stereology

In model-based stereology we assume that the structure of interest Z C R? is a
stationary random closed set (see e.g. [22]). We want to use integral geometric
formulas from Section 1.1, which we only have shown for polyconvex sets. The
assumption that 7 is stationary and polyconvex is not suitable, as a stationary set
Z # () is known to be almost surely unbounded. Instead we assume that Z is almost
surely locally polyconvex, i.e. Z N K is polyconvex for all K € I, almost surely.
We denote by N(Z N K) the minimal number of convex bodies that is needed to
represent Z N K as their union and assume the integrability condition

E2NZN0AY o oo (8)

Following [22] we call a random set Z C R? a standard random set if
(i) Z is stationary,
(ii) Z is a.s. locally polyconvex, and
(ili) Z satisfies (8).

The class of standard random sets forms the most basic family of random sets
which is flexible enough to model real-world structures reasonably. To define mean
intrinsic volumes per unit volume, one might consider EV;(Z N W) /vy(W) for an
observation window W € K with v4(IW) > 0. But this definition is inapt, as
can already be seen in the special case j = d — 1 corresponding to surface area
estimation: in addition to the surface area of 37 in W also the surface area of oW
in Z is contributing, leading to an overestimation of the mean surface area per unit
volume. In order to eliminate such edge effects one defines

_ . EV,(ZNW)
Vi(Z) = lim —&0rv)
i(Z) b vg(rv) 7

where W € K, vg(W) > 0 as before. If Z is a standard random set then V;(Z)
exists and is independent of W. It is called the j-th specific intrinsic volume of Z .
If, in addition, Z is isotropic, the principal kinematic formula holds for V;(Z).
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Theorem 2.1. Let Z be an isotropic standard random set, and j € {0,...,d}. Then
Vi(ZNW) Z BRI (Z)WVakr (W), W e K.

If Wis a ball, j =d or j =d — 1, the isotropy assumption can be dropped.

Proof. Let Z be defined on the abstract probability space (2, 4,P). Fix W € K
and r > 0. It can be shown that

fRIxQ—R
(z,w) = V;((Z(w) N W) N (B,(0) + z))

is measurable, and that the integrability condition (8) implies integrability of f with
respect to vy ® P. This will allow us to use Fubini’s theorem later in the proof. The
motion invariance of V; and stationarity and isotropy of Z imply

EV,(ZnW)N(B,(o) +x))
=EV,(RZ+x)NW N (RB,(0) + 1))
= BV,((Z 1 B,(0) 0 (W =)
for x € RY, R € SO,. Fubini’s theorem and the invariance properties of v; and v

imply

E/ Vi((Z N W) N R(B(0) + &) d dR

_ E/SOd /R Vi((Z 1 B(0)) N R(W + ) da dR,

so the sets W and B,(0) can be interchanged. The principal kinematic formula,
applied on both sides, yields

d d
> TEVA(Z O W)WVaiii (Br(0) = Y i " EV(Z 0 B (0)) Vi (W)

k=j k=j
Now we divide both sides by v4(B,(0)) and let r tend to infinity. As

Va-r1(Br(0)) _ ik Vi1 (B1(0))
vq4(B,(0)) Kq ’

the claim follows. In the cases where the principal kinematic formula holds even
without averaging over all rotations, isotropy is not needed in the above proof. 0O

Theorem 2.1 shows that



with a triangular matrix A € REA+D*@+) “which is regular if v4(1W) > 0. Hence

Vo(ZnW) Vo(2)
A1 ( : ) is an unbiased estimator of ( : ) and can be determined from
Va(ZnW) Va(2)
observations of Z in the full-dimensional window W alone.
If F is a k-flat, and Z is a standard random set in R¢, then Z N E is a standard
random set in F (in particular, stationarity refers to invariance of Pzng under all

translations in £). If Z is isotropic, then Z N E is isotropic in F.

Theorem 2.2 (Crofton’s formula for random sets). If Z is an isotropic standard
random set and E € Sg with 0 < 7 < k <d, then

Vi(ZNE) =iV y(2).

Theorem 2.2 follows readily from Theorem 2.1. Due to stationarity one may
assume o € E. Then set W = B,.(0) N E in the principal kinematic formula for
random sets, divide by v, (W) and let r tend to infinity.

The concept of standard random sets is not suited for simulation purposes, as
it cannot be described by a finite number of parameters. To obtain more accessible
random sets, germ-grain models are employed. If ¢ = {&,&,...} is a station-
ary point process in R? and K, K1,... are i.i.d. nonempty compact random sets,
independent of ¢, the random set

7z =J&+ K)

is called a stationary germ-grain model. The points of ¢ are considered as germs
to which the grains K; are attached. The set Ky is called the typical grain and
its distribution will be denoted by Q. If Ky is almost surely convex, Z is called a
germ-grain model with convezr grains. We will always assume convexity. To assure
that Z can be written as a union of finitely many grains z; + K; when considered
in a bounded window, a condition on Q is required. We assume throughout

V,(Ko) =EV;(Kp) <oo forall j=0,...,d.

This condition is equivalent to saying that the mean number of grains z; + K; that
hit any bounded window is finite.

We will consider stationary germ-grain models for which the underlying point
process is a Poisson process. These are called stationary Boolean models, and are
examples of standard random sets. The iterated principal kinematic formula implies
a wonderful result for the specific intrinsic volumes of Boolean models.

Theorem 2.3. Let Z be a Boolean model in R with convex typical grain Ko, based
on a stationary Poisson point process 11y with intensity . Then

Va(Z) = 1 — e AValko),

and o B B
Vai(Z) = AV gy (Ky)e MValko),
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If 5 €{0,...,d — 2} and Ky is isotropic we have

d—j s

di H cg”Vmi(Ko)} :

s=2 ’ mi,..,ms=j+1 i=1
mi+-+ms=(s—1)d+j

V,(Z) = Ae—Valko [WK()) _

The constants appearing in the previous theorem are again given by (2). Note
that they are slightly different from the incorrect constants in [22, Theorem 9.1.4].

Sketch. To avoid technicalities we assume that K is almost surely contained in a
ball Bs(o) for some fixed § > 0. Then ZNW = J;2,[(& + K;) N W] only depends
on the Poisson process ITy = {£;,&, ... } in the bounded window W° = W @ Bs(0).
The number of points of ITy N W? is Poisson distributed with parameter A\Vy(W?),
and, given this number is n, the n points of II, N W? are i.i.d. uniform in W?. If
these points are denoted by &1, ..., &,, the inclusion-exclusion principle gives

E[V;(Z N W)|#(ITy N W?) = n]

n

—E{ (UKfﬁK ) L(IT, N W) =

=1

= +1 (I)z‘l ..... ir.
St Y T

1<ii << <n

with
Piy.....0n ()
:EK 77777 / V(WQ(K“ +I21) . ﬂ(KZT—FIZT))d.T“ dl’z‘r
we wo
=Eg, / ViiWN(Ky+z)N---N (K, +x,))dey -+ da,.
R4 R
Here we used that K, Ky, ... are i.i.d., and contained in Bs(0). Hence

EV;(ZNnW) = i Me—wd(wé) i(_l)m <n) ®y,..r ()

r
r=1

=Y e Y B
-y v, L)

For j = d and j = d — 1, the iterated principal kinematic formula without the
average over all rotations can be applied to simplify ®; (7). For the volume, we
have

.....

D1 (d) = Exy, i, Va(W) Va0 -+ Va(E) = Va(W)(Va(EKo))',

.....
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Thus

(_1)1"4—1

EV,(ZNW)=>_ .

r=1

(AVa(K0o)) Va(W) = Va(W) (1 — e~V alko))

and

EV, 1(ZnW) = Vvdfl(W>(1 _ e*/\vd(Ko))
+ VWAV gy (Kg)e MV alio),

Replacing W by W, dividing by v4(rWW) and letting r tend to infinity yields the
claim for j =d and j =d — 1. For j < d — 1, isotropy of K, implies that

Vi(W N Ry(Ky +21) NN Ro(K, + 2,)) day dRy -+ da,dR,.

The claim then follows in a similar way as before by applying the iterated principal
kinematic formula and sorting the resulting expressions according to their homo-
geneity. In the final result s is the number of terms with homogeneity smaller
than d. This concludes the sketch of the proof. O

Specialized to two dimensions, the formulas in Theorem 2.3 read
Vy(Z) =1 — e MWV2(Ko) (specific area)
WV 1(Z) = 20V (Ky) - e V2(Ko) (specific perimeter)
Vo(Z) = e AV2(Ko) (A= L(\V1(K0))?) (specific Euler characteristic)

The last relation requires isotropy. If all the quantities on the left side are known,
these relations can be used to determine the mean intrinsic volumes of Ky and the
intensity of IT. Hence, measurement (estimation) of the specific intrinsic volumes
allows to estimate Vo (Kj), V1(Kp) and A, which determine all the parameters of Z
if Q is a suitable distribution with at most two real parameters.

2.3 Design-based stereology

We know turn to design-based stereology, where the structure of interest is assumed
to be a deterministic set, and the sampling is randomized in a suitable way. We
have already derived the set of fundamental stereological formulas (5) from Crofton’s
formula, where the set K € R was sampled by IUR k-flats. Recall that if K is
contained in the reference space A, and F is an IUR k-flat in A, then

k,d—k
Co.d

[Ck$k+j Vi-k(A)| Vi(KNE) (9)
jid

is an unbiased estimator for Vy_;4;(K) for 0 < j < k < d. This shows that
Vin(K) can unbiasedly be estimated from k-dimensional sections if m > d — k. For
m < d — k, unbiased estimation of V,,(K) from IUR k-flat sections is impossible:
If K is a set with relative interior points contained in an m-dimensional subspace,
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m < d—k, then V,,,(K) > 0, but K N E = () almost surely. In particular, the Euler
characteristic Vo(K') cannot be estimated from [UR sections. Therefore, the disector
technique has been suggested in [23]. The basic idea is to work with hyperplanes
and to replace the section plane by a pair of parallel (d — 1)-flats (F, E.) of distance
e > 0 apart. The flats must be randomized, but averaging with respect to rotations
is not required, so it is enough to choose E as a FUR (fixed orientation uniform)
k-flat in A with k =d—1. A FUR k-flat E in A is obtained by uniformly translating
a fixed subspace Ly € £¢ with a translation vector in x € Ly such that F = Lo+«
hits A. In other words, F has distribution

:mEeq_cmy{/ 1L+ € }dr,
AlLg
where ¢(A) = v4 1(A|Ly) is the projected volume of A on Ly. To describe the
disector let £ be a FUR (d — 1)-flat in A, parallel to some deterministic Ly € £3_,,
and let E. = F + eu, where u € Ly is a unit vector.

To fix ideas let K be a union of m disjoint
convex particles Ki,...,K,,. Let Ngpg_ be the O /\ Q E
number of particles that hit £, but not E.. Then ¢

~— [ J
Vo(K) = m is the number of particles and can be \) U Q E

estimated unbiasedly by

. A Figure 2: The disector technique:
c(4) .
Vo = N E,E. only the two shaded particles are
counted.

if, almost surely, none of the particles is located

between E and E., that is, if the projected height of K; on a line orthogonal to E
is at least € for all + = 1,...,m. If the approximate size of the particles is known,
this can be achieved choosing € small enough. The unbiasedness follows from

cEV, = i/m H{(L+tu)NK; #031{(L+ (t +e)u) N K; = 0} dt = me,

as the integrand is one exactly on an interval of length . In applications Ng g_ is
often approximated by a comparison of K N E and K N E. using a priori information
on the particles. However, strictly speaking, this estimator requires more infor-
mation than just these intersections. To decide whether two profiles in £ and E.
originate from the same particle, the part of K between F and E. must be known.
In a typical biological application, this is achieved using confocal microscopy. By
continuously moving the focal plain from £, to £, one obtains Ng g by counting
all particles that come into focus during this process. The method can be extended
to sets K in more general set classes, but then, tangent points between the planes
with normal v have to be counted according to whether they are convex, concave or
of saddle type.

We return to the fundamental stereological formulas and discuss possible im-
provements. We restrict for illustration to perimeter estimation of K € R from
linear sections (k = 1) in the plane (d = 2). By (9) with j = 0 the random number

Vi = 2Vi(A)Vo(K N E) (10)
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is an unbiased estimator of the perimeter 2V;(K) of K C A € R, if E € £2 is IUR
in A. To reduce the variance, one could repeat the measurements with n i.i.d. ran-
dom lines £ and consider the arithmetic mean of the corresponding estimates (10).
However, the variance reduction is generally only of order 1/n, as the estimates
are uncorrelated. It may happen that some of the sampling lines are close to one
another, and the corresponding intersection counts are therefore very similar and
contain redundant information. In classical survey sampling one uses systematic
random sampling in such situations: sampling from a linearly ordered population
of units can generally be improved by choosing every m-th unit in both directions
from a randomly selected starting unit, m > 1. This way, units that are close to
one another (and tend to be similar) are not in the same sample, and samples be-
come negatively correlated. This concept, transferred to the random translation of
E C R? leads to sampling with a IUR grid of lines of distance h apart:

G={n"+(E+mh)n:me 7},

where 7 is uniform in S, and ¢ is independent of 7 and uniform in [0, h]. Tt is not
difficult to show that

1
EVO(KHG):E/ W(KNE)dE = ZW(K), KeR,
&t

where we used Crofton’s formula. Hence whV(K N G) is an unbiased estimator
for the perimeter of K. This estimator is called Steinhaus estimator and does not
involve any reference space A. Similar variance reduction procedures are possible in
the case of sampling with k-flats in R

The assumption of IUR section planes is sometimes too strong: it is either im-
practicable or not desired to use fully randomized sections. For instance, when
analyzing sections of the skin in biology it is natural to use sections parallel to a
fixed axis, the normal of the skin surface. This way, different layers of tissue in the
section can be distinguished more easily. The common axis is usually thought to
be the vertical direction, and the samples are therefore called vertical sections. We
restrict to planar vertical sections in three-dimensional space to avoid technicalities.

Let Ly € £3 be the vertical axis and A a Borel set in R3. A random 2-flat H
in R? is called a VUR (vertical uniform random) 2-flat in A if it has the natural
distribution on

{Ec€ & ENA#(, Eis parallel to Lo}.

Explicitly, P(H € -) coincides up to a normalizing constant with

/LLO /AW WL +x e ()} dedL.

For A € K the normalizing constant is 7/(2V;(A|Lg)). As vertical flats all contain
the vertical axis, they are surely not IUR, so Crofton’s formula cannot be applied
directly. The key idea is to choose a random line £ in H in such a way that E is
IUR in R? and apply Crofton’s formula to E. Given H, this random line F will
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have a density with respect to the natural measure on £, and this density can be
determined using Blaschke-Petkantschin formulas.

Let K € R be contained in the reference space A € K, and fix a vertical axis
Lo € £3. From (7) with d = 3,

f(E) = VW(KNE){ENAZ# D},

and Crofton’s formula

/ / / Vo(K N E)[E, Ly| dE dx dL
cho JALt J{Eeelt* . EnA£p}

2 1
:—/RMKHEME:—%M)
&3 T

™

Hence, if H is a VUR 2-flat in A with vertical axis Ly,

1
E/ Vo(K N E)[E, Lo dE = ———Vy(K).
e oz P08 I Lol dE = prmrr Va(K)

This can be interpreted as follows. Let H be a VUR 2-flat in A with vertical axis
Loy, and let E € £ be a random 1-flat hitting A with density [E, L] with respect to
the invariant measure on £, Then 4V;(A|Lg)Vo(K N E) is an unbiased estimator
of the surface area 2V5(K) of K. In applications, one usually counts the number
of intersections of F with the boundary of K. This number coincides almost surely
with 2V (K N E). Instead of sine-weighted test lines in H a test curve, the cycloid
is used. It incorporates the weighting, as its orientation distribution is proportional
to the sine. Variance reduction can be achieved by systematic random sampling:
instead of only counting intersections with one cycloid, intersections with a periodic
grid of cycloids are determined.

The last stereological concept that we will discuss here is the so-called local
design. It is again motivated by applications: When sampling a biological cell
it is convenient to consider only sections of the cell with planes through a given
reference point, which usually is the cell nucleus or the nucleolus. For a mathematical
description we assume that the reference point is the origin. The branch of stereology
dealing with inference on K € R from sections K N L, L € £, 1 <r <d—1, is
called local stereology. Like in the case of vertical sections, Crofton’s formula cannot
be applied directly, but only after a sub-sampling in L with a suitably weighted
affine plane. Theorem 1.7 and Crofton’s formula imply for 0 < j <k <r<d-—1

//Vj(KﬂE)d(E,o)d_’”dEdL
ctJeg

=2t [ VK OB B = TRV (),
&g ’

Wd—k Wd—k

Stereologically this can be interpreted as follows: Let K € R be contained in the ref-
erence space B,(s) with s > 0. Let L € £% be an isotropic random plane. Give L, let
E be a random plane in L with density proportional to 1{EN B,(s) # 0} d(E, 0)*"
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with respect to the invariant measure on £F. Then ¢V;(K N E) is an unbiased
estimator for V;_j4;(K’), where the constant is given by

o= r Wd—kcj,rfk,d ﬁsrfk
k Wy k 0,r,d—k+j K :

Note that (KNL)NE = KNE, so the estimator depends on K only through KN L.
The intrinsic volume V,,(K') can be estimated from r-dimensional isotropic sections
with the above formula only if m > d — r. That there cannot exist any unbiased
estimation procedure for m < d — r is clear: for an m-dimensional ball K contained
in a m-dimensional linear subspace, we have K N E = {o} almost surely, so the
radius of K is almost surely invisible in the sections.

Further reading

1. Besides the monograph of Schneider and Weil [22] on stochastic geometry and
integral geometry, the classical book of Stoyan, Kendall, and Mecke [24] is
recommended as reference for the model-based approach. Concerning design-
based stereology, Baddeley and Jensen’s monograph [5] includes also recent
developments.

2. We introduced the specific intrinsic volumes of a standard random set Z. It
is shown in [28] that corresponding specific g-values of Z exists whenever ¢ is
an additive, translation invariant functional on R satistying a certain bound-
edness condition. Specific intrinsic volumes can also be defined as Lebesgue
densities of average curvature measures of Z; see e.g. Corollary 9.4.1 and the
references in [22]. As intrinsic volumes are also called quermass integrals, one
finds the notion quermass densities for the specific intrinsic volumes in the
earlier literature.

3. Using translative integral formulas, Theorem 2.1 was generalized to curvature
measures of standard random sets that are not necessarily isotropic in [25].
In [26] Theorem 2.3 is generalized to stationary Boolean models that are not
necessarily isotropic. It is shown that at least for small dimensions (d < 4),
the underlying intensity is still determined by the Boolean model, but an
estimation procedure would require more than just the measurement of the
specific intrinsic volumes.

4. Vertical section designs in general dimensions are developed in [2]. Test sys-
tems in the vertical plane and practical sampling procedures are explained
in [4].

5. The monograph [7] is an excellent introduction to local stereology, focusing on
formulas for k-dimensional Hausdorff measures instead of intrinsic volumes.
Such relations are based on generalized Blaschke-Petkantschin formulas for
Hausdorff measures. A local stereological formula for the intrinsic volumes, as
presented here, is a relatively recent development taken from [12, 1] based on
ideas in [6].

21



References

[1]

2]

Auneau, J., Jensen, E.: Expressing intrinsic volumes as rotational integrals. To
appear in Adv. Appl. Probab.

Baddeley, A.: Vertical sections, in: W. Weil, R.V. Ambartzumian (eds.)
Stochastic Geometry and Stereology (Oberwolfach 1983). Teubner, Berlin (1983)

Baddeley, A., Baranyi, 1., Schneider, R., Weil, W.: Stochastic Geometry.
Springer, Heidelberg (2004)

Baddeley, A., Gundersen, H., Cruz-Orive, L.: Estimation of surface area from
vertical sections. J. Microsc. 142, 259-276 (1986)

Baddeley, A., Jensen, E.: Stereology for Statisticians. Chapman & Hall, Boca
Raton (2005)

Cruz-Orive, L.: A new stereological principle for test lines in threedimensional
space. J. Microsc. 219, 18-28 (2005)

Daley, D., Vere-Jones, D.: An Introduction to the Theory of Point Processes.
Springer, New York (1998)

Davy, P.: Stereology: A Statistical Viewpoint. Ph.D. thesis, Austral. National
Univ. (1978)

Davy, P., Miles, R.: Sampling theory for opaque spatial specimens. J. R. Stat.
Soc., Ser. B 39, 56-65 (1977)

Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418-491 (1959)

Groemer, H.: On the extension of additive functionals on classes of convex sets.
Pacific J. Math. 75, 397-410 (1978)

Gual-Arnau, X., Cruz-Orive, L.: A new expression for the density of totally
geodesic submanifolds in space forms, with stereological applications. Differ.
Geom. Appl. 27, 124-128 (2009)

Hadwiger, H.: Vorlesungen tiber Inhalt, Oberfliche und Isoperimetrie. Springer,
Berlin (1957)

Klain, D.: A short proof of hadwiger’s characterization theorem. Mathematika
42, 329-339 (1995)

Klain, D., Rota, G.C.: Introduction to Geometric Probability. Cambridge Univ.
Press, Cambridge (1997)

Miles, R.: Some integral geometric formula, with stochastic applications. J.
Appl. Prob. 16, 592-606 (1979)

22



[17]

[18]

[19]

[26]

[27]

[28]

[29]

Miles, R., Davy, P.: Precise and general conditions for the validity of a com-
prehensive set of stereological fundamental formulae. J. Microsc. 107, 211-226
(1976)

Petkantschin, B.: Integralgeometrie 6. Zusammenhange zwischen den dichten
der linearen Unterrdume im n-dimensionalen Raum. Abf. Math. Sem. Univ.
Hamburg 11, 249-310 (1936)

Rother, W., Zahle, M.: A short proof of the principal kinematic formula and
extensions. Trans. Amer. Math. Soc. 321, 547-558 (1990)

Santald, L.: Integral Geometry and Geometric Probability. Addison-Wesley,
Reading, Mass. (1976)

Schneider, R., Weil, W.: Translative and kinematic integral formulae for cur-
vature measures. Math. Nachr. 129, 67-80 (1986)

Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Heidel-
berg (2008)

Sterio, D.: The unbiased estimation of number and sizes of aritrary particles
using the disector. J. Microsc. 134, 127-136 (1984)

Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and its Applications,
2nd edn. Wiley and Sons (1995)

Weil, W.: Densities of quermassintegrals for stationary random sets, in: Am-
bartzumian, R.V., Weil, W. (eds.) Stochastic Geometry, Geometric Statistics,
Stereology (Proc. Conf. Oberwolfach, 1983). Teubner, Leipzig (1984)

Weil, W.: Densities of mixed volumes for Boolean models. Adv. Appl. Probab.
33, 39-60 (2001)

Weil, W.: Mixed measures and functionals of translative integral geometry.
Math. Nachr. 223, 161-184 (2001)

Weil, W., Wieacker, J.: Densities for stationary random sets and point pro-
cesses. Adv. Appl. Probab. 16, 324-346 (1984)

Zahle, M.: Curvature measures and random sets I. Math. Nachr. 119, 327-339
(1984)

23



