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Abstract

We study regularity of bound states pertaining to embedded eigenvalues
of a self-adjoint operator H, with respect to an auxiliary operator A that
is conjugate to H in the sense of Mourre. We work within the framework of
singular Mourre theory which enables us to deal with confined massless Pauli-
Fierz models, our primary example, and many-body AC-Stark Hamiltonians.
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improvement of results obtained recently in [CGH].
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1 Introduction

This paper is the first in a series of two dealing with embedded eigenvalues and their
bound states, in the context of local commutator methods.

In this paper we study regularity of bound states with respect to a conjugate
operator, in the context of singular Mourre theory. In the second paper [FMS] we
use the results obtained here to do second order perturbation theory of embedded
eigenvalues, in particular we establish the validity of Fermi’s golden rule for an
abstract class of Hamiltonians. We remark that by singular Mourre theory we refer
to the situation where the first commutator is not controlled by the Hamiltonian
itself, as in [DJ1, Go, GGM1, GGM2, MS, Sk]. Regular Mourre theory refers to the
setup considered in [ABG]. See also [AHS, BFSS, DG, FGSi, GJ, HuSi, Mo].

Our main motivation is applications to massless models from quantum field the-
ory. In particular our results apply to the massless confined Nelson model at ar-
bitrary coupling strength. We can deal with infrared singularities that are slightly
weaker than the physical one, that is we can handle singularities of the form |k|− 1

2
+ε,

for some ε > 0. As a by-product of our methods we also establish that all bound
states are in the domain of the number operator.

In Section 5 we in fact deal with a larger class of quantum field theory models,
sometimes called Pauli-Fierz models, which includes the Nelson model. For simplic-
ity we present our results here in the context of the Nelson model, which we introduce
in Subsection 1.1 below. The reader can also consult [GGM2, Subsection 2.3] for a
discussion of the models considered in this paper and its sequel.

In Section 6 we apply the results of this paper to many-body AC-Stark Hamil-
tonians where we obtain new regularity results. See Subsection 1.3 below for a
formulation of the model and the result.

1.1 The Nelson Model

The model describes a confined atomic system coupled to a massless scalar quantum
field. The Hamiltonian K of the atomic system is

K =
P∑

i=1

1

2mi

∆i +
∑

i<j

Vij(xi − xj) +W (x1, . . . , xP ) (1.1)

acting on K = L2(R3P ). Here mi > 0 denotes the mass of the i’th particle located
at xi ∈ R3. We write x = (x1, . . . , xP ) ∈ R3P . The external potential W is the
confinement and must satisfy

(W0) W ∈ L2
loc(R3P ) and there exist positive constants c0, c1 and α > 2 such that

W (x) ≥ c0|x|2α − c1.

As for the pair potentials Vij, they should satisfy

(V0) The Vij’s are ∆-bounded with relative bound 0.

The Hilbert space for the scalar bosons is the symmetric Fock-space F = Γ(L2(R3))
and the kinetic energy for the massless bosons is dΓ(|k|), the second quantization
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of the operator of multiplication with the massless dispersion relation |k|. The
uncoupled Hamiltonian, describing the atomic system and the scalar field is K ⊗
1lF + 1lK ⊗ dΓ(|k|), as an operator on the full Hilbert space

H = K ⊗F .

Our next task is to introduce a coupling of the form

Iρ(x) =
P∑

i=1

φρ(xi), (1.2)

where φρ(y) is an ultraviolet and infrared regularized field operator

φρ(y) =
1√
2

∫

R3

(
ρ(k)e−ik·ya∗(k) + ρ(k)eik·ya(k)

)
dk.

We assume purely for simplicity that ρ only depends on k through its modulus. To
conform with the notation used in [GGM2], we introduce

ρ̃(r) = rρ(r, 0, 0), such that |k|ρ(k) = ρ̃(|k|).

For the interacting Hamiltonian, indexed by the coupling function ρ,

HN
ρ = K ⊗ 1lΓ(h) + 1lK ⊗ dΓ(|k|) + Iρ(x) (1.3)

to be essentially self-adjoint on D(K) ⊗ Γfin(C∞0 (R3)), we need the following basic
assumption on ρ.

(ρ1)

∫ ∞

0

(1 + r−1)|ρ̃(r)|2dr <∞.

Here Γfin(V ) denotes the subspace of F consisting of elements η with only finitely
many n-particle components η(n) nonzero, and those that are nonzero lie in the
n-fold algebraic tensor product of the subspace V ⊆ L2(R3). Note that Γfin(V ) is
dense in F if V is dense in L2(R3).

In order to formulate the remaining assumption on ρ we introduce a function
d ∈ C∞((0,∞)), which measures the amount of infrared regularization carried by ρ.
It should, for some Cd > 0, satisfy

d(r) = 1, for r ≥ 1, −Cd
d(r)

r
≤ d′(r) < 0, lim

r→0+
d(r) = +∞. (1.4)

Note that the conditions above imply that 1 ≤ d(r) ≤ r−Cd , for r ∈ (0, 1]. In order
to simplify some expressions below we make the additional assumption that

∀r ∈ (0, 1] : d(r) ≤ C ′dr
− 1

2 , (1.5)

for some C ′d > 0. In practice we want to construct a d with as weak a singularity
as possible, so this extra assumption is no restriction. We formulate the remaining
conditions on ρ, of which the two first also appeared in [GGM2].
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(ρ2)

∫ ∞

0

(1 + r−1)d(r)2[r−2|ρ̃(r)|2 + |dρ̃
dr

(r)|2]dr <∞.

(ρ3)

∫ ∞

0

|d
2ρ̃

dr2
(r)|2dr <∞.

(ρ4)

∫ ∞

0

r4|ρ̃(r)|2dr <∞.

We remark that (ρ2) and (ρ4) implies (ρ1). A typical form of ρ, and hence ρ̃, would
be

ρ(k) = e−
|k|2
2Λ2 |k|− 1

2
+ε, ρ̃(r) = e−

r2

2Λ2 r
1
2

+ε. (1.6)

One can construct a d by gluing together the functions 1 and r−ε
′
, with 0 < ε′ <

min{ε, 1/2}. The parameters Λ and ε are the ultraviolet respectively infrared reg-
ularization parameters. Ideally we would like to have Λ = ∞ and ε = 0. For the
conditions (ρ1)–(ρ4) to be satisfied we must have 0 < Λ < ∞ and ε > 1. Observe
that it is the condition (ρ3) on the second derivative of ρ̃ that causes the strongest
restriction on ε.

Observe that the set of ρ’s satisfying (ρ1)–(ρ4) is a complex vector space IN(d) ⊆
L2(R3), which can be equipped with a norm matching the four conditions. That is

‖ρ‖2
N :=

∫ ∞

0

{
(r4 +d(r)2r−3)|ρ̃(r)|2 + (1 + r−1)d(r)2

∣∣dρ̃
dr

(r)
∣∣2 +

∣∣d
2ρ̃

dr2
(r)
∣∣2
}

dr. (1.7)

In order to formulate our main theorem, we need to introduce an operator conju-
gate to HN

ρ . We use the one constructed in [GGM2], for which a Mourre estimate has
been established under the assumptions above. Let χ ∈ C∞0 (R), with 0 ≤ χ ≤ 1,
χ(r) = 1 for |r| < 1/2, and χ(r) = 0 for |r| > 1. For 0 < δ ≤ 1/2 we define a
function on (0,∞) by

sδ(r) = χ(r/δ)d(δ)r−1 + (1− χ)(r/δ)d(r)r−1.

Using this function we construct a vector-field by ~sδ(k) = sδ(|k|)k, which equals
k/|k| for |k| > 1 and d(δ)k/|k| for |k| < δ/2. The conjugate operator on the one-
particle sector is

aδ = 1
2
(~sδ · i∇k + i∇k · ~sδ). (1.8)

The operator is symmetric and closable on {f ∈ C∞0 (R3)|f(0) = 0}. We denote
again by aδ its closure which is a maximally symmetric operator, but not self-
adjoint. It is a modification, near k = 0, of the generator of radial translations
a = ( k

|k| · i∇k + i∇k · k|k|)/2. The conjugate operator is now the maximally symmetric
operator

Aδ = 1lK ⊗ dΓ(aδ).

The second quantization dΓ(a) of the generator of radial translations works as con-
jugate operator if one stays close to the uncoupled system. See [DJ1, Go, Sk]. It
is not known if one really needs the modified generator of radial translations Aδ in
order to get a Mourre estimate at arbitrary coupling.

For an eigenvalue E ∈ σpp(HN
ρ ) we write Pρ for the associated eigenprojection.

It is known from [GGM2] that Pρ has finite dimensional range. Finally we need the
number operator

N = 1lK ⊗ dΓ(1lL2(R3)).
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We will make use of the same notation for the (usual) number operator on F . Our
main result of this paper, formulated in terms of the Nelson model, is

Theorem 1.1. Suppose (W0) and (V0). Let E0 ∈ R and ρ0 ∈ IN(d) be given.
There exist 0 < δ ≤ 1/2, r > 0 and C > 0 such that for any ρ ∈ IN(d), with
‖ρ− ρ0‖N ≤ r, and E ∈ σpp(HN

ρ ) ∩ (−∞, E0] we have

Pρ : H → D
(
N 1

2Aδ
)
∩ D

(
AδN

1
2

)
∩ D

(
N
)

and ∥∥N 1
2AδPρ

∥∥+
∥∥AδN

1
2Pρ
∥∥+

∥∥NPρ
∥∥ ≤ C.

We remark that for any δ > 0 small enough, one can find r and C such that
the conclusion of the theorem holds. See Theorem 5.2. The above suffices for our
purpose and is a cleaner statement.

We can implement a unitary transformation, the so-called Pauli-Fierz trans-
form, which has the effect of smoothening the infrared singularity. Let Uρ =
exp(−iPφiρ/|k|(0)) be the unitary transformation with

Uρa(k)U∗ρ = a(k)− Pρ(k)√
2|k|

and Uρa
∗(k)U∗ρ = a∗(k)− Pρ(k)√

2|k|
.

For the transformation Uρ to be well-defined we must require that
∫
R3 |k|−2|ρ(k)|2dk <

∞. To achieve this we strengthen (ρ1) to read

(ρ1’) ]
∫∞

0
(1 + r−2)|ρ̃(r)|2dr <∞.

We then get

HN′
ρ = (1lK ⊗ Uρ)HN

ρ (1lK ⊗ Uρ)∗ = Kρ ⊗ 1lF + 1lK ⊗ dΓ(|k|) + Iρ(x)− Iρ(0), (1.9)

where

Kρ = K −
P∑

i=1

vρ(xi) +
P 2

2

∫ ∞

0

r−1|ρ̃(r)|2dr1lK (1.10)

and

vρ(y) = P

∫

R3

|ρ(k)|2
|k| cos(k · y)dk. (1.11)

Observe that

φρ(y)− φρ(0) =
1√
2

∫

R3

(
ρ(k)(e−ik·y − 1)a∗(k) + ρ(k)(eik·y − 1)a(k)

)
dk.

The estimate

|e±ik·y − 1| ≤ max{2, |k||y|} ≤ 2
|k|
〈k〉〈y〉, (1.12)

with 〈η〉 = (1 + |η|2)1/2, enables us to extract an extra infrared regularization using
the decay in x supplied by the confinement condition (W0). Keeping (1.5) and
(ρ1’) in mind, the remaining two assumptions on ρ now weaken to
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(ρ2’)

∫ ∞

0

∣∣∣∣
dρ̃

dr
(r)

∣∣∣∣
2

dr <∞.

(ρ3’)

∫ ∞

0

r2

∣∣∣∣
d2ρ̃

dr2
(r)

∣∣∣∣
2

/(1 + r2)dr <∞.

The condition (ρ4), being an ultraviolet condition, is unchanged. For the choice
(1.6) to satisfy (ρ1’)–(ρ3’) and (ρ4) we must have 0 < Λ <∞ and ε > 0. Here the
first three conditions on ρ all require ε > 0.

Observe again that the set of ρ satisfying (ρ1’)–(ρ3’) and (ρ4) is a complex
vector space I ′N(d). We introduce the natural norm

‖ρ‖2
N′ :=

∫ ∞

0

{
(r4 + r−2)|ρ̃(r)|2 +

∣∣dρ̃
dr

(r)
∣∣2 +

r2

1 + r2

∣∣d
2ρ̃

dr2
(r)
∣∣2
}

dr.

Fix a ρ0 ∈ I ′N(d). There are now two avenues one can follow. Either one can continue
as above, and for each ρ in a ‖ · ‖N′-ball around ρ0 we apply the transformation Uρ
to arrive at the more regular Hamiltonian HN′

ρ that we can fit into our class of
Pauli-Fierz models. A second option would be to apply the same transformation
Uρ0 regardless of ρ chosen near ρ0. The advantage of this is two-fold: Firstly, we
would be working in the same coordinate system for all ρ’s, which in the context
of perturbation theory, cf. [FMS], is the most natural. Secondly, in this way the
Hamiltonian will have a linear dependence on the ’perturbation’ ρ− ρ0, which is a
requirement in [FMS]. The drawback is that ρ− ρ0 has to be an element of IN(d),
and for example cannot be a small multiple of ρ0.

To implement the latter approach, we now let ρ = ρ0 + ρ1, with ρ1 ∈ IN(d), the
space of regular interactions. We then employ the transformation Uρ0 which yields
the transformed Hamiltonian

HN′′
ρ = (1lK ⊗ Uρ0)HN

ρ (1lK ⊗ Uρ0)∗ = HN′
ρ0

+ Iρ1(x)−
P∑

i=1

vρ0,ρ1(xi), (1.13)

where

vρ0,ρ1(y) = P

∫

R3

Re

{
ρ1(k)ρ0(k)

|k| e−ik·y
}

dk. (1.14)

For an eigenvalue E ∈ σpp(HN
ρ ) we write P ′ρ = (1lK ⊗ Uρ)Pρ(1lK ⊗ Uρ)∗ for the

associated eigenprojection for HN′
ρ , and P ′′ρ = (1lK ⊗ Uρ0)Pρ(1lK ⊗ Uρ0)∗ for the as-

sociated eigenprojection for HN′′
ρ . Again P ′ρ and P ′′ρ have finite dimensional ranges.

Theorem 5.2 can be applied to the transformed Hamiltonian and we arrive at the
following theorem.

Theorem 1.2. Suppose (W0) and (V0). Let E0 ∈ R and ρ0 ∈ I ′N(d) be given.
There exist 0 < δ ≤ 1/2, r > 0 and C > 0 such that

1) for any ρ ∈ I ′N(d) with ‖ρ− ρ0‖N′ ≤ r and E ∈ σpp(HN
ρ ) ∩ (−∞, E0] we have

P ′ρ : H → D
(
N 1

2Aδ
)
∩ D

(
AδN

1
2

)
∩ D

(
N
)

and ∥∥N 1
2AδP

′
ρ

∥∥+
∥∥AδN

1
2P ′ρ
∥∥+

∥∥NP ′ρ
∥∥ ≤ C.
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2) for any ρ1 ∈ IN(d) with ‖ρ1‖N ≤ r and E ∈ σpp(HN
ρ ) ∩ (−∞, E0], where ρ =

ρ0 + ρ1, we have

P ′′ρ : H → D
(
N 1

2Aδ
)
∩ D

(
AδN

1
2

)
∩ D

(
N
)

and ∥∥N 1
2AδP

′′
ρ

∥∥+
∥∥AδN

1
2P ′′ρ

∥∥+
∥∥NP ′′ρ

∥∥ ≤ C.

Unfortunately the transformation Uρ, with ρ ∈ I ′N(d), is too singular to allow for
a recovery of the full set of regularity results for the original Hamiltonian HN

ρ , as in
Theorem 1.1. The only thing that remains after undoing the transformation is the
following corollary to Theorem 1.2 1). The same argument using Theorem 1.2 2)
would give a weaker result. Theorem 1.2 2) will however play a role in [FMS].

Corollary 1.3. Suppose (W0) and (V0). Let E0 ∈ R and ρ0 ∈ I ′N(d) be given.
There exist 0 < δ ≤ 1/2, r > 0 and C > 0 such that for any ρ ∈ I ′N(d) with
‖ρ− ρ0‖N′ ≤ r and E ∈ σpp(HN

ρ ) ∩ (−∞, E0] we have

Pρ : H → D
(
N
)

and
∥∥NPρ

∥∥ ≤ C.

We make a number of remarks concerning the results above.

The domain of aδ is independent of δ, and in fact equals the domain of the
generator of radial translations. The same is (presumably) false for the second
quantized versions. This is the reason for the somewhat unpleasant formulation of
the theorems in terms of Aδ. It should be read in the context of Mourre’s commutator
method, and in [FMS] we need the regularity formulated in terms of Aδ.

The statement that bound states are in the domain of the number operator is
new. Previously it was only known that bound states are in the domain of N 1/2.
See [GGM2].

The reader should first and foremost read the results above with ρ = ρ0. In
the sequel [FMS] we need the locally uniform version to deduce a Fermi golden rule
under minimal assumptions. In traditional approaches to Fermi’s golden rule, one
typically require unperturbed bound states to be in the domain of the square of the
conjugate operator. See [AHS, HuSi, MS]. In [FMS] we reduce the requirement to
bound states ψ being in the domain of the conjugate operator itself, at the expense
of a need for the norm ‖Aδψ‖ to be bounded uniformly in ρ in a ball around the
unperturbed coupling function ρ0 and uniformly in E running over eigenvalues of Hρ

in a fixed compact interval. This motivates the somewhat unorthodox formulation
in Theorem 1.1.

The conditions (ρ3) and (ρ3’) come from a need of handling the double commu-
tator [[Hρ, Aδ], Aδ]. It is not a priori obvious that we should be able to place bound
states in the domain of Aδ with control of just two commutators. In the context of
regular Mourre theory the question is addressed in [CGH] where the authors need
three commutators to conclude a result of this type. In view of the infrared singu-
larity, it is crucial to minimize the number of commutators needed. The following
example illustrates that if one desires bound states to be in the domain of the k’th
power of a conjugate operator, one needs at least control of k + 1 commutators.
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Example 1.4. Consider the one-dimensional Schrödinger operator H = −4 + V
on H = L2(R) given by a rank-one potential V = |φ〉〈φ| where φ ∈ H obeys
the following properties: Suppose that (in momentum space) φ̂ = φ̂1 + φ̂2, where
φ̂1 ∈ C∞c (]−1, 1[), φ̂2 ∈ C∞(]1,∞[) and for some R > 1 the support supp φ̂2 ⊆ [1, R].
Suppose there exists ε ∈]0, 1

2
[ such that for all k ∈ N ∪ {0}

dk

dξk

{
φ̂2(ξ)− (ξ2 − 1)k0+

1
2

+ε
}

= O
(

(ξ2 − 1)k0−k+
3
2

+ε
)

as |ξ| ↘ 1.

Finally suppose ∫

R
|φ̂(ξ)|2(ξ2 − 1)−1dξ = −1.

Then ψ = (−4− 1)−1φ is a bound state (with eigenvalue λ = 1). Let A = 1
2
(p · x+

x · p) be the generator of dilations. We have φ ∈ D(Ak0+1) and ψ ∈ D(Ak0), while
indeed ψ /∈ D(Ak0+1) (intuitively it should be expected that in fact ψ /∈ D(〈A〉k0+ε′)
for ε′ ≥ ε).

In Section 2 our abstract regularity results are formulated. In the context of reg-
ular Mourre theory, as considered in [CGH], we need control of one less commutator,
which given the example above is optimal.

1.2 Singular Mourre Theory

Consider the operator Mω of multiplication in the momentum space L2(Rd) by a
dispersion relation ω assumed to be locally Lipschitz. The connection between
dynamics and structure of the spectrum of a self-adjoint operator is fairly well
understood, starting from Kato-smoothness and the RAGE theorem [RS]. When
looking for a conjugate operator, one should study the dynamics of the operator
Mω. It is natural to identify what states have (at least) ballistic motion, that is find
states ψ0 satisfying

〈x2〉ψt ≥ ct2,

for some c > 0. Here ψt = exp(−itMω)ψ0. The position operator x is equal to i∇k.
We can compute this quantity explicitly and we get

〈x2〉ψt = 〈x2〉ψ0 +

∫ t

0

〈x · ∇ω +∇ω · x〉ψsds

= 〈x2〉ψ0 + t〈x · ∇ω +∇ω · x〉ψ0 + t2〈|∇ω|2〉ψ0 .

We observe that if ψ0 has support away from zeroes of ∇ω, then the motion is at
least ballistic. More precisely this is the case if essinfk∈suppψ0|∇ω(k)| ≥ c > 0.

If ω = k2, the standard non-relativistic dispersion relation, we find that ψ0 should
be localized away from 0 in momentum space. Since |∇ω|2 = 4ω, the requirement
on ψ0 can also be expressed as ψ0 ∈ EMω([c/4,∞))L2(Rd), where EMω denotes the
spectral projections associated with the self-adjoint operator Mω. We observe that
the energy 0 has a special significance for the case ω = k2 and is called a threshold,
in the sense that states localized in energy near a threshold may not have strict
ballistic motion.
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A second example is ω = |k|. Here we observe that |∇ω| = 1, and hence all
states ψ0 will exhibit ballistic motion. In other words this dispersion relation does
not have thresholds. This of course reflects the constant (momentum independent)
speed of light. See [GGM1, Subsection 1.2] for a discussion of general dispersion
relations.

When picking a conjugate operator in Mourre theory, one is precisely looking
for an observable a with at least ballistic growth. The choice often used is the
Heisenberg derivative of x2, where x is some suitably chosen position observable.
That is, one would naturally be lead to consider

a = 1
2
(x · ∇ω +∇ω · x).

This is for example the case for the N -body problem, see e.g. [AHS, Ca, CGH, HuSi],
and in the case of field theory see [DG, DJ1, FGSch1, FGSch2, GGM2, Sk], where
the position is the Newton-Wigner position dΓ(x). The free energy is dΓ(Mω), and
we get as conjugate operator A = dΓ(a), where a is as above.

It is often advantageous to modify the so obtained conjugate operator, to simplify
proofs, or circumvent some technical issues. In this paper we need the modified
generator of translations Aδ from [GGM2] in order to deal with the confined massless
Nelson model, and more generally confined massless Pauli-Fierz models.

There are two issues that come up naturally when following the above guidelines
for massless field theory models, like the Nelson model. One is already apparent
in the one-particle setup discussed above. If ω(k) = |k|, the resulting conjugate
operator a, the generator of radial translations, does not have a self-adjoint realiza-
tion. This appears to be a purely technical complication, that becomes a serious
issue when one is in need of localizations in the operator a. The operator is not
normal, so we do not have spectral calculus at hand, only resolvents. This has
so far not been a serious issue when dealing with the limiting absorption principle
[DJ1, GGM2, HüSp, HuSi, Sk], and perturbation theory around an uncoupled sys-
tem [DJ1, Go]. It does however become an obstacle when one tries to apply the
conjugate operator a in the context of scattering theory [Gé].

In the present paper, non-self-adjointness of a is also a serious obstacle, which
we overcome, as in [Gé], by passing to a so called expanded Hamiltonian. The idea
is to write L2(Rd) ∼ L2(R+) ⊗ L2(Sd−1) and double the Hilbert space to L2(R) ⊗
L2(Sd−1). The dispersion relation in polar coordinates is just multiplication by r,
which when extended linearly to negative r gives rise to the self-adjoint conjugate
operator i∂/∂r ⊗ 1l. We thus work with an expanded Hamiltonian, and in the end
pull our results back to the physical Hamiltonian. The reader should keep this in
mind when going through the abstract conditions in the following section.

However passing to an expanded Hamiltonian is not a silver bullet, it comes
with a price. The operator of multiplication by r is no longer bounded from below,
making it hard to utilize energy localizations. For this reason we have to develop
an abstract theory which does not demand that any naturally occurring object can
be controlled by the (expanded) Hamiltonian.

The second feature we want to discuss does not occur on the one-particle level,
but only after second quantization. The free commutator becomes

i[dΓ(|k|), A] = N ,
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where N is the number operator. In the standard (regular) commutator based
methods, one typically has the commutator bounded at least as a form on D(H).
(This is for example a consequence of a C1(A) assumption.) This is not the case
here and we call such a situation singular. One could of course avoid this issue by
observing that the operators involved conserve particle number, and then rescale
A by 1/n on the n-particle sector. However, perturbations are typically expressed
in terms of field operators, and straying from second quantized conjugate operators
give rise to terms from the commutator with the perturbation, that have so far not
been controllable.

The dΓ(|k|)-unboundedness of the number operator, has led authors to use a dif-
ferent conjugate operator instead, namely the second quantized generator of dilation
given by dΓ((x · k + k · x)/2), normally associated with the dispersion relation k2.
Here the commutator with dΓ(|k|) is dΓ(|k|) itself, so the issue disappears. How-
ever, this choice induces an artificial threshold at photon energy 0, which for a
coupled system turns all eigenvalues of the atomic system into artificial thresholds.
In order to circumvent this problem one can modify the generator of dilation by
building the level shift from Fermi’s golden rule into the conjugate operator. This
was done in [BFSS] and gives rise to positive relatively bounded commutators, at
weak coupling. There are however disadvantages to this approach. It does not cover
situations where symmetries may cause embedded eigenvalues to persist to second
order in perturbation theory. For the N -body problem in quantum mechanics one
can for example show that the underlying spectrum is absolutely continuous without
a priori imposing Fermi’s golden rule, which can then subsequently be established
[AHS, HuSi]. Works employing this choice of conjugate operator has, so far, not been
able to address what happens outside the regime of weak coupling, which may be
an issue since coupling constants typically are explicitly given numbers. In electron-
photon models, the coupling constant involve the feinstructure constant 1/137 and
in electron-phonon models from solid state physics, the coupling constants occurring
may even be of the order 1. Effective coupling constants may also depend on an
ultraviolet cutoff, thus imposing apparently artificial limitations on the size of the
cutoff. Finally the restriction on the size of the coupling constant is always locally
uniform in energy. That is, all statements of this type holds only below a fixed E0.
Papers employing the generator of dilation include [BFS, BFSS, FGSi].

We remark that in [Go], the author modifies the generator of radial translation,
as it was done in [BFSS] for the generator of dilations, in order to establish Fermi’s
golden rule. We have no need for this construction since we follow the strategy of
[AHS, HuSi, MS].

Instead of viewing the unboundedness of the first commutator with respect to
dΓ(|k|) as a technical problem, one can also adopt the point of view that it is
a feature of the model which can be exploited. This is most obviously done for
small coupling constants, where one gets a positive commutator globally in energy,
modulo a compact error. This was done in [DJ1, FGSch2, Go, Sk]. In [GGM2] the
extra positivity of the commutator is directly utilized to prove a Mourre estimate
at arbitrary coupling constant, the first (and so far only) such result for massless
models. Another piece of information one can extract is that the number operator
has finite expectation in bound states. This was done in [Sk] for small coupling
constants and generally in [GGM2]. A more subtle property is that one can obtain
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a stronger limiting absorption principle, see [GGM1, MS], which has so far not found
an application. Here we prove in particular that bound states are in the domain of
the number operator, not just in its form domain.

We have not discussed positive temperature models, where one has a similar
situation, except that so far no positive commutator estimates at arbitrary coupling
has been proven, regardless of choice of conjugate operator. See e.g. [FM] and
references therein.

1.3 The AC–Stark model

The model describes a system of N charged particles in a nonzero time-periodic
Stark-field with zero mean (AC-Stark field). The particles are here taken three-
dimensional and we assume that the field is 1-periodic and, for simplicity, that it is
continuous i.e. that Ẽ ∈ C([0, 1];R3). The Hamiltonian is of the form

h̃(t) =
N∑

i=1

( p2
i

2mi
− qiẼ(t) · xi

)
+ V ; (1.15)

here xi, mi and qi are the position, the mass and the charge of the i’th particle,
respectively, and pi = −i∇xi is its momentum. The potential is of the form

V =
∑

1≤i<j≤N
vij(xi − xj), (1.16)

where the pair-potentials obey

Conditions 1.5. Let k0 ∈ N be given. For each pair (i, j) the pair-potential R3 3
y → vij(y) ∈ R splits into a sum vij = v1

ij + v2
ij where

(1) Differentiability: v1
ij ∈ Ck0+1(R3) and v2

ij ∈ Ck0+1(R3 \ {0}).
(2) Global bounds: For all α with |α| ≤ k0+1 there are bounds |y||α| |∂αy v1

ij(y)| ≤ C.

(3) Decay at infinity: |v1
ij(y)|+ |y · ∇yv

1
ij(y)| = o(1).

(4) Local singularity: v2
ij is compactly supported and for all α with |α| ≤ k0 + 1

there are bounds |y||α|+1 |∂αy v2
ij(y)| ≤ C; y 6= 0.

In the above conditions, the letter α denotes multiindices. Note that (1.15) and
(1.16) with vij(y) = qiqj|y|−1 conform with Condition 1.5 for any k0.

Introducing the inner product x · y =
∑

i 2mixi · yi for x = (x1, . . . , xN), y =
(y1, . . . , yN) ∈ R3N we can split

R3N = XCM ⊕X; XCM =
{
x ∈ R3N

∣∣x1 = · · · = xN
}
.

There is a corresponding splitting

h̃(t) = hCM(t)⊗ I + I ⊗ h(t), on L2(XCM)⊗ L2(X),

where
hCM(t) = p2

CM − ECM(t) · x, and h(t) = p2 − E(t) · x+ V.
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Here

ECM =
Q

2M

(
Ẽ , . . . , Ẽ

)
and E =

(( q1

2m1

− Q

2M

)
Ẽ , . . . ,

( qN
2mN

− Q

2M

)
Ẽ
)
,

where Q = q1 + · · · + qN and M = m1 + · · · + mN are the total charge and mass
of the system, respectively. In the special case where all the particles have identical
charge to mass ratio, we see that the center of mass Hamiltonian is just an ordinary
time-independent N -body Hamiltonian. Otherwise the Hamiltonian h(t) depends
non-trivially on the time-variable t. We denote by Ũ(t, s), UCM(t, s) and U(t, s) the
dynamics generated by h̃(t), hCM(t) and h(t), respectively, and observe that

Ũ(t, s) = UCM(t, s)⊗ U(t, s).

We shall address spectral properties of the monodromy operator U(1,0). Note
that this is a unitary operator on L2(X). LetA be the set of all cluster partitions a =
{C1, . . . , C#a}, 1 ≤ #a ≤ N , each given by splitting the set of particles {1, . . . , N}
into non-empty disjoint clusters Ci. The spaces Xa, a ∈ A, are the spaces of
configurations of the #a centers of mass of the clusters Ci (in the center of mass
frame). The complement

Xa = XC1 ⊕ · · · ⊕XC#a

is the space of relative configurations within each of the clusters Ci. More precisely

XCi =
{
x ∈ X

∣∣xj = 0, j /∈ Ci
}

and Xa =
{
x ∈ X

∣∣k, l ∈ Ci ⇒ xk = xl
}
.

We will write xa and xa for the orthogonal projection of a vector x onto the subspace
Xa and its orthogonal complement respectively. Notice the natural ordering on A:
a ⊂ b if and only if any cluster C ∈ a is contained in some cluster C ′ ∈ b. Clearly the
minimal and maximal elements are amin = {(1), . . . , (N)} and amax = {(1, . . . , N)},
respectively. Any pair (i, j) defines an N − 1 cluster decomposition (ij) ∈ A by
letting C = {i, j} constitute a cluster and all others being one-particle clusters.

For each a 6= amax the sub-Hamiltonian monodromy operator is Ua(1, 0); it is
defined as the monodromy operator on Ha = L2(Xa) constructed for a 6= amin from
ha = (pa)2 − E(t)a · xa + V a, V a =

∑
(ij)⊂a vij(xi − xj). If a = amin we define

Ua(1, 0) = 1l (implying σpp(Uamin(1, 0)) = {1}). The condition
∫ 1

0
E(t)dt = 0 leads

to the existence of a unique 1-periodic function b such that

d
dt
b(t) = E(t) and

∫ 1

0

b(t)dt = 0.

The set of thresholds is

F(U(1, 0)) =
⋃

a6=amax

e−iαaσpp(Ua(1, 0)); αa =

∫ 1

0

|b(t)a|2dt. (1.17)

We recall from [MS] that the set of thresholds is closed and countable, and non-
threshold eigenvalues, i.e. points in σpp(U(1, 0))\F(U(1, 0)), have finite multiplicity
and can only accumulate at the set of thresholds. Moreover any corresponding bound
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state is exponentially decaying, the singular continuous spectrum σsc(U(1, 0)) =
∅ and there are integral propagation estimates for states localized away from the
set of eigenvalues and away from F(U(1, 0)). These properties are known under
Condition 1.5 with k0 = 1. For completeness of presentation we mention that
some of the results of [MS] hold under more general conditions, in particular the
exponential decay result does not require that the Coulomb singularity of each pair-
potential (if present) is located at the origin (this applies to Born-Oppenheimer
molecules in an AC-Stark field).

Letting
A(t) = 1

2

(
x · (p− b(t)) + (p− b(t)) · x

)
, (1.18)

and using a different frame, we prove in Section 6

Theorem 1.6. Suppose Conditions 1.5, for some k0 ∈ N. Let φ be a bound state
for U(1, 0) pertaining to an eigenvalue e−iλ /∈ F(U(1, 0)). Then

(1) φ ∈ D(A(1)k0) where A(t) is given by (1.18).

(2) If for all pairs (i, j) the term v2
ij = 0 then φ ∈ D(|p|k0+1).

The result (1) is new for k0 > 1 while it is essentially contained in [MS] for
k0 = 1, see [MS, Proposition 8.7 (ii)]. We remark that the highest degree of smooth-
ness known in general in the case v2

ij 6= 0 is φ ∈ D(|p|), cf. [MS, Theorem 1.8].
This holds without the non-threshold condition. The result (2) overlaps with [KY,
Theorem 1.2]. This is for N = 2 and “k0 =∞”.

2 Assumptions and Statement of Regularity

Results

For a self-adjoint operator A on a Hilbert space H, we will make use of the C1(A)
class of operators. This class consists a priori of bounded operators B with the
property that [B,A] extends from a form onD(A) to a bounded form onH. The class
is (consistently) extended to self-adjoint operators H, by requiring that (H − z)−1

is of class C1(A), for some (and hence all) z ∈ ρ(H), the resolvent set of H. We will
use the notation H ∈ C1(A) to indicate that an operator H is of class C1(A).

If H is of class C1(A) then D(H) ∩ D(A) is dense in D(H) and the form [H,A]
extends by continuity from the form domain D(H) ∩ D(A) to a bounded form on
D(H). The extension is denoted by [H,A]0, and is also interpreted as an element
of B(D(H),D(H)∗). If in addition [H,A]0 extends by continuity to an element of
B(D(H),H), then we say it is of class C1

Mo(A). Note that being of class C1
Mo(A) is

equivalent to having the conditions of Mourre [Mo] satisfied for the first commutator.
See [GG].

Conditions 2.1. Let H be a complex Hilbert space. Suppose there are given
some self-adjoint operators H,A and N as well as a symmetric operator H ′ with
D(H ′) = D(N). Suppose N ≥ 1l. Let R(η) = (A− η)−1 for η ∈ C \ R.

(1) The operator N is of class C1
Mo(A). We abbreviate N ′ = i[N,A]0.
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(2) The operator N is of class C1(H), and there exists 0 < κ ≤ 1
2

such that the
commutator obeys

i[N,H]0 ∈ B(N−
1
2

+κH, N 1
2
−κH). (2.1)

(3) There exists a (large) σ > 0 such that for all η ∈ C with |Im η| ≥ σ we have
as a form on D(H) ∩ D(N1/2)

i[H,R(η)] = −R(η)H ′R(η). (2.2)

(Here it should be noticed that N−1/2H ′N−1/2 and N∓1/2R(η)N±1/2 are boun-
ded if σ is large enough, cf. Remark 2.4 1).)

(4) The commutator form i[H ′, A] defined on D(A)∩D(N) extends to a bounded
operator

H ′′ := i[H ′, A]0 ∈ B(N−
1
2H, N 1

2H). (2.3)

Condition 2.2. There are constants C1, C2, C3 ∈ R such that as a form on D(H)∩
D(N1/2)

N ≤ C1H + C2H
′ + C31l. (2.4)

Condition 2.3. For a given λ ∈ R there exist c0 > 0, C4 ∈ R, fλ ∈ C∞c (R) with
0 ≤ fλ ≤ 1 and fλ = 1 in a neighborhood of λ, and a compact operator K0 on H
such that as a form on D(H) ∩ D(N1/2)

H ′ ≥ c01l− C4f
⊥
λ (H)2〈H〉 −K0. (2.5)

Here f⊥λ := 1− fλ.

Remarks 2.4. 1) It follows from Condition 2.1 (1) and an argument of Mourre
[Mo, Proposition II.3], that there exists σ > 0 such that for |Im η| ≥ σ we have
(A−η)−1 : D(N) ⊆ D(N) and (A−η)−1D(N) is dense in D(N). By interpolation
the same holds with N replaced by Nα, 0 < α < 1, cf. Lemma 3.4 below.

2) From Condition 2.1 (2) and Lemma 3.2 it follows that N1/2 is of class C1
Mo(H).

In particular D(H) ∩ D(N1/2) is dense in D(N1/2).

3) Combining the above two remarks with Condition 2.1 (3) and (3.15), we find
that given H, A and N , there can at most be one H ′ such that Condition 2.1 (1),
(2), and (3) are satisfied.

4) We remark that in practice we work with the weaker commutator estimate

H ′ ≥ c01l− Re {B(H − λ)} −K0, (2.6)

where B = B(λ) is a bounded operator, with BD(N1/2)∪B∗D(N1/2) ⊆ D(N1/2).
The one in Condition 2.3 is however more standard. To see that Condition 2.3
implies the above bound choose B = C4f

⊥
λ (H)2〈H〉(H − λ)−1 which under our

Condition 2.1 satisfies the requirements on B by Lemma 3.3.

We call H ′ the first derivative of H. Similarly H ′′ is the second derivative of H.
The estimate (2.4) is called the virial estimate, while (2.5) is the Mourre estimate
at λ.
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Theorem 2.5. Suppose Conditions 2.1, 2.2 and 2.3, and let ψ be a bound state,
(H − λ)ψ = 0 (with λ as in Condition 2.3), obeying

ψ ∈ D(N
1
2 ). (2.7)

Then ψ ∈ D(A) and Aψ ∈ D(N1/2).

By imposing assumptions on higher-order commutators between H and A we
obtain a higher-order regularity result. For this we need the following condition,
which coincides with Condition 2.1 (4) if k0 = 1, but for k0 ≥ 2 it is stronger.

Condition 2.6. There exists k0 ∈ N such that the commutator forms i`ad`A(H ′)
defined on D(A) ∩ D(N), ` = 0, . . . , k0, extend to bounded operators

i`ad`A(H ′) ∈ B(N−1H,H); ` = 0, . . . , k0 − 1. (2.8)

ik0adk0
A (H ′) ∈ B(N−

1
2H, N 1

2H). (2.9)

We have the following extension of Theorem 2.5 to include higher orders

Theorem 2.7. Suppose Conditions 2.1–2.3 and Condition 2.6, and let ψ be a bound
state, (H−λ)ψ = 0 (with λ as in Condition 2.3), obeying (2.7). Let k0 be given as in
Condition 2.6. Then ψ ∈ D(Ak0), and for k = 1, . . . , k0 the states Akψ ∈ D(N1/2).

It should be noted that under the assumptions imposed in Theorem 2.5 and
Theorem 2.7, it is crucial that N1/2 is applied after the powers of A. The follow-
ing result requires an additional assumption, and allows for arbitrary placement of
N1/2 amongst the at most k0 powers of A. The new condition (2.10) below is a
generalization of Condition 2.1 (1).

Condition 2.8. Let N ′ be given as in Condition 2.1 (1). There exists k0 ∈ N such
that the commutator forms i`ad`A(N ′) defined on D(A) ∩ D(N), ` = 0, . . . , k0 − 1,
extend to bounded operators

i`ad`A(N ′) ∈ B(N−1H,H); ` = 0, . . . , k0 − 1. (2.10)

Moreover there exists κ1 > 0 such that the commutators (initially defined as forms
on D(N))

i adN
(
i`ad`A(N ′)

)
∈ B(N−1H, N1−κ1H); ` = 0, . . . , k0 − 1. (2.11)

We have

Corollary 2.9. Suppose Conditions 2.1–2.3, 2.6 and 2.8 (with the same k0 in Con-
ditions 2.6 and 2.8). Let ψ ∈ D(N1/2) be a bound state, (H − λ)ψ = 0 (with λ as
in Condition 2.3). For any k, ` ≥ 0, with k + ` ≤ k0, we have ψ ∈ D(AkN1/2A`).

We end with the following improvement of Theorem 2.5, which concludes in
addition that bound states are in the domain of N . It requires the added assump-
tion (2.11), with k0 = 1.
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Theorem 2.10. Suppose Conditions 2.1–2.3 and (2.11) for k0 = 1, and let ψ ∈
D(N1/2) be a bound state (H − λ)ψ = 0 (with λ as in Condition 2.3). Then ψ ∈
D(N), the states ψ,N1/2ψ ∈ D(A) and Aψ ∈ D(N1/2).

In Subsection 4.3 we in fact prove an extension of the above theorem, to include
higher order estimates in N . These are applied in Section 6 to many-body AC-Stark
Hamiltonians.

Remarks 2.11. 1) The condition that N ≥ 1l is imposed partly for convenience
of formulation. Obviously one can obtain a version of the above results upon
imposing only thatN is bounded from below (upon “translating”N → N+C ≥ 1l
at various points in the above conditions).

2) The ‘standard’ or ’regular’ Mourre theory, considered for example in [CGH], fits
in the semi-bounded case into the above scheme so that Theorem 2.7 holds.
In fact (assuming here for simplicity that H is bounded from below) we have
N := H + C ≥ 1l for a sufficiently large constant C. Use this N and the same
’conjugate operator’ A in Conditions 2.1 – 2.3, 2.6 and 2.8. Note also that the
standard Mourre estimate at energy λ reads

fλ(H)i[H,A]0fλ(H) ≥ c′0f
2
λ(H)−K ′0; c′0 > 0, K ′0 compact. (2.12)

From (2.12) we readily conclude (2.5) with c0 = c′0/2, K0 = K ′0 an a suitable
constant C4 ≥ 0.

Although we shall not elaborate we also remark that the method of proof
of Theorem 2.7 essentially can be adapted under the conditions of the standard
Mourre theory, in fact only a simplified version is needed. Whence although we
can not literately conclude from Theorem 2.7 in the general non-semi-bounded
case the result ψ ∈ D(Ak0) is still valid given standard conditions on repeated
commutators ikadkA(H) for k ≤ k0 + 1.

3) Theorem 2.7 does not hold with one less commutator in Condition 2.6. Alterna-
tively, under the conditions of Theorem 2.7 it is in general false that the bound
state ψ ∈ D(Ak0+1). Based on considerations for discrete eigenvalues this state-
ment may at a first thought appear surprising. See Example 1.4. Compared to
[CGH] our method works with one less commutator, cf. 2), although the overall
scheme of ours and the one of [CGH] are similar.

4) The proofs of Theorems 2.5 and 2.7, Corollary 2.9 and Theorem 2.10 are con-
structive in that they yield explicit bounds. Precisely, if we have a positive lower
bound of the constant c0 in (2.5) that is uniform in λ belonging to some fixed
compact interval I as well as uniform bounds of the absolute value of the con-
stants C1, . . . , C4 of (2.4) and (2.5) (uniform in the same sense) and similarly for
all possible operator norms related to Conditions 2.1, 2.6 and 2.8 (and the B(λ)
in Remark 2.4 if it is used) then there are bounds of the form, for example,

‖N 1
2Akψ‖ ≤ C‖N 1

2ψ‖; C = C(k, I,K0);

here K0 = K0(λ) is the compact operator of (2.5) and k ≤ k0. Similar bounds
are valid for the states AkN1/2A`ψ of Corollary 2.9 and for the state Nψ of The-
orem 2.10. In the context of perturbation theory typically I will be a small inter-
val centered at some (unperturbed) embedded eigenvalue λ0 and K0 = K0(λ0).
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Whence the constant will depend only on the interval. For various models one
can verify the condition (2.7) for all bound states ψ by a ‘virial argument’, cf.
[GGM2, MS, Sk], along with a similar bound

‖N 1
2ψ‖ ≤ C(I)‖ψ‖.

This virial argument is in a concrete situation related to the virial estimate (2.4).
Clearly the above bounds can be used in combination, and this is precisely how
we in Section 5 arrive at the Theorems 1.1 and 1.2. In [MW] the case of regular
Mourre theory is considered where the derivation of the bounds is simpler, and
care is taken to derive good explicit bounds, which in particular are independent
of any proof technical constructions. The bounds are good enough to formulate
a reasonable condition on the growth of norms of multiple commutators which
ensures that bound states are analytic vectors with respect to A.

3 Preliminaries

In this section we establish basic consequences of Conditions 2.1, and introduce a
calculus of almost analytic extensions taylored to avoid issues with (A− η)−1, when
|Im η| is small.

3.1 Improved Smoothness for Operators of Class C1(A)

For an operator N of class C1(A) not much in the way of regularity can be ex-
pected, beyond the C1(A) property itself, and its equivalent formulations. See
[ABG, GGM1]. Often one requires some additional smoothness properties to manip-
ulate and estimate expressions in the two operators. The typical way of achieving
improved smoothness is to impose conditions on i[N,A]0 stronger than what is im-
plied by the C1(A) property itself. This is what is done in Condition 2.1 (1) and (2).

This subsection is devoted primarily to the extraction of improved smoothness
properties of the pair of operators N,H, afforded to us by Conditions 2.1.

Lemma 3.1. Let N ≥ 1l be of class C1(H) with

[N,H]0 ∈ B(N−1/2H, N1/2H).

For any α ∈]0, 1[, the operator Nα is of class C1(H).

Proof. Let 0 < α < 1. It suffices to check for one η ∈ ρ(Nα) that (Nα − η)−1 is of
class C1(H). To this end we pick η = 0, and use the representation formula

N−α = cα

∫ ∞

0

t−α(N + t)−1dt, cα =
sin(απ)

π
. (3.1)

Since N ∈ C1(H) we have for all t > 0 that the operator (N + t)−1 preserves D(H).
In fact

[H, (N + t)−1]φ = (N + t)−1[N,H]0(N + t)−1φ; φ ∈ D(H). (3.2)
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By combining (3.1) and (3.2) we can compute [N−α, H] considered as a form on
D(H) as

[N−α, H] = cα

∫ ∞

0

t−α(N + t)−1[N,H]0(N + t)−1dt. (3.3)

Notice that the integral is absolutely convergent for any 0 < α < 1. This completes
the proof.

Lemma 3.2. Assume N ≥ 1l and H satisfy Condition 2.1 (2) and let α ∈]0, 1[.
Then Nα ∈ C1(H) and for τ1, τ2 ≥ 0, with

max{0, 1
2
− κ− τ1}+ max{0, 1

2
− κ− τ2} < 1− α,

we have [Nα, H]0 ∈ B(N−τ1H, N τ2H). In particular N1/2 is of class C1
Mo(H).

Proof. That Nα ∈ C1(H) follows from Lemma 3.1. We compute as a form on
D(Nα) ∩ D(H)

[Nα, H] = cα

∫ ∞

0

tα(N + t)−1[N,H]0(N + t)−1dt, (3.4)

where we have used the strongly convergent integral representation formula

Nα = cα

∫ ∞

0

tα
(
t−1 − (N + t)−1

)
dt, (3.5)

which follows from (3.1). We thus get for τ1, τ2 ≥ 0

|〈ψ, [Nα, H]ϕ〉| ≤ C

∫ ∞

0

tα‖(N + t)−1N
1
2
−κ−τ1‖‖(N + t)−1N

1
2
−κ−τ2‖dt

×‖N τ1ψ‖‖N τ2ϕ‖.

The integrand is of the order O(tα−2+θ), where θ = max{0, 1
2
− κ − τ1} +

max{0, 1
2
−κ−τ2}. It is integrable provided θ < 1−α, which proves the lemma.

We shall need a boundedness result:

Lemma 3.3. Assume N ≥ 1l and H satisfy Condition 2.1 (2) and let α ∈]0, 1/2+κ[.
Suppose f ∈ C∞(R) is given such that

dk

dtk
f(t) = O

(
〈t〉−k

)
; k = 0, 1, . . .

Then

Nαf(H)N−α ∈ B(H). (3.6)

Proof. Let ρ ∈]0, 1/2 + κ[, where 0 < κ ≤ 1/2 comes from Condition 2.1 (2). From
Lemma 3.2 applied with τ1 = max{0, ρ− κ} and τ2 = 0, we get

[Nρ, H]0 ∈ B(N−max{0,ρ−κ}H,H). (3.7)
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We recall from [Mo, Proposition II.3] that if an operator Ñ is of class C1
Mo(H),

then

∃σ > 0 : |Im η| ≥ σ ⇒ (H − η)−1 preserves D(Ñ) and

Ñ(H − η)−1ψ = (H − η)−1Ñψ (3.8)

+ i(H − η)−1i[Ñ ,H]0(H − η)−1ψ for all ψ ∈ D(Ñ).

We apply this to Ñ = Nρ, 0 < ρ < 1/2 + κ. The assumption is satisfied by (3.7).

We shall show a representation formula for the special case f(x) = fη(x) =
(x − η)−1 with v = Im η 6= 0. Now fix α ∈]0, 1/2 + κ[. Using (3.7) and (3.8),
multiple times with ρ = α − jκ, we obtain for |Im η| sufficiently large and for all
ψ ∈ D(Nα)

Nα(H − η)−1ψ − (H − η)−1Nαψ (3.9)

=
n∑

j=1

(
(H − η)−1B1

)
· · ·
(
(H − η)−1Bj

)
(H − η)−1Nα−jκψ (3.10)

+
(
(H − η)−1B1

)
· · ·
(
(H − η)−1Bn

)(
(H − η)−1Bn+1

)
(H − η)−1ψ,

where n is the biggest natural number for which α−nκ > 0 and the Bj’s are bounded
and independent of η. Next by analytic continuation we conclude that (3.9) is valid
for all η ∈ C \ R. Hence we have verified the adjoint version of (3.6) for f = fη;
v 6= 0.

We shall now show (3.6) in general. Define a new function by h(t) = f(t)(t+i)−1,
and let h̃ denote an almost analytic extension of h such that (using the notation
η = u+ iv)

∀n ∈ N : |∂̄h̃(η)| ≤ Cn〈η〉−n−2|v|n.

We shall use the representation

f(H) =
1

π

∫

C
(∂̄h̃)(η)(H − η)−1(H + i)du dv

=
1

π

∫

C
(∂̄h̃)(η)

(
1l + (η + i)(H − η)−1

)
du dv, (3.11)

which should be read as a strong integral on D(H). We multiply by Nα and N−α

from the left and from the right, respectively. Inserting (3.9) we conclude the lemma.
Observe that N−α being C1(H) preserves D(H).

It will be important to work with the following ‘regularization’ operators, cf.
[Mo]: Let for any given self-adjoint operator Ã and any positive operator Ñ

In(Ã) = −in(Ã− in)−1 and Iin(Ñ) = n(Ñ + n)−1; n ∈ N. (3.12)

In particular we shall use In(A) in conjunction with (2.2), In(H) in conjunction with
(2.2), (2.4) and (2.5), while Iin(N) will be used in conjunction with (2.1).
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Lemma 3.4. Assume the pairs N,A and N,H satisfy Conditions 2.1 (1) and (2)
respectively. Then

s− lim
n→∞

N
1
2 In(H)N−

1
2 = 1l (3.13)

s− lim
n→∞

NIn(A)N−1 = 1l (3.14)

s− lim
n→∞

N
1
2 In(A)N−

1
2 = 1l. (3.15)

Proof. Observe first that s− lim In(A) = 1l and s− limA(A−in)−1 = 0, and similarly
with A replaced by H. The statements (3.13) and (3.14) now follows from (3.8)
and boundedness of the operators [N1/2, H]0N−1/2 and [N,A]0N−1. This argument
appears also in [Mo].

As for (3.15) we observe first that N(In(A)− 1l)N−1 is bounded uniformly in n.
By interpolation the same holds true for N1/2(In(A) − 1l)N−1/2. The result now
follows from observing that the result holds true strongly on the dense set D(N1/2)
by (3.14).

We end with a small technical remark

Remark 3.5. Suppose N and H are as in Lemma 3.1 and 0 ≤ α < 1. Then
D(H) ∩ D(N) is dense in D(H) ∩ D(Nα) in the intersection topology.

To see this let ψ ∈ D(H) ∩ D(Nα). Then ψn = Iin(N)ψ ∈ D(H) ∩ D(N)
since N is of class C1(H). We claim that ψn → ψ in D(H) ∩ D(Nα). Obviously
Nαψn → Nαψ, so it remains to consider

Hψn = Iin(N)Hψ +

√
N

n
Iin(N)

(
N−

1
2 [N,H]0N−

1
2

)
√
N

n
Iin(N)ψ.

As in the proof above, the last term goes to zero and the first term converges to Hψ
proving the claim.

3.2 Iterated commutators with N 1/2

We address here the following question. Supposing Condition 2.1 (1) and (2.10) is
satisfied for some k0 ≥ 1. One could reasonably assume that N1/2 is also of class
C1

Mo(A) and admits k0 iterated N1/2-bounded commutators. We have however not
been able to establish this, but making the additional assumption (2.11) we answer
the question in the affirmative below. This permits us to deduce Corollary 2.9
from Theorem 2.7. The reader primarily interested in Theorem 2.7 may skip this
subsection.

We begin with a technical lemma. Let q ∈ N and ` ∈ (N∩{0})q, with 0 ≤ `j < k0

for all j = 1, . . . , q. We abbreviate N ′m = imadmA (N ′), which is the iteratively defined
N -bounded operator from (2.10). Let for t ≥ 0 and q, ` as above

4B`
q(t) = t

1
2

( q∏

j=1

(N + t)−1N ′`j

)
(N + t)−1. (3.16)

Observe that B`
q(t) is bounded for all t. Indeed it satisfies the bound B`

q(t) =

O(t−1/2) and is thus not norm integrable. However if ϕ ∈ D(N) we have B`
q(t)ϕ =

O(t−3/2). The extra assumption (2.11) allows us to prove
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Lemma 3.6. Suppose Condition 2.1 (1) and Condition 2.8. For any q ∈ N, ` ∈
(N ∪ {0})q (with 0 ≤ `j < k0 as above) and ϕ ∈ D(N) the map t → B`

q(t)ϕ is
integrable and there exist constants C`

q such that

∥∥∥
∫ ∞

0

B`
q(t)ϕ dt

∥∥∥ ≤ C`
q‖N

1
2ϕ‖.

Proof. We only have to prove the bound on the strong integral, since we already
discussed strong integrability. We begin by analyzing the leftmost factors in B`

q(t),
namely the N -bounded operator (N + t)−1N ′`1 .

We compute strongly on D(N)

(N + t)−1N ′`1 =
(
N ′`1N

−1
)
N(N + t)−1

− (N + t)−1N
(
N−1[N,N ′`1 ]N−1+κ1

)
N1−κ1(N + t)−1

=
(
N ′`1N

−1
)
N(N + t)−1 +O(t−κ1). (3.17)

The contribution to the integral
∫∞

0
B`
q(t)N

−1/2dt coming from the last term is
O(t−1−κ1) and hence norm-integrable.

If q = 1 we can now finish the argument because the contribution to the integral
coming from the first term on the right-hand side of (3.17) is

(
N ′`1N

−1
)
t

1
2 (N + t)−2N,

which on the domain of N integrates to the N1/2-bounded operator cN ′`1N
−1/2, for

some c ∈ R.
If q > 1 we write N(N + t)−1 = 1l − t(N + t)−1. We can now bring out the

next term N ′`2 , and again the commutators with (N + t)−1 give norm-integrable
contributions. Repeating this procedure successively until all the terms N ′`j are
brought out to the left yields the formula

B`
q(t) =

( q∏

j=1

N ′`jN
−1
)
t

1
2 (1l− t(N + t)−1)q−1(N + t)−2N +O(t−1−κ1)N

1
2 .

We compute, by a change of variables,
∫ ∞

0

t
1
2 (1l− t(N + t)−1)q−1(N + t)−2 dt = c′N−

1
2 ,

for some c′ ∈ R. This implies the lemma.

Proposition 3.7. Assume Condition 2.1 (1) and Condition 2.8. Then N1/2 is
of class C1

Mo(A) and the iterated commutators ipadpA(N1/2), p ≤ k0, extends from
D(A) ∩ D(N1/2) to N1/2-bounded operators.

Proof. We already know from Lemma 3.1 that N1/2 is of class C1(A). Hence we
only need to establish that the iterated commutator forms extend to N1/2-bounded
operators. Recall also that D(A)∩D(N) is dense in D(A)∩D(N1/2), cf. Remark 3.5,
which implies that it suffices to show that the iterated commutator forms extend
from D(A) ∩ D(N) to N1/2-bounded operators.
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By Lemma 3.6 and the above remark it suffices to prove, iteratively, the following
representation formula

ipadpA(N1/2)ϕ =

p∑

q=1

∑

`1+···+`q=p−q
αp,q`

∫ ∞

0

B`
q(t)ϕ dt, (3.18)

for ϕ ∈ D(N). Note that the integrals are absolutely convergent. Here B`
q(t) are

defined in (3.16).
For p = 1 we compute using (3.5)

i[An, N
1
2 ]ϕ = c 1

2

∫ ∞

0

B0
1,n(t)ϕ dt,

where the extra subscript n indicates that N ′0 = N ′ was replaced by In(A)N ′In(A).
By (3.23) the integrand isO(t−3/2) uniformly in large n, and by (3.14) and Lebesgue’s
theorem on dominated convergence we can thus compute

lim
n→∞

i[An, N
1
2 ]ϕ = c 1

2

∫ ∞

0

B0
1(t)ϕ dt.

Obviously this together with Lemma 3.6 implies that the form i adA(N1/2) extends
fromD(A)∩D(N) to anN1/2-bounded operator represented onD(N) by the strongly
convergent integral above.

We can now proceed by induction, assuming that the iterated commutator
ip−1adp−1

A (N1/2) exists as an N1/2-bounded operator and is represented on D(N)
by (3.18). Compute first the commutator i[An, i

p−1adp−1
A (N1/2)] strongly on D(N)

using that

i[An, N
′
`] = −In(A)N ′`+1In(A) and i[An, (N + t)−1] = (N + t)−1N ′(N + t)−1.

Subsequently take the limit n → ∞ as above and appeal to Lemma 3.6 to con-
clude that the so computed limit in fact is an N1/2-bounded extension of the form
i[A, ip−1adp−1

A (N1/2)] from D(A) ∩ D(N) and represented on D(N) as in (3.18).

Proof of Corollary 2.9: We can now argue that Corollary 2.9 is indeed a direct corol-
lary of Theorem 2.7.

Note that ψ ∈ D(N1/2Ak) for all k ≤ k0 due to Theorem 2.7. We can now
repeatedly use the fact that D(A) ∩ D(N1/2) is dense in D(A) and Proposition 3.7
to compute for ϕ ∈ D(Ap), with p+ k ≤ k0,

〈
Apϕ,N

1
2Akψ

〉
=

p∑

q=0

βq
〈
ϕ,
(
adp−qA (N

1
2 )N−

1
2

)
N

1
2Aq+kψ

〉
,

with βq some real combinatorial factors. This completes the proof since the norm
of the right-hand side is bounded by C‖ϕ‖.
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3.3 Approximating A by Regular Bounded Operators

We recall now a construction from [MS] (see [MS, p. 203]). Consider an odd real-
valued function g ∈ C∞(R) obeying g′ ≥ 0, that the function R 3 t → tg′(t)/g(t)
has a smooth square root, that the function ]0,∞[3 t → g(t) is concave and the
properties

g(t) =





2 for t > 3

t for |t| < 1

−2 for t < −3

.

Let h(t) = g(t)/t. We pick an almost analytic extension of h, denoted by h̃, such
that for some ρ > 0 (and using again the notation η = u+ iv)

∀N : |∂̄h̃(η)| ≤ CN〈η〉−N−2|v|N , (3.19)

h̃(η) =

{
2/η for u > 6, |v| < ρ(u− 6)

−2/η for u < −6, |v| < ρ(6− u)
.

We can choose h̃ such that h̃(η) = h̃(η̄).
This gives the representation

g(t) =
1

π

∫

C
(∂̄h̃)(η)t(t− η)−1du dv. (3.20)

Let gm(t) = mg(t/m), for m ≥ 1. Using the properties of g one verifies that for
all t ∈ R the function

m→ gm(t)2 is increasing. (3.21)

We recall that there exists σ > 0 such that for |v| ≥ σ/m the operator

Rm(η) :=

(
A

m
− η
)−1

(3.22)

preserves D(N). See (3.8). Moreover we have uniformly in α ∈ [0, 1], m ∈ N and η
that

‖NαRm(η)N−α‖ ≤ C|v|−1; η ∈ V >
m , (3.23)

where

V >
m := {u+ iv ∈ C : |v| ≥ σ/m} and V <

m := {u+ iv ∈ C : |v| < σ/m}.

This motivates the decomposition into smooth bounded real-valued functions gm =
g1m + g2m, where

g1m(t) =
m

π

∫

V >m

(∂̄h̃)(η)

(
1 + η

(
t

m
− η
)−1

)
du dv + Cm, (3.24)

g2m(t) =
m

π

∫

V <m

(∂̄h̃)(η)η

(
t

m
− η
)−1

du dv; (3.25)

Cm =
m

π

∫

V <m

∂̄h̃(η) du dv.
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Note that the integral in the expression for g2m is over a compact set (decreasing
with m). This implies the property

sup
m∈N,t∈R

mn〈t〉k+1|g(k)
2m(t)| ≤ Cn,k <∞ for n, k ∈ N ∪ {0}. (3.26)

Since gm and g2m are bounded functions, we conclude the same for g1m.
At a key point in the proof we will need a smooth square root of the function

tg′g. We pick

ĝ = pg ∈ C∞0 (R), (3.27)

where p(t) =
√
tg′(t)/g(t), which was assumed smooth. Clearly ĝ2 = tg′g. Let

p̃ ∈ C∞0 (C) be an almost analytic extension of p. It satisfies

∀N : |∂̄p̃(η)| ≤ CN |v|N . (3.28)

As above we put pm(t) = p(t/m) and make the splitting pm = p1m + p2m, where

p1m(t) =
1

π

∫

V >m

(∂̄p̃)(η)

(
t

m
− η
)−1

du dv, (3.29)

p2m(t) =
1

π

∫

V <m

(∂̄p̃)(η)

(
t

m
− η
)−1

du dv. (3.30)

Let ĝm = pmgm and split ĝm = ĝ1m + ĝ2m by

ĝ1m = p1mg1m and ĝ2m = pmg2m + p2mg1m. (3.31)

Clearly we can choose Cn,k in (3.26) possibly larger such that ĝ2m satisfies the same
estimates. Since pm and p2m are uniformly bounded in m we get

P := sup
m∈N

sup
t∈R
|p1m(t)| <∞. (3.32)

We observe that the operators g2m(A) and p1m(A), p2m(A) are given by norm
convergent integrals, whereas gm(A) and g1m(A) are given on the domain of 〈A〉s,
for any s > 0, as strongly convergent integrals.

From (3.21) and Lebesgue’s theorem on monotone convergence, we observe that
ψ ∈ D(Ak) is equivalent to supm ‖gm(A)kψ‖ < ∞. Combining this with (3.26) we
find that for k ≥ 1

ψ ∈ D(Ak) ⇔ ψ ∈ D(Ak−1) and sup
m
‖g1m(A)kψ‖ <∞. (3.33)

It will be convenient in the following when dealing with g1m to abbreviate

dλ(η) = 1
π
(∂̄h̃)(η) du dv.

This is however not a complex measure, just a notation. Similarly we will on one
occasion write dλp(η) = 1

π
(∂̄p̃)(η)dudv, which is in fact a complex measure.

We have the following
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Lemma 3.8. As a result of the above constructions we have for any m ≥ 1 and
0 ≤ α ≤ 1 that the bounded operators g1m(A), g′1m(A), p1m(A) and Ag′1m(A) preserve
D(Nα).

Proof. Let ψ ∈ D(N) and ϕ ∈ D(A). Observe that N−1ϕ ∈ D(A), by the C1(A)
property of N , cf. Condition 2.1 (1). We can thus compute using the strongly
convergent integral representation for g1m(A), and the notation introduced in (3.22),

〈Nψ, g1m(A)N−1ϕ〉 (3.34)

= m

∫

V >m

〈
Nψ, (1 + ηRm(η))N−1ϕ

〉
dλ(η) + Cm〈ψ, ϕ〉

= 〈ψ, g1m(A)ϕ〉+ i

∫

V >m

η
〈
ψ,Rm(η)N ′Rm(η)N−1ϕ

〉
dλ(η).

By Condition 2.1 (1), (3.19) and (3.23) we find that for some constant Km we have

|〈Nψ, g1m(A)N−1ϕ〉| ≤ Km‖ψ‖‖ϕ‖. (3.35)

This together with an interpolation argument concludes the proof.
The cases g′1m(A) and p1m(A) are done the same way. As for Ag′1m(A) we write

Aj = AIj(A) and compute

NAjg
′
1m(A)N−1 = AjNg

′
1m(A)N−1 − iIj(A)N ′N−1NIj(A)g′1m(A)N−1.

To complete the proof by taking j →∞ we need to argue that

Ng′1m(A)D(N) ⊆ D(A).

To achieve this we repeat the computation (3.34), with ψ replaced by Aψ, ψ ∈ D(A),
and g1m replaced by g′1m. We get

〈Aψ,Ng′1m(A)N−1ϕ〉 = 〈ψ,Ag′1m(A)ϕ〉

+

∫

V >m

η
〈A
m
ψ,
{
Rm(η)N ′Rm(η)2 +Rm(η)2N ′Rm(η)

}
N−1ϕ

〉
dλ(η).

The result now follows from writing A
m
Rm(η) = 1l + ηRm(η)and appealing to (3.19)

and (3.23) as above.

4 Proof of the Abstract Results

In this section we prove the abstract theorems formulated in Section 2 as well as an
extended version of Theorem 2.10. The proofs are given in separate subsections.

4.1 Proof of Theorem 2.7

Let
Dk = {ϕ ∈ D(Ak)|∀0 ≤ j ≤ k : Ajϕ ∈ D(N

1
2 )}.
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Using Conditions 2.1 – 2.3 and 2.6 we shall prove Theorem 2.7 by induction in
k = 0, . . . , k0 that ψ ∈ Dk. We can assume without loss of generality that λ = 0.

The proof relies on three estimates which we state first in the form of three
propositions. After giving the proof of Theorem 2.7, we then proceed to verify the
propositions.

We begin with some abbreviations and a definition. For a state ψ we introduce
the notation

ψm = g1m(A)kψ, and ψ̂m = ĝ1m(A)g1m(A)k−1ψ = p1m(A)ψm.

Let σ > 0 be fixed as in Remark 2.4 1), applied with N1/2 in place of N .

Definition 4.1. Let k ≥ 1. A family of forms {Rm}∞m=1 on Dk−1 will be called a
k-remainder if for all ε > 0 there exists Cε > 0 such that

|〈ψ,Rmψ〉| ≤ ε‖N 1
2ψm‖2 + Cε‖N

1
2 (A− iσ)k−1ψ‖2, (4.1)

for any ψ ∈ Dk−1 and m ∈ N.

Lemma 3.8 is repeatedly used below, mostly without comment, to justify manip-
ulations. The first proposition is a virial result, to be proved by a symmetrization
of a commutator between H and a regularized version of A2k+1.

Proposition 4.2. Let 0 < k ≤ k0 and ψ ∈ Dk−1 be a bound state for H. There
exists a k-remainder Rm, such that

〈ψm, H ′ψm〉+ 2k〈ψ̂m, H ′ψ̂m〉 = 〈ψ,Rmψ〉.

The second result is an implementation of the virial bound (2.4) in Condition 2.2,
which together with Proposition 4.2 makes it possible to deal with N1/2ψm. This is
reminiscent of what was done in the proof of [MS, Proposition 8.2]. The constant
C2 appearing in the proposition comes from Condition 2.2.

Proposition 4.3. Let ψ ∈ Dk−1 be a bound state. There exists C independent of m
such that

‖N 1
2ψm‖2 ≤ 2C2〈ψm, H ′ψm〉+ C

(
‖ψm‖2 + ‖N 1

2 (A− iσ)k−1ψ‖2
)

and
‖N 1

2 ψ̂m‖2 ≤ 2C2〈ψ̂m, H ′ψ̂m〉+ C
(
‖ψ̂m‖2 + ‖N 1

2 (A− iσ)k−1ψ‖2
)
.

The third and final input is an implementation of the positive commutator esti-
mate in Condition 2.3. The constant c0 and the compact operator K0 appearing in
the proposition come from Condition 2.3.

Proposition 4.4. Let ψ ∈ Dk−1 be a bound state. There exist constants C, C̃ > 0
independent of m such that

〈ψm, H ′ψm〉 ≥
c0

2
‖ψm‖2 − C̃〈ψm, K0ψm〉 − C‖N

1
2 (A− iσ)k−1ψ‖2

and

〈ψ̂m, H ′ψ̂m〉 ≥
c0

2
‖ψ̂m‖2 − C̃〈ψ̂m, K0ψ̂m〉 − C‖N

1
2 (A− iσ)k−1ψ‖2.
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Proof of Theorem 2.7: Let ψ be the bound state, which we take to be normalized.
By assumption ψ ∈ D0. Assume by induction that ψ ∈ Dk−1, for some k ≤ k0. We
proceed to show that ψ ∈ Dk:

From Proposition 4.2 we get the existence of a k-remainder Rm such that

〈ψmH ′ψm〉+ 2k〈ψ̂m, H ′ψ̂m〉 = 〈ψ,Rmψ〉.
Estimating the right-hand side using (4.1) and Proposition 4.3 we find a C > 0

such that

〈ψm, H ′ψm〉+ 2k〈ψ̂m, H ′ψ̂m〉 ≤
c0

4
‖ψm‖2 + C‖N 1

2 (A− iσ)k−1ψ‖2.

Finally, we appeal to Proposition 4.4 to derive the bound

c0

4
‖ψm‖2 ≤ C‖N 1

2 (A− iσ)k−1ψ‖2 + C̃〈ψm, K0ψm〉+ 2kC̃〈ψ̂m, K0ψ̂m〉. (4.2)

Pick Λ > 0 large enough such that

2C̃‖K01l[|A|>Λ]‖ ≤
c0

12(1 + 2kP 2)
,

where P is given by (3.32). Write 1l[|A|≤Λ]ψm = [1l[|A|≤Λ](gm(A) − g2m(A))]kψ and
estimate using (3.26)

2C̃|〈1l[|A|≤Λ]ψm, K0ψm〉| ≤ 2C̃(Λ + C0,0)k‖K0‖‖ψ‖‖ψm‖

≤ c0

12
‖ψm‖2 +

12C̃2(Λ + C0,0)2k‖K0‖2

c0

‖ψ‖2

and similarly

2C̃|〈1l[|A|≤Λ]ψ̂m, K0ψ̂m〉| ≤
c0

24k
‖ψm‖2 +

24kC̃2(Λ + C0,0)2k‖K0‖2P 4

c0

‖ψ‖2.

Inserting 1l = 1l[|A|≤λ]+1l[|A|>λ] ahead of the K0’s in (4.2) and appealing to the bounds
above we get

c0

8
‖ψm‖2 ≤ C

(
‖N 1

2 (A− iσ)k−1ψ‖2 + ‖ψ‖2
)
,

for a suitable m-independent C. Recalling (3.33) we conclude that ψ ∈ D(Ak).
It remains to prove that Akψ ∈ D(N1/2).
Note that what we just established implies that ψm → Akψ in norm, cf. (3.21)

and (3.26). We can now compute

〈Akψ,NIin(N)Akψ〉 = lim
m→∞

〈ψm, NIin(N)ψm〉.

But by Propositions 4.2 and 4.3 we have

〈ψm, NIin(N)ψm〉 ≤ ‖N
1
2ψm‖2

≤ ‖N 1
2ψm‖2 + 2k‖N 1

2 ψ̂m‖2

≤ 2C2

(
〈ψm, H ′ψm〉+ 2k〈ψ̂m, H ′ψ̂m〉

)
+ C

= 〈ψ,Rmψ〉+ C,

where C > 0 is constant independent of m. The result now follows from (4.1) by first
taking the limit m→∞, and subsequently n→∞. Notice that Lebesgue’s theorem
on monotone convergence applies, since Iin(N) = n(N+n)−1 → 1l monotonously.
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The rest of the section is devoted to establishing Propositions 4.2–4.4.
We begin with a definition and a series of lemmata. The σ in the definition

below is the same σ that entered into Definition 4.1.

Definition 4.5. Let El
m and Er

m be families of forms on Dk−1 × D(N1/2) and
D(N1/2)×Dk−1 respectively. We say that El

m is a left-error if

|〈ψ,E l
mϕ〉| ≤ C‖N 1

2 (A− iσ)k−1ψ‖‖N 1
2ϕ‖.

We say that Er
m is a right-error if

|〈ψ,Er
mϕ〉| ≤ C‖N 1

2ψ‖‖N 1
2 (A− iσ)k−1ϕ‖.

Remark 4.6. An example of a right-error that we will encounter below are forms

N1/2BmN
1/2g1m(A)`(A− iσ)−j,

with `−j ≤ k−1 and supm ‖Bm‖ <∞. To see that this is a right-error observe that
it suffices to prove that Ng1m(A)`(A−iσ)−j−k+1N−1 is uniformly bounded in m. The
result then follows from interpolation. Since j+k−1 ≥ `, recalling that σ was chosen
according to (3.8), we reduce the problem to showing that Ng1m(A)(A− iσ)−1N−1

is bounded uniformly in m. But this follows by a computation similar to (3.34),
where the extra resolvent produces a bound which is uniform in m compared with
the point wise bound (3.35).

We introduce the notation

Hn := HIn(H) = in(In(H)− 1l), (4.3)

which plays the role of a regularized Hamiltonian. See (3.12) for the definition
of In(H).

Lemma 4.7. We have the following limit in the sense of forms on D(N1/2)

lim
n→∞

i[Hn, g1m(A)] = −
∫

V >m

ηRm(η)H ′Rm(η) dλ(η).

Proof. Observe first that the integral on the right-hand side in the lemma is norm
convergent.

Compute as a form on D(A) using that the integral representation for g1m(A) is
strongly convergent on D(A)

i[Hn, g1m(A)] =

∫

V >m

ηi[Hn, Rm(η)] dλ(η).

Recalling (4.3) we arrive at

i[Hn, g1m(A)] = in

∫

V >m

ηi[In(H), Rm(η)] dλ(η)

=

∫

V >m

ηIn(H)i[H,Rm(η)]In(H) dλ(η).
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Finally we employ Condition 2.1 3) to conclude that for each n, the following holds
as a form identity on D(A) ∩ D(N1/2)

i[Hn, g1m(A)] = −
∫

V >m

ηIn(H)Rm(η)H ′Rm(η)In(H) dλ(η).

The integral on the right-hand side of the above identity is absolutely convergent in
B(N−1/2H;N1/2H). By density of D(A) ∩ D(N1/2) in D(N1/2), see Remark 2.4 2),
the identity therefore extends to a form identity on D(N1/2). The lemma now follows
from (3.13).

Lemma 4.8. Let 1 ≤ k ≤ k0.

(1) There exist right-errors Er
m, Êr

m such that, as forms on D(N1/2)×Dk−1,

lim
n→∞

i[Hn, g1m(A)k] = Er
m

lim
n→∞

i[Hn, ĝ1m(A)g1m(A)k−1] = Êr
m.

(2) There exist a left-error El
m and a right-error Er

m such that, as forms on Dk−1×
D(N1/2) and D(N1/2)×Dk−1 respectively,

lim
j→∞

lim
n→∞

i[Hn, g1m(A)k]Aj = kg1m(A)k−1Ag′1m(A)H ′ + El
m

lim
j→∞

lim
n→∞

Aji[Hn, g1m(A)k] = kH ′Ag′1m(A)g1m(A)k−1 + Er
m.

Proof. (1) also holds if we take the limit in the sense of forms on Dk−1 × D(N1/2)
and replace the right-error by a left-error. We will however not need that statement.
One does however need its proof for the left-error part of (2).

In the proof we will only work with right-errors. The other case is similar. We
begin with (1) and prove only the first statement leaving the second to the reader.

We first compute as a form on D(N1/2).

i[Hn, g1m(A)k] = ki[Hn, g1m(A)]g1m(A)k−1

+
k∑

`=2

(−1)`+1

(
k
`

)
i ad`g1m(A)(Hn)g1m(A)k−`. (4.4)

We now analyze the large n limit. The first term on the right-hand side of (4.4)
can be dealt with using Lemma 4.7 directly, observing that by Lemma 3.8 g1m(A)
preserves the domain of N1/2. As for the terms involving higher order commutators,
we again use Lemma 4.7 to compute

lim
n→∞

i ad`g1m(A)(Hn) = −
∫

V >m

ηRm(η)ad`−1
g1m(A)(H

′)Rm(η) dλ(η)

in the sense of forms on D(N1/2).
We can now employ Condition 2.6 to compute as forms on D(N1/2)

lim
n→∞

i ad`g1m(A)(Hn) = (−1)`N
1
2B(`)

m N
1
2 , (4.5)
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where B
(`)
m is a family of bounded operators with supm ‖B(`)

m ‖ <∞, for all `. They
are given by

B(`)
m =

∫

(V >m )`
η1 · · · η`N−

1
2Rm(η1) · · ·Rm(η`)ad`−1

A (H ′)

×Rm(η`) · · ·Rm(η1)N−
1
2 dλ(η1) · · · dλ(η`). (4.6)

From (4.4), (4.5) and Lemma 4.7 we thus obtain

lim
n→∞

i[Hn, g1m(A)k] = −k
∫

V >m

ηRm(η)H ′Rm(η) dλ(η)g1m(A)k−1

−
k∑

`=2

(
k
`

)
N

1
2B(`)

m N
1
2 g1m(A)k−`. (4.7)

Combining this computation with Remark 4.6 yields (1).
We now turn to part (2) of the lemma. In view of (4.7) we begin by computing

as a form on D(N1/2), using Condition 2.1 (4)

− k
∫

V >m

ηRm(η)H ′Rm(η)dλ(η)

= kH ′g′1m(A)− ik

m

∫

V >m

ηRm(η)H ′′Rm(η)2dλ(η). (4.8)

We remark that the identity i[H ′, Rm(η)] = −m−1Rm(η)H ′′Rm(η) holds a priori as
a form identity on D(N). It extends by continuity to a form identity on D(N1/2),
which is what is used in the above computation. Note that the integral on the
right-hand side is convergent as a form on D(N1/2).

From (4.7), (4.8) and Remark 4.6 we find that

lim
n→∞

i[Hn, g1m(A)k]Aj =
(
kH ′g′1m(A)Ag1m(A)k−1 + Er

m

)
Ij(A)

and hence by (3.15) we conclude the following identity as forms on D(N1/2)

lim
j→∞

lim
n→∞

i[Hn, g1m(A)k]Aj = kH ′g′1m(A)Ag1m(A)k−1 + Er
m.

To prove the second statement in (2) it remains to show that the commutator
between Aj and i[Hn, g1m(A)k] converges to a right-error.

From (4.8) we get, as a form on D(N1/2),

[
− k

∫

V >m

ηRm(η)H ′Rm(η)dλ(η), Aj

]

= kIj(A)H ′′Ij(A)g′1m(A)− ik

m

∫

V >m

ηRm(η)(H ′′Aj − AjH ′′)Rm(η)2dλ(η).

We can now take the limit j →∞ and obtain

lim
j→∞

[
− k

∫

V >m

ηRm(η)H ′Rm(η)dλ(η), Aj

]
= N

1
2B(1)

m N
1
2 , (4.9)
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where B
(1)
m , is a family of bounded operators with supm ‖B(1)

m ‖ <∞. It is given by

B(1)
m = kN−

1
2

{
H ′′g′1m(A)− i

∫

V >m

η
(
Rm(η)H ′′ −H ′′Rm(η)

)
Rm(η)dλ(η)

}
N−

1
2 .

Here we used (3.15), that AjRm(η) = Rm(η)Aj = m(1l + ηRm(η))Ij(A), as well as
Lebesgue’s theorem on dominated convergence.

For the commutator between Aj and the second term on the right-hand side of
(4.7) we compute

[N
1
2B(`)

m N
1
2 , Aj] = Ij(A)N

1
2 B̃(`)

m N
1
2 Ij(A),

where B̃
(`)
m are bounded operators with supm∈N ‖B(`)

m ‖ <∞, for all `. They are given
by

B̃(`)
m =

∫

(V >m )`
N−

1
2Rm(η1) · · ·Rm(η`)ad`A(H ′)

×Rm(η`) · · ·Rm(η1)N−
1
2 dλ(η1) · · · dλ(η`).

We can now take the limit j →∞ using (3.15), and the resulting expression together
with (4.9), the formula (4.7) and Remark 4.6 yields that

lim
j→∞

lim
n→∞

[i[Hn, g1m(A)k], Aj] = Er
m.

Lemma 4.9. There exists a k-remainder Rm such that

lim
j→∞

lim
n→∞

i[Hn, g1m(A)kAjg1m(A)k]

= g1m(A)kH ′g1m(A)k + 2kRe {g1m(A)k−1Ag′1m(A)H ′g1m(A)k}+Rm,

in the sense of forms on Dk−1.

Proof. We compute as a form on Dk−1

i[Hn, g1m(A)kAjg1m(A)k] = i[Hn, g1m(A)k]Ajg1m(A)k

+ g1m(A)ki[Hn, Aj]g1m(A)k + g1m(A)kAji[Hn, g1m(A)k].

Using that limn→∞ i[Hn, Aj] = Ij(A)H ′Ij(A), limj→∞ Ij(A)H ′Ij(A) = H ′ (in the
sense of forms on D(N1/2)), and Lemma 4.8 (2), we conclude the result, with

Rm = El
mg1m(A)k + g1m(A)kEr

m.

Note that Rm is a k-remainder, in the sense of Definition 4.1.

We now symmetrize the form g1m(A)k−1Ag′1m(A)H ′g1m(A)k, defined on D(N1/2).

Lemma 4.10. There exists a k-remainder Rm such that

Re {g1m(A)k−1Ag′1m(A)H ′g1m(A)k}
= g1m(A)kp1m(A)H ′p1m(A)g1m(A)k +Rm,

in the sense of forms on Dk−1.
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Proof. Step I: From the proof of Lemma 3.8 it follows that

[N,Ag′1m(A)]N−1, [N, p2
1m(A)g1m(A)]N−1, (4.10)

and N−1p1m(A)N (4.11)

extend as forms from D(N) to bounded operators with norm bounded uniformly in
m.

Step II: Boundedness of the forms in (4.10), together with the observation that
‖tg′1m−p2

1mg1m‖∞ is bounded uniformly inm, implies after an interpolation argument
that

N
1
2

(
Ag′1m(A)− p1m(A)2g1m(A)

)
N−

1
2

is bounded uniformly in m. Hence

Re {g1m(A)k−1Ag′1m(A)H ′g1m(A)k}
= g1m(A)kRe {p1m(A)2H ′}g1m(A)k +R(1)

m ,

where R
(1)
m is a k-remainder.

Step III: We compute as a form on D(N1/2)

(A+ iσ)[p1m(A), H ′] = −i

∫

V >m

A+ iσ

m
Rm(η)H ′′Rm(η) dλp(η),

which is bounded uniformly in m as a form on D(N1/2). This together with (4.11)
and a interpolation argument as in step II, shows that

g1m(A)kRe {p1m(A)2H ′}g1m(A)k = g1m(A)kp1m(A)H ′p1m(A)g1m(A)k +R(2)
m ,

where R
(2)
m is a k-remainder. Here we used again Remark 4.6. This proves the lemma

with Rm = R
(1)
m +R

(2)
m .

Proof of Proposition 4.2. Combine Lemmas 4.9 and 4.10.

Proof of Proposition 4.3. We only prove the first estimate. The second is verified
the same way. We can assume that λ = 0.

We estimate using Condition 2.2

‖N 1
2 In(H)ψm‖2 ≤ C1〈In(H)ψm, HIn(H)ψm〉

+ C2〈In(H)ψm, H
′In(H)ψm〉+ C3‖In(H)ψm‖2. (4.12)

Note that HIn(H)ψm = Hnψm = [Hn, g1m(A)k]ψ.
By Lemma 4.8 (1) we find that for any ϕ ∈ D(N1/2) we have

lim
n→∞
〈ϕ,Hnψm〉 = 〈ϕ,Er

mψ〉. (4.13)
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By this observation and the uniform boundedness principle there exists C = C(m)
such that |〈ϕ,Hnψm〉| ≤ C‖N1/2ϕ‖ uniformly in n, for ϕ ∈ D(N1/2). Applying this
to ϕ = (In(H)− I)ψm, together with (4.13), now applied with ϕ = ψm, we get

lim
n→∞
〈In(H)ψm, HIn(H)ψm〉 = 〈ψm, Er

mψ〉. (4.14)

Here Er
m is a right-error.

We can now take the limit n→∞ in (4.12), and the result follows from Defini-
tion 4.5.

Proof of Proposition 4.4. As above we assume λ = 0 and prove only the first bound.
By Remark 2.4 4) it suffices to estimate using the bound (2.6) instead of the one

in Condition 2.3. We get

〈In(H)ψm, H
′In(H)ψm〉 ≥ c0‖In(H)ψm‖2

+ Re 〈In(H)ψm, BHIn(H)ψm〉 − 〈In(H)ψm, K0In(H)ψm〉. (4.15)

Arguing as in the part of the proof of Proposition 4.3 pertaining to (4.14), we
find that

lim
n→∞

Re 〈In(H)ψm, BHIn(H)ψm〉 = Re 〈ψm, Er
mψ〉.

where Er
m is a right-error. Here (4.13) was used (twice) with ϕ replaced by Bϕ

and B∗ϕ, where we used the assumption on B in Remark 2.4 4) to argue that
Bϕ,B∗ϕ ∈ D(N1/2) in (4.13).

Inserting this limit into (4.15) yields

〈ψm, H ′ψm〉 = lim
n→∞
〈In(H)ψm, H

′In(H)ψm

≥ c0‖ψm‖2 − 〈ψm, K0ψm〉+ Re 〈ψm, Er
mψ〉,

with Er
m being a right-error. Using Definition 4.5 and Proposition 4.3 we conclude

the first estimate.

4.2 Proof of Theorem 2.10

We shall show Theorem 2.10, which is an extension of Corollary 2.9 under the
minimal condition k0 = 1.

Proof of Theorem 2.10: We can without loss of generality take λ = 0. Due to Corol-
lary 2.9 only the first statement needs elaboration. The idea of the proof is to apply
a virial argument for the commutator i[H,A] and the state N1/2ψ. We divide the

proof into three steps. Let N
(1/2)
n = N1/2Iin(N).

Step I: Due to Lemma 3.1 we have N
(1/2)
n ψ ∈ D(H). We shall show that

sup
n∈N
‖HN (1/2)

n ψ‖ <∞. (4.16)
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We can use the representation formula (3.5) with α = 1/2 and commute H
through N1/2, cf. (3.4). Whence it suffices to bound

∫ ∞

0

t
1
2 (N + t)−1[H,N ]0(N + t)−1Iin(N)N−

1
2 dt

independently of n. (Note that the contribution from commuting through the second
factor Iin(N) indeed is bounded independently of n.) By (2.1) we have

[H,N ]0 = N
1
2
−κBN

1
2
−κ for B bounded,

and we can estimate

‖(N + t)−1i[H,N ]0(N + t)−1Iin(N)N−
1
2‖ ≤ ‖B‖〈t〉− 3

2
−κ uniformly in n.

Hence the integrand is O(t−1−κ) uniformly in n, and (4.16) follows.

Step II: We shall show that

sup
n∈N
‖AN (1/2)

n ψ‖ <∞. (4.17)

Since φ := N1/2ψ ∈ D(A) due to Corollary 2.9 it suffices to bound the state
[A, Iin(N)]φ independently of n. This is obvious from the representation

[A, Iin(N)]φ = −i(N + n)−1N ′Iin(N)φ,

and whence (4.17) follows.

Step III: We look at

〈i[H,A]〉
N

(1/2)
n ψ

= −2Re 〈iHN (1/2)
n ψ,AN (1/2)

n ψ〉.

Due to (4.16) and (4.17) the right hand side is bounded independently of n. We
compute using Condition 2.1 (1) and (3)

〈i[H,A]〉
N

(1/2)
n ψ

= lim
ñ→∞
〈i[H,AIñ(A)]〉

N
(1/2)
n ψ

= 〈H ′〉
N

(1/2)
n ψ

.

Whence using the virial estimate Condition 2.2 (and also Step I again) we conclude
that

〈N〉
N

(1/2)
n ψ

≤ C uniformly in n.

Taking n→∞ we obtain that indeed ψ ∈ D(N).

4.3 Theorem on more N–Regularity

We formulate and prove an extended version of Theorem 2.10.
Notice that under Condition 2.1 (1) and (2), and the additional condition (2.11)

for k0 = 1,
N

1
2 ∈ C1

Mo(A) ∩ C1
Mo(H), (4.18)

cf. Lemma 3.2 and Proposition 3.7.
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We impose the conditions of Corollary 2.9 and aim at an improvement of Corol-
lary 2.9 and Theorem 2.10 in the case k0 ≥ 2. Let M0 = i[N1/2, A]0. Then, cf.
Proposition 3.7,

imadmA (M0) is N
1
2 –bounded for m = 0, . . . , k0 − 1. (4.19)

Here the commutators are defined iteratively as extensions of forms on D(N1/2) ∩
D(A) and they are considered as symmetric N1/2–bounded operators. We introduce
the following N1/2–bounded operators:

M1 = i[N
1
2 , H]0 = c 1

2

∫ ∞

0

t
1
2 (N + t)−1i[N,H]0(N + t)−1 dt,

M2 = H ′N−
1
2 and M3 = N−

1
2H ′.

Notice that

M3 ⊆M∗
2 and M2 ⊆M∗

3 . (4.20)

We need to consider repeated commutation of Mj, j = 1, . . . , 3, with factors of
T = A or T = N1/2.

Condition 4.11. For all j = 1, . . . , 3, m = 1, . . . , k0 − 1 and all possible combina-
tions of factors Tn ∈ {A,N1/2} where n = 1, . . . ,m

imadTm · · · adT1(Mj) is N
1
2 –bounded. (4.21)

Notice that in (4.21) the commutators are defined iteratively as extensions of
forms on D(N1/2) ∩ D(A) using (4.20) and the analogue properties for m ≥ 2

(−1)m−1adTm−1 · · · adT1(M3) ⊆
(
adTm−1 · · · adT1(M2)

)∗
,

(−1)m−1adTm−1 · · · adT1(M2) ⊆
(
adTm−1 · · · adT1(M3)

)∗
.

We shall prove the following extension of Corollary 2.9 and Theorem 2.10.

Theorem 4.12. Suppose the conditions of Corollary 2.9 and for k0 ≥ 2 also Con-
dition 4.11. Let ψ ∈ D(N1/2) be a bound state (H − λ)ψ = 0 (with λ as in Condi-
tion 2.3). Then ψ ∈ D(Tk0+1 · · ·T1) where Tn ∈ {A,N1/2, 1l} for n = 1, . . . , k0 + 1
and at least for one such n, Tn 6= A.

Proof. We proceed by induction in k0. The case k0 = 1 is the content of Theo-
rem 2.10. So suppose k0 ≥ 2 and that the statement holds for k0 → k0−1. Consider
any product S = Tk0+1 · · ·T1 not all factors being given by A. We shall show that
ψ ∈ D(S). By Corollary 2.9 and the induction hypothesis we can assume that the
factors Tn ∈ {A,N1/2} and that for at least two n’s Tn = N1/2. By using (4.19) and
the induction hypothesis we can assume that Tk0+1 = N1/2. Whence we can assume
S = N1/2Sαk,` with k = k0 introducing here the following notation for k = 1, . . . , k0,

` = 0, . . . , k and α being a multiindex α ∈ {0, 1}k with
∑

j≤k αj = `,

Sαk,` = Sαk · · ·Sα1 =:
k∏

j=1

Sαj where S0 = A and S1 = N
1
2 .
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Partly motivated by the above considerations we introduce the following quantity
for n ∈ N large and ε ∈]0, 1[ small

f(n, ε) =

k0∑

`=0

ε−2`2 g(n, `); g(n, `) :=
∑

α∈{0,1}k0

α1+···+αk0
=`

∥∥N 1
2 Iin(N)Sαk0,`

ψ
∥∥2
.

We claim that for some constants K1, K2(ε) > 0 independent of n

f(n, ε) ≤ ε2K1f(n, ε) +K2(ε). (4.22)

The theorem follows from (4.22) by first choosing ε so small that ε2K1 ≤ 1/2,
subtraction of the first term on the right-hand side and then letting n → ∞. By
Corollary 2.9 (or Theorem 2.7), supn g(n, ` = 0) <∞, in agreement with (4.22).

To see how the factor ε2 comes about let us note that

−2`2 = −(`− 1)2 − (`+ 1)2 + 2,

whence (to be used later) we can for ` = 1, . . . , k0 − 1 bound the expression

ε−2`2
√
g(n, `− 1)

√
g(n, `+ 1) ≤ ε2f(n, ε). (4.23)

To show (4.22) we mimic the proof of Theorem 2.10. Again this is in three steps
and we assume that λ = 0. We need to bound each term of g(n, `) for ` ≥ 1.

Step I: Bounding ‖HIin(N)Sαk0,`
ψ‖. We expand into terms; some can be bounded

independently of n (using the induction hypothesis) while others will be estimated
as C

√
g(n, `+ 1) (assuming here that ` ≤ k0 − 1). We compute formally

i
[
H, Iin(N)Sαk0,`

]
= i
[
H, Iin(N)

]
Sαk0,`

+ Iin(N)i
[
H,

k0∏

j=1

Sαj
]
, (4.24)

where the second commutator is expanded as

i
[
H,

k0∏

j=1

Sαj
]

=

m=k0∑

m=1

( k0∏

j=m+1

Sαj

)
i
[
H,Sαm

](m−1∏

j=1

Sαj
)
. (4.25)

In turn we have the expressions

i[H, Iin(N)] = n−1Iin(N)i[N,H]0Iin(N), (4.26a)

i[H,Sαm ] = −M1 if αm = 1, (4.26b)

i[H,Sαm ] = M2S1 if αm = 0. (4.26c)

We plug (4.26a)–(4.26c) into (4.24) and (4.25) and look at each term separately.
Before embarking on a such examination we need to “fix” the above formal com-
putation. This is done in terms of multiple approximation somewhat similar to the
one of the proof of Theorem 2.7. We replace H → Hp and the factors A→ Aq and

N1/2 → N
1/2
iq = (N1/2)iq. More precisely it is convenient to introduce k0 different
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q’s, say q1, . . . , qk0 ; the q used for the j’th factor Sαj is qj. For fixed p and q’s the
product rule applies for computing the commutator of the product and the ana-
logues of (4.24) and (4.25) hold true. Now we can take the limit p → ∞. We can
plug the modified expressions of (4.26a)–(4.26c) into (modified) (4.24) and (4.25).
Actually (4.26a) is the same, but (4.26b) and (4.26c) are changed as

i
[
H,N

1
2

iqj

]
= −Iiqj(N

1
2 )M1Iiqj(N

1
2 ), (4.27a)

i
[
H,Aqj

]
= Iqj(A)M2S1Iqj(A). (4.27b)

Of course we have a q–dependence of the various factors of either S1 → N
1/2
iqj

or
S0 → Aqj . Eventually we take the limits in the q’s done in increasing order starting
by taking q1 → ∞ and ending by taking qk0 → ∞. Before taking these limits
we need to do some further commutation using Condition 4.11. For simplicity
of presentation we ignore below in this process commutation with the regularizing
factors of Iiqj(N

1/2) or Iqj(A) since in the limit they will disappear (a manifestation of
this occurred also in the proof of Lemma 3.4). In other words we proceed now slightly
formally using (4.24) and (4.25) with the plugged in expressions (4.26a)–(4.26c):

From (4.26a) we obtain that ‖i[H, Iin(N)]‖ ≤ C so the contribution from the
first term of (4.24) can be estimated (uniformly in n) as

‖i[H, Iin(N)]Sαk0,`
ψ‖ ≤ C‖Sαk0,`

ψ‖ ≤ C̃. (4.28)

As for the contribution from (4.26b) we compute

−Iin(N)
( k0∏

j=m+1

Sαj
)
M1

(m−1∏

j=1

Sαj
)

= T̃1

(
N

1
2

∏

1≤j≤k0
j 6=m

Sαj
)

+ T̃2,

where
T̃1 = −Iin(N)M1N

− 1
2 .

Here T̃2 is given by repeated commutation using Condition 4.11. We apply this
identity to the bound state ψ. Since ‖T̃1‖ ≤ C the induction hypothesis gives
similar bounds as (4.28) for the contribution from (4.26b).

It remains to look at the contribution from (4.26c): We commute the factor M2

to the left and get similarly

Iin(N)
( k0∏

j=m+1

Sαj
)
M2S1

(m−1∏

j=1

Sαj
)

= T̃1N
1
2 Iin(N)

( k0∏

j=m+1

Sαj
)
S1

(m−1∏

j=1

Sαj
)

+ T̃2,

where
T̃1 = Iin(N)M2(N

1
2 Iin(N)

)−1
.

As before ‖T̃1‖ ≤ C (here we use that H ′ is N–bounded) and the contribution from

T̃2 is treated by using Condition 4.11 and the induction hypothesis. Consequently
we get for ` ≤ k0 − 1 the total bound

‖HIin(N)Sαk0,`
ψ‖ ≤ C̃1

√
g(n, `+ 1) + C̃2, (4.29)
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where C̃1 and C̃2 are independent of n, and for ` = k0 this bound without the first
term to the right.

Step II: Bounding ‖AIin(N)Sαk0,`
ψ‖. We claim that (recall ` ≥ 1)

‖AIin(N)Sαk0,`
ψ‖ ≤ C̃3

√
g(n, `− 1) + C̃4, (4.30)

where C̃3 and C̃4 are independent of n.
To prove (4.30) we observe that it suffices by the induction hypothesis to bound

‖Iin(N)ASαk0,`
ψ‖. Since ` ≥ 1 there is a nearest factor of N1/2 in the product Sαk0,`

that we move to the left in front of the factor A:

Iin(N)ASαk0,`
= N

1
2 Iin(N)ASβk0−1,`−1 + T.

We apply this identity to the bound state ψ. The contribution from T is treated by
using (4.19) and the induction hypothesis. This proves (4.30).

Step III: We repeat Step III of the proof of Theorem 2.10 using now the proven
estimates (4.29) and (4.30) to bound any term of g(n, `) for ` ≥ 1. In combination
with (4.23) these bounds yield (4.22) with

K1 = 2C2C̃1C̃3(2k0 − 1) + 1;

here the constant C2 comes from (2.4) while C̃1 and C̃3 come from (4.29) and (4.30),
respectively. Notice that the cardinality of set {0, 1}k0 is 2k0 , so the factor 2k0 − 1
arises by counting only those indices α ∈ {0, 1}k0 with

∑
αj ≥ 1.

Corollary 4.13. Suppose the conditions of Corollary 2.9 and for k0 ≥ 2 also Con-
dition 4.11. Let ψ ∈ D(N1/2) be a bound state (H − λ)ψ = 0 (with λ as in Condi-
tion 2.3). Then ψ ∈ D(N (k0+1)/2).

5 A Class of Massless Linearly Coupled Models

In this section we introduce a class of massless linearly coupled Hamiltonians, some-
times referred to as Pauli-Fierz Hamiltonians [BD, DG, DJ1, GGM2]. The bulk of
this section is spent on checking that an expanded version of the Hamiltonian does
indeed satisfy the abstract assumptions of Section 2. In Subsection 5.2 we verify
that the Nelson model described in Subsection 1.1 is indeed an example of the type
of models discussed here.

5.1 The Model and the Result

Consider the Hilbert space HPF = K ⊗ Γ(h), where K is the Hilbert space for a
“small” quantum system, and Γ(h) is the symmetric Fock space over h = L2(Rd, dk),
describing a field of massless scalar bosons. The Pauli-Fierz Hamiltonian HPF

v acting
on HPF is defined by

HPF
v = K ⊗ 1lΓ(h) + 1lK ⊗ dΓ(|k|) + φ(v), (5.1)
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where K is a Hamiltonian on K describing the dynamics of the small system. We
assume that K is bounded from below, and for convenience we require furthermore
that

K ≥ 0.

The term dΓ(|k|) is the second quantization of the operator of multiplication by
|k|, and φ(v) = (a∗(v) + a(v))/

√
2. The form factor v is an operator from K to

K ⊗ h, and a∗(v), a(v) are the usual creation and annihilation operators associated
to v. See [BD, GGM2]. The hypotheses we make are slightly stronger than the ones
considered in [GGM2]. The first one, Hypothesis (H0), expresses the assumption
that the small system is confined:

(HO) (K + i)−1 is compact on K.

Let 0 ≤ τ < 1/2 be fixed. We will introduce a class of interactions which increase
with τ . In order to formulate our assumption on the form factor v we introduce
the subspace Oτ of B(D(Kτ );K⊗ h) consisting of those operators which extend by
continuity from D(Kτ ) to an element of B(K;D(Kτ )∗ ⊗ h). In other words

Oτ :=
{
v ∈ B(D(Kτ );K ⊗ h)

∣∣
∃C > 0, ∀ψ ∈ D(Kτ ) : ‖[(K + 1)−τ ⊗ 1lh]vψ‖K⊗h ≤ C‖ψ‖K

}
.

We also write v for the extension. It is natural to introduce a norm on Oτ by

‖v‖τ = ‖v(K + 1)−τ‖B(K;K⊗h) + ‖[(K + 1)−τ ⊗ 1lh]v‖B(K;K⊗h).

Our first assumption on the form factor interaction is the following:

(I1) v, [1lK ⊗ |k|−1/2]v ∈ Oτ .
It is proved in [GGM2] that if (I1) holds, HPF

v is self-adjoint with domain D(HPF
v ) =

D(K ⊗ 1lΓ(h) + 1lK ⊗ dΓ(|k|)).
The unitary operator T : L2(Rd)→ L2(R+)⊗L2(Sd−1) =: h̃ which is defined by

(Tu)(ω, θ) = ω(d−1)/2u(ωθ) allows us to pass to polar coordinates. Lifting T to the

full Hilbert space as 1lK ⊗ Γ(T ) gives a unitary map from HPF to H̃PF := K⊗ Γ(h̃).
The Hamiltonian HPF

v is unitarily equivalent to

H̃PF
v := K ⊗ 1lΓ(h̃) + 1lK ⊗ dΓ(ω) + φ(ṽ), (5.2)

where ṽ = [1lK ⊗ T ]v ∈ B(K;K ⊗ h̃).
In polar coordinates the space of couplings consists of operators of the form

[1lK⊗T ]v : K → K⊗ h̃, where v ∈ Oτ . We write Õτ = [1lK⊗T ]Oτ and equip it with
the obvious norm ‖ṽ‖˜τ = ‖[1lK⊗T ∗]ṽ‖τ . Observe ‖ṽ‖˜τ = ‖v‖τ , when ṽ = [1lK⊗T ]v.

Let d be as in (1.4) and (1.5). We recall that d expresses the least amount of
infrared regularization carried by a v satisfying (I2) below. The following further
assumptions on the interaction are made:

(I2) The following holds

[1lK ⊗ (1 + ω−1/2)ω−1d(ω)⊗ 1lL2(Sd−1)]ṽ ∈ Õτ ,
[1lK ⊗ (1 + ω−1/2)d(ω)∂ω ⊗ 1lL2(Sd−1)]ṽ ∈ Õτ ,
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(I3) [1lK ⊗ ∂2
ω ⊗ 1lL2(Sd−1)]ṽ ∈ B(D(Kτ );K ⊗ h̃).

In this paper we need an additional assumption compared to [GGM2]. For
bounded K, it is implied by (I1). Its presence is motivated by a desire to deal
effectively with infrared singularities.

(I4) The form [K⊗1lh̃]ṽ− ṽK extends from [D(K)⊗ h̃]×D(K) to an element of Õ 1
2
.

Here Õ 1
2

is defined as Õτ . Supposing (I1), the statement above is meaningful. See
also Remark 5.14 below.

Remark 5.1. We remark that for separable Hilbert spaces K1 and K2 there are two
natural subspaces of B(K1;K2 ⊗ h). Namely

L2
(
Rd;B(K1;K2)

)
=
{
v : Rd → B(K1;K2)

∣∣∣
∫

Rd
‖v(k)‖2

B(K1;K2)dk <∞
}

L2
w

(
Rd;B(K1;K2)

)
=
{
v : Rd → B(K1;K2)

∣∣∣ sup
‖ψ‖1≤1

∫

Rd
‖v(k)ψ‖2

2dk <∞
}
.

The functions v should be weakly measurable, to ensure that ‖v(k)‖B(K1,K2) and
‖v(k)ψ‖2 are measurable. Here ‖ · ‖j denotes the norm on Kj. We have the obvious
inclusions

L2
(
Rd : B(K1;K2)

)
⊆ L2

w

(
Rd;B(K1;K2)

)
⊆ B(K1;K2 ⊗ h).

The first inclusion is a contraction and the second an isometry. Both inclusions are
strict as exemplified by choosing K1 = K2 = h = L2(R3) and v(k) = e−|x−k| for the
first inclusion and v(k) = |x− k|−1e−|x−k| for the second. (In [DG, Subsection 2.16]
and [GGM2, Subsection 3.4] the second inclusion is claimed to be an equality.)

We denote by IPF(d) the vector space of interactions v satisfying (I1)–(I4) and
turn it into a normed vector space by equipping it (in polar coordinates) with the
norm

‖v‖PF :=
∥∥[1lK ⊗ (1 + ω−3/2d(ω))⊗ 1lL2(Sd−1)]ṽ

∥∥˜
τ

+
∥∥1lK ⊗ (1 + ω−1)d(ω)∂ω)⊗ 1lL2(Sd−1)]ṽ

∥∥˜
τ

+
∥∥[(K + 1)−1/2 ⊗ ∂2

ω ⊗ 1lL2(Sd−1)]ṽ
∥∥
B(K;K⊗h̃)

+
∥∥[K ⊗ 1lh]ṽ − ṽK

∥∥˜
1
2

, (5.3)

For any v0 ∈ IPF(d) and r > 0 write

Br(v0) =
{
v ∈ IPF(d)

∣∣ ‖v − v0‖PF ≤ r
}

(5.4)

for the closed ball in IPF(d) with radius r around v0.

Let us recall the definition of the conjugate operator on H̃PF used in [GGM2].
Let χ ∈ C∞0 ([0,∞)) be such that χ(ω) = 0 if ω ≥ 1 and χ(ω) = 1 if ω ≤ 1/2. For
0 < δ ≤ 1/2, the function mδ ∈ C∞([0,∞)) is defined by

mδ(ω) = χ
(ω
δ

)
d(δ) + (1− χ)

(ω
δ

)
d(ω),
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On h̃, the operator ãδ is defined in the same way as in [GGM2], that is

ãδ := imδ(ω)
∂

∂ω
+

i

2

dmδ

dω
(ω), D(ãδ) = H1

0 (R+)⊗ L2(Sd−1). (5.5)

Its adjoint is given by

ã∗δ := imδ(ω)
∂

∂ω
− i

2

dmδ

dω
(ω), D(ã∗δ) = H1(R+)⊗ L2(Sd−1). (5.6)

We recall that H1
0 (R+) is the closure of C∞0 ((0,∞)) in H1(R+). The conjugate

operator Ãδ on H̃PF is defined by Ãδ := 1lK ⊗ dΓ(ãδ). Going back to HPF we get
aδ = T−1ãδT and

Aδ = dΓ(aδ) =
[
1lK ⊗ Γ(T−1)

]
Ãδ
[
1lK ⊗ Γ(T )

]
.

The operator aδ takes the form (1.8) when written in the original coordinates.
We write N for the number operator 1lK⊗dΓ(1lh) on HPF. For E ∈ σpp(HPF

v ), we
write Pv for the corresponding eigenprojection. Recall from [GGM2, Theorem 2.4]
that the range of Pv is finite dimensional under the assumptions (H0), (I1) and (I2).

Theorem 5.2. Suppose (H0). Let v0 ∈ IPF(d) and J ⊆ R be a compact interval.
There exists 0 < δ0 ≤ 1/2 such that for all 0 < δ ≤ δ0 the following holds: There
exist γ > 0 and C > 0 such that for any v ∈ Bγ(v0) and E ∈ σpp(HPF

v ) ∩ J we have

Pv : HPF → D
(
N 1

2Aδ
)
∩ D

(
AδN

1
2

)
∩ D

(
N
)

and ∥∥N 1
2AδPv

∥∥+
∥∥AδN

1
2Pv
∥∥+

∥∥NPv
∥∥ ≤ C.

Unfortunately we cannot employ our theory directly to conclude the above the-
orem, due to Aδ not being self-adjoint. Instead we use a trick of passing to an
’expanded’ model, for which we can use our abstract theory. The theorem above
will then be a consequence of a corresponding theorem in the expanded picture.

Remark 5.3. Under the hypotheses of Theorem 5.2, we also have that Pv : HPF →
D(A∗δN 1/2)∩D(N 1/2A∗δ). This follows from Aδ ⊆ A∗δ . In particular this implies that
PvAδ extends from D(Aδ) to a bounded operator on HPF. Similar statements hold
also for PvAδN 1/2 and PvN 1/2Aδ.

5.2 Application to the Nelson Model

In this subsection we check the conditions (H0) and (I1)–(I4) for the Nelson model
introduced in the introduction. After possibly adding a constant to W , we can
assume that K ≥ 0. See (1.1) and (W0).

We begin by remarking that it follows from (W0) and (V0) that

|x|α(K + 1)−
1
2 ∈ B(K) (5.7)

|p|(K + 1)−
1
2 ∈ B(K). (5.8)
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Here α > 2 is coming from (W0), |x| = |x1| + · · · |xP | and |p| = |p1| + · · · + |pP |,
where p` = −i∇x` . These bounds imply in particular (H0).

Let ΨN : IN(d)→ B(K;K ⊗ h) be defined by

ΨN(ρ) =
P∑

`=1

e−ik·x`ρ.

Clearly ΨN is a linear map and φ(ΨN(ρ)) = Iρ(x) such that

HN
ρ = K ⊗ 1lF + 1lK ⊗ dΓ(|k|) + φ

(
ΨN(ρ)

)
,

is a Pauli-Fierz Hamiltonian, cf. (1.2) and (1.3). Verifying the conditions (I1)–(I4)
will be achieved if we can show that ΨN is a bounded operator from IN(d) to IPF(d).
This also implies that results valid uniformly for v in a ball in IPF(d) will trans-
late into results holding uniformly for ρ in a sufficiently small ball in IN(d). See
Remark 2.11 4).

That the terms in the norm ‖ΨN(ρ)‖PF, cf. (5.3), pertaining to the conditions
(I1)–(I3) can be bounded by ‖·‖N (or rather terms in ‖·‖N pertaining to (ρ1)–(ρ3)),
follows as in [GGM2] after we have checked that |x|2(K + 1)−τ is bounded for some
positive τ < 1/2.

To produce such a τ we invoke Hadamard’s three-line theorem. Consider the
function z → |x|−iαz(K + 1)iz/2 ∈ B(K). Observe that this function is bounded
when Im z = 0 or Im z = 1, cf. (5.7). It now follows, cf. [RS], that |x|sα(K + 1)−s/2

is bounded for 0 ≤ s ≤ 1. Choosing s = 2/α implies the desired bound with
τ = α−1 < 1/2. This will be the τ used in the conditions (I1)–(I3).

It remains to verify (I4). For this we compute

[K ⊗ 1lh]e
−ik·xjρ− e−ik·xjρK = −

P∑

`=1

[ 1

2m`

∆` e−ik·xjρ− ρe−ik·xj 1

2m`

∆`

]

= −
[ 1

2mj

∆j e−ik·xjρ− ρe−ik·xj 1

2mj

∆j

]

=
e−ik·xj

2m`

[
− 2k · pj + k2

]
ρ

=
[
− 2k · pj − k2

]
ρ

e−ik·xj

2mj

(5.9)

From this computation and (5.8) we conclude that [K ⊗ 1l]ΨN(ρ)−ΨN(ρ)K ∈ O1/2

as required by (I4) and the ‖ · ‖1/2-norm of the difference is bounded by a constant
times ‖ρ‖N. Here we need the term in ‖ · ‖N coming from (ρ4).

We can thus conclude Theorem 1.1 from Theorem 5.2.
It remains to discuss the Nelson model after a Pauli-Fierz transformation. We

recall that we have two transformations to consider, one giving rise to HN′
ρ and

one to HN′′
ρ . See (1.9) and (1.13). To identify these Hamiltonians as Pauli-Fierz

Hamiltonians, we introduce a linear map Ψ′N : I ′N(d)→ B(K;K ⊗ h) by

Ψ′N(ρ) =
P∑

`=1

(e−ik·x` − 1)ρ.
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With this notation we find for ρ ∈ I ′N(d)

HN′
ρ = Kρ ⊗ 1lΓ(h) + 1lK ⊗ dΓ(|k|) + φ

(
Ψ′N(ρ)

)

and, specializing to ρ = ρ0 + ρ1 with ρ0 ∈ I ′N(d) and ρ1 ∈ IN(d),

HN′′
ρ =

(
Kρ0 −

P∑

`=1

vρ0,ρ1(x`)
)
⊗ 1lΓ(h) + 1lK ⊗ dΓ(|k|) + φ

(
Ψ′N(ρ0) + ΨN(ρ1)

)
.

See (1.10) for Kρ and (1.14) for vρ0,ρ1 .

In order to apply Theorem 5.2 one should first observe that Ψ′N is a bounded
map from I ′N(d) to IPF(d). We leave it to the reader to establish this following the
arguments in [GGM2], using the key estimate (1.12). As for (I4), observe that the
extra −ρ from (e−ik·xj −1)ρ drops out when repeating (5.9) for Ψ′N(ρ). In particular
we do not need (1.12) for (I4).

Observe that for both the transformed Hamiltonians, the Hamiltonian for the
confined quantum system K is altered by the transformation, to obtain e.g. Kρ

in the case of H ′N. A priori the norm ‖ · ‖PF is however defined in terms of the
operator K, and this definition we retain.

However, when verifying the Mourre estimate in Subsection 5.4 and our abstract
assumptions for Pauli-Fierz Hamiltonians in Subsection 5.5, we will naturally meet
norms with the modified ρ-dependent K’s, and not the original K. We proceed to
argue that the ‖ · ‖PF norms arising in this way are equivalent, locally uniformly in
ρ, with respect to the appropriate normed space. Let for ρ ∈ I ′N(d)

B′ρ = Kρ −K = −
P∑

`=1

vρ(x`) +
P 2

2

∫ ∞

0

r−1|ρ̃(r)|2dr1lK

and for ρ = ρ0 + ρ1 as above

B′′ρ = −
P∑

`=1

vρ0,ρ1(x`)−
P∑

`=1

vρ0(x`) +
P 2

2

∫ ∞

0

r−1|ρ̃0(r)|2dr1lK.

We observe the bounds

‖B′ρ‖ ≤ C‖ρ‖′2N and ‖B′′ρ‖ ≤ C
(
‖ρ0‖′2N + ‖ρ1‖2

N

)
,

for some ρ-independent constant C. In particular both B′ρ and B′′ρ can be bounded
locally uniformly in ρ, with respect to the appropriate norm. By yet another inter-
polation argument this implies that we can pass between ‖ · ‖PF norms defined with
either K, Kρ, or Kρ0 +B′′ρ , and still retain bounds that are locally uniform in ρ.

Finally we note that the above bounds also imply that by possibly adding to W
a positive constant we still have Kρ ≥ 0 and Kρ0 +B′′ρ ≥ 0 locally in ρ. This ensures
that (H0) is satisfied also for transformed Nelson Hamiltonians. In particular we
still have e.g. |x|2(Kρ + 1)−τ bounded.

In conclusion, Theorem 1.2 also follows from Theorem 5.2.
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5.3 Expanded Objects

Let us now define the expanded operator Ĥe
v on Ĥe := H̃PF ⊗ Γ(h̃) by

Ĥe
v := H̃PF

v ⊗ 1lΓ(h̃) − 1lH̃PF
⊗ dΓ(ĥ), (5.10)

where ĥ is the operator of multiplication by

ĥ(ω) = eω − 1− ω2

2
. (5.11)

From the bound ω ≤ 1
2

+ ω2/2 we find that for ω ≥ 0

d

dω
ĥ(ω) ≥ ĥ(ω) +

1

2
. (5.12)

Since L2(R+)⊕L2(R+) ' L2(R), it is known (see e.g. [DJ1]) that there exists a
unitary operator

U : Γ(h̃)⊗ Γ(h̃)→ Γ(he), (5.13)

where he := L2(R)⊗L2(Sd−1). On K⊗ Γ(h̃)⊗ Γ(h̃), the unitary operator 1lK ⊗U is
still denoted by U . It maps into He = K⊗Γ(he). In this representation, the operator

Ĥe
v is unitary equivalent to the ‘expanded Pauli-Fierz Hamiltonian’ He

v defined as
an operator on He by

He
v := UĤe

vU−1 = K ⊗ 1lΓ(he) + 1lK ⊗ dΓ(h) + φ(ve), (5.14)

where ve ∈ B(K,K ⊗ he), and ve and h are defined by

h(ω) :=

{
ω if ω ≥ 0,

−ĥ(−ω) if ω ≤ 0,
ve(ω) :=

{
ṽ(ω) if ω ≥ 0,

0 if ω ≤ 0.
(5.15)

Note that h ∈ C2(R). The idea of expanding the Hilbert space in the above fashion
has been used previously in [DJ1, DJ2, Gé, JP1]. Our choice of expansion for the
boson dispersion relation to the unphysical negative ω appears to be new. Previous
implementations of the expansion all used the obvious linear expansion h(ω) = ω.

We remark that if CK ⊆ K is a core for K, C ⊆ Γ(h̃) is a core for dΓ(ω),

then the algebraic tensor product CK ⊗ C is a core for H̃PF
0 , hence for H̃PF

v , and

finally CK⊗C⊗C is a core for Ĥe
v for any v ∈ IPF(d). The domain D(He

v) itself may
however be v dependent. (The argument for the contrary in [DJ1, Section 5.2] seems
wrong.) We have however set up our analysis such that knowledge of He

v ’s domain
is not needed. See also Lemma 5.15 where an intersection domain is computed.

Remark 5.4. We remark that if one is going for higher order results, i.e. ψ ∈ D(Ak0)
for k0 ≥ 2, one should use a different ĥ. The choice

ĥk0(ω) = eω − 1−
k0+1∑

`=2

ω`

`!

will work since the corresponding hk0 is in Ck0+1(R) and the bound

d

dω
ĥk0(ω) ≥ ĥk0(ω)

(k0 − 1)!
+

1

2

holds for ω ≥ 0 and k0 ≥ 1. For k0 = 1 this reduces to (5.12).
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Before introducing the conjugate operator on He that we shall use, let me
δ ∈

C∞(R) be defined by

me
δ(ω) :=

{
mδ(ω) if ω ≥ 0,

d(δ) if ω ≤ 0.

We set

ae
δ := ime

δ(ω)
∂

∂ω
+

i

2

dme
δ

dω
(ω), D(ae

δ) = H1(R)⊗ L2(Sd−1), (5.16)

and Ae
δ := 1lK ⊗ dΓ(ae

δ) as an operator on He. Note that both ae
δ and Ae

δ are self-
adjoint.

We can now formulated the expanded version of our regularity theorem
Let

N e = 1lK ⊗ dΓ(1lhe) = U
(
N ⊗ 1lΓ(h̃) + 1lH̃PF

⊗ dΓ(1lh̃)
)
U−1

denote the expanded number operator. For E ∈ σpp(He
v) we write P e

v for the asso-
ciated eigenprojection.

Theorem 5.5. Suppose (H0). Let v0 ∈ IPF(d) and J ⊆ R be a compact interval.
There exists a 0 < δ0 ≤ 1/2 such that for any 0 < δ ≤ δ0 the following holds: There
exist γ > 0 and C > 0 such that for any v ∈ Bγ(v0) and E ∈ σpp(He

v) ∩ J we have

P e
v : He → D

(
(N e)

1
2Ae

δ

)
) ∩ D

(
(Ae

δ(N e)
1
2

)
∩ D

(
N e
)

and ∥∥(N e)
1
2Ae

δP
e
v

∥∥+
∥∥Ae

δ(N e)
1
2P e

v

∥∥+
∥∥N eP e

v

∥∥ ≤ C.

In the next two subsections we verify that our abstract theory applies to the
expanded model, but before doing so we pause to check that Theorem 5.2 does
indeed follow from Theorem 5.5. For that we need a lemma.

Let Wδ,t, t ≥ 0, denote the contraction semigroup on H̃PF generated by Ãδ.

Lemma 5.6. For any state ϕ ∈ H̃PF we have for t ≥ 0

e−itAe
δU(ϕ⊗ Ω) = U(Wδ,tϕ⊗ Ω).

In particular, ϕ ∈ D(Ãkδ ) if and only if U(ϕ⊗ Ω) ∈ D((Ae
δ)
k).

Proof. It is enough to check the identity on a dense set of ϕ’s. Let ϕ ∈ K ⊗
Γfin(H1

0 (R+)⊗L2(Sd−1)) ⊆ D(Ãδ). Then U(ϕ⊗Ω) ∈ K⊗Γfin(H1(R)⊗L2(Sd−1)) ⊆
D(Ae

δ). The identify now follows by differentiating both sides of the equation and
observing they satisfy the same differential equation, with the same initial condition.
Here we made use of the equality Ae

δU(ϕ ⊗ Ω) = U(Ãδϕ ⊗ Ω) valid for ϕ ∈ K ⊗
Γfin(H1

0 (R+)⊗ L2(Sd−1)).

Proof of Theorem 5.2. We only have to recall that bound states of He
v are precisely

states on the form U(ϕ⊗Ω), where ϕ is a bound state for H̃PF
v , with the same eigen-

value. This implies that eigenprojections for He
v are on the form U [P̃ ⊗ |Ω〉〈Ω|]U−1

where P̃ is an eigenprojection for H̃PF
v . Theorem 5.5, together with Lemma 5.6,

now implies Theorem 5.2.
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5.4 Mourre Estimates

We begin by establishing a Mourre estimate for HPF
v and Aδ in a form appropriate

for use in this paper. At the end of the subsection we derive a Mourre estimate for
He
v and Ae

δ.
Let

Mδ := 1lK ⊗ dΓ(mδ) and Rδ = Rδ(v) := −φ(iaδv)

as operators onHPF. Let H ′ be the closure of Mδ+Rδ with domain D(HPF
v )∩D(Mδ).

Recall from [GGM2] that H ′ = [HPF
v , iAδ]

0. Let f ∈ C∞0 (R) be such that 0 ≤ f ≤ 1,
f(λ) = 1 if |λ| ≤ 1/2 and f(λ) = 0 if |λ| ≥ 1. In addition we choose f to be
monotonously decreasing away from 0, i.e. λf ′(λ) ≤ 0. For E ∈ R and κ > 0 we set

fE,κ(λ) := f
(λ− E

κ

)
.

The following ‘Mourre estimate’ for HPF
v is proved in [GGM2]:

Theorem 5.7. [GGM2, Theorem 7.12] Assume that Hypotheses (H0), (I1) and
(I2) hold. Let E0 ∈ R. There exists δ0 ∈]0, 1/2] such that: For all E ≤ E0,
0 < δ ≤ δ0 and ε0 > 0, there exist C > 0, κ > 0, and a compact operator K0 on
HPF such that the estimate

Mδ + fE,κ(H
PF
v )RδfE,κ(H

PF
v ) ≥ (1− ε0)1lHPF

− Cf⊥E,κ(HPF
v )2 −K0 (5.17)

holds as a form on D(N 1/2).

The following lemma is just a reformulation of [GGM2, Proposition 4.1 i),
Lemma 4.7 and Lemma 6.2 iv)]. We leave the proof to the reader.

Lemma 5.8. Let v0 ∈ IPF(d). There exists c0, c1, c2 > 0, depending on v0, such
that HPF

v0
+ c0 ≥ 0 and the following holds: for all w ∈ IPF(d) and 0 < δ ≤ 1/2

±φ(w) ≤ c1‖w‖PF(HPF
v0

+ c0) and ±Rδ(w) ≤ c1‖w‖PF(HPF
v0

+ c0).

‖φ(w)(HPF
v0

+ i)−1‖ ≤ c2‖w‖PF and ‖Rδ(w)(HPF
v0

+ i)−1‖ ≤ c2‖w‖PF.

The first step we take is to translate the commutator estimate above into the
form used in this paper, see Condition 2.3. In anticipation of the need for local
uniformity of constants, we need to already at this step ensure that B = CB1l can
be chosen uniformly in E ∈ J , where J is compact interval.

Corollary 5.9. Let J ⊆ R be a compact interval and v0 ∈ IPF(d). There exists
δ0 ∈]0, 1/2] and CB > 0 such that for any E ∈ J , ε0 > 0 and 0 < δ < δ0 the
following holds. There exists κ > 0, C4 > 0 and a compact operator K0 such that
the form inequality

Mδ +Rδ(v0) ≥ (1− ε0)1lHPF
− C4f

⊥
E,κ(H

PF
v0

)2 − CB(HPF
v0
− E)−K0 (5.18)

holds on D(N 1/2) ∩ D(HPF
v0

).
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Proof. Let E0 be an upper bound for the interval J and take δ0 to be the one coming
from Theorem 5.7, applied with v = v0.

Fix E ∈ J , 0 < δ < δ0 and ε0 > 0. Apply Theorem 5.7 with ε0/2 in place of ε0.
Compute as a form on D(HPF

v0
)

Rδ(v0) = fE,κ(H
PF
v0

)Rδ(v0)fE,κ(H
PF
v0

) + f⊥E,κ(H
PF
v0

)Rδ(v0)f⊥E,κ(H
PF
v0

)

+ 2Re {fE,κ(HPF
v0

)Rδ(v0)f⊥E,κ(H
PF
v0

)}.

Using Lemma 5.8 with w = v0 and abbreviating CB = c1‖v0‖PF we estimate

f⊥E,κ(H
PF
v0

)Rδ(v0)f⊥E,κ(H
PF
v0

)

≥ −c1‖v0‖PF(HPF
v0

+ c0)f⊥E,κ(H
PF
v0

)2

= −CB(HPF
v0
− E)f⊥E,κ(H

PF
v0

)2 − CB(c0 + E)f⊥E,κ(H
PF
v0

)2

≥ −CB(HPF
v0
− E)− 3CBκ− CB(c0 + E)f⊥E,κ(H

PF
v0

)2.

Using Lemma 5.8 again we get

2Re {fE,κ(HPF
v0

)Rδ(v0)f⊥E,κ(H
PF
v0

)}

≥ −ε0
4
− 4

ε0
‖Rδ(v0)fE,κ(H

PF
v0

)‖2f⊥E,κ(H
PF
v0

)2

≥ −ε0
4
− 4c2

2‖v0‖2
PF(|E|+ κ+ 1)2

4ζ
f⊥E,κ(H

PF
v0

)2.

Combining the equations above with Theorem 5.7 yields (5.18) with CB only de-
pending on v0.

The above corollary suffices to prove Theorem 5.5 without local uniformity in v
and E.

The following lemma is designed to deal with uniformity of estimates in a small
ball of interactions v around a fixed (unperturbed) interaction v0. Technically it
replaces [GGM2, Lemma 6.2 iv)].

Lemma 5.10. Let v0 ∈ IPF(d). There exists γ0 > 0, C ′B > 0 and c′0, c
′
1, c
′
2 > 0, only

depending on v0, such that

(1) ∀v ∈ Bγ0(v0) : HPF
v ≥ −c′0.

(2) ∀v ∈ Bγ0(v0) : ±φ(v) ≤ c′1(HPF
v + c′0) and ‖φ(v)(HPF

v − i)−1‖ ≤ c′2.

(3) ∀v ∈ Bγ0(v0) and 0 < δ ≤ 1/2: ±Rδ(v) ≤ C ′B(HPF
v + c′0) and

‖Rδ(v)(HPF
v − i)−1‖ ≤ c′2.

Proof. Let v0 ∈ IPF(d) be given. Let C1(r, v) = ‖[1lK ⊗ ω−1/2]ṽ(K + r)−1/2‖, for
v ∈ IPF(d) and r > 0.

We begin with (1). Fix r = r(v0) ≥ 1 such that
√

2C1(r, v0) ≤ 1/3. This is
possible due to (I1). Using [GGM2, Proposition 4.1 i)] we get

HPF
v = HPF

0 + φ(v) = HPF
0 + φ(v0) + φ(v − v0)

≥ HPF
0 − 1

3
(HPF

0 + r)−
√

2C1(1, v − v0)(HPF
0 + 1)

=
(
1− 1

3
−
√

2C1(1, v − v0)
)
HPF

0 −
r

3
−
√

2C1(1, v − v0).
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Using that ω−1/2 ≤ 2/3 +ω−3/2/3 ≤ 2/3(1 +ω−3/2d(ω)) we get C1(r, v) ≤ 2‖v‖PF/3
for any v ∈ IPF(d) and r ≥ 1. This implies

HPF
v ≥

(2

3
− 2
√

2

3
‖v − v0‖PF

)
HPF

0 −
r

3
− 2
√

2

3
‖v − v0‖PF.

Observe that the choice γ0 = 1/(2
√

2) ensures that we arrive at the bound

HPF
v ≥ −

r + 1

3
.

Choose c′0 = 1 + (r + 1)/3 such that HPF
v + c′0 ≥ 1. This proves (1).

As for (2) we observe first that φ(v) = HPF
v − HPF

0 ≤ HPF
v . Next let r = r(v0)

and γ0 = 1/(2
√

2) be as in the proof of (1) and estimate

−φ(v) = −φ(v0) + φ(v0 − v) ≤ 1
3
(HPF

0 + r) + 1
3
(HPF

0 + 1) = 2
3
HPF

0 + r+1
3
.

Writing HPF
0 = HPF

v − Φ(v) we arrive at

−φ(v) ≤ 2HPF
v + r + 1.

Combining with the choice of c′0 in the proof of (1) now yields the first estimate
in (2), for a sufficiently large c′1.

As for the second part of (2) one can employ [GGM2, Proposition 4.1 ii)] in place
of [GGM2, Proposition 4.1 i)] and argue as above. This gives a bound of the desired
type for γ0 small enough. The choice γ0 = 1/8 works. Here one should observe that
the constants Cj(r, v), j = 0, 1, 2, in [GGM2] are all related to the norm ‖ · ‖PF by
Cj(1, v) ≤ 2‖v‖PF/3 as argued above for C1.

The statement in (3) now follows by appealing to [GGM2, Proposition 4.1 i)]
again

±Rδ(v) ≤
√

2C1(1, [1lK ⊗ aδ]v)(HPF
0 + 1)

≤
√

2C1(1, [1lK ⊗ aδ]v)((c′1 + 1)HPF
v + c′1c

′
0 + 1).

From (5.5) and (5.3) we conclude the existence of a C ′B for which the first estimate
in (3) is satisfied.

Similarly for the second part of (3), where, as in the discussion of the second
part of (2), one can make use of [GGM2, Proposition 4.1 ii)].

We can now state and prove a commutator estimate that is uniform with respect
to v from a small ball around v0, and E in a compact interval. Given v0, let γ0

denote the radius coming from Lemma 5.10.

Corollary 5.11. Let J ⊆ R be a compact interval, v0 ∈ IPF(d), and ε0 > 0. There
exist a δ0 ∈]0, 1/2] such that for any 0 < δ < δ0 the following holds. There exists
0 < γ < γ0, κ > 0, C4 > 0 and a compact operator K0, with γ only depending on
δ, ε0, J and v0, such that the form inequality

Mδ +Rδ(v) ≥ (1− ε0)1lHPF
− C4f

⊥
E,κ(H

PF
v )2〈HPF

v 〉 −K0 (5.19)

holds on D(N 1/2) ∩ D(HPF
v ), for all E ∈ J and v ∈ Bγ(v0).
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Remark. We note that the constant C4 in Corollary 5.9 can, on inspection of the
proof of [GGM2, Theorem 7.12], be chosen uniformly in 0 < δ ≤ δ0. Making use
of this would allow us to choose γ independent of δ ≤ δ0 here, which would slightly
simplify the exposition. We however choose not to test the readers patience on this
issue. See Step II in the proof below.

Proof. Given J , v0 and ε0, let γ0 be given by Lemma 5.10 and let CB > 0 δ0 > 0 be
the constants coming from Corollary 5.9. For E ∈ J we apply Corollary 5.9, with
ε0 replaced by ε0/3, and get the form estimate

Mδ +Rδ(v0) ≥ (1− ε0/3)1lHPF
− C4(v0, E)f⊥E,κ(v0,E)(H

PF
v0

)2

− CB(HPF
v0
− E)−K0(v0, E). (5.20)

The constants C4, κ and the operator K0 also depend on δ, but this dependence
does not concern us. We can assume that K0 ≥ 0. The key observation is that
the constants C4 and κ, and the operator K0 above can be chosen independently
of E ∈ J and v ∈ Bγ(v0), for some sufficiently small γ which does not depend on
δ ≤ δ0.

We divide the proof of the corollary into three steps, the two first establish the
observation mentioned in the previous paragraph.

Step I: We begin by arguing that C4, κ and K0 can be chosen independently
of E ∈ J . By a covering argument it suffices to show that they can be chosen
independently of E ′ in a small neighborhood of E ∈ J . For the compact error, we
remark that one should replace K0 by a finite sum K0(v0) = K0(v0, E1) + · · · +
K0(v0, Em) of non-negative compact operators, which is again compact.

Let E ∈ J be fixed. Pick ζ1 = ε0/(6CB) such that for |E − E ′| < ζ1 we have

CBE ≥ CBE
′ − ε0/6. (5.21)

As for the term involving f⊥E,κ we observe that for any self-adjoint operator S we
have

f⊥E,κ(S)− f⊥E′,κ(S) = fE′,κ(S)− fE,κ(S)

=
1

π

∫

C
(∂̄f̃)(z)

[(S − E ′
κ

− z
)−1

−
(S − E

κ
− z
)−1]

dudv.

Here z = u+ iv. Estimating this we find that

‖f⊥E,κ(S)− f⊥E′,κ(S)‖ ≤ C
|E − E ′|

κ
.

Writing a2− b2 = (a− b)(a+ b) we observe a similar bound for f⊥E,κ(S)2− f⊥E′,κ(S)2.
Again we conclude for ζ2 = κ(v0, E)ε0/(6CC4(v0, E)) we find that for |E−E ′| < ζ2:

−C4f
⊥
E,κ(H

PF
v0

)2 ≥ −C4(v0, E)f⊥E′,κ(H
PF
v0

)2 − ε0/6. (5.22)

The estimates (5.21) and (5.22) plus the aforementioned covering argument im-
plies the form estimate

Mδ +Rδ(v0) ≥ (1− 2ε0/3)1lHPF
− C4(v0)f⊥E,κ(v0)(H

PF
v )2

− CB(HPF
v − E)−K0(v0), (5.23)

for all E ∈ J .
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Step II: Secondly we argue that one can use the same constants C4, κ, and compact
operator K0 for v ∈ Bγ(v0), if γ is small enough.

Using Lemma 5.10 we estimate

Rδ(v0) = Rδ(v) +Rδ(v0 − v) ≤ Rδ(v) + C1‖v − v0‖PF(HPF
v + C2).

Writing

C1‖v − v0‖PF(HPF
v + C2) = C1‖v − v0‖PF(HPF

v − E) + C1‖v − v0‖PF(C2 + E),

We see that choosing γ1 = γ1(ε0, J, v0) small enough we arrive at the following bound

Rδ(v0) ≤ Rδ(v) + C(HPF
v − E) +

ε0
9

1lHPF
, (5.24)

which holds for all v ∈ Bγ1(v0) and E ∈ J .
For the f⊥E,κ contribution we compute

fE,κ(H
PF
v0

)− fE,κ(HPF
v )

=
1

π

∫

C
(∂̄f̃)(z)

[(HPF
v0
− E
κ

− z
)−1

−
(HPF

v − E ′
κ

− z
)−1

dudv

=
1

κπ

∫

C
(∂̄f̃)(z)

(HPF
v − E
κ

− z
)−1

φ(v − v0)
(HPF

v0
− E ′
κ

− z
)−1

dudv.

From Lemma 5.8 and the representation formula above we find that

‖f⊥E,κ(HPF
v0

)2 − f⊥E,κ(HPF
v )2‖ ≤ C‖v − v0‖PF.

uniformly in E ∈ J . Arguing as above we thus find a γ2 = γ2(ε0, J, v0, δ) > 0 such
that

−C4(v0)f⊥E,κ(H
PF
v0

)2 ≥ −C4(v0)f⊥E,κ(H
PF
v )2 − ε0

9
1lHPF

(5.25)

for all v ∈ Bγ2(v0). This is where the δ-dependence enters into the choice of γ
through C4. See the remark to the corollary.

Using Lemma 5.10 we also get a γ3 = γ3(ε0, v0) > 0 such that

−CB(HPF
v0
− E) ≥ −CB(HPF

v − E)− ε0
9

1lHPF
, (5.26)

for all v ∈ Bγ3(v0).
Combining (5.23) with (5.24)–(5.26) we conclude that the estimate (5.20) holds

with the same C4, κ and K0, for all E ∈ J and v ∈ Bγ(v0), with γ = min{γ1, γ2, γ3}
only depending on ε0, J, v0 and δ.

Step III: To conclude the proof we let γ, C4, κ and K0 be fixed by Steps I and II.
Pick κ′ smaller than κ such that κ′CB(1 + maxE∈J |E|)| ≤ ε0. The Corollary now
follows from (5.20) and the estimate

−CB(HPF
v − E) ≥ −CB(1 + max

E∈J
|E|)f⊥E,κ(HPF

v )2〈HPF
v 〉.

Observe that (5.20) holds with κ replaced by κ′ as well.
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The corresponding objects in the expanded Hilbert space are defined as follows:
We set

M e
δ := 1lK ⊗ dΓ(me

δh
′) and Re

δ = Re
δ(v) := −φ(iae

δv
e).

Note that

U−1M e
δ U = Mδ ⊗ 1lΓ(h̃) + 1lH ⊗ M̂δ, U−1Re

δ U = Rδ ⊗ 1lΓ(h̃), (5.27)

where M̂δ := dΓ(d(δ)ĥ′) as an operator on Γ(h̃). From (5.12), we get

M̂δ ≥ d(δ)
[
dΓ(ĥ) + 1

2
N
]
, (5.28)

The Mourre estimate for He
v is stated in the following theorem.

Theorem 5.12. Assume that Hypotheses (H0), (I1) and (I2) hold. Let v0 ∈
IPF(d), J a compact interval, and ε0 > 0. There exists δ0 ∈]0, 1/2] such that for all
0 < δ ≤ δ0, there exist 0 < γ < γ0, C4 > 0, κ > 0, and a compact operator K0 on
He such that

M e
δ +Re

δ ≥ (1− ε0)1lHe − Cf⊥E,κ(He
v)

2〈He
v〉 −K0 (5.29)

for all E ∈ J and v ∈ Bγ(v0), as a form on D((M e
δ )1/2) ∩ D(He

v).

Remark. As in Corollary 5.11 , the constant γ can be chosen to only depend on
ε0, J, v0 and δ, and as in the associated remark one can in fact choose it uniformly
in 0 < δ ≤ δ0.

Proof. We fix v0, J and ε0 as in the statement of the the theorem.
We begin by taking δ′0 to be the δ0 coming from Corollary 5.11. Secondly we fix

C ′B and c′0 to be the two constants from Lemma 5.10 (3).
We can now choose 0 < δ0 ≤ δ′0 such that

d(δ0) ≥ max{C ′B + 2,max
E∈J

2C ′B(E + c′0)}. (5.30)

Here we used that limt→0+ d(t) = +∞. Fix now a 0 < δ ≤ δ0 and denote by γ the
radius coming from Corollary 5.11.

The above choices anticipates the proof below, but we make them here to make
it evident that we pick the constants in the right order.

We begin the verification of the commutator estimate for v ∈ Bγ(v0) by comput-
ing as a form on D((M e

δ )1/2) ∩ D(He)

U−1 [M e
δ +Re

δ]U = [Mδ +Rδ]⊗ PΩ +
[
Mδ ⊗ 1l + 1l⊗ M̂δ +Rδ ⊗ 1l

]
1l⊗ P̄Ω. (5.31)

We apply Corollary 5.11 to the first term in the r.h.s. of (5.31), with the given
δ (apart from v0, J and ε0). This yields a C ′4, a κ′ > 0, and a compact operator K ′0
(apart from γ) such that the following bound holds

[Mδ +Rδ]⊗ PΩ ≥ [(1− ε0)1l− C ′4f⊥E,κ′(HPF
v )2〈HPF

v 〉 −K ′0]⊗ PΩ. (5.32)

Observe that the bound above also holds with κ′ replaced by any 0 < κ ≤ κ′.
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To bound from below the second term on the r.h.s. of (5.31), we use Lemma 5.10.
Together with (5.28) and (5.30), this implies

[
1l⊗ M̂δ +Rδ ⊗ 1l

]
1l⊗ P̄Ω

≥
[
1l⊗ d(δ)

(
dΓ(ĥ) + 1

2

)
− C ′B

(
HPF
v ⊗ 1l + c′0

)
⊗ 1l

]
1l⊗ P̄Ω

≥
[
(d(δ)− C ′B)1l⊗ dΓ(ĥ)− C ′B(Ĥe

v − E) +
d(δ)

2
− C ′B(E + c′0)

]
1l⊗ P̄Ω

≥
[
2− C ′B(Ĥe

v − E)
]

1l⊗ P̄Ω, (5.33)

Here we also made use of (5.10) and that ĥ ≥ 0. We now pick a 0 < κ ≤ κ′ such
that 3κC ′B ≤ 1. Inserting 1 = f 2

E,κ + 2fE,κf
⊥
E,κ + (f⊥E,κ)

2 into (5.33) yields the bound

[
1l⊗ M̂δ +Rδ ⊗ 1l

]
1l⊗ P̄Ω ≥

[
1− C ′B(1 + E ′)f⊥E,κ(Ĥ

e
v)

2〈Ĥe
v〉
]

1l⊗ P̄Ω,

where E ′ = maxE∈J |E|. This estimate together with (5.31) and (5.32) lead to the
statement of the theorem with C4 = min{C ′4, C ′B(1+E ′)} and K0 = U [K ′0⊗PΩ]U−1.

5.5 Checking the Abstract Assumptions

The purpose of this subsection is to complete the proof of Theorem 5.5. We do this
by running through the abstract assumptions in Section 2 pertaining to Theorems 2.5
and 2.10, from which Theorem 5.5 then follows. In accordance with Remark 2.11 4),
we ensure that all constants can be chosen locally uniformly in energy E and form
factor v. This ensures local uniformity in Theorem 5.5.

We fix v0 ∈ IPF(d) and E0 ∈ σ(HPF
v0

). Observe that there exists e0 such that
e0 < inf σ(HPF

v ) for all v ∈ Bγ0(v0), where γ0 comes from Lemma 5.10. Put J =
[e0, E0]. Let γ and δ′0 be fixed by Theorem 5.12 and choose a δ < δ′0, which from
now on is fixed.

We begin by postulating the objects for which the abstract assumptions in Con-
ditions 2.1 should hold. We take

H = He

H = He
v

A = Ae
δ (5.34)

N = Kρ ⊗ 1lΓ(he) + 1lK ⊗ dΓ(h′) + 1lHe , max{2τ, 1
2
} < ρ < 1

H ′ = [M e
δ +Re

δ]|D(N) .

The constant τ appearing above is the one from (I1). Observe that Re
δ and M e

δ are
N -bounded. See Lemma 5.13 just below.

We make use of the following dense subspace of H

S = D(K)⊗ Γfin

(
C∞0 (R)⊗ L2(Sd−1)

)
⊆ He.
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The tensor product is algebraic. Observe that S is a core for H, N , and A. We
recall that we can construct the group eitA explicitly. Let ψt denote the (global) flow
for the 1-dimensional ODE ψ̇t(ω) = me

δ(ψt(ω)). Then, for continuous compactly
supported supported f ,

(eitae
δf)(ω) = e

1
2

∫ t
0 (me

δ)
′(ψs(ω))dsf(ψt(ω)).

This in particular implies that

eitAe
δ = Γ(eitae

δ) : S → S. (5.35)

We begin with the following lemma which implies that Re
δ is N -bounded.

Lemma 5.13. Let v ∈ Oτ and κ = 1/4− τ/(2ρ). Then D(N1−2κ) ⊆ D(φ(v)), and
for f ∈ D(N) we have

‖φ(ve)f‖ ≤ C‖v‖τ‖N1−2κf‖,
where C does not depend on v nor on f .

Proof. Adopting notation from [GGM2] we put C0(v) = ‖v(K+1)−τ‖2 and C2(v) =
‖[(K + 1)−τ ⊗ 1lh]v‖2. We estimate for f ∈ S, repeating the argument for [GGM2,
(3.14) and (3.16)], and get

‖a∗(ve)f‖2 ≤ C0(v)‖(K + 1)τ ⊗ 1lΓ(he)f‖2 + C0(v)〈f, (K + 1)2τ ⊗N ef〉

and
‖a(ve)f‖2 ≤ C2(v)〈f, (K + 1)2τ ⊗N ef〉.

Observing the bound, with 2κ = 1/2− τ/ρ and some C ′ > 0,

(K + 1)2τ ⊗N e ≤ τ

ρ(1− 2κ)
(K + 1)2ρ(1−2κ) ⊗ 1lΓ(he)

+
1

2(1− 2κ)
(N e)2(1−2κ) ≤ C ′N2(1−2κ),

yields
‖Φ(ve)f‖ ≤ C‖v‖τ‖N1−2κf‖ (5.36)

a priori as a bound for elements of S. The lemma now follows since S is a core
for N .

Condition 2.1 (1): We make use of the fact (given the invariance of S mentioned in
(5.35)) that our Condition 2.1 (1) is equivalent to Mourre’s conditions, eitAD(N) ⊆
D(N) (i.e. D(N) is invariant) and that i[N,A] extends from a form on S to an
element of B(N−1H;H). See [Mo, Proposition II.1].

From the computation
i[h′, ae

δ] = me
δh
′′

it follows that the following identity holds in the sense of forms on S

N ′ = i[N,Ae
δ] = 1lK ⊗ dΓ

(
me
δh
′′). (5.37)
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Since me
δ is bounded and supω∈R |h′′(ω)|/h′(ω) < ∞, we find that N ′ extends from

S to a bounded operator on D(N), and the extension is in fact an element of
B(N−1H;H) as required.

It remains to check that D(N) is invariant under eitAe
δ . For this we compute

strongly on S

NeitAe
δ = eitAe

δ

(
Kρ ⊗ 1lΓ(he) + 1lK ⊗ dΓ(h′ ◦ ψ−t)

)
.

Since t→ ψt(ω) is increasing and ω → h′(ω) is decreasing (and positive) we find for
t ≤ 0

0 ≤ h′ ◦ ψ−t ≤ h′.

For positive t we estimate ω − Ct ≤ ψ−t(ω) ≤ ω, for some C > 0, where we used
that me

δ was a bounded function. This gives for t > 0

0 ≤ h′ ◦ ψ−t(ω) = max{1, e−ψ−t(ω) + ψ−t(ω)} ≤ max{1, e−ω+Ct + ω − Ct}.

Using that e−ω+α + ω ≤ Cα(e−ω + ω), we get for any t a C ′ = C ′(t) such that
(h′ ◦ ψ−t)2 ≤ C ′(h′)2 and hence by [GGM2, Proposition 3.4] we arrive at

dΓ(h′ ◦ ψ−t)2 ≤ C ′dΓ(h′)2.

Since S was a core for N we now conclude that eitAe
δD(N) ⊆ D(N). This completes

the verification of Condition 2.1 (1).

Condition 2.1 (2): We begin by observing that N and He
0 commute. In particular

we can compute as a form on S

i[N−1, He
v ] = iN−1φ(ve)− iφ(ve)N−1.

This computation in conjunction with Lemma 5.13 implies that i[N−1, He
v ] extends

from a form on D(He
v) to a bounded operator and hence N is of class C1(H).

Since the commutator form i[N,H] extends from D(N) ∩ D(H) to a bounded
form on D(N) it suffices to compute it on a core for N . Here we take again S and
compute

i[N,H] =
[
Kρ ⊗ 1lΓ(he), φ(ve)

]
+ φ(ih′ve)

= φ
(
[Kρ ⊗ 1lhe ]ve − veKρ

)
+ φ(ive). (5.38)

That the second term extends by continuity to a bounded form on D(N
1
2
−κ) follows

from Lemma 5.13 (applied with ive instead of ve) and interpolation.

In order to deal with the first term in (5.38) we write

φ
(
[Kρ ⊗ 1lhe ]ve − veKρ

)
= U

(
φ
(
[Kρ ⊗ 1lh̃]ṽ − ṽKρ

)
⊗ 1lΓ(h̃)

)
U−1.

Here we need the new assumption (I4). We will immediately verify that the above
expression extends to a bounded form on D(N1/2−κ) for some κ > 0. This implies
the required property for i[H,N ]0.
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We employ the representation formula (3.5) with K instead of N . Compute as
a form on D(K ⊗ 1lh̃)×D(K)

(Kρ ⊗ 1lh̃)ṽ − ṽKρ = −cρ
∫ ∞

0

tρ
[(

(K + t)−1 ⊗ 1lh̃
)
ṽ − ṽ(K + t)−1

]
dt

= B − cρ
∫ ∞

1

tρ
(
(K + t)−1 ⊗ 1lh̃

)[
ṽK − (K ⊗ 1lh̃)ṽ

]
(K + t)−1dt,

where B is the contribution from the integral between 0 and 1, which due to (I1) is
a bounded operator.

By (I4) we have

c1 :=
∥∥(ṽK − (K ⊗ 1lh̃)ṽ

)
(K + 1)−

1
2

∥∥ <∞,
c2 :=

∥∥(K + 1)−
1
2 ⊗ 1lh̃

(
ṽK − (K ⊗ 1lh̃)ṽ

)∥∥ <∞.

Let τ ′ < 1/2 be chosen such that ρ/2 > τ ′ > ρ − 1/2. This is possible due to the
choice of ρ. We estimate for ψ ∈ D(K ⊗ 1lh̃) and ϕ ∈ D(K)

〈
ψ,
(
(Kρ ⊗ 1lh̃)ṽ − ṽKρ

)
ϕ
〉
≤ ‖B‖‖ψ‖ϕ‖+

c1cρ
1
2

+ τ ′ − ρ‖ψ‖‖(K + 1)τ
′
ϕ‖.

Similarly we get

〈
ψ,
(
(Kρ ⊗ 1lh̃)ṽ − ṽKρ

)
ϕ
〉
≤ ‖B‖‖ψ‖ϕ‖+

c2cρ
1
2

+ τ ′ − ρ‖(K ⊗ 1lh̃ + 1)τ
′
ψ‖‖ϕ‖.

We have thus established that the first term in (5.38) is the (expanded) field op-
erator associated to an operator in Oτ ′ . We can thus employ Lemma 5.13 again,
this time with ve replaced by [Kρ ⊗ 1lhe ]ve − veKρ and κ replaced by 0 < κ′ =
1/4 − τ ′/(2ρ) < 1/4. Together with an interpolation argument this ensures that
φ((Kρ ⊗ 1lhe)ve − veKρ) extends by continuity to a bounded form on D(N1/2−κ′).

We have thus verified Condition 2.1 (2) with the smallest of the two kappa’s. In
addition we observe that the B(N−1/2+κH;N1/2−κH)-norm of i[N,H]0 is bounded
by a constant times ‖v‖PF, cf. Remark 2.11 4).

Remark 5.14. We observe from the discussion above that we could relax (I4)
and require instead that [Kρ ⊗ 1lh̃]ṽ − ṽKρ extends to an element of B(D(Kη);

K⊗ h̃)∩B(K;D(Kη)∗⊗ h̃), for some 1/2 ≤ η < 1− τ , where τ is coming from (I1).
This would still leave room to choose ρ and τ ′ (in the argument above) such that
1 > ρ > 2τ and ρ/2 > τ ′ > ρ+ η − 1.

While we do not know the domain of H, it turns out that we can indeed compute
the intersection domain D(H) ∩ D(N). This is done in the following lemma.

Lemma 5.15. We have the identity

D(H) ∩ D(N) = D
(
K ⊗ 1lΓ(he)

)
∩ D

(
1lK ⊗ dΓ(max{h′, ω})

)
(5.39)

and S is dense in D(H) ∩ D(N) with respect to the intersection topology.
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Proof. Let for the purpose of this proof H0 = He
0, the unperturbed expanded Hamil-

tonian, and denote by D the right-hand side of (5.39). Since N controls the unphys-
ical part of dΓ(h), due to the choice of extension of ω by an exponential, we observe
that the identity (5.39) holds if H is replaced by H0. Since H0 and N commute
we find that T0 = N + iH0 is a closed operator on D and it clearly generates a
contraction semigroup.

We now construct the formal operator sum N + iH in two different ways. By
Lemma 5.13 D(φ(ve)) ⊂ D(N1−2κ) and hence for u ∈ D

‖φ(ve)u‖ ≤ c‖N1−2κu‖+ c′‖u‖ ≤ 1
4
‖Nu‖+ c′′‖u‖ ≤ 1

4
‖T0u‖+ c′′‖u‖.

From this estimate we deduce that T1 = T0+iφ(v) =: N+iG is a closed operator onD
and it generates a contraction semigroup. See [RS, Lemma preceding Theorem X.50].
Here G is implicitly defined as the operator sum G = H0 + φ(ve) with domain D.

On the other hand, since we have just established Condition 2.1 (2), we con-
clude from [GGM1, Theorem 2.25] that T2,± = N ± iH are closed operators on
D(H) ∩ D(N). In addition we have T ∗2,± = T2,∓ and since T2,± are both accretive
we conclude that T2,+ generates a contraction semigroup. See [RS, Corollary to
Theorem X.48].

We proceed to argue that T2 = T2,+ is an extension of T1, i.e. T1 ⊂ T2. Since
S ⊆ D, G is a symmetric extension of H|S and S is a core for H we deduce that H
is an extension of G. Hence indeed T1 ⊂ T2.

We now argue that in fact T1 = T2, or more poignantly that their domains
coincide. This will follow if the intersection of the resolvent sets is non-empty.
Indeed, let ζ ∈ ρ(T1) ∩ ρ(T2). Then

(T2 − ζ)(T1 − ζ)−1 = (T1 − ζ)(T1 − ζ)−1 = 1l,

and hence (T2 − ζ)−1 = (T1 − ζ)−1 and the domains must coincide. But by the
Hille-Yosida theorem [RS, Theorem X.47a] we have (−∞, 0) ⊂ ρ(T1) ∩ ρ(T2). Here
we used that both T1 and T2 generate contraction semigroups.

It remains to ascertain that S is dense in D with respect to the intersection
topology of D(H)∩D(N). We begin by verifying that S is dense in D with respect to
the graph norm of T0, which induces the intersection topology of D(H0)∩D(N) = D.

Let ψ ∈ D. Observe first that limn→∞ 1lN e≤nψ → ψ in the graph norm of T0,
since N e and T0 commute. Similarly we find that 1lK⊗Γ(1l|ω|≤`)ψ → ψ in the graph
norm of T0. Hence it suffices to approximate ψ ∈ D with Γ(1l|ω|≤`)1lN e≤nψ = ψ, for
some ` and n, by elements from S in the graph norm of T0. Fix now such a ψ, n
and `.

Since S is a core for K ⊗ 1lΓ(he) we can find a sequence {ψj} ⊂ S with ψj → ψ in

D(K⊗1lΓ(he)). Put ψ̃j = 1lNe≤n[1lK⊗Γ(f)]ψj ∈ S, where f ∈ C∞0 (R), with 0 ≤ f ≤ 1

and f = 1 on [−`, `]. Then ψ̃j → ψ in D(K ⊗ 1lΓ(he)) as well. We now observe that

T0ψ̃j = (iK⊗ 1lΓ(he) +Bn,`)ψ̃j, for some bounded operator Bn,`. This implies density
of S in D in the graph norm of T0.

By the closed graph theorem H(T0 − ζ)−1 and N(T0 − ζ)−1 are bounded, and
hence S is also dense in D(H)∩D(N) = D with respect to the indicated intersection
topology.
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Condition 2.1 (3): Let σ be such that R(η) preserves D(N) for η with |Im η| ≥ σ.
It suffices to establish the identity

R(η)H −HR(η) = −iR(η)H ′R(η),

for η with |Im η| ≥ σ, as a form on D(H) ∩ D(N), since this set is dense in
D(H) ∩ D(N1/2) by Remark 3.5.

By Lemma 5.15, we can on the set D(H) ∩ D(N) espress H and H ′ as sums of
operators H = He

0 + φ(ve) and H ′ = dΓ(h′)− φ(iae
δv

e).
We are thus reduced to verifying the following two form identities on D(H) ∩

D(N)
R(η)He

0 −He
0R(η) = −iR(η)1lK ⊗ dΓ(me

δh
′)R(η) (5.40)

R(η)φ(ve)− φ(ve)R(η) = iR(η)φ(iae
δv

e)R(η). (5.41)

Since all operators appearing in (5.40) commute with N e it suffices to verify this
identity on each fixed expanded particle sector with N e = n. Introduce for ` a
positive integer the semibounded dispersion h`(ω) = max{−`, h(ω)} and a cutoff
expanded free Hamiltonian H0,` = K ⊗ 1lΓ(he) + 1lK ⊗ dΓ(h`). Then on a particle
sector H0,` is of class C1

Mo(A) such that we can compute for |Im η| ≥ σn,`

R(η)H0,` −H0,`R(η) = −iR(η)1lK ⊗ dΓ(me
δh
′
`)R(η).

as a form on 1l[N e=n]D. Here σn,` is some positive constant. Since both sides are
analytic in η for |Im η| ≥ σ we conclude the above identity for all such η. Appealing
to the explicit form of the doman D we find that we can remove the cutoff ` → ∞
by the dominated convergence theorem. This yields (5.40) for |Im η| ≥ σ.

As for (5.41) we recall that we have already established that N is of class
C1

Mo(A). It is a consequence of the proof of [Mo, Proposition II.1], that i[φ(ve), A]
read as a form on D(N) ∩ D(A) can be represented by an extension from the
form computed on S. Here we used (5.35). As a form on S we clearly have
i[φ(ve), A] = −φ(iae

δv
e), which extends to an N -bounded operator by Lemma 5.13.

The computation R(η)φ(ve) − φ(ve)R(η) = R(η)[φ(ve), A]R(η) as forms on D(N)
now concludes the verification of (5.41), and hence of Condition 2.1 (3).

Condition 2.1 (4): We compute first as a form on S

i[H ′, A] = H ′′ = 1lK ⊗ dΓ
(
me
δ

dme
δ

dω
h′ + (me

δ)
2h′′
)
− φ
(
(ae
δ)

2ve
)

and observe that the right-hand side extends by continuity to an N -bounded oper-
ator, cf. Lemma 5.13. Again, by the proof of [Mo, Proposition II.1], cf. (5.35), we
conclude that the operator on the right-hand side of the formula also represents the
commutator form i[H ′, A] on D(N) ∩ D(A).

Condition 2.2: By Lemma 5.15 and Remark 3.5, it suffices to check the form bound
in the virial condition on S. In addition, since Kρ ≤ 1l +K, it suffices to check the
estimate with ρ = 1.

Recalling (5.11) and (5.15) we observe that ĥ ≤ ĥ′, and hence h+h′ ≥ 0. Making
use of this observation we find that

K ⊗ 1lΓ(he) + 1lK ⊗ dΓ(h′) ≤ K ⊗ 1lΓ(he) + 1lK ⊗
(
dΓ(h) + 2dΓ(h′)

)

≤ K ⊗ 1lΓ(he) + 1lK ⊗ dΓ(h) + 2M e
δ .
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We now add and subtract Φ(ve) + 2Re
δ to obtain

K ⊗ 1lΓ(he) + 1lK ⊗ dΓ(h′) ≤ He
v + 2H ′ − Φ(ve)− 2Re

δ.

We now make use of the fact that

C = ‖(Φ(ve) + 2Re
δ)(K ⊗ 1lΓ(he) + 1lK ⊗ dΓ(h′) + 1)−

1
2‖ <∞

to conclude the form estimate

K ⊗ 1lΓ(he) + 1lK ⊗ dΓ(h′) ≤ He
v + 2H ′ + 1

2
(K ⊗ 1lΓ(he) + 1lK ⊗ dΓ(h′) + 1) + 1

2
C2.

This completes the verification of the virial bound. We again observe that the
constants involved can be chosen independent of E in a bounded set and v ∈ Bγ(v0).

Condition 2.3: This condition has already been essentially verified in the form of
Theorem 5.12. We only need to observe that the form bound extends by continuity
from D(H) ∩ D(N) to D(H) ∩ D(N1/2), cf. Remark 3.5.

The condition (2.7): Let ψe be a bound state for H = He
v . That is ψe ∈ D(He

v)

and He
vψ

e = Eψe, for some E ∈ R. Recall that ψe = U(ψ ⊗ Ω), where ψ ∈ D(H̃PF
v )

and H̃PF
v ψ = Eψ. From [GGM2, Proposition 6.5] we conclude that ψ ∈ D(N 1/2).

Hence we conclude that ψe ∈ D(dΓ(h′)1/2) ∩ UD(H̃PF
v ⊗ 1lΓ(h̃)). In particular we

find that ψe ∈ D(H) ∩ D(N1/2) and the result follows from the virial estimate in
Condition 2.2. Observe again that ‖N1/2ψ‖ can be bounded uniformly in v ∈ Bγ0(v0)
and E ∈ [e0, E0].

Condition 2.8 k0 = 1: This merely amounts to checking the statement in (2.11)
with ` = 0. But this is trivially satisfied since [N,N ′] = 0. See (5.37).

This completes the verification of the conditions needed to conclude Theorem 5.5
from Theorems 2.5 and 2.10.

6 AC-Stark type models

6.1 The Model and the Result

We will work in the framework of generalized N -body systems, which we review
briefly. Let A be a finite index set and X a finite dimensional real vector-space
with inner product. There is an injective map from A into the subspaces of X,
A 3 a → Xa ⊆ X, and we write Xa = (Xa)⊥. We introduce a partial ordering
on A:

a ⊂ b⇔ Xa ⊆ Xb

and assume the following

1. There exist amin, amax ∈ A with Xamin = {0} and Xamax = X.

2. For each a, b ∈ A there exists c = a ∪ b ∈ A with Xa ∩Xb = Xc.
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We will write xa and xa for the orthogonal projection of a vector x onto the
subspaces Xa and Xa respectively.

We will work with a generalized potential

V = V (t, x) =
∑

a∈A\{amin}
Va(t, x

a),

where Va is a real-valued function on R × Xa. In the conditions below α denotes
multiindices.

Conditions 6.1. Let k0 ∈ N be given. For each a 6= amin the following holds. The
pair-potential R×Xa 3 (t, y)→ Va(t, y) ∈ R is a continuous function satisfying

(1) Periodicity: Va(t+ 1, y) = Va(t, y), t ∈ R and y ∈ Xa.

(2) Differentiability in y: For all α with |α| ≤ k0+1 there exist ∂αy Va ∈ C(R×Xa).

(3) Global bounds: For all α and k ∈ N ∪ {0} with |α| + k ≤ k0 + 1 there are
global bounds |∂αy (y · ∇y)

kVa(t, y)| ≤ C.

(4) Decay at infinity: |Va(t, y)|+ |y · ∇yVa(t, y)| = o(1) uniformly in t.

(5) Regularity in t: There exists ∂tVa ∈ C(R ×Xa) and there is a global bound
|∂tVa(t, y)| ≤ C.

We consider under Condition 6.1 the Hamiltonian h = h(t) = p2 + V , p = −i∇,
on the Hilbert space L2(X). The corresponding propagator U satisfies: It is two-
parameter strongly continuous family of unitary operators which solves the time-
dependent Schrödinger equation

i
d

dt
U(t, s)φ = h(t)U(t, s)φ for φ ∈ D(p2).

The family satisfies the Chapman Kolmogorov equations

U(s, r)U(r, t) = U(s, t), r, s, t ∈ R,

the initial condition U(s, s) = 1l for any s ∈ R and the periodicity equation

U(t+ 1, s+ 1) = U(t, s), s, t ∈ R.

The operator U(1, 0) is called the monodromy operator. For each a 6= amax the
sub-Hamiltonian monodromy operator is Ua(1, 0); it is defined as the monodromy
operator on Ha = L2(Xa) constructed for a 6= amin from ha = (pa)2 + V a, V a =∑

amin 6=b⊂a Vb(t, x
b). If a = amin we define Ua(1, 0) = 1l (implying σpp(Uamin(1, 0)) =

{1}). The set of thresholds is then

F(U(1, 0)) =
⋃

a6=amax

σpp(Ua(1, 0)), (6.1)

We recall from [MS] that the set of thresholds is closed and countable, and non-
threshold eigenvalues, i.e. points in σpp(U(1, 0))\F(U(1, 0)), have finite multiplicity
and can only accumulate at the set of thresholds. Moreover any corresponding bound
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state is exponentially decaying, the singular continuous spectrum σsc(U(1, 0)) = ∅
and there are integral propagation estimates for states localized away from the set
of eigenvalues and away from F(U(1, 0)). It should be remarked that the weakest
condition, Condition 6.1 with k0 = 1, corresponds to [MS, Condition 1.1] (more
precisely Condition 6.1 with k0 = 1 is slightly weaker than [MS, Condition 1.1], and
we also remark that [MS] goes through with this modification). All of the above
properties are proven in [MS] either under [MS, Condition 1.1] or under weaker
conditions allowing local singularities. In particular local singularities up to the
Coulomb singularity are covered in [MS]. See Subsection 6.3 for a new result for
Coulomb systems.

In the following subsection we establish the theorem below, which implies The-
orem 1.6 (2).

Theorem 6.2. Suppose Conditions 6.1, for some k0 ∈ N. Let φ be an bound state
for U(1, 0) pertaining to an eigenvalue e−iλ /∈ F(U(1, 0)). Then φ ∈ D(|p|k0+1).

6.2 Regularity of Non-threshold Bound States

The principal tool in the proof of Theorem 6.2 will be Floquet theory (in common
with [MS] and other papers) which we briefly review. The Floquet Hamiltonian
associated with h(t) is

H = τ + h(t) = H0 + V, on H = L2
(
[0, 1];L2(X)

)
. (6.2)

Here τ is the self-adjoint realization of −i d
dt

, with periodic boundary conditions.
The spectral properties of the monodromy operator and the Floquet Hamiltonian
are equivalent. We have the following relations

σpp(U(1, 0)) = e−iσpp(H), σac(U(1, 0)) = e−iσac(H), σsc(U(1, 0)) = e−iσsc(H),

and the multiplicity of an eigenvalue z = e−iλ of U(1, 0) is equal to the multiplicity
of λ as an eigenvalue of H (regardless of the choice of λ). We also recall that the
Floquet Hamiltonian is the self-adjoint generator of the strongly continuous unitary
one-parameter group on H given by

(e−isHψ)(t) = U(t, t− s)ψ(t− s− [t− s]), (6.3)

where [r] is the integer part of r. In particular any bound state of the monodromy
operator, U(1, 0)φ = e−iλφ, gives rise to a bound state of the Floquet Hamiltonian,
Hψ = λψ, by the formula

ψ(t) = eitλU(t, 0)φ. (6.4)

Proposition 6.3. Suppose Conditions 6.1 for some k0 ∈ N and suppose Hψ = λψ
for e−iλ /∈ F(U(1, 0)). Then ψ ∈ D(|p|k0+1).

Proof. We shall use Corollary 4.13 with H being the Floquet Hamiltonian and
N = p2 + 1. This amounts to checking the assumptions given in terms of Con-
ditions 2.1–2.3, Condition 2.6, Condition 2.8 and (for k0 ≥ 2 only) Condition 4.11
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(same k0). We take A = 1
2
(x · p + p · x) and compute with direct reference to

Conditions 2.1, Condition 2.6 and Condition 2.8

H ′ = 2p2 − x · ∇V, (6.5a)

i[N,H]0 = p · ∇V +∇V · p =
dimX∑

j=1

(
(pj∂jV + (∂jV )pj

)
, (6.5b)

N ′ = 2p2, (6.5c)

i`ad`A(N ′) = 2`+1p2, i adN
(
i`ad`A(N ′)

)
= 0; ` ≤ k0 − 1, (6.5d)

iladlA(H ′) = 2l+1p2 + (−1)l+1(x · ∇)l+1V ; l ≤ k0. (6.5e)

A comment on (6.5a) is due. We need to show Condition 2.1 (3) using the expression
(6.5a): First we remark that the operators τ , p2 and H0 are simultaneously diag-
onalizable. Therefore D(H) ∩ D(N) = D(τ) ∩ D(N) is dense in D(H) ∩ D(N1/2).
(See also Remark 3.5.) Moreover p2, V and R(η) are obviously fibered (i.e. they act
on the fiber space L2(X)) and R(η) preserves D(p2) and D(|p|) for |η| large enough.
Whence as a form on D(τ) ∩ D(N)

i[H,R(η)] = i[p2 + V,R(η)] = −R(η)i[p2 + V,A]R(η) = −R(η)H ′R(η).

The last identity for fiber operators is well-known in standard Mourre theory for
Schrödinger operators. Finally we extend the shown version of (2.2) by continuity
to a form identity on D(H) ∩ D(N1/2) yielding Condition 2.1 (3).

Clearly (2.4) holds with C1 = 0, C2 = 1/2 and C3 = 1 + supx · ∇V (t, x)/2. As
for (2.5) a stronger version follows from [MS, Theorem 4.2]

H ′ ≥ c01l− C4f
⊥
λ (H)2 −K0. (6.6)

Finally it follows from [MS, Proposition 4.1] that indeed the condition of Corol-
lary 4.13, ψ ∈ D(N1/2) = D(|p|), is fulfilled. This shows the proposition in the case
k0 = 1.

For k0 ≥ 2 it remains to verify Condition 4.11. For this purpose it is helpful to
notice that

i adA(pj) = pj, (6.7a)

i adA
(
(N + tj)

−1
)

= −2(N + tj)
−1(N − 1)(N + tj)

−1. (6.7b)

Moreover all computations are in terms of fiber operators (in particular M1, M2 and
M3 are all fibered operators), and recalling [Mo, Proposition II.1] and using the fact
that N1/2 ∈ C1

Mo(A) it suffices to do the computations in terms of forms on the
Schwartz space S(X).

Re M1: We shall apply (6.7a) in combination with (6.5b) to verify the part of
Condition 4.11 that involves M1. Let us first look at the particular choice in (4.21)
for M1 given by taking all the T ’s equal N1/2. That is we will demonstrate that for
m = 1, . . . , k0 − 1

imadmN1/2(M1) is |p|–bounded. (6.8)
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We compute

imadm
N

1
2
(M1) = −(ic 1

2
)m+1

∫ ∞

0

dtm+1 t
1
2
m+1 · · ·

∫ ∞

0

dt2 t
1
2
2

∫ ∞

0

t
1
2
1

(N + t1)−1 · · · (N + tm+1)−1adm+1
p2 (V )(N + tm+1)−1 · · · (N + t1)−1dt1,

and in turn,

adm+1
p2 (V ) =

∑

|α+β|=m+1

cα,β p
α
(
∂α+βV

)
pβ = T1 + T2 + T3;

T1 =
∑

|α+β|=m+1
|β|≥1

cα,β p
α
(
∂α+βV

)
pβ,

T2 =
∑

|α+β|=m+1
|β|=1

−i cα+β,0 p
α
(
∂α+2βV

)
,

T3 =
∑

|α+β|=m+1
|β|=1

cα+β,0 p
α
(
∂α+βV

)
pβ.

Now in front of the bounded derivative of any of the terms of the expressions T1, T2

and T3 we move the factor pα to the left in the integral representation and use the
bound

‖N s(N + t)−1‖ ≤ Cs(1 + t)s−1; s ∈ [0, 1]. (6.9)

We obtain

‖pα(N + tm+1)−1 · · · (N + t1)−1‖ ≤ Cm+1
s

m+1∏

j=1

(1 + tj)
s−1; s = |α|

2(m+1)
.

Using (6.9) for the factors of pβ to the right (in case of T1 and T3) combined with
the resolvents to the right and an additional factor N−1/2 we obtain

‖pβ(N + tm+1)−1 · · · (N + t1)−1N−
1
2‖ ≤ Cm+1

σ

m+1∏

j=1

(1 + tj)
σ−1; σ = |β|−1

2(m+1)
.

To treat T2 we notice that

‖(N + tm+1)−1 · · · (N + t1)−1‖ ≤
m+1∏

j=1

(1 + tj)
−1. (6.10)

Now the integrand with an additional factor N−1/2 to the right is a sum of terms
either bounded (up to a constant) by

m+1∏

j=1

t
1
2
j (1 + tj)

|α|
2(m+1)

−1
(1 + tj)

|β|−1
2(m+1)

−1
=

m+1∏

j=1

t
1
2
j (1 + tj)

−3
2
− 1

2(m+1)
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(these terms come from T1 and T3), or (for any term of T2) by

m+1∏

j=1

t
1
2
j (1 + tj)

|α|
2(m+1)

−1
(1 + tj)

−1 =
m+1∏

j=1

t
1
2
j (1 + tj)

m
2(m+1)

−2
.

Whence in all cases the integral with an additional factor N−1/2 to the right is
convergent in norm, which finishes the proof of the special case where all of the
T ’s are equal to N1/2. The general case follows the same scheme. Some of the
commutators with A “hit” the potential part introducing a change W (t, x)→ −x ·
∇W (t, x). Other commutators with A hit a factor pj in which case we apply (6.7a).
Finally yet other commutators with A hit a factor (N+ tj)

−1 in which case we apply
(6.7b) and (6.10).

Re M2 and M3: The contributions to (4.21) from the first term of (6.5a), i.e.
contributions from the expression 2p2N−1/2, vanish except for the case where all of
the T ’s are equal to A. In this case we compute

imadmA
(
2p2N−

1
2

)
=
(
2t d

dt

)m
f(t)∣∣t=p2

; f(t) = 2t(t+ 1)−
1
2 . (6.11)

Obviously the right hand side of (6.11) is N1/2–bounded.
The contributions to (4.21) from the expressions−x·∇V N−1/2 and−N−1/2x·∇V

are treated like the term M1 in fact slightly simpler. The iterated commutators are
all bounded in this case. We leave out the details.

Remark. Since H is not elliptic (more precisely |p|(H0− i)−1 is unbounded) we do
not see an “easy way” to get the conclusion of Proposition 6.3. For instance we need
to use the assumption that e−iλ is non-threshold. See [KY] for a related result for
the one-body AC-Stark problem.

Proof of Theorem 6.2: We mimic the proof of [MS, Theorem 1.8]. Recall the no-
tation Iin(N) = n(N + n)−1 and Nin = NIin(N). Due to Proposition 6.3 and the
representation (6.4) there exists t0 ∈ [0, 1[ such that

U(t0, 0)φ ∈ D(N (k0+1)/2). (6.12)

In particular ψ(t) = eitλU(t, 0)φ ∈ D(p2) for all t. Next we compute

d
dt
〈ψ(t), Nk0+1

in ψ(t)〉 = 〈ψ(t), i[V,Nk0+1
in ]ψ(t)〉, (6.13a)

i[V,Nk0+1
in ] =

∑

0≤p≤k0

Np
ini[V,Nin]Nk0−p

in , (6.13b)

i[V,Nin] = −Iin(N)
dimX∑

j=1

(
(pj∂jV + (∂jV )pj

)
Iin(N). (6.13c)

We plug (6.13c) into (6.13b) and then in turn (6.13b) into the right hand side
of (6.13a). We expand the sum and redistribute for each term at most k0 derivatives
by pulling through the factor ∂jV obtaining terms on a more symmetric form, more
precisely on the form

〈
N

k0+1
2 ψ(t), BnN

k0+1
2 ψ(t)

〉
where sup

n
‖Bn‖ <∞. (6.14)
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Notice that for all terms the operator Bn involves at most k0 + 1 derivatives of V .
Thanks to the Cauchy-Schwarz inequality and Proposition 6.3 any expression like
(6.14) can be integrated on [t0, 1] and the integral is bounded uniformly in n. In
combination with (6.12) we conclude that

sup
n

〈
ψ(1), Nk0+1

in ψ(1)
〉
<∞,

whence φ = ψ(1) ∈ D(N (k0+1)/2).

6.3 Regularity of Non-threshold Atomic Type Bound
States

The generator of the evolution of the a system of N particles in a time-periodic
Stark-field with zero mean (AC-Stark field) is of the form

hphy(t) = p2 − E(t) · x+ Vphy

on L2(X). Assuming that the field is 1-periodic the condition
∫ 1

0
E(t)dt = 0 leads

to the existence of unique 1-periodic functions b and c such that

d
dt
b(t) = E(t), d

dt
c(t) = 2b(t)) and

∫ 1

0

c(t)dt = 0;

see [MS] for details. For simplicity let us here assume that E ∈ C([0, 1];X), see
Remark 6.4 for an extension. The potential Vphy is a sum of time-independent
real-valued “pair-potentials”

Vphy = Vphy(x) =
∑

a∈A\{amin}
Va(x

a).

In terms of these quantities we introduce Hamiltonians

haux(t) = p2 + 2b(t) · p+ Vphy,

h(t) = p2 + Vphy(·+ c(t)).

The propagators Uphy, Uaux and U of hphy, haux and h, respectively, are linked by
Galileo type transformations. Define

S1(t) = eic(t)·p and S2(t) = ei(b(t)·x−α(t)); α(t) =

∫ t

0

|b(s)|2 ds.

Then

Uphy(t, 0) = S2(t)Uaux(t, 0)S2(0)−1, (6.15a)

U(t, 0) = S1(t)Uaux(t, 0)S1(0)−1, (6.15b)

Uphy(t, 0) = S2(t)S1(t)−1U(t, 0)S1(0)S2(0)−1. (6.15c)

The bulk of [MS] is a study of the Floquet Hamiltonian of h. Spectral informa-
tion is consequently deduced for the monodromy operator U(1, 0). Finally the for-
mula (6.15c) then gives spectral information for the physical monodromy operator
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Uphy(1, 0). The part of [MS] concerning potentials with local singularities contains
an incorrect reference in that it is referred to [Ya] for the existence of the prop-
agator U (see [MS, Remark 1.4]). However although the issue of Yajima’s paper
is the existence of an appropriate dynamics for singular time-dependent potentials
the paper as well as the method of proof is for the one-body problem only. This
point is easily fixed as follows, see Remark 6.4 for a more complicated procedure for
E ∈ L1([0, 1];X)\C([0, 1];X): We use Yosida’s theorem which is in fact also alluded
to in [MS, Remark 1.4] (see [Si, Theorem II.21] for a statement of the theorem). If
Vphy is ε-bounded relatively to p2 (which is the case under the conditions considered
in [MS]) then indeed the propagator Uaux exists and we can use (6.15a) and (6.15b)
to define Uphy and U . In particular we can use (6.15c) and obtain not only the
existence of Uphy but various spectral information of the corresponding monodromy
operator Uphy(1, 0) (see the introduction of [MS] for details). We remark that the
construction of the Floquet Hamiltonian of h is done independently of U although
of course (6.3) may be taken as a definition.

Let us for completeness note the following by-product of Yosida’s theorem (inti-
mately related to its proof): Pick λ0 ∈ R such that haux(t) ≥ λ0 + 1 for all t. The
crucial assumption in the theorem is the boundedness of the function

t→ ‖(haux(t)− λ0)−1 d
dt

(haux(t)− λ0)−1‖. (6.16)

Since, by assumption E ∈ C([0, 1];X), clearly the following constant is a bound of
(6.16),

C := 2 sup
t
|E(t)| sup

t
‖ |p|(haux(t)− λ0)−1‖.

We have the explicit bound of the dynamics restricted to D(p2).

‖(haux(t)− λ0)Uaux(t, 0)φ‖2 ≤ e2C|t|‖(haux(0)− λ0)φ‖2 for φ ∈ D(p2).

Let us also note the following property of the dynamics restricted to D(|p|), cf. [Si,
Theorems II.23 and II.27],

‖(haux(t)− λ0)1/2Uaux(t, 0)φ‖2

≤ eC̃|t|‖(haux(0)− λ0)1/2φ‖2 for φ ∈ D(|p|); (6.17)

here
C̃ := 2 sup

t
|E(t)| sup

t
‖ |p|1/2(haux(t)− λ0)−1/2‖2.

Remark 6.4. If E ∈ L1([0, 1];X) but possibly E 6∈ C([0, 1];X) we can still show
that there exists an appropriate dynamics U under the conditions considered in [MS],
although possibly not one that preserves D(p2). We can use [Si, Theorem II.27]
directly on h. For the borderline case, the Coulomb singularity, Hardy’s inequality
[MS, (6.2)] is needed to verify the assumptions of this theorem; the details are not
discussed here. This yields a dynamics U preserving D(|p|) which is good enough
for getting the conclusions of [MS] related to the condition E ∈ L1([0, 1];X). The
results presented below can similarly be extended to E ∈ L1([0, 1];X).

The following condition is an extension of [MS, Condition 1.3] (which corresponds
to k0 = 1 below). The Coulomb potential commonly used to describe atomic and
molecular systems (here with moving nuclei) is included.
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Conditions 6.5. Let k0 ∈ N be given. For each a 6= amin the following holds. The
pair-potential Xa 3 y → Va(y) ∈ R splits into a sum Va = V 1

a + V 2
a where

(1) Differentiability: V 1
a ∈ Ck0+1(Xa) and V 2

a ∈ Ck0+1(Xa \ {0}).
(2) Global bounds: For all α with |α| ≤ k0 + 1 there are bounds
|y||α| |∂αy V 1

a (y)| ≤ C.

(3) Decay at infinity: |V 1
a (y)|+ |y · ∇yV

1
a (y)| = o(1).

(4) Dimensionality: V 2
a = 0 if dimXa < 3.

(5) Local singularity: V 2
a is compactly supported and for all α with |α| ≤ k0 + 1

there are bounds |y||α|+1 |∂αy V 2
a (y)| ≤ C; y 6= 0.

We note that the part of time-dependent potential Vphy(·+c(t)) coming from the
first term V 1

a of the splitting of Va in Condition 6.5 conforms with Condition 6.1.
The part from V 2

a does not, and we do not in general expect there to be an analogue
of Theorem 6.2 in this case for k0 > 1. It is an open problem to determine whether
there is an analogue statement of Theorem 6.2 for k0 = 1. Notice that the lowest
degree of regularity, φ ∈ D(|p|), holds even without the non-threshold condition, cf.
[MS, Theorem 1.8]. On the other hand since the singularity is located at x = −c(t)
we would expect and we will indeed prove regularity with respect to the observable

A = A(t) = 1
2

(
(x+ c(t)) · p+ p · (x+ c(t))

)
= S1(t)1

2

(
x · p+ p · x

)
S1(t)−1. (6.18)

This regularity is the content of Theorem 6.6 stated below; see [MS, Proposi-
tion 8.7 (ii)] for a related result in the case k0 = 1 at the level of Floquet theory, cf.
Proposition 6.7 stated below. The A-regularity statement of the theorem for k0 > 1
is new. The set of thresholds is defined as before, see (6.1).

Theorem 6.6. Suppose Conditions 6.5 for some k0 ∈ N. Let φ be a bound state for
U(1, 0) pertaining to an eigenvalue e−iλ /∈ F(U(1, 0)). Then φ ∈ D(A(1)k0) where
A(1) is given by taking t = 1 in (6.18).

The above theorem implies Theorem 1.6 (1). We shall prove Theorem 6.6 along
the same lines as that of the proof of Theorem 6.2. Whence we introduce the Floquet
Hamiltonian by the expression (6.2) (with V = Vphy(·+c(t))). By [MS, Theorem 6.2]
V is ε-bounded relatively to H0 whence H is self-adjoint.

Proposition 6.7. Suppose Conditions 6.5 for some k0 ∈ N and suppose Hψ = λψ
for e−iλ /∈ F(U(1, 0)). Then for any k, ` ≥ 0, with k + ` ≤ k0, we have ψ ∈
D(Ak〈p〉A`) where A is given by (6.18).

Proof. It is tempting to try to apply Corollary 2.9 with H being the Floquet Hamil-
tonian, A being as stated and N = p2+1. In fact all of the conditions of Corollary 2.9
can be verified except for Condition 2.1 (2) (notice that the formal analogue of (6.5b)
might be too singular). This deficiency will be discussed at the end of the proof.
All other conditions can be verified with

H ′ = 2p2 − (x+ c) · ∇V + 2b · p, (6.19a)

N ′ = 2p2, (6.19b)

i`ad`A(N ′) = 2`+1p2, i adN
(
i`ad`A(N ′)

)
= 0; ` ≤ k0 − 1, (6.19c)

i`ad`A(H ′) = 2`+1p2 + (−1)`+1((x+ c) · ∇)`+1V + 2b · p; ` ≤ k0. (6.19d)
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Comments are due. First, the second and the third terms of (6.19a) are bounded
relatively to |p| uniformly in t, cf. the Hardy inequality [MS, (6.2)], and whence
indeed (6.19a) is N -bounded. We need to verify Condition 2.1 (3) using the expres-
sion (6.19a): The operators p2, V and R(η) are fibered and R(η) preserves D(p2)
and D(|p|) for |η| large enough (uniformly in t). Whence as a form on D(τ)∩D(N)

i[h,R(η)] = −R(η)i[p2 + V,A]R(η) = −R(η)
(
2p2 − (x+ c) · ∇V

)
R(η),

i[τ, R(η)] = −R(η)2b · pR(η),

and therefore

i[H,R(η)] = −R(η)H ′R(η).

Using again that D(H) ∩ D(N) = D(τ) ∩ D(N) is dense in D(H) ∩ D(N1/2), cf.
Remark 3.5, the latter form identity can be extended by continuity to a form identity
on D(H) ∩ D(N1/2) yielding Condition 2.1 (3).

As for (6.19b), (6.19c), (6.19d), Conditions 2.1 (1) and (4), Condition 2.6 and
Condition 2.8 the verification is straightforward (omitted here).

To show (2.4) we first introduce the natural notation V = V 1 +V 2 reflecting the
splitting of Conditions 6.5. Then we introduce

C =
∥∥|p|− 1

2

(
(x+ c) · ∇V 2 − 2b · p

)
|p|− 1

2

∥∥ and C̃ =
∥∥(x+ c) · ∇V 1

∥∥;

the norm is the operator norm on H. Then we note that

N ≤ 1
2
H ′ + 1

2
C|p|+ 1 + 1

2
C̃,

yielding (2.4) with C1 = 0, C2 = 1 and C3 = 1 + C2/4 + C̃ understood as a form
on D(N1/2). We have verified Condition 2.2.

As for (2.5) a stronger version follows from [MS, Proposition 6.4]

H ′ ≥ c01l− C4f
⊥
λ (H)2 −K0. (6.20)

Here we use the condition that e−iλ /∈ F(U(1, 0)). The estimate (6.20) is valid
as a form on D(N1/2). Finally it follows from [MS, Theorem 6.3] that indeed the
condition of Corollary 2.9, ψ ∈ D(N1/2) = D(|p|), is fulfilled.

Now to the deficiency given by the lack of Condition 2.1 (2). Checking the
proof of Corollary 2.9 it is realized that Condition 2.1 (2) is used only to as-
sure boundedness of N1/2BN−1/2, where under the assumption (2.5) we have B =
C4f

⊥
λ (H)2〈H〉(H − λ)−1. In our case we have a slightly stronger version of the

Mourre estimate, (6.20), so what we really need is

N
1
2BN−

1
2 ∈ B(H) where B = g(H); g(E) = f⊥λ (E)2(E − λ)−1. (6.21)

So let us show (6.21) without invoking a condition like Condition 2.1 (2). Clearly
it suffices to show that the commutator

[N
1
2 , g(H)] ∈ B(H). (6.22)
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But

[N
1
2 , g(H)] = c 1

2

∫ ∞

0

t
1
2 (N + t)−1[N, g(H)](N + t)−1dt,

[N, g(H)] = [H − V + I − τ, g(H)] = −[τ, g(H)] + T,

−[τ, g(H)] =
1

π

∫

C
(∂̄g̃)(η)(H − η)−1[τ, V ](H − η)−1du dv,

−[τ, V ] = i2b · ∇V.

Here the term T is bounded since V is bounded relatively to H; whence indeed T
gives a bounded contribution to the commutator in (6.22). As for the contribution
from the term −[τ, g(H)] only the part from V 2 is non-trivial. For that part we use
[MS, (6.6)] to obtain

‖(H − η)−12b · ∇V 2(H − η)−1‖ ≤ C max
(
|Im η|−2, |Im η|− 1

2

)
.

Whence we can bound the integral

∥∥∥
∫

C
(∂̄g̃)(η)(H − η)−12b · ∇V 2(H − η)−1du dv

∥∥∥

≤ C

∫

C
|(∂̄g̃)(η)| max

(
|Im η|−2, |Im η|− 1

2

)
du dv <∞.

This means that also the first term −[τ, g(H)] is bounded and whence in turn its
contribution to the commutator in (6.22) agrees with the statement of (6.22). We
have proven (6.22).

Proof of Theorem 6.6: We mimic the proof of Theorem 6.2. Recall the notation
In(A) = −in(A − in)−1 and An = AIn(A). Due to Proposition 6.7 and the repre-
sentation (6.4) there exists t0 ∈ [0, 1[ such that

U(t0, 0)φ ∈ D(|p|) ∩ D(A(t0)k0). (6.23)

In particular ψ(t) = eitλU(t, 0)φ ∈ D(|p|) for all t, cf. (6.15b) and (6.17). Moreover
ψ(·) is differentiable as a D(|p|)∗–valued function, and in this sense

i d
dt
ψ(t) = (h(t)− λ)ψ(t).

Whence we can compute

d
dt
‖Ak0

n ψ(t)‖2 = 2Re 〈Ak0
n ψ(t),

(
i[h(t), Ak0

n ] + d
dt
Ak0
n

)
ψ(t)〉, (6.24a)

i[h(t), Ak0
n ] + d

dt
Ak0
n =

∑

0≤p≤k0−1

Apn
(
i[h(t), An] + d

dt
An
)
Ak0−p−1
n , (6.24b)

i[h(t), An] + d
dt
An = In(A)

(
2p2 + 2b · p− (x+ c) · ∇V

)
In(A). (6.24c)

We plug (6.24c) into (6.24b) and then in turn (6.24b) into the right hand side
of (6.24a). We expand the sum and redistribute for each term at most k0−1 factors
of A obtaining terms on a more symmetric form, more precisely on the form

Re
〈
〈p〉Ak0ψ(t), B〈p〉Akψ(t)

〉
where k ≤ k0 − 1 and sup

n,t
‖B‖ <∞. (6.25)
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Thanks to the Cauchy-Schwarz inequality and Proposition 6.7 any expression like
(6.25) can be integrated on [t0, 1] and the integral is bounded uniformly in n. In
combination with (6.23) we conclude that

sup
n
‖A(1)k0

n ψ(1)‖2 <∞,

whence φ = ψ(1) ∈ D(A(1)k0).
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[FGSch1] J. Fröhlich, M. Griesemer and B. Schlein, Asymptotic completeness for Rayleigh
scattering, Ann. Henri Poincaré, 3 (2002), 107–170.
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