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Abstract

Continuous-time Markov chains are a widely used modelling tool. Ap-
plications include DNA sequence evolution, ion channel gating behavior and
mathematical finance. We consider the problem of calculating properties of
summary statistics (e.g. mean time spent in a state, mean number of jumps
between two states and the distribution of the total number of jumps) for dis-
cretely observed continuous time Markov chains. Three alternative methods
for calculating properties of summary statistics are described and the pros
and cons of the methods are discussed. The methods are based on (i) an
eigenvalue decomposition of the rate matrix, (ii) the uniformization method,
and (iii) integrals of matrix exponentials. In particular we develop a frame-
work that allows for analyses of rather general summary statistics using the
uniformization method.

Key words: Continuous-time Markov chain, dwelling time, EM algorithm,
transition number, uniformization.
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1 Motivation and background

We review and extend three ways of calculating conditional properties of summary
statistics of a continuous time Markov chain (CTMC). The conditioning is with
respect to the starting point x(0) and the ending point x(T ) of a process x(t) con-
sidered in the interval 0 ≤ t ≤ T . Typical summary statistics are either the time Tα
spent in a state α or the number of transitions Nαβ from state α to state β. Since,
generally, for a statistic H, we have that

E[H|x(0) = a, x(T ) = b] =
E[H · 1(x(T ) = b))|x(0) = a]

P (x(T ) = b|x(0) = a)
,

we formulate our results through terms of the form E[H · 1(x(T ) = b))|x(0) = a].
The first approach to calculating the conditional properties is through an eigenvalue
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decomposition of the rate matrix of the process, and will only be mentioned briefly
(Section 2). The second approach (Section 3), based on the uniformization method,
will be dealt with in more detail, and in particular we derive new formulas for
various covariance terms. The uniformization method is the most general of the
three methods as it allows for calculation of moments and the distribution itself.
The third approach (Section 4) seems to be less known and is based on Van Loan’s
(1978) method of calculating integrals involving the matrix exponential.

In this introductory section we describe a few applications where conditional
properties of summary statistics are needed. First, we review the very important
problem of estimating the transition rates of a CTMC from observations at a finite
set of time points using the expectation-maximization (EM) algorithm (Subsec-
tion 1.1). We identify five end-point conditioned mean values needed in the EM
algorithm. Second, we consider summary statistics arising from the use of CTMCs
in molecular biology (Subsection 1.2).

1.1 Summary statistics needed in the EM algorithm

We start by considering a CTMC x(t) with states {1, 2, . . . ,m} defined by a rate
matrix Q = (qij), where qii = −∑j 6=i qij. When the process is observed at discrete
time points s1 < s2 < · · · < sk = τ only, maximization of the likelihood function
is often done via the EM-algorithm. Let y = (x(s1), . . . , x(sk)) be the actual obser-
vations. As we describe below the expectation step of the algorithm gives rise to
end-point conditioned mean values. Furthermore, for finding the asymptotic vari-
ance of the maximum likelihood estimates we need end-point conditioned second
order moments. The log likelihood function `(Q) based on continuous observations
in the interval 0 ≤ t ≤ τ is given by

`(Q) =
m∑

α=1

qααTα(0, τ) +
∑

α 6=β
qαβNαβ(0, τ),

where Tα(0, τ) is the time spent in state α and Nαβ(0, τ) is the number of jumps
from state α to state β. In the expectation step of the EM-algorithm we calcu-
late E[`(Q)|y]. Let A(0, τ) be either Tα(0, τ) or Nαβ(0, τ). We must then calculate

E[A(0, τ)|y]. Since A is an additive statistics A(0, τ) =
∑k

i=1A(si−1, si) and because

of the Markov property, we have that E[A(0, τ)|y] =
∑k

i=1 E[A(si−1, si)|x(si−1), x(si)].
Thus, the EM-algorithm requires the calculation of end-point conditioned mean
values.

For calculating the asymptotic variance of the maximum likelihood estimates we
also need second order moments of the form E[A(0, τ)Ã(0, τ)|y], where again A and
Ã are additive statistics of the form Tα or Nαβ (see e.g. Hobolth and Jensen, 2005).
Once more because of the additive structure and the Markov property we end up
with end-point conditioned second order moments of the form

E[A(si−1, si)Ã(si−1, si)|x(si−1), x(si)].

Summarizing, inference in a CTMC via the EM-algorithm requires the calcula-
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tion of the following end-point conditioned mean values:

(i) E[Tα1(x(T ) = b)|x(0) = a]

(ii) E[Nαβ1(x(T ) = b)|x(0) = a]

(iii) E[TαTβ1(x(T ) = b)|x(0) = a]

(iv) E[NαβNγδ1(x(T ) = b)|x(0) = a]

(v) E[NαβTγ1(x(T ) = b)|x(0) = a]

(1)

All the above mentioned mean values have integral representations which are linear
combinations of the following terms (see e.g. Hobolth and Jensen, 2005):

I(a, b, α, β) =

∫ T

0

Paα(t)Pβb(T − t)dt, (2)

I(a, b, α, β, γ, δ) =

∫ T

0

∫ t

0

Paα(u)Pβγ(t− u)Pδb(T − t)dudt, (3)

where Pαβ(t) = (exp(Qt))αβ is the transition probability. In particular we note that
the mean value (i) in (1) of the time spent in state α is given by I(a, b, α, α) and
the mean value (ii) in (1) of the number of jumps from state α to state β is given
by qαβI(a, b, α, β).

Further discussion of transition rate estimation based on incomplete observations
can be found in Metzner, Horenko and Schütte (2007) and the references therein.
Bladt and Sørensen (2009) describe an application in mathematical finance. They
consider the problem of estimating transition rates between credit ratings from ob-
servations at discrete points (e.g. weekly observations). Holmes and Rubin (2002),
Hobolth and Jensen (2005) and Kosiol, Holmes and Goldman (2007) use the EM
algorithm for analysis of DNA sequence data. The DNA sequences are observed at
present day and related by a phylogenetic tree. Continuous-time Markov chains are
not only an important modelling tool in mathematical finance and molecular evo-
lution. Ball and Milne (2005) describe how insights into the gating mechanism of a
single ion channel can be obtained by modelling the system using a continuous-time
Markov chain on a finite state space.

1.2 Further summary statistics used in applications of
CTMCs

Let R denote a set of transitions of interest and let NR =
∑

(α,β)∈RNαβ be the num-

ber of such transitions. Minin and Suchard (2008) describe how the distribution
of NR is of interest in evolutionary developmental biology. They consider in partic-
ular a CTMC along a small evolutionary tree with observations at the tips of the
tree. For the case of a two state Markov chain they derive closed form expressions
for P (NR = k, x(T ) = b)|x(0) = a). For the general case they consider moments of
NR. As an example they consider the mean number of transitions and transversions
within a small multiple alignment of DNA sequences. Note that the moments of NR

can be found through the moments of Nαβ, (α, β) ∈ R. As a step in their analysis
Minin and Suchard (2008) write the moment generating function of NR through a
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matrix exponential. More generally, the joint Laplace transform and moment gen-
erating function of all the Tα’s and Nαβ’s is given as a matrix exponential in Bladt
et al. (2002).

In an evolutionary setting Siepel, Pollard and Haussler (2006) also consider the
distribution P (NR = k, x(T ) = b)|x(0) = a) for the case where R is the set of all
transitions. These authors use the statistic NR to detect lineages in a phylogenetic
tree that are under selection in a specific genomic region.

2 The eigenvalue decomposition method

The transition matrix P (t) is given by the matrix exponential P (t) = exp(Qt).
If Q is diagonalizable with real eigenvalues, Q = UΛU−1 where Λ is a diagonal
matrix, the integrals in (2) and (3) can be evaluated easily. These formulas were
given in Holmes and Rubin (2002) for (2) and Hobolth and Jensen (2005) for (3)
and correspond to the formulas in Minin and Suchard (2008) for the statistic NR

using that NR =
∑

(α,β)∈RNαβ. A reversible process always admits an eigenvalue
decomposition with real eigenvalues.

Hobolth and Jensen (2005) also consider the case where some of the eigenvalues
are complex numbers and illustrate the results for the case of four states, corre-
sponding to the four possible nucleotides {A,G,C,T}. When the rate matrix Q is
no longer diagonalizable a possibility is to use a Jordan decomposition. However,
in this case the calculations for evaluating the integrals (2) and (3) become more
involved.

3 The uniformization method

The uniformization method was originally introduced as a way of calculating P (t) =
exp(Qt) (Jensen, 1953). Let µ = maxi(−qii), and define the transition matrix
R = 1

µ
Q+ I. Then

exp(Qt) = exp (µ(R− I)t) =
∞∑

n=0

Rn (µt)n

n!
e−µt =

∞∑

n=0

Rn Pois(n;µt), (4)

where Pois(n;λ) is the probability from a Poisson distribution with mean λ. More
fundamentally, the uniformization method gives rise to an alternative description
of the process itself. Let z0, z1, . . . be a Markov chain with transition matrix R.
Independent of the chain let 0 = T0 < T1 < T2 < · · · be the times of a Posison
process with rate µ. Next, we define {x(t), t ≥ 0}, by setting x(t) = zk in the time
interval Tk ≤ t < Tk+1. It is clear that this is a continuous time Markov chain with
rates µRij = qij, j 6= i.

Consider now a statistic H defined on {x(t), 0 ≤ t ≤ T}, which can be written as
a function of the number of Poisson events J , the times 0 = T0 < T1 < · · · < TJ < T ,
and the states z0, z1, . . . , zJ . To study the properties of H we condition on the value
of J , and use that the times are the ordered values of uniformly distributed times and
that the states are from a Markov chain with transition matrix R. Also, conditioned
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on J = n, we generally use a recursion in n to evaluate the properties of H. As an
illustration, consider the original use of the uniformization method

P (x(T ) = b|x(0) = a)

=
∞∑

n=0

P (zn = b|z0 = a) Pois(n;µT ) =
∞∑

n=0

(Rn)ab Pois(n;µT ), (5)

where Rn can be calculated by the recursion Rn+1 = (Rn)R.
What kind of general statistic H do we want to consider? The class of statis-

tics must contain the time spent in a state Tα =
∑J

i=0 1(zi = α)(Ti+1 − Ti),
where TJ+1 = T , as well as the number of transitions between two states Nαβ =∑J

i=1 1((zi−1, zi) = (α, β)). These two cases are covered by a general statistic of the
form

H = ψ(z0)f(T1) +
J∑

i=1

φ(zi−1, zi)f(Ti+1 − Ti), (6)

where f(t) = t and φ(z1, z2) = ψ(z2) = 1(z2 = α) for Tα, and f ≡ 1, ψ(z) ≡ 0 and
φ(z1, z2) = 1((z1, z2) = (α, β)) for Nαβ. Note also, that the general form of H in (6)
need not be an additive statistic.

3.1 Computing mean values using uniformization

We want to find the mean of a general statistic E[H · 1(x(T ) = b)|x(0) = a] with
H defined in (6). We are particularly interested in the two special cases (i) where
H = Tα and (ii) where H = Nαβ. In Theorem 1 we treat the general case and in
Corollary 2 we consider the two special cases. Theorem 1 shows how the uniformiza-
tion method allows a division of the conditional mean problem into three components
that are each easy to handle. The components are concerned with properties of the
number of jumps n, the inter arrival times Ti+1− Ti, and the discrete Markov chain
(z0, . . . , zn).

First we introduce some notation. Let M(n) be the m×m matrix with entries

M(n, a, b) = E
[
1(zn = b)

(
ψ(z0) +

n∑

i=1

φ(zi−1, zi)
)
|z0 = a

]
, (7)

and let φ = (φ(a, b)). Also let diag(ψ) be a diagonal matrix with entries ψ(j), j =
1, . . . ,m. For two matrices A and B we let A∗B be the matrix with entries given by
the product of the corresponding entries of A and B. Finally, we define δ(n, T, f) =
E[f(TWn)], where Wn is a Beta distributed random variable with parameters (1, n).

Theorem 1 (General statistics). Let H be the general statistic defined in (6). Then
we have

E[H · 1(x(T ) = b)|x(0) = a] =
∞∑

n=0

δ(n, T, f)M(n, a, b) Pois(n;µT ). (8)

The matrix M(n) is determined by the recursion

M(n) = M(n− 1)R +Rn−1(φ ∗R), n ≥ 1 (9)
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with starting value M(0) = diag(ψ). The solution of the recursion is

M(n) = diag(ψ)Rn +
n−1∑

`=0

R`(φ ∗R)Rn−1−`. (10)

Proof. The properties of the inter arrival times Wi = Ti − Ti−1, conditioned on
J = n and with T0 = 0 and Tn+1 = T , can be studied as follows. Let W1, . . . ,Wn+1

be independent exponentially distributed variables with mean 1/µ, and let Sn+1 =∑n+1
i=1 Wi be the sum of these variables. Then the conditional distribution of the

vector T1, T2 − T1, . . . , Tn+1 − Tn given J = n is the same as the conditional dis-
tribution of W1,W2, . . . ,Wn+1 given that Sn+1 = T . In particular we note that
(W1, . . . ,Wn+1)/T conditional on Sn+1 = T follows a Dirichlet distribution with pa-
rameter (1, . . . , 1). Consequently the marginal distribution of Wi/T conditional on
Sn+1 = T is a Beta distribution with parameter (1, n).

We now use the uniformization method

E[H · 1(x(T ) = b)|x(0) = a, J = n]

= E
[(
ψ(z0)f(W1) +

n∑

i=1

φ(zi−1, zi)f(Wi+1)
)
1(zn = b)|z0 = a, Sn+1 = T

]

= δ(n, T, f)E
[
1(zn = b)

(
ψ(z0) +

n∑

i=1

φ(zi−1, zi)
)
|z0 = a

]

= δ(n, T, f)M(n, a, b).

Here
M(0, a, b) = E[ψ(z0)1(z0 = b)|z0 = a] = ψ(a)1(a = b),

and for n ≥ 1 we obtain the following recursion upon dividing the mean value
according to the value of zn−1

M(n, a, b) = E
[
1(zn = b)

(
ψ(z0) +

n∑

i=1

φ(zi−1, zi)
)
|z0 = a

]

=
m∑

c=1

E
[
1(zn = b)1(zn−1 = c)

(
ψ(z0)

+
n−1∑

i=1

φ(zi−1, zi) + φ(zn−1, zn)
)
|z0 = a

]

=
m∑

c=1

M(n− 1, a, c)Rcb +
m∑

c=1

(Rn−1)acφ(c, b)Rcb

In matrix form this recursion has the form (9), and it is easy to see that the solution
is given by (10).

To use the solution (8) for the cases H = Tα or H = Nαβ we must specify
δ(n, T, f) and the matrix M(n). Let the matrix which is one at entry (α, β) and
zero elsewhere be denoted U(α, β).
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Corollary 2. In the case H = Tα we have φ = U(α, α), diag(ψ) = U(α, α) and
δ(n, T, f) = T/(n+ 1). The solution (10) for M(n) becomes

M(n, a, b) =
n∑

`=0

(Rn−`)aαR
`
αb, (11)

and the mean value (8) is

E[Tα · 1(x(T ) = b)|x(0) = a] =
∞∑

n=0

T

n+ 1

[ n∑

`=0

(R`)aα(Rn−`)αb
]

Pois(n;µT ).

Corollary 3. In the case H = Nαβ we have φ = U(α, β), diag(ψ) = 0 and
δ(n, T, f) = 1. The solution (10) for M(n) becomes

M(n, a, b) =
n−1∑

`=1

(Rn−`)aαRαβR
`−1
βb , (12)

and the mean value (8) is

E[Nαβ · 1(x(T ) = b)|x(0) = a] =
∞∑

n=0

[ n−1∑

`=1

(Rn−`)aαRαβR
`−1
βb

]
Pois(n;µT ).

We note in passing that the mean value in (8) for the cases H = Tα or H = Nαβ

can be obtained from the integral representations (2) and (3) on inserting the original
uniformization result (5) for P (t). As an example we have

E[Tα · 1(x(T ) = b)|x(0) = a]

= I(a, b, α, α)

=

∫ T

0

[ ∞∑

i=0

(Ri)aα
(µt)i

i!
e−µt

][ ∞∑

j=0

(Rj)αb
(µ(T − t))j

j!
e−µ(T−t)

]
dt

=
∞∑

i=0

∞∑

j=0

(Ri)aα(Rj)αb
T

(i+ j + 1)
e−µT

(µT )i+j

(i+ j)!

=
∞∑

n=0

T

n+ 1

[ n∑

`=0

(R`)aα(Rn−`)αb
]
e−µT

(µT )n

n!
.

This derivation, however, cannot be generalized to the most general form of H in
(6) as we do not have an integral representation in the general case.

For the case where φ(z1, z2) = ψ(z2) and f ≡ 1, a recursion equivalent to (9) can
be found in Narayana and Neuts (1992). The explicit forms (11) and (12) for M(n)
can be found in Bladt and Sørensen (2005).

3.2 Computing covariances using uniformization

In this subsection we consider two statistics H and H̃ of the form (6) and want to
calculate E[H · H̃ ·1(x(T ) = b)|x(0) = a]. We are particularly interested in the cases
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(iii)–(v) in (1) where H and H̃ are the time spent in a state and/or the number of
jumps from one state to another. First, we introduce some more notation. Define

δ1(n, T, f, f̃) = E[f(TX)f̃(TX)] and δ2(n, T, f, f̃) = E[f(TX)f̃(TY )],

where (X, Y, 1−X−Y ) follows a Dirichlet distribution with parameter (1, 1, n−1).
We note that δ1 depends on X only and that the marginal distribution of X is a
Beta-distribution with parameters (1, n). Define the two matrices M1(n) and L(n)
as

M1(n, a, b) = E
[
1(zn = b)

(
ψ(z0)ψ̃(z0) +

n∑

i=1

φ(zi−1, zi)φ̃(zi−1, zi)
)∣∣∣z0 = a

]

and

L(n, a, b) = E
[
1(zn = b)

n∑

i=1

φ(zi−1, zi)
∣∣∣z0 = a

]
,

and define L̃(n) similarly to L(n) with φ replaced by φ̃. Note that both M1(n), L(n)
and L̃(n) has the same structure as M(n) defined in equation 7, and therefore satisfy
similar recursions and admit the same form of explicit solutions as in Theorem 1.
Finally, define the matrix M2(n) as

M2(n, a, b) = E
[
1(zn = b)

(
ψ(z0)

n∑

i=1

φ̃(zi−1, zi) + ψ̃(z0)
n∑

i=1

φ(zi−1, zi)

+
∑

i,j:i 6=j
φ(zi−1, zi)φ̃(zj−1, zj)

)∣∣∣z0 = a
]
.

Theorem 4 (Products of general statistics). Let H and H̃ be two general statistics
of the form (6). Then we have

E[H · H̃ · 1(x(T ) = b)|x(0) = a]

=
∞∑

n=0

[
δ1(n, T, f, f̃)M1(n, a, b) + δ2(n, T, f, f̃)M2(n, a, b)

]
Pois(n;µT ). (13)

The matrix M1(n) satisfies the recursion

M1(n) = M1(n− 1)R +Rn−1(φ ∗ φ̃ ∗R)

with starting values M1(0) = diag(ψψ̃). The solution is

M1(n) = diag(ψψ̃)Rn +
n−1∑

`=0

R`(φ ∗ φ̃ ∗R)Rn−1−`.

The matrices L(n) and L̃(n) satisfy similar recursions and solutions with ψψ̃ replaced
by 0 and φφ̃ replaced by φ or φ̃. The matrix M2(n) satisfies the recursion

M2(n) = M2(n− 1)R + diag(ψ)Rn−1(φ̃ ∗R) + diag(ψ̃)Rn−1(φ ∗R)

+ L̃(n− 1)(φ ∗R) + L(n− 1)(φ̃ ∗R).
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The solution to the latter recursion can be written as

M2(n) = diag(ψ)
n−1∑

`=0

R`(φ̃ ∗R)Rn−1−` + diag(ψ̃)
n−1∑

`=0

R`(φ ∗R)Rn−1−`

+
n−2∑

`=0

n−2−`∑

s=0

R`
[
(φ̃ ∗R)Rs(φ ∗R) + (φ ∗R)Rs(φ̃ ∗R)

]
Rn−2−`−s.

Proof. Conditional on the number of jumps n we can divide the product of H and
H̃ according to terms where the inter arrival times are the same or different

HH̃ = ψ(z0)ψ̃(z0)f(W1)f̃(W1) +
n∑

i=1

ψ(z0)φ̃(zi−1, zi)f(W1)f̃(Wi+1)

+
n∑

i=1

ψ̃(z0)φ(zi−1, zi)f̃(W1)f(Wi+1)

+
n∑

i=1

φ(zi−1, zi)φ̃(zi−1, zi)f(Wi+1)f̃(Wi+1)

+
∑

i,j:i 6=j
φ(zi−1, zi)φ̃(zj−1, zj)f(Wi+1)f̃(Wj+1).

Taking means with respect to (W1, . . . ,Wn+1) conditioned on W1 + · · ·+Wn+1 = T
and conditioning on z0 = a we therefore get

E[HH̃1(x(T ) = b)|x(0) = a, J = n]

= δ1(n, T, f, f̃)M1(n, a, b) + δ2(n, T, f, f̃)M2(n, a, b).

The derivation of the recursion for M1(n) is as in the proof of Theorem 1 for M(n)
with ψ replaced by ψψ̃ and with φ replaced by φ ∗ φ̃.

To establish the recursion for M2(n) we proceed as in the proof of Theorem 1
dividing the mean value according to the value of zn−1. This gives after some
manipulations

M2(n, a, b) =
m∑

c=1

[
M2(n− 1, a, c)Rcb + (Rn−1)ac[ψ(a)φ̃(c, b) + ψ̃(a)φ(c, b)]Rcb

+ L̃(n− 1, a, c)φ(c, b)Rcb + L(n− 1, a, c)φ̃(c, b)Rcb

]
.

The starting value of the recursion is M2(0) = 0. The recursions for L(n) and L̃(n)
are derived as for M(n) in the proof of Theorem 1. The solutions of the latter
recursions correspond to the solution of the recursion for M(n). Using these it can
be shown that the solution of the recursion for M2(n) is as stated in the theorem.

From the properties of the Beta- and Dirichlet distributions we obtain the fol-
lowing corollary.
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Corollary 5. In the case where both H and H̃ correspond to either the time spent
in a state or the number of jumps between two states the covariance term can be
found from Theorem 4 on using that

δ1(n, T, f, f̃) =





1 if f = f̃ ≡ 1
T

(n+1)
if f(t) = t and f̃ ≡ 1 or f ≡ 1 and f̃(t) = t

2T 2

(n+1)(n+2)
if f(t) = f̃(t) = t

and

δ2(n, T, f, f̃) =





1 if f = f̃ ≡ 1
T

(n+1)
if f(t) = t and f̃ ≡ 1 or f ≡ 1 and f̃(t) = t

T 2

(n+1)(n+2)
if f(t) = f̃(t) = t.

For the case where φ(z1, z2) = ψ(z2), f ≡ 1, φ̃ = φ and f̃ = f a recursion
equivalent to the recursion for M2(n) can be found in Narayana and Neuts (1992).
Generally, the formulas of this section appear to be new. Bladt and Sørensen (2009)
use numerical differentiation (with respect to the entries of the rate matrix Q) to
find the covariance terms of this section.

3.3 Computing distributions using uniformization

In this subsection we use uniformization to derive the distribution of the number of
state changes and the time spent in states using uniformization.

Siepel, Pollard and Haussler (2006) use uniformization to derive the distribution
of the total number of substitutions N =

∑J
i=1 1(zi−1 6= zi). Other statistics of

interest are the number of substitutions Nαβ =
∑J

i=1 1((zi−1, zi) = (α, β)) between

two different states α and β and the number of visits Nα =
∑J

i=1 1(zi−1 = α) to a
state α. In this section we consider a general count statistic

NH = ψ(z0) +
J∑

i=1

φ(zi−1, zi), (14)

where entries in both φ and ψ can be zero or one only. We let P (k, n) be the m×m
matrix with entries

P (k, n, a, b) = P
(
ψ(z0) +

n∑

i=1

φ(zi−1, zi) = k, zn = b|z0 = a
)
. (15)

Thus P (k, n, a, b) is the probability of recording k counts of interest when the Markov
chain starts in state a and must be in state b at time n. Note, that

P (0, 0) = diag(1− ψ) and P (1, 0) = diag(ψ),

and that P (k, n) = 0 for k > n+ 1.

10



Theorem 6. Let NH be given as in (14) where entries in both φ and ψ can be zero
or one only. We have

P (NH = k, x(T ) = b|x(0) = a) =
∞∑

n=0

P (k, n, a, b) Pois(n;µt)

where for n ≥ 1 and 1 ≤ k ≤ n+ 1 the matrix P (k, n) is given by the recursion

P (k, n) = P (k − 1, n− 1)(R ∗ φ) + P (k, n− 1)(R ∗ (1− φ)).

Proof. The uniformization method gives

P (NH = k, x(T ) = b|x(0) = a) =
∞∑

n=0

P (k, n, a, b) Pois(n;µt)

where P (k, n) is defined in (15).
The recursion for P (k, n, a, b) is derived by dividing according to the value of zn−1

P (k, n, a, b)

=
m∑

c=1

P
(
ψ(z0) +

n∑

i=1

φ(zi−1, zi) = k, zn−1 = c, zn = b|z0 = a
)

=
m∑

c=1

P
(
ψ(z0) +

n−1∑

i=1

φ(zi−1, zi) = k − 1, zn−1 = c|z0 = a
)
φ(c, b)Rcb

+
m∑

c=1

P
(
ψ(z0) +

n−1∑

i=1

φ(zi−1, zi) = k, zn−1 = c|z0 = a
)

(1− φ(c, b))Rcb

=
m∑

c=1

P (k − 1, n− 1, a, c)φ(c, b)Rcb +
m∑

c=1

P (k, n− 1, a, c)(1− φ(c, b))Rcb,

on using that φ(c, b) is either one or zero.

Let us illustrate the result of the theorem for the case considered in Siepel,
Pollard and Haussler (2006). Thus, we consider the total number of substitutions,
N =

∑J
i=1 1(zi−1 6= zi). For this case P (0, 0) = diag(1, 1, . . . , 1), P (1, 0) = 0, and

the recursion is given by

P (k, n, a, b) =
∑

c:c 6=b
P (k − 1, n− 1, a, c)Rcb + P (k, n− 1, a, b)Rbb.

The interpretation of the recursion is quite clear. We are dividing the probability
according to the last jump being from a state c to the state b, and the two terms
in the recursion correspond to the last jump being a real substitution (c 6= b) or a
virtual substitution (c = b).

In the case of the number of transitions from state α to state β given by the
statistic Nαβ we obtain the starting values P (k, 0, a, b) = 0 for k ≥ 0. For n ≥ 1
and 1 ≤ k ≤ n+ 1 we have the recursion

P (k, n, a, b) =

{
P (k − 1, n− 1, a, α)Rαb +

∑
c:c 6=α P (k, n− 1, a, c)Rcb if b = β∑m

c=1 P (k, n− 1, a, c)Rcb if b 6= β.

11



Again the interpretation is quite clear. The probability is calculated according to
the last jump being from a state c. If the ending state b is different from β then the
jump is never from α to β; this is the last case. If the ending state is b = β then
the jump is from α to β when c = β. These considerations justify the first case.

As a final application of the uniformization method we consider a sum of inter ar-
rival times like for example the time spent in a state α, Tα =

∑J
i=0 1(zi = α)(Ti+1−Ti).

Such a statistic has a mixed distribution with point probabilities at zero and T , and
has a continuous distribution between these two points. The trick to handle this
statistic is that conditional on J = n the distribution depends on the number of
terms in the sum only. Furthermore, the distribution of the number of terms is
given through P (k, n) from Theorem 6 above. In the theorem below we treat a
general statistic of the form

TH = ψ(z0)T1 +
J∑

i=1

φ(zi−1, zi)(Ti+1 − Ti), (16)

where both φ and ψ can be zero and one only. We let f(t; a, b) be the conditional
density of TH given x(0) = a on the set x(T ) = b,

P (0 < TH < t, x(T ) = b|x(0) = a) =

∫ t

0

f(y; a, b)dy, t < T.

In the theorem we let fB(u;λ1, λ2) be the Beta density given by

fB(u;λ1, λ2) =
Γ(λ1 + λ2)

Γ(λ1)Γ(λ2)
uλ1−1(1− u)λ2−1. (17)

Theorem 7. The distribution of TH in (16) is given by

P (TH = 0, x(T ) = b|x(0) = a) =
∞∑

n=0

P (0, n, a, b) Pois(n;µT ),

P (TH = T, x(T ) = b|x(0) = a) =
∞∑

n=0

P (n+ 1, n, a, b) Pois(n;µT ),

f(t; a, b) =
∞∑

n=1

n∑

k=1

1

T
fB(t/T ; k, n− k + 1)P (k, n, a, b) Pois(n;µT )

where P (k, n, a, b) is given in Theorem 6.

Proof. Let NH = ψ(z0) +
∑J

i=1 φ(zi−1, zi). Using the uniformization method we
condition on J = n. For TH to be zero we must have NH = 0, and the probability
of this is given by P (0, n, a, b). Similarly, for TH to be T we must have NH = n+ 1,
and the probability of this is given by P (n+1, n, a, b). For 0 < NH = k < (n+1) the
density of TH is the density of

∑k
j=1Wi given that

∑n+1
j=1 Wi = T . In this conditional

distribution 1
T

∑k
j=1Wi has a Beta distribution with parameters (k, n−k+ 1). This

then gives the formula for f(t; a, b) on using that the conditional probability of
NH = k is P (k, n; a, b).
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4 Integrals of matrix exponentials

For the time spent in a state Tα or the number of jumps between two states Nαβ the
first two moments can be calculated from the integral representations (2) and (3).
These representation and an eigenvalue decomposition of the rate matrix are used in
Section 2. When an eigenvalue decomposition is not available we derived in Section 3
alternative expressions based on the uniformization method. There is, however, a
third approach to the calculation of integrals of matrix exponentials as those in (2)
and (3). The purpose of this section is to draw attention to the theory developed
by Van Loan (1978) for calculating such integrals. We describe the method of Van
Loan (1978) in its most simple form.

Consider the problem of evaluating the integral

∫ T

0

eQ(T−t)BeQtdt (18)

where B is a matrix of the same dimension as Q. The special case with B = U(α, β)
gives the integral in (2). For evaluating this integral Van Loan (1978) introduces a
matrix A, with a dimension twice that of Q,

A =

[
Q B
0 Q

]
. (19)

The structure of A implies that the matrix exponential must be of the form

eAt =

[
F (t) G(t)

0 F (t)

]
with F (0) = I and G(0) = 0.

Using d
dt
eAt = AeAt we obtain the equation

[
F ′(t) G′(t)

0 F ′(t)

]
=

[
Q B
0 Q

] [
F (t) G(t)

0 F (t)

]
.

We thus have two differential equations to solve. One homogeneous linear differential
equation

F ′(t) = QF (t) with F (0) = I,

(the solution is F (t) = eQt), and an inhomogeneous linear differential equation

G′(t) = QG(t) +BF (t) with G(0) = 0.

The inhomogeneous linear differential equation has solution

G(t) =

∫ t

0

e(t−x)QBF (x)dx =

∫ t

0

e(t−x)QBeQxdx.

Thus, the integral (18) is the upper right corner in eAt.
A number of approaches exist for evaluating eAt and are implemented in software

packages; see Moler and Van Loan (2003) for a review. Calculating the matrix
exponential eAt therefore provides a very direct way of calculating the desired integral
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representation. The only caveat is the accuracy of the matrix exponential utility
provided by the software.

To handle the integral (3) we can use the part of Van Loan’s methodology con-
cerning integrals of the type

∫ T

0

∫ t

0

eQ(T−u)B1e
Q(t−u)B2e

Qududt.

This integral is given by the upper right corner of eAt with

A =



Q B1 0
0 Q B2

0 0 Q


 .

5 Discussion

We have presented three approaches for calculating expectations of summary statis-
tics for end-point conditioned continuous time Markov chains. The eigenvalue de-
composition method and Van Loan’s method both take the integral representations
(2) and (3) as a starting point. The integral representations (2) and (3) cover the
most important summary statistics (time spent in a state and number of jumps from
one state to another). However, in general a summary statistic H of the form (6)
does not necessarily admit an integral representation. In Section 3 we provide a
framework for calculating properties of general summary statistics. The framework
is based on the uniformization method, and as shown in Theorem 1 the calculation
is decomposed in three simple parts that are each easy to handle.

All three methods of calculating summary statistic are in principle easy to im-
plement but they all have their limitations. The method based on an eigenvalue
decomposition becomes rather involved if the eigenvalues are not real. (However,
we would like to emphasize that a reversible substitution process always admits real
eigenvalues.) Van Loan’s method seems very attractable but requires access to a
reliable matrix exponentiation software package. Uniformization is the most general
method but requires that an infinite sum is truncated. A discussion of truncation
error can be found in Narayana and Neuts (1992) and Grassmann (1993).
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