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Abstract

In this paper we examine the asymptotic behavior of the parallel volume
of planar non-convex bodies as the distance tends to infinity. We show that
the difference between the parallel volume of the convex hull of a body and
the parallel volume of the body itself tends to 0. This yields a new proof for
the fact that a planar body can only have polynomial parallel volume, if it is
convex. Extensions to Minkowski spaces and random sets are also discussed.

1 Introduction

The parallel body of a body K at distance r ≥ 0 is the set of all points having at
most distance r from K. Its volume is called the parallel volume of K at distance r.
The parallel volume is a functional which plays an important role in convex geometry
and has many applications, e.g. in stochastic geometry, statistics, discrete geometry
and geometric functional analysis. While in many applications the parallel volume
of arbitrary bodies is interesting, it has been explored mainly in the special case of
convex bodies.

We put

K + L := {x+ y | x ∈ K, y ∈ L}, K, L ∈ C,
rK := {rx | x ∈ K}, K ∈ C, r ∈ R+

0 ,

where C denotes the set of all bodies in Rd, i.e. of all non-empty compact sets, and
R+

0 denotes the set of non-negative real numbers. Now it is easy to see that the
parallel body of a body K at distance r ≥ 0 is K + rBd, where Bd denotes the d-
dimensional closed unit ball. By Vd we denote the d-dimensional Lebesgue-measure
and by convK we denote the convex hull of a body K.

Steiner [10] was probably the first to consider the parallel volume of a given body
as a functional of the distance, when he showed in 1840 that the parallel volume of
certain convex bodies is a polynomial. Meanwhile it is known that this is true for
all convex bodies. In 1935 Lusternik [7] proved the Brunn-Minkowski-inequality

Vd(K + rB) ≥
(

d
√

Vd(K) + r d
√

Vd(B)
)d

, r ≥ 0,

for arbitrary bodies K,B ⊆ Rd. In the 1950s Kneser [6] and Sz.-Nagy [11] obtained
further inequalities, which relate the parallel volume a fixed convex body has at
various distances to each other.
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In this paper we want to examine the asymptotic behavior of the parallel volume
as the distance tends to infinity. Our main theorem is

Theorem 1.1. Let K ⊆ R2 be a body. Then

lim
r→∞

V2((convK) + rB2)− V2(K + rB2) = 0. (1)

This leads to a new proof of the following theorem by Heveling, Hug and Last [2]:

Theorem 1.2. Let K ⊆ R2 be a body, for which

R+
0 → R+

0 , r 7→ V2(K + rB2)

is a polynomial. Then K is convex.

Hug, Last and Weil [3] extended this result to random bodies and more general
2-dimensional normed spaces. They also gave an interpretation for bodies K having
more than 2 dimensions.

This paper is organized as follows:
In Section 2 we collect some results from convex and Minkowski geometry we

need in the later sections.
In Section 3 of this paper we state and prove a more general version of Theo-

rem 1.1. We will show that, when one replaces B2 by another convex body B ⊆ R2,
the theorem remains true, iff B is smooth (in the sense we define it in section 3).
We will also prove this statement for random bodies and give an interpretation for
bodies K having more than 2 dimensions.

In section 4 we give a new proof for Theorem 1.2 under generalisations quite
similar to those of [3].

In section 5 we show that if a union of randomly many random bodies fulfilling
certain regularity assumptions has polynomial expected parallel volume, then this
union consists of only one body a.s.

In section 6 we will give an outlook on work in progress about the speed of
convergence in (1).

2 Geometric tools

In this section we will collect results from convex and Minkowski geometry that will
be used in sections 3 and 4.

For K ∈ C, B ∈ K and r ≥ 0 we can write the expression convK + rB without
brackets, since as a special case of [8, Theorem 1.1.2] we have

conv(K + rB) = (convK) + rB.

It is well-known (see e.g. [8, section 5.1]) that for convex bodies K,B ⊆ Rd there
are numbers V (K[d− j], B[j]), j = 0, . . . , d, called mixed volumes, such that

Vd(K + rB) =

d∑

j=0

(
d

j

)
rjV (K[d− j], B[j]), r ≥ 0.
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In this paper we consider K always with the Fell-Matheron-σ-algebra, which is
known to be the Borel-σ-algebra of the Hausdorff-metric. For a introduction, see
e.g. [9, chapter 12].

Let K2‖ denote the set of all pairs (K,B) of two 2-dimensional convex bodies in
Rn that have parallel affine hulls. We will show the measurability of K2‖ in Lemma
A.4.

Lemma 2.1. For (K,B) ∈ K2‖ and r ≥ 0 the body K+ rB is 2-dimensional. There
is a measurable map V : K2‖ → R such that

V2(K + rB) = V2(K) + 2rV (K,B) + r2V2(B) (2)

for all r ≥ 0 and (K,B) ∈ K2‖.

Proof. In the special case n = 2 this statement is well known (see e.g. [8, The-
orem 5.1.6]). If n > 2 and (K,B) ∈ K2‖, choose an isometry α : K̂ → R2 and
a translation β : B̂ → K̂, where K̂ and B̂ are the affine hulls of K and B. Set
V (K,B) := V (α(K), α ◦ β(B)). By the translation invariance and the joint rota-
tion invariance of the mixed volume, this extension is well-defined. By the isometry
invariance of the Lebesgue measure (2) remains true.

In order to see that V is measurable, we prove that it is continuous. So let
((Kk, Bk))k∈N+ be a sequence in K2‖ converging to (K,B) ∈ K2‖. Now it is possible
to choose the isometries αk : K̂k → R2, βk : B̂k → K̂k, α : K̂ → R2 and β : B̂ → K̂ in
such a way that limk→∞ αk(xk) = α(x), iff limk→∞ xk = x, and limk→∞ αk(βk(yk)) =
α(β(limk→∞ yk)), iff limk→∞ yk = y, for all sequences (xk)k∈N+ and (yk)k∈N+ with
xk ∈ K̂k and yk ∈ Bk for all k ∈ N+ and points x ∈ K̂ and y ∈ B̂. Now it is easy to
see that limk→∞ αk(Kk) = α(K) and limk→∞ αk(βk(Bk)) = α(β(B)). Since in the
special case n = 2 the functional V is continuous by [8, Theorem 5.1.6], we have
shown the continuity of V (for arbitrary n ≥ 2).

We denote the interior of a subset A ⊆ Rd by intA and its boundary by bdA.
In the rest of this section we let B ⊆ Rd be a convex body with 0 ∈ intB, called

the gauge body. For a closed set A ⊆ Rd and x ∈ Rd we define the B-distance from
x to A to be

dB(A, x) := min{t ≥ 0 | x ∈ A+ tB}.
For x, y ∈ Rd we put

dB(y, x) := dB({y}, x).
Then it is easy to see that

dB(x, y) = 0 ⇐⇒ x = y, x, y ∈ Rd, (3)

dB(x+ λu, x+ λv) = λdB(u, v), x, u, v ∈ Rd, λ ∈ R+
0 , (4)

dB(x, y) + dB(y, z) ≥ dB(x, z), x, y, z ∈ Rd, (5)

and that dB : Rd × Rd → R+
0 is continuous.

For a closed set A ⊆ Rd and x ∈ Rd we put

ΠB(A, x) := {y ∈ A | dB(y, x) = dB(A, x)}.
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Lemma 2.2. Let K ⊆ Rd be a convex body and x ∈ Rd \K. Then a point y ∈ K
lies in ΠB(K, x), iff there is a (Euclidean) exterior unit normal vector u ∈ Rd of K
in y, a point q ∈ B and a number s ∈ R+

0 such that u is (Euclidean) exterior unit
normal vector of B in q and x = y + sq. In this case we have s = dB(y, x).

Proof. Assume ∈ ΠB(K, x). Put r := dB(K, x). By the cancelation law for Minkow-
ski sums (see [8, p. 46]) one can show x ∈ bd(K + rB). Choose an (Euclidean)
exterior unit normal vector u ∈ Rd of K+rB in x and a point q ∈ B with x = y+rq.
Then for arbitrary p ∈ B one has y + rp ∈ K + rB and hence 〈y + rp, u〉 ≤ 〈x, u〉,
which implies 〈p, u〉 ≤ 〈q, u〉. So u is an exterior unit normal vector of B in q and
in the same way one can show that u is an exterior unit normal vector of K in y.

Now assume that u, q and s as described in the lemma exist. Considering scalar
products with u one obtains dB(K, x) ≥ s. Since dB(y, x) ≤ s we have y ∈ ΠB(K, x).

Lemma 2.3. Let K ⊆ Rd be a convex body and x ∈ Rd. Then ΠB(K, x) is convex.

Proof. Put r := dB(K, x). Let y, y′ ∈ ΠB(K, x) and λ ∈ [0, 1]. Then there are
q, q′ ∈ B such that x = y + rq = y′ + rq′. Now we have λy + (1 − λ)y′ ∈ K,
λq + (1− λ)q′ ∈ B and

λy + (1− λ)y′ + r · (λq + (1− λ)q′) = λ(y + rq) + (1− λ)(y′ + rq′) = x.

Hence λy + (1− λ)y′ ∈ ΠB(K, x).

3 The convergence result

In this section we prove the main theorem of the present paper.
A convex body B is called smooth, if for each point y ∈ bdK there is a unique

exterior unit normal vector. By [8, p. 104] a convex body is smooth, iff its boundary
is a C1-manifold.

We call a 2-dimensional convex body which is smooth if considered as a subset
of its affine hull a disc body. We denote the affine hull of a body B by B̂ and call

B⊥ := {v ∈ Rn | 〈v, y − x〉 = 0 for all x, y ∈ B}

the affine-orthogonal compliment of B. For two bodies K,B ⊆ Rn we let

KB :=
⋃

x∈B⊥

(convK ∩ (x+ B̂))

denote the B-convexification of K. We denote by diamA the diameter of a bounded
subset A ⊆ Rd and by ρB the biggest radius of a ball lying in a convex body B ⊆ Rd

(a compactness argument ensures that there is a biggest one).
A random closed set is a measurable function taking values in the set of all

closed subset of Rd equipped with the Fell-Matheron-σ-algebra (for details see e.g.
[9, section 2.1 and 12.2]). A random body, convex body resp. disc body is a random
closed set that a.s. takes values in the set of all bodies, convex bodies resp. disc
bodies.
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By [9, Lemma 1.2.1 and Theorem 2.4.2] the sets C and K are measurable. In
[9, section 12.3] it is shown that the functions C × C → C, (K,L) 7→ K + L and
R+

0 × C → C, (r,K) 7→ rK and Vd : C → R+
0 are measurable. The functions

diam : C → R+
0 and K → R+

0 , B → ρB are Lipschitz-continuous w.r.t. the Hausdorff
metric and hence measurable. The measurability of the sets KDisc of all disc bodies
and of C × C → C, (K,B) → KB will be proven in the appendix.

Theorem 3.1. Let X ⊆ Rn be a random body and Y ⊆ Rn a random disc body such
that EVn(XY + Y ) < ∞ and

E[(Vn(XY + Y )− Vn(XY )) · diamX/ρY ] < ∞.

Then
EVn(XY + rY )− EVn(X + rY )

r→∞−−−−→ 0.

Observe that Vn(XY + rY ) in Theorem 3.1 is a.s. a polynomial in r with non-
negative, measurable coefficents by 2.1. Hence the assumption EVn(XY + Y ) < ∞
implies that EVn(XY + rY ) is finite for all r ∈ R+

0 .
The proof of the theorem is based on a couple of lemmata dealing with the special

case that d = 2 and all bodies involved are deterministic. In this special case we
will give an upper bound for the volume of (convX + rY ) \ (X + rY ). This bound
will involve the minimal Y -distance from points of (convX + rY ) \ (X + rY ) to
convX , which can be expressed using the function w we are going to define now.
Let B ⊆ Rd, d ∈ N, be a convex body with 0 ∈ intB. Then consider the function

w = wB : R+
0 → R+

0 ,

r 7→ min{dB(y, z) | y ∈ Bd, z ∈ Rd, y ∈ ΠB(0y, z), dB(0, z) = r}, (6)

where xy := {λx+ (1− λ)y | λ ∈ R} is the line through x and y in case x 6= y and
the singleton {x} otherwise. In the present paper we will only need the case d = 2,
but the greater generality will be helpful in the paper announced in section 5.

Now we will show that the minimum in (6) is attained. Fix r ∈ R+
0 . Choose

sequences (yk)k∈N+ in Bd and (zk)k∈N+ in Rd with yk ∈ ΠB(0yk, zk) and dB(0, zk) = r
for all k ∈ N+ such that (dB(yk, zk))k∈N+ converges to the infimum of the set from (6).
By the compactness of Bd and {x ∈ Rd | dB(0, x) = r} we may assume that (yk)k∈N+

and (zk)k∈N+ converge to points y ∈ Bd and z ∈ Rd with dB(0, z) = r. For all k ∈ N+

we have dB(yk, zk) ≤ dB(λyk, zk) for all λ ∈ R. Hence we have dB(y, z) ≤ dB(λy, z)
for all λ ∈ R, which means y ∈ ΠB(0y, z).

Example 3.2. In order to get familiar with the function w, we compute it in the
special case B = RBd, R > 0.

We will need the relation

dB(x, y) = inf{t ≥ 0 | y ∈ x+ tRBd} = inf{t ≥ 0 | ‖y − x‖ ≤ tR} =
‖y − x‖

R

for x, y ∈ Rd several times.
Let r ≤ 1

R
. Then choose a point z ∈ Rd with ‖z‖ = rR and put y := z. Then

we have ‖y‖ = rR ≤ 1, which implies y ∈ Bd. Moreover we have dB(0, z) = r,
y ∈ ΠB(0y, z) and dB(y, z) = 0. Hence wRBd(r) = 0.
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B not smooth

The figure on the left shows the function w for a smooth gauge body B. The striped line is the
identity. The figure on the right shows the function w for a gauge body that is not smooth.

Figure 1: Typical charts of the function w

Now let r ≥ 1
R
. Let z ∈ Rd and y ∈ Bd with dB(0, z) = r and y ∈ ΠB(0y, z). The

latter condition implies that the lines 0y and yz are perpendicular to each other.
Hence we conclude:

(rR)2 = (R · dB(0, z))2 = ‖z‖2 = ‖y‖2 + ‖z − y‖2 ≤ 1 + (R · dB(y, z))2.

Thus

dB(y, z) ≥
√

r2 −
(
1
R

)2
. (7)

We have shown

wRBd(r) ≥
√
r2 −

(
1
R

)2
.

Now choose y ∈ Bd with ‖y‖ = 1 and z ∈ Rd such that ‖z‖ = rR and yz is
perpendicular to 0y. Then obviously dB(0, z) = r and y ∈ ΠB(0y, z) hold and

dB(y, z) =

√
r2 −

(
1
R

)2

can be shown in the same way as (7).
Hence

wRBd(r) =

√
r2 −

(
1
R

)2
.

Now we return to a general gauge body B. We will show the inequality

dB(y, x)

‖y − x1‖
≥ wB

(
dB(x1, x)

‖y − x1‖

)
(8)

for x, x1, y ∈ Rd with x ∈ ΠB(x1x, y). Under the additional assumption x1 = 0 and
‖y‖ = 1 this inequality follows immediately from (6). The assumption ‖y‖ = 1 can
be dropped by the homogenity of dB and the assumption x1 = 0 be the translation
invariance von dB.
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Moreover,

wB(r) ≤
r

s
· wB(s), 0 ≤ r ≤ s (9)

holds. Indeed, there are z ∈ Rd and y ∈ Bd satisfying dB(0, z) = s, y ∈ ΠB(0y, z)
and dB(y, z) = w(s). Set z′ := r

s
z and y′ := r

s
y. Then for all x in 0y we have

dB(
r
s
x, z′) =

r

s
· dB(x, z) ≥

r

s
· dB(y, z) = dB(y

′, z′).

Since all points from 0y′ have a representation of the form r
s
x with x ∈ 0y, this shows

y′ ∈ ΠB(0y
′, z′). Moreover we have dB(0, z

′) = r
s
· dB(0, z) = r and ‖y′‖ = r

s
≤ 1.

Hence
wB(r) ≤ dB(y

′, z′) =
r

s
· dB(y, z) =

r

s
· wB(s).

Lemma 3.3. Let B ⊆ R2 be a convex body with 0 ∈ intB. Then B is smooth, iff
limr→∞ r − wB(r) = 0.

Proof. First we show that B is not smooth, if not limr→∞ r − wB(r) = 0. So
we assume that there is a sequence (rk)k∈N+ and a number ǫ ∈ (0, 1) such that
limk→∞ rk = ∞ and rk − w(rk) > 3ǫ for all k ∈ N+. Then there are sequences
(yk)k∈N+ in Bd and (zk)k∈N+ in Rd with dB(0, zk) = rk, yk ∈ ΠB(0yk, zk) and

dB(0, zk) > dB(yk, zk) + 3ǫ (10)

for all k ∈ N+.
By the compactness of Bd we can assume that (yk)k∈N+ converges to a point

y ∈ Bd. The triangular inequality implies dB(0, yk) > 3ǫ for all k ∈ N+ and hence
yk 6= 0 for all k ∈ N+ and y 6= 0. Let uk and u denote the unit vectors perpendicular
to yk and y such that (yk, uk) and (y, u) have positive orientation. Set

qk :=
zk − yk

dB(yk, zk)
, k ∈ N+.

By Lemma 2.2 qk is a boundary point of B with exterior normal vector uk for k ∈ N+.
Due to the compactness of the bdB we can assume that (qk)k∈N+ converges to

a point q ∈ bdB. The vector u is an exterior normal vector of B in q, since for any
p ∈ B we have 〈p, uk〉 ≤ 〈qk, uk〉 for all k ∈ N+ and hence 〈p, u〉 ≤ 〈q, u〉. Hence B
has in q a supporting hyperplane parallel to 0y.

Now we will show that B has in q also a supporting hyperplane parallel to the
line through 0 and y − ǫq. Assume this is not the case. Then there is α > 0 such
that p := q+α(y− ǫq) ∈ intB. Since 0 ∈ intB, we have 〈q, u〉 > 0 and hence q and
y are a base of R2. So for all large enough k the following conditions are fulfilled:

pk := qk + α(y − ǫq) ∈ B (11)

yk = β
(1,1)
k y + β

(1,2)
k q and qk = β

(2,1)
k y + β

(2,2)
k q with 3

4
≤ β

(1,1)
k ≤ 5

4
,

|β(1,2)
k | ≤ ǫ

4
, |β(2,1)

k | < 1
4
and 3

4
≤ β

(2,2)
k ≤ 5

4
,

(12)

dB(yk, zk) ·
α

4
> 1. (13)
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Now fix a number k ∈ N+, for which the conditions (11)-(13) are fulfilled. Then (12)

implies β
(1,1)
k β

(2,2)
k − β

(2,1)
k β

(1,2)
k 6= 0 and using again (12) we conclude

y − ǫq = (y − ǫq) · β
(1,1)
k β

(2,2)
k − β

(2,1)
k β

(1,2)
k

β
(1,1)
k β

(2,2)
k − β

(2,1)
k β

(1,2)
k

=
β
(2,2)
k (β

(1,1)
k y + β

(1,2)
k q)− β

(1,2)
k (β

(2,1)
k y + β

(2,2)
k q)

β
(1,1)
k β

(2,2)
k − β

(2,1)
k β

(1,2)
k

− ǫ
β
(1,1)
k (β

(2,1)
k y + β

(2,2)
k q)− β

(2,1)
k (β

(1,1)
k y + β

(1,2)
k q)

β
(1,1)
k β

(2,2)
k − β

(2,1)
k β

(1,2)
k

=
[β

(2,2)
k yk − β

(1,2)
k qk] + ǫ[β

(2,1)
k yk − β

(1,1)
k qk]

β
(1,1)
k β

(2,2)
k − β

(2,1)
k β

(1,2)
k

=
β
(2,2)
k + ǫβ

(2,1)
k

β
(1,1)
k β

(2,2)
k − β

(2,1)
k β

(1,2)
k

(
yk −

β
(1,2)
k + ǫβ

(1,1)
k

β
(2,2)
k + ǫβ

(2,1)
k

qk

)
.

Hence we put

α̃k := α · β
(2,2)
k + ǫβ

(2,1)
k

β
(1,1)
k β

(2,2)
k − β

(2,1)
k β

(1,2)
k

and ǫ̃k :=
β
(1,2)
k + ǫβ

(1,1)
k

β
(2,2)
k + ǫβ

(2,1)
k

.

So we have α̃k >
1
4
α, ǫ̃k < 3ǫ and

pk = qk + α(y − ǫq) = qk + α̃k(yk − ǫ̃kqk).

We let [pk, qk] denote the line segment from pk to qk and conclude

dB(0, zk) = inf{t ≥ 0 | zk ∈ tB}
≤ inf{t ≥ 0 | zk ∈ t[pk, qk]}
= inf{t ≥ 0 | ∃λ∈[0,α̃k ] : zk = t · (qk + λ(yk − ǫ̃kqk))}
= inf{t ≥ 0 | ∃λ∈[0,α̃k ] : zk = tλyk + t(1− λǫ̃k)qk}
= inf{t ≥ 0 | ∃µ∈[0,tα̃k ] : zk = µyk + (t− µǫ̃k)qk}.

Now we will show that t0 := dB(yk, zk) + ǫ̃k is contained in the set over which the
infimum is taken in the last line. Indeed

µ0 := 1 ∈ [0, dB(yk, zk)
α
4
] ⊆ [0, t0α̃k]

because of (13) and

µ0yk + (t0 − µ0ǫ̃k)qk = yk + dB(yk, zk)qk = zk.

Thus we have
dB(0, zk) ≤ dB(yk, zk) + ǫ̃k < dB(yk, zk) + 3ǫ,

which contradicts (10). Hence B has more than one supporting hyperplane in q and
therefore it is not smooth.
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Now assume that B is not smooth. Choose a point q ∈ bdB with unit normal
vectors u and v. Let y ∈ R2 denote the unit vector perpendicular to u such that
there is ǫ > 0 with 〈y − ǫq, v〉 = 0.

Let r > 0 be a number with y ∈ rB. Then it is easy to see that there is s > 0
such that z = y + sq fulfills dB(0, z) = r. Lemma 2.2 implies dB(y, z) = s and
y ∈ ΠB(0y, z). Now we have

〈z, v〉 = 〈y, v〉+ s〈q, v〉 = ǫ〈q, v〉+ s〈q, v〉 = (s + ǫ)hB(v).

Hence

r = dB(0, z) ≥
〈z, v〉
hB(v)

= s + ǫ = dB(y, z) + ǫ ≥ wB(r) + ǫ.

So r − wB(r) does not converge to 0.

A convex subset F of a convex body L is called face of L, if 1
2
(x+y) ∈ F for two

points x, y ∈ L implies x, y ∈ F . A point x is called an extreme point of a convex
body L, if {x} is a face of L. The set of all extreme points of L is denoted by extL.

Lemma 3.4. Let B ⊆ Rd be a convex body with 0 ∈ intB, K ⊆ Rd be an arbitrary
body, r ≥ 0 and put L := convK. Let γ be an upper bound for the length of a
segment in the boundary of L. Then

(L+ rB) \ (K + rB) ⊆
{x ∈ Rd | ΠB(L, x) ∩ extL = ∅, dB(L, x) ∈ (γ · w( r

γ
), r]} ∪ (L \ (K + rB)). (14)

Proof. Let x ∈ (L+ rB) \ (K + rB). If x ∈ L, then x ∈ L \ (K + rB).
So assume x /∈ L from now on. Then trivially we have dB(L, x) ≤ r.
Now let y ∈ ΠB(L, x). Since dB(y, x) ≤ r < dB(K, x) we have y /∈ K. By [8,

Theorem 2.1.2] there is a face F of L containing y in its relative interior. There is a
point x1 ∈ K ∩ F , since L \ F is convex and therefore K ⊆ L \ F would contradict
the definition of the convex hull. Since y /∈ K, we have x1 6= y. Hence y is not
extreme. So we have shown ΠB(L, x) ∩ extL = ∅.

It remains to show dB(L, x) > γ ·w( r
γ
). Choose y ∈ ΠB(L, x). Let F be the face

of L which contains y in its relative interior and choose x1 ∈ F ∩K.

x1 y

x

K

r r
r
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........
.....
........
.....
........
...
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.......
........
............
..............................................................................................................................................................................

..............
..........
.........
.......
.......
........
..........
....................
..............................................................................................................................................................................................................................

......................
...................

.................
................

................
................

................
.................

.......

Now we want to show y ∈ ΠB(x1y, x). In other words we want to show that y is
the minimum of

x1y → R, y′ 7→ dB(y
′, x).
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We put ρ := dB(y, x) and assume that there is ỹ ∈ x1y with dB(ỹ, x) < ρ. Since y is
contained in the relative interior of F and both y and y′ are in its affine hull, there
is λ ∈ (0, 1) with (1− λ)y + λy′ ∈ F ⊆ L. Since x− y ∈ ρB and x− ỹ ∈ int ρB, we
get

x− ((1− λ)y + λy′) = (1− λ)(x− y) + λ(x− y′) ∈ int ρB

and hence dB((1 − λ)y + λy′, x) < ρ, contradicting y ∈ ΠB(L, x). Thus y ∈
ΠB(x1y, x).

Since dB(x1, x) > r and ‖y − x1‖ ≤ γ, the inequalities (8) and (9) imply

dB(L, x) = dB(y, x)

≥ ‖y − x1‖ · w
(
dB(x1, x)

‖y − x1‖

)

≥ ‖y − x1‖ ·
dB(x1, x) · γ
‖y − x1‖ · r

· w( r
γ
)

> γ · w( r
γ
).

We will now provide a lemma that will be used in order to compute the volume
of the right-hand side of (14). For a convex body K ⊆ Rd and u ∈ Rd we call the
set

HK(u) := {x ∈ K | 〈x, u〉 = hK(u)}
support set, where hK : Rd → R is the support function. For x, y ∈ Rd, x 6= y, we
put (x, y) := {λx+ (1− λ)y | λ ∈ (0, 1)}.

Lemma 3.5. Let L ⊆ R2 be a convex body. Let x1, x2 ∈ L, x1 6= x2, be two points
satisfying (x1, x2) ⊆ bdL. Let u denote an exterior unit normal vector of L in the
points in (x1, x2) and

Xr := {x ∈ R2 | ΠB(L, x) ⊆ (x1, x2), dB(L, x) ≤ r, 〈x, u〉 ≥ 〈x1, u〉}, r ≥ 0.

Let q, q′ ∈ R2 be the points satisfying HB(u) = [q, q′] and, if q 6= q′, then additionally
〈q − q′, x1 − x2〉 > 0. By ∆ := 1

2
hB(u)‖q − q′‖ we denote the area of the triangle

with vertices 0, q and q′. Then

V2(Xr) =

{
‖x2 − x1‖hB(u)r −∆r2 if ‖q − q′‖r ≤ ‖x2 − x1‖
‖x2−x1‖2hB(u)

2‖q−q′‖ if ‖q − q′‖r > ‖x2 − x1‖.

Remark 3.6. In Lemma 3.5 the vector u is uniquely determined and the condition
〈x, u〉 ≥ 〈x1, u〉 in the definition of Xr is redundant, unless L is contained in a line.

Remark 3.7. In Lemma 3.5 the case q = q′ is more important than the case q 6= q′.
In the first case the assertion simplifies to

V2(Xr) = ‖x2 − x1‖hB(u)r.

10



Proof of Lemma 3.5. Below we will show that Xr is a triangle or a trapezium whose
boundary consists of [x1, x2] as well as parts of the lines g1 parallel to q′ through x1,
g2 parallel to q through x2 and, if ‖q − q′‖r > ‖x2 − x1‖,

g := {x ∈ R2 | 〈x, u〉 = 〈x1, u〉+ rhB(u)}.

If Xr is a triangle, then its edges are parallel to the edges of the triangle with
vertices 0, q and q′. Hence the two triangles are similar. Since the scaling factor is
‖x2 − x1‖/‖q − q′‖, we get

V2(Xr) =

(‖x2 − x1‖
‖q − q′‖

)2

·∆ =
‖x2 − x1‖2hB(u)

2‖q − q′‖ .

If Xr is a trapezium, then denote by Zr the triangle bounded by g and the lines
parallel to q resp. q′ through x2. Observing that Xr ∩ Zr is contained in a line and
Xr ∪ Zr is a parallelogram of side length ‖x2 − x1‖ and height rhB(u), one gets

V2(Xr) = V2(Xr ∪ Zr)− V2(Zr) = ‖x2 − x1‖hB(u)r −∆r2.

Now we prove that Xr is indeed bounded by the segments mentioned above.
It is clear that Xr is bounded by [x1, x2].
In order to show that Xr is bounded by parts of g1 and g2, we first show that

the equivalence

ΠB(L, x) ⊆ (x1, x2) ⇐⇒ ΠB(x1x2, x) ⊆ (x1, x2)

holds for x ∈ R2 with 〈x, u〉 ≥ 〈x1, u〉. The implication “⇐” follows from the fact
that for any y ∈ L \ x1x2 there is y′ ∈ x1x2 with dB(y

′, x) < dB(y, x). Now assume
ΠB(L, x) ⊆ (x1, x2). The set I := x1x2 ∩ (x + dB(L, x)B

∗), where B∗ := {−p |
p ∈ B}, is convex and contains at least one point of (x1, x2), but neither x1 nor x2.
Hence I ⊆ (x1, x2) and therefore ΠB(x1x2, x) ⊆ (x1, x2).

By the equality ΠB(x1x2, x) = x−dB(x1x2, x)[q, q
′], from Lemma 2.2, if x /∈ x1x2,

and is trivial otherwise, we have

ΠB(L, x) ⊆ (x1, x2) ⇐⇒ x− dB(x1x2, x)[q, q
′] ⊆ (x1, x2)

and the condition on the right-hand side is equivalent to x lying between g1 and g2.
In order to show that a segment of g bounds Xr, iff ‖q − q′‖r ≤ ‖x2 − x1‖, we

prove
dB(x1x2, x) ≤ r ⇐⇒ 〈x, u〉 ≤ 〈x1, u〉+ rhB(u)

for any point x ∈ R2 with 〈x, u〉 ≥ 〈x1, u〉. Assume dB(x1x2, x) ≤ r. Then there is
y ∈ x1x2 and b ∈ B with x = y + rb and hence

〈x, u〉 = 〈y, u〉+ r〈b, u〉 ≤ 〈x1, u〉+ rhB(u).

Now assume 〈x, u〉 = 〈x1, u〉 + shB(u) for s ≤ r. Put y := x − sq. Then y ∈ x1x2

and s
r
q ∈ B, which implies

x = y + r s
r
q ∈ x1x2 + rB

11



and hence dB(x1x2, x) ≤ r.
For x ∈ R2 with 〈x, u〉 ≥ 〈x1, u〉 and ΠB(L, x) ⊆ (x1, x2) we have trivially

ΠB(L, x) ⊆ x1x2 and, as shown above, ΠB(x1x2, x) ⊆ (x1, x2) ⊆ L. Hence dB(L, x) =
dB(x1x2, x) and thus

dB(L, x) ≤ r ⇐⇒ 〈x, u〉 ≤ 〈x1, u〉+ rhB(u),

which shows that Xr is bounded by a segment of g, iff g intersects the triangle
bounded by x1x2, g1 and g2. This is obviously the case, iff ‖q−q′‖r ≤ ‖x2−x1‖.

Lemma 3.8. Let B ⊆ R2 be a convex body with 0 ∈ intB, K ⊆ R2 be an arbitrary
body and γ an upper bound for the length of a segment in the boundary of L :=
convK. Then

V2((L+ rB) \ (K + rB)) ≤ V2((L+B) \ L) · γ ·
(
r
γ
− wB(

r
γ
)
)
+ V2(L \ (K + rB)).

Proof. Denote by S the set of all singular unit normal vectors of L, i.e. the set
of all unit normal vectors of L in points in the relative interior of segments in the
boundary of L. By [8, Theorem 2.2.5] the set S is at most countable. We have
(bdL) \ (extL) ⊆ ⋃u∈S HL(u), since by [8, Theorem 2.1.2] every boundary point of
L is contained in a 0- or 1-dimensional face.

For a point x ∈ R2 \ L the set ΠB(L, x) is convex and does not intersect the
interior of L. So, if ΠB(L, x) ∩ (extL) = ∅ and hence ΠB(L, x) ⊆ (bdL) \ (extL),
then there is u ∈ S with ΠB(L, x) ⊆ HL(u). Hence Lemma 3.4 yields

(L+ rB) \ (K + rB)

⊆
⋃

u∈S
{x ∈ R2 | ΠB(L, x) ⊆ HL(u), dB(L, x) ∈ (γ · w( r

γ
), r],

〈x, u〉 ≥ hL(u)} ∪ (L \ (K + rB)).

We put s := γ · wB(
r
γ
) and

Tρ,u := {x ∈ R2 \ L | ΠB(L, x) ⊆ HL(u), dB(L, x) ≤ ρ, 〈x, u〉 ≥ hL(u)}

for ρ > 0 and u ∈ S. Then we have

V2((L+ rB) \ (K + rB)) ≤
∑

u∈S
V2(Tr,u \ Ts,u) + V2(L \ (K + rB)).

For u ∈ S denote the length of HL(u) by λu and the length of HB(u) by βu. Let
u ∈ S. In order to derive

V2(Tr,u \ Ts,u) ≤ λuhB(u)(r − s)

from Lemma 3.5 we have to distinguish three cases. First assume βu · r ≤ λu. Then
we have βu · s ≤ λu and hence

V2(Tr,u \ Ts,u) = λuhB(u)r − cr2 − λuhB(u)s+ cs2 ≤ λuhB(u)(r − s),

where c := 1
2
βuhB(u) ≥ 0.

12



Now assume βu · r > λu, but βu · s ≤ λu. Then

V2(Tr,u \ Ts,u) =
(λu)

2hB(u)

2βu
− λuhB(u)s+

1
2
βuhB(u)s

2

≤ 1
2
λuhB(u)r − λuhB(u)s+

1
2
λuhB(u)s

≤ λuhB(u)(r − s).

Finally assume βu · r > λu and βu · s > λu. Then

V2(Tr,u \ Ts,u) =
(λu)

2hB(u)

2βu
− (λu)

2hB(u)

2βu
= 0 ≤ λuhB(u)(r − s).

Hence we get

V2((L+ rB) \ (K + rB)) ≤
∑

u∈S
(λuhB(u) · (r − s)) + V2(L \ (K + rB))

≤
(∑

u∈S
λuhB(u)

)
·
(
r − γ · wB(

r
γ
)
)
+ V2(L \ (K + rB))

≤ V2((L+B) \ L) · γ ·
(
r
γ
− wB(

r
γ
)
)
+ V2(L \ (K + rB)).

In order to justify the last inequality we choose for each u ∈ S a vector bu ∈ bdB
with exterior normal vector u and put T ′

u := {y+λbu | y ∈ relintHL(u), λ ∈ (0, 1)},
where relintK denotes the relative interior of a convex body K. Since for x ∈ T ′

u

we have ΠB(L, x) ⊆ HL(u) and ΠB(L, x) ∩ relintHL(u) 6= ∅ the sets T ′
u, u ∈ S, are

pairwise disjoint. Since they are subsets of (L+B) \ L, we get

∑

u∈S
λuhB(u) =

∑

u∈S
V2(T

′
u) ≤ V2((L+B) \ L).

Our last step in the preparation of the proof of Theorem 3.1 is a remark estab-
lishing a link between the function wB and the number ρB.

Remark 3.9. Let B ⊆ Rd be a convex body such that a largest ball contained in B
has its center at the origin. For any number r ∈ R+

0 there are y ∈ Bd and z ∈ Rd

such that dB(0, z) = r, y ∈ ΠB(0y, z) and dB(y, z) = wB(r). Thus

r − wB(r) = dB(0, z)− dB(y, z)

≤ dB(0, y)

= inf{t ≥ 0 | y ∈ 0 + tB}
≤ inf{t ≥ 0 | y ∈ tρBB

d}
= 1/ρB.

Proof of Theorem 3.1. Put Xx := X∩(x+ Ŷ ) and Zx := convXx for x ∈ Y ⊥. Then

lim
r→∞

EVn(XY + rY )− EVn(X + rY ) = lim
r→∞

E
∫

Y ⊥
V2

(
(Zx + rY ) \ (Xx + rY )

)
dx.

13



Assume that X and Y are defined on some probability space (Ω,A,P) and fix ω ∈ Ω,
x ∈ Y ⊥ and r ≥ 0. Let y denote the midpoint of a ball of maximal radius contained
in Y . We identify x+ Ŷ and the linear subspace parallel to it with R2 at the same
time. Since (diamX) is an upper bound for length of a segment in the boundary of
Zx, we get from Lemma 3.8

V2((Z
x + rY ) \ (Xx + rY )) = V2

(
(Zx + r(Y − y)) \ (Xx + r(Y − y))

)

≤ V2

(
(Zx + (Y − y))\Zx

)
· (diamX) ·

(
r

diamX
− wY−y(

r
diamX

)
)

+ V2

(
Zx \ (Xx + r(Y − y))

)
.

The map K00 × R+
0 , (B, r) 7→ wB(r), where K00 denotes the set of all convex

bodies having 0 as an interior point, will be proven to be measurable in the appendix.
Now Lemma 3.3 together with the dominated convergence theorem, on which we
will comment below, gives

lim
r→∞

EVn(XY + rY )− EVn(X + rY )

≤ lim
r→∞

E
[ ∫

Y ⊥
V2

(
(Zx + (Y − y)) \ Zx

)
· (diamX) ·

(
r

diamX
− wY−y(

r
diamX

)
)

+ V2

(
Zx \ (Xx + r(Y − y))

)
dx
]

≤ lim
r→∞

E
[
Vn

(
(XY + (Y − y)) \XY

)
· (diamX) ·

(
r

diamX
− wY−y(

r
diamX

)
)

+ Vn

(
XY \ (X + r(Y − y))

)]

= 0.

We have been allow to apply the dominated convergence theorem, since

r
diamX

− wY−y(
r

diamX
) ≤ 1/ρY−y = 1/ρY

holds by Remark 3.9 and we assumed E[(Vn(XY + Y )− Vn(XY )) · diamX/ρY ] < ∞
and EVn(XY ) < ∞.

Now we show that the smoothness assumption in Theorem 3.1 can not be relaxed.
More precisely, we show:

Corollary 3.10. Let B ⊆ R2 be a convex body. Then B is smooth, iff

lim
r→∞

V2(convK + rB)− V2(K + rB) = 0

for every body K ⊆ R2.

Proof. The “only if”-direction is an immediate consequence of Theorem 3.1.
So now assume that B is not smooth. Then choose a point q ∈ B having two

exterior unit normal vectors u1, u3 ∈ R2, u1 6= u3. We may assume u1 6= −u3. In
fact, u1 = −u3 implies that B is a line segment, and then we can choose a new point
q to be one of its endpoints and new vectors u1 and u3 such that u1 6= −u3. Now
set

u2 :=
u1 + u3

‖u1 + u3‖
.

14



r r
A
A
AK

C
C
CCO

�
�
���

x1

x2

u3 u1

u2

...............................
...............................

...............................
...............................

...............................
...................................................................................................................................................................................

.............................
r r

x1 + rq

x2 + rq

........................................................................................................Dr

........

.....
........
.....
........
.....
........
.....
........
.....
........
.....

........

.....
........
.....
........
.....
........
.....
........
.....
........
.....

Choose points x1, x2 ∈ R2 such that x1 − x2 has length 1 and is perpendicular to u2

and put K := {x1, x2}. We may assume w.l.o.g. that 〈x2 − x1, u1 − u3〉 > 0.
For every r ∈ R+ we let Dr denote the triangle bounded by [x1+ rq, x2+ rq], the

line through x1 + rq perpendicular to u1 and the line through x2 + rq perpendicular
to u3. Obviously V2(Dr) is constant and hence does not converge to zero. So it
suffices to show

intDr ⊆ (convK + rB) \ (K + rB)

for all large enough r. For all r ≥ 0 we have x1+ rq ∈ K+ rB and x2+ rq ∈ K+ rB
and for all large enough r the third corner of Dr lies in convK + rB as well,
which implies Dr ⊆ convK + rB. On the other hand, assume that there is some
z ∈ (intDr) ∩ (K + rB). Then there is p ∈ B with z = x1 + rp or z = x2 + rp,
w.l.o.g. z = x1 + rp. Now

〈z, u1〉 = 〈x1, u1〉+ r〈p, u1〉 ≤ 〈x1, u1〉+ r〈q, u1〉 = 〈x1 + rq, u1〉,

which contradicts z ∈ intDr.

4 Polynomial parallel volume and convexity

Heveling, Hug and Last [2] proved that a body in the Euclidean plane is convex,
iff its parallel volume is a polynomial. This result was generalized by Hug, Last
and Weil [3] to more general 2-dimensional Minkowski spaces and to random sets.
Moreover they gave a interpretation of the result for higher-dimensional bodies.

We will now give a new proof of this theorem under assumptions similar those
of made in [3]. Then we will discuss applications to the Wills functional and its
generalisation introduced in [4], namely the functionals fµ.

Recall the notation introduced at the beginning of section 3.

Theorem 4.1. Let X ⊆ Rn be a random body and Y ⊆ Rn a random disc body such
that EVn(XY + Y ) < ∞ and

E[(Vn(XY + Y )− Vn(XY )) · diamX/ρY ] < ∞.

Then X ∩ (x+ Ŷ ) is a.s. convex for Vn−2-almost all x ∈ Y ⊥, iff EVn(X + rY ) is a
polynomial.
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Proof. The “only if”-part is an immediate consequence of Lemma 2.1.
So assume that EVn(X+rY ) is a polynomial. By the easy direction EVn(XY+rY )

is a polynomial, too. By Theorem 3.1 the difference between these two polynomials
converges to zero and thus is zero for all r. Therefore Vn(XY +rY )−Vn(X+rY ) = 0
a.s. for every r ≥ 0. Hence for P-a.e. ω ∈ Ω and for Vn−2-a.e. x ∈ Y ⊥ we have

V2

(
(convX ∩ (x+ Ŷ )) + 1

k
Y
)
− V2

(
(X ∩ (x+ Ŷ )) + 1

k
Y
)
= 0, k ∈ N+.

Fix such ω and x. As (convX ∩ (x + Ŷ )) + 1
k
Y is the closure of its interior (w.r.t.

the topological space x+ Ŷ ), it follows that

(X ∩ (x+ Ŷ )) + 1
k
Y = (convX ∩ (x+ Ŷ )) + 1

k
Y, k ∈ N+.

Now let x1, x2 ∈ X ∩ (x+ Ŷ ) and x ∈ [x1, x2]. Then x ∈ X + 1
k
Y for every k ∈ N+,

since these sets are convex, and hence x ∈ X∩(x+ Ŷ ). So X∩(x+ Ŷ ) is convex.

A signed measure is a finite measure that may take negative values. For a more
formal introduction see e.g. [1, chapter 4].

Recall that we consider K always with the Fell-Matheron-σ-Algebra. For a signed
measure µ on K satisfying

∫

K
Vn(K + A) d|µ|(A) < ∞, K ∈ C, (15)

we put

fµ : C → R, K 7→
∫

K
Vn(K + A) dµ(A).

By the results mentioned before Theorem 3.1 the map C × K → R+
0 , (K,A) 7→

Vn(K + A) is measurable. Hence Fubini’s theorem implies that fµ : C → R is
measurable.

Proposition 4.2. Let µ be a signed measure on K and X ⊆ Rn a random convex
body with Ef|µ|(X) < ∞. Then

R+
0 → R+

0 , r 7→ Efµ(rX)

is a polynomial.

Proof. For j = 0, . . . , n we have

E
∫

K
V (X [j], A[n− j]) d|µ|(A) ≤ E

∫

K
Vn(X + A) d|µ|(A) < ∞.

Let r ∈ R+
0 . Then

Efµ(rX) = E
∫

K

n∑

j=0

(
n

j

)
V (rX [j], A[n− j]) dµ(A)

=

n∑

j=0

(
n

j

)
E
∫

K
V (X [j], A[n− j]) dµ(A) · rj.
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We will now prove some theorems that give sufficient conditions for the reverse
of Proposition 4.2 to hold.

Theorem 4.3. Let µ be a (non-negative) measure with (15) which is concentrated
on the set of all disc bodies. Assume

E
∫

K
Vn(XA + A) dµ(A) < ∞

and

E
∫

K
(Vn(XA + A)− Vn(XA)) · (diamX)/ρA dµ(A) < ∞.

If now
R+

0 → R+
0 , r 7→ Efµ(rX) (16)

is a polynomial, then X∩(x+Â) is a.s. convex for µ-almost every A and Vn−2-almost
every x ∈ A⊥.

Proof. It is easy to see that E
∫
K Vn(XA +A) dµ(A) < ∞ implies Efµ(rX) < ∞ for

all r ∈ R+
0 .

The measure µ̃ := µ
m
, where m := µ(K), is a probability measure. Let Y be a

random variable independent ofX and distributed according to µ̃. We have assumed
that there are c0, . . . , cn ∈ R such that for all r ∈ R+

0 we have

n∑

j=0

cjr
j = E fµ(rX)

= rnE
∫

K
Vn(X + 1

r
A) dµ(A)

= rnmEVn(X + 1
r
Y ).

Dividing by rnm and putting s := 1
r
we obtain

n∑

j=0

cj
m
sn−j = EVn(X + sY ).

Now Theorem 4.1 yields the assertion.

An immediate consequence of Theorem 4.3 is the following corollary:

Corollary 4.4. Let X ⊆ R2 be a random compact set and µ a measure satisfying
(15), which is concentrated on the set of all disc bodies and which is not the zero
measure. We assume

E fµ(convX) < ∞
and

E
∫

K
(V2(convX + A)− V2(convX)) · (diamX)/ρA dµ(A) < ∞.

If now
R+

0 → R+
0 , r 7→ Efµ(rX)

is a polynomial, then X is a.s. convex.
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The most important functional fµ is the Wills functional

W : C → R, K 7→ E[Vn(K + ΛBn)],

where Λ is a random variable in R+
0 with distribution function 1− e−πt2 . It is well-

known that the Wills functional of a convex body equals the sum of its intrinsic
volumes.

Corollary 4.5. Let X ⊆ R2 be a random compact set with E[(diamX)2] < ∞. If

R+
0 → R+

0 , r 7→ EW (rX)

is a polynomial, then X is a.s. convex.

Proof. The assertion is an immediate consequence of Corollary 4.4, if its assumptions
are fulfilled. In order to check this, let Λ be a random variable in R+

0 with distribution
function 1− e−πt2 , which is independent of X . Then

EW (convX) = EV2(convX + ΛB2)

≤ EV2((diamX + Λ)B2) = π · E (diamX + Λ)2 < ∞

and

E(V2(convX + ΛB2)− V2(convX)) · diamX/ρΛB2

= E
( 2∑

j=0

κ2−jΛ
2−jVj(convX)− V2(convX)

)
· diamX · 1

Λ

= E(πΛ2 + 2ΛV1(convX)) · diamX · 1
Λ

≤ E(πΛ + 2π diamX) · diamX

< ∞.

Thus the assumptions of Corollary 4.4 are fulfilled.

5 Random unions of random bodies

In this section we want discuss the application of the theorems in sections 3 and 4 to
unions of a random number of random bodies. First we will present a theorem that
can be used in order to check the integrability conditions of these theorems. Then
we will proof that a union of randomly many random bodies in the plane which has
polynomial expected parallel volume and fulfills certain independence conditions
consists a.s. only of one body (which then is convex by Theorem 4.1). We do this
by showing that if such a union is convex a.s., then it can only consist of one body.

Theorem 5.1. Let B ⊆ Rn be a disc body. Let N be an N+-valued random variable
with EN < ∞, (Xi)i∈N+ a sequence of random points in Rn and (Zi)i∈N+ a sequence
of random bodies in Rn with 0 ∈ Zi a.s. for all i ∈ N+. Assume that N is inde-
pendent of ((Xi, Zi))i∈N+. Put Z :=

⋃N
i=1(Xi + Zi). If there are numbers S1 and S2

such that E (diamZi)
n < S1 and E ‖Xi‖n < S2 for all i ∈ N+, then

EVn(ZB +B) < ∞ and E[(Vn(ZB +B)− Vn(ZB)) · (diamZ)/ρB] < ∞.
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The proof of the theorem is based on the following lemma:

Lemma 5.2. Let N be an N+-valued random variable with EN < ∞ and (Ti)i∈N+ a
sequence of R+

0 -valued random variables which is independent of N , such that there
is a number S with ET j

i < S. Then

E max{Ti | i = 1, . . . , N}j < ∞.

Proof. We have

E max{Ti | i = 1, . . . , N}j =
∞∑

k=1

P(N = k) · E max{Ti | i = 1, . . . , k}j

≤
∞∑

k=1

P(N = k) · E[T j
1 + · · ·+ T j

k ]

≤
∞∑

k=1

P(N = k) · kS

= S · EN

< ∞.

Proof of Theorem 5.1. We have a.s.

(diamZ)n ≤
(

max
i,k∈{1,...,N}

diamZi + ‖Xi‖+ ‖Xk‖+ diamZk

)n

≤
(
4max{‖Xi‖, diamZi|i = 1, . . . , N}

)n

≤ 4nmax{‖Xi‖ | i = 1, . . . , N}n + 4nmax{diamZi | i = 1, . . . , N}n.

Since

E max{‖Xi‖ | i = 1, . . . , N}n < ∞
and E max{diamZi | i = 1, . . . , N}n < ∞

by Lemma 5.2, this gives E (diamZ)n < ∞. As we have

Vn(ZB +B) ≤ Vn((diamZ + diamB)Bn) = κn(diamZ + diamB)n

and, in the notation of the proof of Theorem 3.1,

Vn(ZB +B)− Vn(ZB) =

∫

Z|B⊥
2V (Zx, B) + V2(B) dx

≤ (diamZ)n−2 · (2V ((diamZ)B2, B) + V2(B))

= (diamZ)n−1 · 2V1(B) + (diamZ)n−2V2(B)

a.s., we conclude

EVn(ZB +B) < ∞ and E[(Vn(ZB +B)− Vn(ZB)) · (diamZ)/ρB] < ∞.
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Theorem 5.3. Let N be an N+-valued random variable with EN < ∞, (Xi)i∈N+

an i.i.d. sequence of R2-valued random variables and (Zi)i∈N+ an i.i.d. sequence of
random bodies in R2 with 0 ∈ Zi a.s. for all i ∈ N+. Assume that (Xi)i∈N+, (Zi)i∈N+

and N are independent and at least one of the following two conditions is satisfied:

(a) The distribution of X1 is not concentrated on a set of Lebesgue measure 0.

(b) The distribution of X1 is not concentrated on a single point and the probability
that Z1 is a strictly convex body is positive.

Put Z :=
⋃N

i=1(Xi + Zi). If Z is convex with probability 1, then N = 1 a.s.

As a first step preparing the proof of Theorem 5.3 we define for every x =
(x1, x2) ∈ R2 and ǫ > 0 the set

Wǫ(x) :=
{
(y1, y2) ∈ R2 | y1 ≥ x1 − ǫ, y2 ∈ [x2 − ǫ, x2]

}
.

.....................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
.....................................................................................................................................................................................................................................................................................................

rx
Wǫ(x)

ǫ

{
ǫ︷︸︸︷

Lemma 5.4. Let ǫ > 0 and A ⊆ R2. Then there is a countable subset Ã ⊆ A with

A ⊆
⋃

p∈Ã

Wǫ(p). (17)

Proof. Let R ∈ N+. We construct a countable set AR ⊆ A ∩ [−R,R]2 with

A ∩ [−R,R]2 ⊆
⋃

p∈AR

Wǫ(p). (18)

In order to do this, we recursively define a sequence (Ai
R)i∈N of subsets of A ∩

[−R,R]2. Put A0
R := ∅. For i ∈ N+ consider the set

Ei
R :=

{
y2 | (y1, y2) ∈ A ∩ [−R,R]2 \⋃p∈Ai−1

R
Wǫ(p)

}
.

If it is empty, put Ai
R := Ai−1

R . If it has a maximum, choose a point (q1, q2) ∈
A∩[−R,R]2\⋃p∈Ai−1

R
Wǫ(p) such that q2 equals this maximum and put Ai

R := Ai−1
R ∪

{(q1, q2)}. If it is not empty and has no maximum, choose a sequence ((q1j , q
2
j ))j∈N in

A∩ [−R,R]2 \⋃p∈Ai−1
R

Wǫ(p) with (q2j )j∈N converging to supEi
R, which exists, since

Ei
R ⊆ [−R,R]. Then put Ai

R := Ai−1
R ∪ {(q1j , q2j ) | j ∈ N}.

For a real number t set ⌈t⌉ := min{z ∈ Z | z ≥ t} and put N := ⌈2R
ǫ
⌉ + 1. For

i ∈ N+ put ei := ⌈(supEi)/ǫ⌉, where sup ∅ := −R. Let k ∈ N+. In order to show

ek+N < ek or Ek+N
R = ∅ (19)
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consider for each i ∈ N+ the set

F i
R :=

{
y1 | (y1, y2) ∈ A ∩ [−R,R]2 \⋃p∈Ai−1

R
Wǫ(p), y

2 ≥ ǫ(ei − 1)
}
.

Obviously Ei
R, i ∈ N+, is empty, iff F i

R is empty. For i ∈ N+ it is clear from the
definition of Ai

R, that neither in the case that Ei
R has a maximum, nor in the case Ei

R

is not empty and has no maximum, the relations ei+1 = ei and supF i+1
R > supF i

R−ǫ
can hold at the same time. Hence for all i ∈ N+ we have either ei+1 < ei, supF

i+1
R ≤

supF i
R − ǫ or Ei+1

R = ∅. Since the sequence (ei)i∈N+ is monotonically decreasing, we
get by induction, that for each j ∈ N+ one of the relations ek+j < ek, supF

k+j
R ≤

supF k
R − jǫ or Ek+j

R = ∅ holds. Since −R ≤ supF i
R ≤ R for all i ∈ N, this

implies (19). Hence Ei
R = ∅ for all i > N2 and thus AR := AN2

R fulfills (18).
Now Ã :=

⋃
R∈N+ AR is a countable subset of A with (17).

Lemma 5.5. Let X = (X1, X2) be a random vector in R2. Then with probability 1
for each ǫ > 0

P(X1 − ǫ ≤ Y 1, Y 2 ∈ [X2 − ǫ,X2]|X) > 0

holds, where Y = (Y 1, Y 2) is a random vector independent of X with the same
distribution.

Proof. Let P denote the image measure of P under X resp. Y . We have to show

P ({x ∈ R2 | ∀ǫ>0 : P (Wǫ(x)) > 0}) = 1,

which is equivalent to

P ({x ∈ R2 | ∃ǫ>0 : P (Wǫ(x)) = 0}) = 0.

Since

{x ∈ R2 | ∃ǫ>0 : P (Wǫ(x)) = 0} =

∞⋃

n=1

{x ∈ R2 | P (W1/n(x)) = 0}

and P is σ-additive, it suffices to prove that

An := {x ∈ R2 | P (W1/n(x)) = 0}

is a P -zero set for all n ∈ N+. By the σ-additivity of P this follows from Lemma 5.4.

Proof of Theorem 5.3. We assume P(N ≥ 2) > 0 and condition on N ≥ 2 and N .
Let A denote the event that there are i, k ∈ {1, . . . , N} with Xi 6= Xk, and for

all i, k ∈ {1, . . . , N} with Xi 6= Xk neither convZi nor convZk has an edge parallel
to Xi − Xk. Now we will show that A has positive probability. If condition (a) is
fulfilled, we let Gi,k for i, k ∈ {1, . . . , N} denote the union of all lines passing through
Xi, which are parallel to an edge of convZi or convZk. Now A occurs, if for each
k ∈ {2, . . . , N} the point Xk is not in

⋃k−1
i=1 Gi,k, which consists of a most countably

many lines (see e.g. [8, Theorem 2.2.5]), and hence is a Lebesgue-zero set. Since Xk

is independent of X1, . . . , Xk−1 for each k ∈ {2, . . . , N} and its distribution is not
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concentrated on a Lebesgue-zero set, the probability of A is positive. If condition
(b) is fulfilled, then with positive probability Z1, . . . , ZN are all strictly convex and
X1 6= X2. Hence P(A) > 0.

The statements in the following are always meant a.s. conditioned on N ≥ 2,
N and A. We can switch the numbers 1, . . . , N in such a way that X1 and X2 are
endpoints of an edge of conv{X1, . . . , XN} and hence there is a random unit vector
u ∈ S1 with

〈X1, u〉 = 〈X2, u〉 ≥ 〈Xk, u〉, k ∈ {3, . . . , N}.
It will be proven in Lemma A.9 that this renumbering can be done in a measurable
way. Obey that X1, . . . , XN are not independent and indentically distributed any
more, but Z1, . . . , ZN still are. From now on we additionally condition on X1 and
X2. We put v := X2−X1

‖X2−X1‖ . Let H1 and H2 denote the points from X1 + Z1 resp.
X2 + Z2, that have the biggest scalar product with u. By A they are determined
uniquely. Moreover, A implies that there is a number ǫ ∈ (0, ‖X2 −X1‖), for which
the event B, that X1 + Z1 does not intersect the segment [H1 + (‖X2 −X1‖ − ǫ)v,
H1 + (‖X2 −X1‖ − ǫ)v − ǫu], has positive probability.
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X1 X2

H1

H2

The event B is, that the left body X1 + Z1 does not intersect the segment ploted thickly.
The event C is, that H2 lies in the area bounded by the thick lines.

Due to Lemma 5.5 the probability of the event C, that

〈H1, u〉 − ǫ ≤ 〈H2, u〉 ≤ 〈H1, u〉 and 〈H1 −X1, v〉 − ǫ ≤ 〈H2 −X2, v〉

hold, is positive, if we condition (additionally) on H1. The events B and C take
place at the same time with positive probability. But then the intersection of the
line g through H2 orthogonal to u and (Z1 +X1) ∪ (Z2 +X2) is not connected.

Let i ∈ {3, . . . , N}. Since Zi has the same distribution as Z2, the event Di, that

max{〈x, u〉 | x ∈ Zi} ≤ max{〈x, u〉 | x ∈ Z2},

occurs with positive probability. Moreover, 〈Xi, u〉 ≤ 〈X2, u〉. If equality holds, the
vectors Xi −X1 and Xi −X2, which are not both 0, are scalar multiples of v and so
convZi has no edge parallel to v, since A is assumed to occure. This means however,
that the set

{x ∈ Zi | 〈x, u〉 = 〈H2 −X2, u〉}
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consists of at most one point. So, if Di occurs, the intersection of g with Xi + Zi

consists of at most one element. By the independence of Z1, . . . , Zn the events
B,C,D3, . . . , DN occure with positive probability at the same time. But then the
intersection of g and

⋃N
i=1(Xi + Zi) is not connected and thus Z is not convex.

But this means that the probability (without conditioning) that Z is not convex,
is positive, too. Hence the assumption P(N ≥ 2) > 0 is wrong.

Corollary 5.6. Assume that E ‖X1‖2 < ∞ and E (diamZ1)
2 < ∞ hold in addition

to the conditions of Theorem 5.3. If EV2(Z + rB) is a polynomial for some disc
body B ⊆ R2, then N = 1 a.s.

Proof. If EV2(Z + rB) is a polynomial for some disc body B ⊆ R2, then Z is a.s.
convex by Theorem 4.1, whose integrability conditions are satisfied by Theorem 5.1.
But then Theorem 5.3 implies N = 1 a.s.

6 Outlook

It is natural to ask for the speed of convergence in Theorem 3.1. If the gauge body
has a ball as summand, the answer follows from the following more general theorem
(for the notion of a summand see e.g. [8, sections 3.1 and 3.2]).

Theorem 6.1. Let 1 < d ≤ n. Let R be an R+
0 -valued random variable and S and

G two [1,∞)-valued random variables. Let X ⊆ Rn be a random body and Y ⊆ Rn

a d-dimensional random convex body such that diamX < G, diamY < S a.s. and
Y contains a.s. a d-dimensional ball of radius R as summand. If

c := d2d+2κdκn−dE
[Sd ·Gn+1

R3

]
< ∞,

then we have

E[Vn(XY + rY )− Vn(X + rY )] < c · rd−3, r > 1.

This is Satz 2.15 of the Ph.D. thesis [5]. There will be an article soon.

A Measurability

We let af– : C → F denote the map which asigns to a body the linear space parallel
to its affine hull.

Lemma A.1. The map af– : C → F is lower semicontinuous, when C is equipped
with the Hausdorff topology and F with the topology of closed convergence.

Proof. Let (Kk)k∈N+ be a sequence of bodies converging to a body K. In order to
show af– K ⊆ limk→∞ af– Kk, let y ∈ af– K. Then there are numbers λ1, . . . , λn ∈ R
and points y1, . . . , yn ∈ K such that y = λ1y1 + · · ·+ λnyn and λ1 + · · · + λn = 0.
Now there are sequences (y1,k)k∈N+, . . . , (yn,k)k∈N+ converging to y1, . . . , yn such that
y1,k, . . . , yn,k ∈ Kk for all k ∈ N+. So y·,k := λ1y1,k+ · · ·+λnyn,k ∈ af– Kk for k ∈ N+

and limk→∞ y·,k = y.
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We let Ln
j denote the set of all j-dimensional linear subspaces of Rn.

Corollary A.2. The set Kl of all bodies of Rn, whose affine hull has at most di-
mension l, is closed (w.r.t. the Hausdorff metric) for l ∈ {0, . . . , n}.

Proof. The set L := ∪l
j=0 Ln

j is a finite union of compact sets and hence compact.
Let (Kk)

+
k∈N be a sequence of bodies, whose affine hull has at most l dimensions,

converging to a body K. Then af– K ⊆ limk→∞ af– Kk by Lemma A.1. So af– K
has at most dimension l.

Lemma A.3. The set K‖
2 of all pairs of convex bodies (K,B) lying in two 2-

dimensional parallel affine subspaces of Rn is a closed subset of C × C.

Proof. Let (Kk)k∈N+ and (Bk)k∈N+ be sequences of convex bodies converging to
bodies K and B such that for every k ∈ N+ the bodies Kk and Bk lie in parallel
2-dimensional affine subspaces. For each k ∈ N+ choose xk ∈ Kk, yk ∈ Bk and
orthogonal unit vectors uk and vk such that

Kk ⊆ {xk + λuk + µvk | λ, µ ∈ R} and Bk ⊆ {yk + λuk + µvk | λ, µ ∈ R}.

Due to compactness arguments we may assume that the sequences (xk)k∈N+, (yk)k∈N+ ,
(uk)k∈N+ and (vk)k∈N+ converge to limits x, y, u and v. Now for each point p ∈ K
there is a sequence (pk)k∈N+ with pk ∈ Kk for each k ∈ N+ converging to p and
hence

p = lim
k→∞

xk + 〈pk − xk, uk〉uk + 〈pk − xk, vk〉vk = x+ 〈p− x, u〉u+ 〈p− x, v〉v.

Thus K ⊆ {x+ λu+ µv | λ, µ ∈ R} and similar B ⊆ {y + λu+ µv | λ, µ ∈ R}.

Corollary A.4. The set K2‖ is measurable.

Proof. Since
K2‖ = K‖

2 \ (K1 ×K) \ (K ×K1)

the assertion is implied by Corollary A.2 and Lemma A.3.

For j ∈ N+ we let Aj denote the set of all 2-dimensional convex bodies K which
have a boundary point with two exterior normal unit vectors lying in af– K and
forming an angel of at least 1/j.

Lemma A.5. The sets Aj, j ∈ N+, are closed in C.

Proof. Let (Kk)k∈N+ be a sequence in Aj converging to K ∈ C. Since K is closed
(as shown in the proof of [9, Theorem 2.4.2]), we have K ∈ K. By Corollary A.2 K
is 2-dimensional. Now there is a point xk ∈ bdKk with exterior unit normal vectors
uk and vk lying in af– Kk and having an angel of at least 1/j for every k ∈ N+. We
may assume that the sequences (xk)k∈N+ , (uk)k∈N+ and (vk)k∈N+ converge to limits
x, u and v. Obviously x has exterior unit normal vectors u and v and these vectors
lie both in af– K and form an angel of at least 1/j. Hence K ∈ A1/j.

Corollary A.6. The set of all disc bodies KDisc is measurable.
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Proof. The set of all disc bodies is the intersection of the set of all 2-dimensional
bodies with K minus ∪∞

j=1Aj. Hence it is measurable.

Lemma A.7. The map C × C → C, (K,B) 7→ KB is measurable.

Proof. By [3, Lemma 2.2] the map

F : C × Ln
l → C, (K,E) 7→

⋃

x∈E⊥

conv((x+ E) ∩K)

is measurable for all l ∈ {0, . . . , n}. Since KB = F (K, af– B) for all K,B ∈ C, the
statement follows from Lemma A.1.

Recall that K00 denotes the set of all convex bodies K with 0 ∈ intK.

Lemma A.8. The map w : K00 × R+
0 → R+

0 is lower semicontinuous.

Proof. Let (Bk)k∈N+ be a sequence in K00 converging to B ∈ K00 and (rk)k∈N+ a
sequence in R+

0 converging to r ∈ R+
0 . Assume that (wBk

(rk))k∈N+ has an accumu-
lation point less than wB(r). Then there is a subsequence, w.l.o.g. the sequence
itself, converging to this point. For every k ∈ N+ there are points yk ∈ Bd and
zk ∈ Rd such that dBk

(0, zk) = rk, yk ∈ ΠBk
(0yk, zk) and dBk

(yk, zk) = wBk
(rk).

Since (Bk)k∈N+ and (rk)k∈N+ converge, there are S, s ∈ R+
0 such that Bk ⊆ SBd and

rk ≤ s for all k ∈ N+. Hence zk ∈ sSBd for all k ∈ N+ and so we may assume that
the sequences (zk)k∈N+ and (yk)k∈N+ converge to points z and y. Now the continuity
of dB implies dB(0, z) = r and y ∈ ΠB(0y, z). Thus

wB(r) ≤ dB(y, z) = lim
k→∞

dBk
(yk, zk) = lim

k→∞
wBk

(rk),

contradicting the assumption. So w is lower semicontinuous.

Lemma A.9. There is a measurable map f = (f1, . . . , fn) : (R2)n → (R2)n such that
for each x̂ = (x1, . . . , xn) ∈ (R2)n there is a bijection σ : {1, . . . , n} → {1, . . . , n}
with fj(x̂) = xσ(j) for j = 1, . . . , n and a vector u ∈ R2 with

〈f1(x̂), u〉 = 〈f2(x̂), u〉 ≥ 〈fj(x̂), u〉, j = 3, . . . , n.

Proof. We choose f1(x̂) to be the lower tangent point (see [9, p. 110]) of {x1, . . . , xn}.
If P (x̂) := {x1, . . . , xn} \ {f1(x̂)} is the empty set, put fj(x̂) := x1 for all j ∈
{2, . . . , n}. Else choose f2(x̂) to be the point p ∈ P , for which 〈p− f1(x̂), e1〉/‖p−
f1(x̂)‖ is maximal; in case there is more than one maximum, choose the one for
which ‖p− f1(x̂)‖ is larger. For j ∈ {3, . . . , n} put fj(x̂) := xj−kj , where

kj :=





2, if f1(x̂) /∈ {x1, . . . , xj−2} and f2(x̂) /∈ {x1, . . . , xj−2},
0, if f1(x̂) ∈ {x1, . . . , xj−1} and f2(x̂) ∈ {x1, . . . , xj−1},
1 else.

Now the measurability of f1 can be established using semicontinuity arguments. In
order to proof in the case n > 1 that f2 is measurable, we notice, that the sets

R :=
{
x̂ ∈ (R2)n | P (x̂) = ∅

}
,

R1 :=
{
x̂ ∈ (R2)n \R | ∃i∈{1,...,n} :

(
f1(x̂) 6= xi ∧ 〈f1(x̂), e2〉 = 〈xi, e2〉

)}
and

R2 :=
{
x̂ ∈ (R2)n \R | ∀i∈{1,...,n} :

(
f1(x̂) = xi ∨ 〈f1(x̂), e2〉 6= 〈xi, e2〉

)}
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are measurable. Further we consider the functions

g1 : R1 ∪ R2 → R, x̂ 7→ 〈f2(x̂)− f1(x̂), e1〉
‖f2(x̂)− f1(x̂)‖

g2 : R1 ∪ R2 → R, x̂ 7→ ‖f2(x̂)− f1(x̂)‖.

Their restrictions to R1 and R2 are semincontinuous respectively and hence both
functions are measurable. Since f1(x̂) = f2(x̂) for all x̂ ∈ R, we have shown the
measurability of f2.

The measurability of fj, j ∈ {3, . . . , n}, is easy to see. Obviously f has also the
other properties stated in the lemma.
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