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Abstract
Stochastic integration on the predictable σ-field with respect to σ-finite L0-

valued measures, also known as formal semimartingales, is studied. In particular,
the triplet of such measures is introduced and used to characterize the set of
integrable processes. Special attention is given to Lévy processes indexed by the
real line. Surprisingly, many of the basic properties break down in this situation
compared to the usual R+ case.
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1 Introduction
Recently there has been growing interest in stochastic integrals of the form

∫ ∞

−∞
φs ·m(ds), (1.1)

where φ is an Rn-valued predictable processes indexed by R and m is an n-dimensional
σ-finite L0-valued measure on the predictable σ-field induced by a filtration F = (Ft)t∈R;
or in the terminology of Schwartz (1981), m is a formal semimartingale. By the Bichteler-
Dellacherie Theorem there is a one to one correspondence between semimartingales
indexed by compact intervals and finite L0-valued measures m on the predictable σ-field.
However, a Lévy process indexed by R does not induce a finite L0-valued measure, only
a σ-finite one, and hence integrals with respect to R-indexed Lévy processes can not be
defined within the usual semimartingale framework.

The main purpose of this paper is to give applicable conditions for integrals of the
form (1.1) to exist. Important examples include

(α):
∫ ∞

−∞
(g(t− s)σs) · dZs and (β):

∫ ∞

−∞
f(s, Zs−) · dZs, (1.2)

1



where Z is an Rn-valued Lévy process indexed by R (i.e., has independent stationary
increments), σ is an Rn-valued predictable stationary process, g is an Rn2-valued
deterministic function, t ∈ R, and f : R×Rn → Rn is a measurable function. The
setting (α) is in Barndorff-Nielsen and Schmiegel (2007, 2008, 2009) used for modeling
an interesting new class of moving averages; here we recall e.g. from Doob (1990)
that moving averages provide a large class of stationary processes. With n = 2 and
Z = (Z1, Z2) such that limt→∞ Z2

t =∞ a.s., it is shown in Basse-O’Connor et al. (2010b)
that the integral (β) with f(s, x1, x2) = (ex21{s≤0}, 0), exists if and only if there exists a
stationary distribution to the generalized Ornstein-Uhlenbeck process driven by Z, and
in this case the stationary solution X is of the form

Xt = e−Z
2
t

∫ t

−∞
eZ

2
s− dZ1

s , t ∈ R.

Integration of deterministic functions with respect to independently scattered random
measures is characterized in Rajput and Rosiński (1989) and Marcus and Rosiński (2001).
Moreover, when Z is a semimartingale and t > 0, Jacod and Shiryaev (2003) have
characterized the set of predictable processes φ for which

∫ t
0
φs · dZs exists in terms

of the triplet of Z. Cherny and Shiryaev (2005) have extended this characterization
to include integrals of the form

∫∞
0
φs · dZs. If in addition Z = (Zs)s∈[0,t] is quasi-left

continuous and n = 1, Kwapień and Woyczyński (1991), Theorem 6.1, have characterized
the topology on the set of integrable functions L(Z) in terms of the triplet of Z.

The above mentioned results are extended in Theorems 4.5–4.6 to the case of integrals
of the form (1.1), i.e., to σ-finite L0-valued measures. To obtain these results we show
and apply a characterization of convergence in Emery’s semimartingale topology, see
Theorem 4.10. However, first the triplet of a σ-finite L0-valued measure m is introduced
in Theorem 4.2. Using these extensions we are able to give applicable conditions for
integrals of the form (α)–(β) to exist. In (β) it is natural to consider the filtration
Ft = FZt , where FZt = σ(Zs : s ∈ (−∞, t]). Contrarily to R+, the following break down
for Lévy processes Z indexed by R:

(i) Z is not an FZ-Lévy process
(because Zt − Zs is not independent of FZs for all −∞ < s < t <∞).

(ii) Even when Z is centered it is not a martingale in FZ (or in any other filtration).

Despite of (i)–(ii), we show in Subsection 5.2 that a Lévy process Z induces a σ-finite
L0-valued measure in the filtration FZ . This result relies on an expansion of the
filtration extending Jacod and Protter (1988), Theorems 2.6 and 2.9; see Appendix. In
FZ it does however not seem possible to calculate the triplet of Z explicitly. Therefore,
in Theorem 5.3, we consider an expanded filtration in which Z still induces a σ-finite
L0-valued measure and in which we are able to calculate the triplet of Z explicitly;
this gives in particular applicable conditions for integrals of the form (β) to exist.
Theorem 5.5 concerns the import case of a square integrable Lévy process.
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Before proceeding, we study in Section 2 integration theory for σ-finite measures m
on a measurable space (E,E ) with values in a linear metric space F . In particular we
see how m induces (in a canonical way) a set of integrable functions, called L(m), by its
semivariation. Vector valued integration theory is very well-developed; see e.g. Bichteler
(1976, 1981); Bichteler and Jacod (1983); Curbera and Delgado (2007); Kwapień and
Woyczyński (1992); Rolewicz (1985); Schwartz (1981); Turpin (1974, 1975) for nice
treatments. However, only few of these references consider σ-finite rather than finite
measures; one notable exception is Schwartz (1981), who calls a σ-finite measure a
formal measure. Our approach differs slightly from that of Schwartz (1981), e.g., we start
with σ-additive set functions m instead of integral mappings with certain continuity
properties. In the subsequent sections focus is on the case (E,E ) = (R× Ω,P) and
F = L0.

2 Vector valued measures

Let (E,E ) denote a measurable space and for all n ≥ 1 let M(E ;Rn) be the space of
all Rn-valued E -measurable functions. Furthermore, (F, ‖ · ‖) denotes an F -space in
which unconditional convergence implies bounded multiplier convergence (see Rolewicz
(1985)); i.e. for all ε > 0 there exists a δ > 0 such that for all k ≥ 1 and x1, . . . , xk ∈ F

∥∥∥
k∑

i=1

εixi

∥∥∥ < δ for all (εi)
k
i=1 ⊆ {0, 1} ⇒

∥∥∥
k∑

i=1

aixi

∥∥∥ < ε for all (ai)
k
i=1 ⊆ [−1, 1].

(2.1)
Here we follow Rolewicz (1985) and call (F, ‖ · ‖) an F -space if and only if d(x, y) :=
‖x − y‖ defines a metric in which F is a linear complete metric space. We may and
do always assume that ‖ · ‖ is increasing, that is, for all a ∈ [−1, 1], ‖ax‖ ≤ ‖x‖ (cf.
Rolewicz (1985), Theorem I.2.2).

This covers in particular F = L0(Ω,F ,P), the space of real-valued random variables
on a probability space (Ω,F ,P), equipped with the F -norm ‖Z ‖0 := E[|Z| ∧ 1] cf.
Ryll-Nardzewski and Woyczyński (1975), together with all locally convex F -spaces (e.g.
Banach spaces) cf. Rolewicz (1985), Corollary III.6.6.

2.1 The one-dimensional case

We call a set function m defined on a subset of E an F -valued σ-finite measure on (E,E )
if there exists a sequence (Ok)k≥1 ⊆ E with Ok ↑ E such that, with Em = {A ∈ E : A ⊆
Ok for some k ≥ 1}, the mapping m : Em → F satisfies m(∅) = 0 and if (Ai)

∞
i=1 ⊆ Em

are disjoint sets with ∪∞i=1Ai ∈ Em then

m
( ∞⋃

i=1

Ai

)
=
∞∑

i=1

m(Ai) in F.
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The sequence (Ok)k≥1 is called m-feasible. Denote by Sm the vector space of all
real-valued Em-simple functions, i.e., φ ∈ Sm if and only if

φ =
k∑

i=1

ai1Ai
for some a1, . . . , ak ∈ R and A1, . . . , Ak ∈ Em. (2.2)

Clearly the Ai’s may be assumed disjoint. Set for φ ∈ Sm of the form (2.2) m(φ) =∑k
i=1 aim(Ai). Then m : Sm → F is linear and is called the simple integral with respect

to m. We are looking for a linear extension
∫
· dm of the simple integral defined on

a vector space D ⊆ ER satisfying the DCT (Dominated Convergence Theorem), i.e.
whenever (φk)k≥1, ψ ⊆ D , with |φk| ≤ ψ and φk → φ pointwise, we have φ ∈ D and∫
φk dm→

∫
φ dm in F . Note that the DCT ensures that every bounded E -measurable

function vanishing outside some Ok is in D .
In order to state the main theorem we introduce the semivariation ‖ · ‖m of m, that

is,
‖φ‖m = sup

ψ∈Sm: |ψ|≤|φ|
‖m(ψ)‖ for φ ∈M(E ;R).

It is readily seen that: (i) |φ1| ≤ |φ2| implies ‖φ1‖m ≤ ‖φ2‖m; (ii) ‖ · ‖m is subadditive,
i.e. ‖φ1 + φ2‖m ≤ ‖φ1‖m + ‖φ2‖m; (iii) ‖m(φ)‖ ≤ ‖φ‖m for φ ∈ Sm.

Set furthermore

L1(m) =
{
φ ∈M(E ;R) : lim

λ→0
‖λφ‖m = 0

}

or equivalently

L1(m) =
{
φ ∈M(E ;R) : {m(ψ) : |ψ| ≤ |φ|, ψ ∈ Sm} is bounded in F}.

Note that ‖ · ‖m, and hence L1(m), is invariant of the choice of (Ok)k≥1. Thus, it is
L1(m) rather than (Ok)k≥1 that is important. Indeed, if (Õk)k≥1 ⊆ E with Õk ↑ E is
another m-feasible sequence then the two semivariations agree; that is,

‖φ‖m = sup
ψ∈S̃m: |ψ|≤|φ|

∥∥∥m(ψ)
∥∥∥ for φ ∈M(E ;R).

Here S̃m denotes the simple functions relative to (Õk)k≥1. To see this, we may and do
assume Õk ⊆ Ok for all k ≥ 1, implying that the left-hand side dominates the right-hand
side. To get the other inequality observe that A =

⋃∞
k=1A ∩ (Õk \ Õk−1) for A ∈ Em.

The σ-additivity of m on each Ok therefore ensures that for all ψ ∈ Sm there exists a
sequence (ψk)k≥1 ⊆ S̃m with |ψk| ≤ |ψ| for all k such that m(ψk)→ m(ψ) in F . But
this means that ‖m(ψk)‖ → ‖m(ψ)‖, proving the result.

Theorem 2.1. Assume that m is locally bounded, i.e. the set {m(B) : B ∈ E ∩ Ok}
is bounded in F for all k ≥ 1. Then L1(m) is a linear space and equipped with ‖ · ‖m
it is an F -space containing Sm as a dense subspace. The simple integral extends to
L1(m) by ‖ · ‖m-continuity and the extension

∫
· dm : L1(m) → F satisfies the DCT.
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More generally, if (φk)k≥1 ⊆ L1(m), φk → φ pointwise and there exists ψ ∈ L1(m) such
that |φk| ≤ ψ for all k ≥ 1, then φk → φ in L1(m).

Moreover, φ ∈ L1(m) if and only if there exists (φk)k≥1 ⊆ Sm such that φk → φ
pointwise and for all A ∈ E , limk

∫
A
φk dm exists in F .

Remark 2.2. In the important case F = L0(Ω,F ,P) all σ-finite measures are locally
bounded cf. Talagrand (1981).

Proof of Theorem 2.1. According to Bichteler (1976) the first part follows by verifying:

(E1) The simple integral is continuous when Sm is given the Schwartz inductive topology
coming from uniform convergence on each Ok, k ≥ 1.

(E2) m(φk)→ 0 in F if (φk)k≥1 ⊆ Sm and φk ↓ 0 pointwise.

(E3) m(φk)→ 0 in F for every positive disjoint sequence (φk)k≥1 ⊆ Sm majorized by
some ψ ∈ Sm.

In the proof we follow Kwapień and Woyczyński (1992), Theorem 7.1.2, who consider
the case F = L0; see also Rolewicz (1985), Theorem III.6.2.

Let (φk)k≥1 ⊆ Sm be given such that φk → 0 as defined in E1, i.e. there is an l ≥ 1
such that {φk 6= 0} ⊆ Ol for all k and supx∈Ol

|φk(x)| → 0. For a given ε > 0 let δ > 0
be chosen according to (2.1). Since m is locally bounded, for all l ≥ 1 there exists c > 0
such that ‖cm(B)‖ < δ for all B ∈ E ∩ Ol. Fixing k0 ≥ 1 such that |φk| ≤ c1Ol

for
k ≥ k0 and writing for each k

φk =

rk∑

i=1

ai,k1Ai,k
where (ai,k)1≤i≤rk ⊆ R and (Ai,k)1≤i≤rk ⊆ E are pairwise disjoint,

(2.3)
we see from (2.1), with cm(A1,k), . . . , cm(Ark,k) playing the role of the x’s and ai,k/c,
i = 1, . . . , rk, that of the a’s, that for k ≥ k0

‖m(φk)‖ =
∥∥∥

rk∑

i=1

ai,k
c

cm(Ai,k)
∥∥∥ < ε since

∥∥∥
rk∑

i=1

εicm(Ai,k)
∥∥∥ =

∥∥∥cm(
⋃

i: εi=1

Ai,k)
∥∥∥ < δ.

To prove (E2) and (E3) it suffices to show

(φk)k≥1, ψ ⊆ Sm, |φk| ≤ ψ ≤ 1 and φk → 0 pointwise ⇒ m(φk)→ 0.

So let (φk)k≥1 and ψ in Sm be given according to the left-hand side and assume that φk is
given by (2.3). Write, for c > 0, φk1 = φk1{|φk|≤c} and φk2 = φk1{|φk|>c}. As {φk 6= 0} ⊆
{ψ 6= 0} ⊆ Ol for all k and some l ≥ 1 we may, using (E1) for fixed ε > 0, chose c > 0
such that ‖m(φk1)‖ < ε for all k. For all (Bk)k≥1 ⊆ E , lim supk(Bk ∩ {|φk| > c}) = ∅.
Thus, due to the σ-additivity on E ∩Ol, limk→∞m(Bk ∩ {|φk| > c}) = 0 in F , and so
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there exists k0 ≥ 1 such that supB∈E‖m(B ∩ {|φk| > c}‖ < δ for k ≥ k0, where δ is
chosen according to (2.1). For given ε1, . . . , εkn ⊆ {0, 1} we have as above

∥∥∥
rk∑

i=1

εim(Ai,k ∩ {|φk| > c})
∥∥∥ =

∥∥∥m(
⋃

i: εi=1

Ai,k ∩ {|φk| > c})
∥∥∥ < δ

which by (2.1) gives

‖m(φk2)‖ =
∥∥∥

rk∑

i=1

ai,km(Ai,k ∩ {|φk| > c})
∥∥∥ < ε for k ≥ k0.

The only if -part of the last statement follows since Sm is dense. To get the if -part set
ν(A) = limk→∞

∫
A
φk dm for A ∈ E . By Turpin (1974), Theorem 7.1.5, ν is an F -valued

σ-finite measure on (E, E). According to Turpin (1974), φ1Ok
∈ L1(m) for all k and

ν(A) =
∫
A
φ dm for all A ∈ ⋃k≥1 (E ∩Ok). The σ-additivity of ν and fact that Oc

n ↓ ∅
gives

0 = lim
k→∞

sup{‖ν(H)‖ : H ∈ E , H ⊆ Oc
k}

and so, arguing as above, we get by (2.1)

lim
k→∞

sup{‖ν(ψ)‖ : ψ ∈ Sm, |ψ| ≤ 1Oc
k
} = 0,

implying ‖φ− φ1Ok
‖m → 0. This proves the remaining part of the theorem.

When 1E ∈ L1(m) we call m a finite measure, and in this case m extends to a
measure defined on the entire σ-field E .

2.2 The multivariate case

In the following we define and study the integral with respect to m = (mi)i≤n, where
m1, . . . ,mn are F -valued σ-finite and locally bounded measures as defined in Subsec-
tion 2.1. Let (Ok)k≥1 ⊆ E with Ok ↑ E be a sequence which is mi-feasible for all i. Our
construction of the integral is motivated by Bichteler and Jacod (1983), Section 3.

Setting

L1(m) =
{
φ = (φi)ni=1 ∈M(E ;Rn) : φi ∈ L1(mi) for all i = 1, . . . , n

}

gives a linear space stable under multiplication with bounded elements in M(E ;R).
Define for φ ∈ L1(m) the integral of φ with respect to m as

∫
φ · dm =

∑n
i=1

∫
φi dmi.

Set for φ ∈M(E ;Rn),

‖φ‖m = sup
{∥∥
∫

(φψ) · dm
∥∥ : ψ ∈M(E ;R), |ψ| ≤ 1, ψφ ∈ L1(m)

}
, (2.4)

and let
L(m) =

{
φ ∈M(E ;Rn) : lim

λ→0
‖λφ‖m = 0

}
. (2.5)
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Fix φ ∈ M(E ;Rn) and set Ok = Ok ∩ {‖φ‖ ≤ k} for k ≥ 1, and Eφ•m = {A ∈ E :
A ⊆ Ok for some k ≥ 1}. Then, φ •m : Eφ•m → F defined as φ •m(A) =

∫
(1Aφ) · dm

is an F -valued σ-finite and locally bounded measure on (E,E ). Note that φ ∈ L1(m)
implies 1E ∈ L1(φ •m) and hence, applying the DCT of φ •m and the mi’s, we get in
this case

φ •m(E) = lim
k→∞

φ •m(Ok) = lim
k→∞

∫
(1Ok

φ) · dm =

∫
φ · dm,

which motivates the following definition:

Definition 2.3. φ ∈ M(E ;Rn) is said to be integrable with respect to m if 1E ∈
L1(φ •m), and in this case

∫
φ · dm := φ •m(E) ∈ F is the integral of φ with respect

to m.

The following gives the basic properties (recall that an F ∗-space is an F -space except
that it is not necessarily complete).

Theorem 2.4. (L(m), ‖ · ‖m) is an F ∗-space, φ is integrable with respect to m if and
only if φ ∈ L(m), and the mapping L(m) 3 φ 7→

∫
φ · dm ∈ F is linear. Moreover, for

φ ∈M(E ;Rn) and ψ ∈M(E ;R) we have ψ ∈ L1(φ •m) if and only if ψφ ∈ L(m) and
∫
ψ d(φ •m) =

∫
(ψφ) · dm for φ ∈M(E ;Rn) and ψ ∈ L1(φ •m).

Proof. For φ1, φ2 ∈ M(E ;Rn) we can, using the DCT, show that ‖φ1 + φ2‖m ≤
‖φ1‖m + ‖φ2‖m and hence it follows that L(m) is an F ∗-space. The last part of
Theorem 2.4 follows once we have shown that ‖ψ‖φ•m = ‖ψφ‖m for all φ ∈ M(E ;Rn)
and all ψ ∈ M(E ;R). Let S be the set of simple functions relative to the sequence
(Ok)k≥1 introduced above. We have

‖ψ‖φ•m = sup
|ξ|≤|ψ|,ξ∈S

‖(φ •m)(ξ)‖ = sup
|ξ|≤|ψ|,ξ∈S

∥∥∥
∫

(φξ) · dm
∥∥∥

= sup
|ξ|≤|ψ|,φξ∈L1(m)

∥∥∥
∫

(φξ) · dm
∥∥∥ = sup

|ξ|≤1,(ξψφ)∈L1(m)

∥∥∥
∫

(ξψφ) · dm
∥∥∥ = ‖ψφ‖m,

where the third equality follows using the DCT of the mi’s.
Since 1 ∈ L1(φ •m) if and only if φ •m extends to a finite F -valued measure on

(E,E ) the vector space property of L(m) together with the linearity of the integral is
clear. The proof can now be completed by applying the DCT of the one-dimensional
σ-finite measure φ •m.

3 Notation and basic definitions
Throughout the rest of the paper (Ω,F ,P) denotes a probability space and L0 is
L0(Ω,F ,P). Recall that with ‖Z‖0 = E[|Z| ∧ 1] for Z ∈ L0, (L0, ‖ · ‖0) is an F -space.
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Let F = (Ft)t∈R be a filtration, i.e., an increasing family of σ-fields satisfying the
usual conditions of right-continuity and completeness. Set F−∞ = ∩t∈RFt and F∞ =
σ(∪t∈RFt). If −∞ < a < b <∞, then as usual, an Rn-valued process indexed by [a, b] or
[a,∞) is said to be a semimartingale with respect to (Ft)t∈[a,b] respectively (Ft)t∈[a,∞) if
it can be decomposed into the sum of an Rn-valued càdlàg local martingale with respect
to the same filtration and an Rn-valued càdlàg adapted process of bounded variation
on compacts; see Jacod and Shiryaev (2003) for the basic properties. An Rn-valued
process X = (Xt)t∈R is a semimartingale with respect to F if X−∞ = limt→−∞Xt exist
a.s. and for all continuous and increasing functions g : [0,∞)→ [−∞,∞[, (Xg(t))t∈[0,∞)

is an (Fg(t))t∈[0,∞)-semimartingale. Finally, an Rn-valued process X = (Xt)t∈R is called
a semimartingale up to infinity with respect to F if X−∞ = limt→−∞Xt and X∞ =
limt→∞Xt exist a.s. and for all continuous and increasing functions f : [0, 1]→ [−∞,∞],
(Xf(t))t∈[0,1] is an (Ff(t))t∈[0,1]-semimartingale. Unless there is a risk of confusion the
filtration will typically not be mentioned explicitly.

Let SM be the space of all real-valued semimartingales up to infinity X = (Xt)t∈R
equipped with Emery’s semimartingale topology

‖X‖SM = sup
φ∈M(P;R),|φ|≤1

∥∥∥
∫ ∞

−∞
φs dXs

∥∥∥
0
, X ∈ SM. (3.1)

Recall that (SM, ‖ · ‖SM) is an F -space (cf. Emery (1979) and Mémin (1980)).
An Rn-valued process X = (Xt)t∈R is called an increment semimartingale if for

all a ∈ R the process (Xt − Xa)t≥a is a semimartingale. Note that an increment
semimartingale need not be adapted but all increments are adapted. The class of
increment local martingales, defined in the obvious way, are studied in Basse-O’Connor
et al. (2010a). In particular, Basse-O’Connor et al. (2010a), Remark 3.15, shows that if
X is a continuous increment local martingale such that X−∞ exist a.s. then the process
X − X−∞ is a continuous local martingale. There is no such result for continuous
increment semimartingales. For example, if g : R → R is a continuous function for
which g−∞ = limt→−∞ gt exists and which is of bounded variation on compacts but of
unbounded variation on (−∞, 0) then (gt)t∈R is an increment semimartingale but not a
semimartingale.

Whenever X = (Xt)t∈R is a semimartingale and τ is a truncation function on Rn,
i.e. τ : Rn → R

n is a bounded function such that τ(x) = x in a neighborhood of zero,
define X(τ) as

Xt(τ) = Xt −
∑

s∈(−∞,t]

(
∆Xs − τ(∆Xs)

)
, t ∈ R.

Moreover, let µX denote the jump measure of X, that is,

µX(A) = ]
{
s ∈ R : (s,∆Xs) ∈ A

}
, A ∈ B(R×Rn

0 ),

where for a set D, ]D denotes the number of elements in D, Rn
0 = R

n \ {0} and
∆Xt = Xt −Xt− is the jump of X at t.
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Let (U,U ) be a measurable space. Then µ = µ(ω; du) is said to be a random signed
measure on U if for all ω ∈ Ω, µ(ω; ·) is an R-valued σ-finite measure on (U,U ) as
defined in Subsection 2.1; i.e., µ(ω; ∅) = 0 and there exist (Al)l≥1 ⊆ U (depending in
general on ω) such that Al ↑ U and for all disjoint sets (Bk)k≥1 ⊆ U with ∪∞k=1Bk ⊆ Al
for some l ≥ 1 we have

µ
(
ω;
∞⋃

k=1

Bk

)
=
∞∑

k=1

µ(ω;Bk) in R.

In case Al = U for all l, µ is called a finite random signed measure on U . If for all ω
µ(ω; ·) takes values in [0,∞), µ is called a random positive measure. In this case µ(ω; ·)
extends to a [0,∞]-valued measure defined on the entire σ-field U , and it is then a
random measure in the sense of Jacod and Shiryaev (2003). Denote by Var(µ; ·) the
total variation of the random signed measure µ, that is, the positive random measure,
finite on each Al, given, for A ∈ U with A ⊆ Al for some l, by

Var(µ;A)(ω)

= sup
{ k∑

i=1

|µ(ω;Bi)| : k ≥ 1, (Bi)
k
i=1 ⊆ U are disjoint with ∪ki=1 Bi = A

}
.

When U = Rn and µ(ω; {u}) = 0 for all u ∈ U and ω ∈ Ω, we say that µ is continuous.
When µ = (µi)i≤n where each µi is a random signed measure on U we speak of µ as an
n-dimensional random signed measure on U .

Let P denote the predictable σ-field on R× Ω, i.e.,

P = σ
(

(u, t]× A : −∞ < u < t <∞, A ∈ Fu
)
,

and let P̃ = P ⊗ U and Ω̃ = R × Ω × U . A random measure µ on R × U is
said to be P̃-σ-finite if there exists (Al)l≥1 ⊆ P̃ such that Al ↑ Ω̃ and such that
E[
∫

1Al
(s, x) Var(µ; ds × dx)] < ∞ for all l ≥ 1. For any P̃-measurable functions

W = W (s, ω, x) we will use the standard notation

W ∗ µt =

∫ t

−∞

∫

U

W (s, x)µ(ds× dx) and W ∗ µ =

∫

R

∫

U

W (s, x)µ(ds× dx),

whenever the integrals are well-defined. Furthermore, µ is called predictable if for
all P̃-measurable functions W , (W ∗ µt)t∈R is predictable whenever it is well-defined.
Optional random signed measures are defined similarly, see Jacod and Shiryaev (2003),
Chapter II.1. Finally, a random signed measure µ on R is called P-σ-finite if there is
(Al)l≥1 ⊆P such that Al ↑ R× Ω and E[

∫
1Al

(s) Var(µ; ds)] <∞ for all l ≥ 1.

4 Integration of predictable processes
In this section we introduce the stochastic integral on the predictable σ-field with respect
to a σ-finite L0-valued measure (cf. Section 2). In Schwartz (1981) such measures are
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called formal semimartingales ; see also Emery (1982) and Bichteler and Jacod (1983).
A key point in this paper is the introduction of the characteristic triplet of σ-finite
measures; see Theorem 4.2. In the case of a finite measure (which corresponds to a
semimartingale) this notion has been very successfully applied e.g. in Jacod and Shiryaev
(2003). Thereafter, in Theorems 4.5–4.6, L(m) is characterized in terms of the triplet of
m, giving applicable conditions for a process to be integrable.

Consider the setting of Section 2 in the case where (E,E ) = (R× Ω,P); thus let
m = (mi)i≤n denote an n-dimensional σ-finite L0-valued measure on (R× Ω,P) and
let (Ok)k≥1 ⊆ P satisfying Ok ↑ R × Ω be mi-feasible for all i; that is, m is defined
on Pm = {A ∈P : A ⊆ Ok for some k ≥ 1}. For all t ∈ R let Ωt = (−∞, t]× Ω and
assume throughout that

(1) ∀A ∈Pm, A ⊆ Ωt : m(A) is Ft-measurable,
(2) ∀A ∈Pm, u ∈ R, B ∈ Fu : m

(
A ∩ ((u,∞)×B)

)
= 1Bm

(
A ∩ ((u,∞)× Ω)

)
.

Example 4.1. If m is a finite measure then the Rn-valued process X = (Xt)t∈R defined
by Xt = m(Ωt) can be chosen càdlàg and is then an (Ft)t∈R-semimartingale up to
infinity with X−∞ = 0 by the Bichteler-Dellacherie Theorem (see Bichteler (1981) or
Schwartz (1981)). Conversely, if we start out with an Rn-valued (Ft)t∈R-semimartingale
X up to infinity and define m by m(A) =

∫
A

1 dX for A ∈ P (where the integral is
defined coordinatewise in the semimartingale sense) then m is a finite measure. When
m is a finite measure we will often not distinguish between m and the corresponding
semimartingale.

Another important example is when m is a Radon measure, by which we mean that
m is a σ-finite L0-valued measure with Ok = [−k, k]× Ω, k ≥ 1. As a consequence of
the Bichteler-Dellacherie Theorem it follows that m is a Radon measure if and only if
there exists an Rn-valued increment semimartingale Z = (Zt)t∈R with respect to F
such that m

(
(u, t]×B

)
= 1B(Zt − Zu) for all −∞ < u < t <∞ and B ∈ Fu.

Note that if X is a semimartingale then X−∞ exists a.s.; however, in applications
many processes of interest, such as Lévy processes, do not have a limit at −∞, showing
that it is not enough to consider finite measures.

Recall from Section 2 that an Rn-valued predictable process φ = (φi)i≤n induces
a σ-finite L0-valued measure on (R × Ω,P) defined as φ •m(A) =

∫
A
φ · dm for any

predictable set A satisfying A ⊆ Ok = Ok ∩ {‖φ‖ ≤ k} for some k. The set of integrable
predictable processes φ with respect to m is denoted by L(m), and L1(m) is the subset
of L(m) for which

∫
φ · dm can be defined as

∫
φ · dm =

∑n
i

∫
φi dmi. When m is

induced by an increment semimartingale Z we often write L(Z) instead of L(m) and∫
φ · dZ instead of

∫
φ · dm. In the following we shall use both the characterization of

L(m) given in (2.5) as well the fact that φ ∈ L(m) if and only if φ •m induces a finite
one-dimensional L0-valued measure. In this case

∫
φ · dm is defined as φ •m(R× Ω).

According to (2.4) and Theorem 2.4 we have

‖φ‖m = sup{‖
∫
ψ d(φ •m)‖0 : ψ ∈M(P;R), |ψ| ≤ 1}, φ ∈ L(m),
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which by (3.1) shows that ‖φ‖m = ‖φ •m‖SM. This implies that (L(m), ‖ · ‖m) is an
F -space. To see this we only have to argue that ‖ · ‖m induces a complete metric,
and by using Schwartz (1981), p. 427–428, we may and do assume that m is a finite
measure, that is, corresponds to an Rn-valued semimartingale up to infinity. Since
‖φ‖m = ‖φ • m‖SM the metric induced by ‖ · ‖m coincides with the one imposed by
Mémin (1980) so the result is given in his Théorème V.4.

For all A ∈ P and φ ∈ M(P;Rn) satisfying 1Aφ ∈ L(m) we use the notation∫
A
φ · dm rather than

∫
(1Aφ) · dm; if A = (s, t] × Ω with s < t we write

∫
(s,t]

or
∫ t
s

instead of
∫
A
and similarly when A = (s,∞)× Ω.

If φ1Ωc
t
∈ L(m) for all t ∈ R and limt→−∞

∫∞
t
φ · dm exists a.s. the limit is called the

improper integral of φ. Obviously, if φ ∈ L(m) then the improper integral exists but the
converse is only true in special cases. For example, let (ξt, ηt)t∈R be a bivariate Lévy
process indexed by R with (ξ0, η0) = (0, 0) and let t > 0. Then the improper integral
lims→−∞

∫ t
s
eξu dηu exists if and only if (1{u≤t}eξu)u∈R ∈ L(η); see Basse-O’Connor et al.

(2010b). The appropriate choice of filtration when working Lévy processes is discussed
in Section 5. In another direction, if Z is a continuous increment local martingale and
for all s < t,

∫ t
s
φu · dZu exists then the improper integral lims→−∞

∫ t
s
φu · dZu exists if

and only if (1{u≤t}φu)u∈R ∈ L(Z); see Basse-O’Connor et al. (2010a).

4.1 The triplet of random measures

For all k ≥ 1 let X(k) = {(X i
t(k))i≤n : t ∈ R} be given by Xt(k) = m

(
Ok ∩ Ωt

)
.

As mentioned in Example 4.1 we may and will assume that X(k) is a càdlàg F -
semimartingale up to infinity for all k ≥ 1. Note that X(k) satisfies

Xt(k) =

∫ t

−∞
1Ok

(s) dXs(k + 1), k ≥ 1, t ∈ R.

Thus, if there exists a k ≥ 1 (depending on ω) such that ∆X i
t(k)(ω) 6= 0 then

∆X i
t(k)(ω) = ∆X i

t(l)(ω) for all l > k and i = 1, . . . , n. Define m’s jump process
∆m = {(∆mi

t)i≤n : t ∈ R} as

∆mi
t =

{
∆X i

t(k) whenever ∆X i
t(k) 6= 0 for some k ≥ 1,

0 otherwise,

and m’s jump measure µ as

µ(A) = ]
{
t ∈ R : (t,∆mt) ∈ A

}
, A ∈ B(R×Rn

0 ).

For every A ∈P such that 1A ∈ L1(mi) for i = 1, . . . , n, define the semimartingale up to
infinity (m(A)t)t∈R asm(A)t = (mi(A)t)i≤n = m(A∩Ωt). Callm a continuous martingale
measure if for all such A the process (m(A)t)t∈R is an n-dimensional continuous local
martingale. Note that since each X(k) is a semimartingale, its jump measure is finite.
Consequently µ, the jump measure of m, is a P̃-σ-finite integer-valued random measure
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on R×Rn
0 and hence by Jacod and Shiryaev (2003), Theorem II.1.8, has a predictable

compensator ν. Thus, in particular ν is a P̃-σ-finite measure on R × Rn
0 . Denote

by Gloc,∞(µ) the set of R-valued P̃-measurable functions W = W (s, ω, x) for which
W ∗ (µ − ν) exists up to infinity. That is, there is a localizing sequence (σk)k≥1 with
P (σk =∞)→ 1 such that, with W̃ defined as in Jacod and Shiryaev (2003), Definition
II.1.27, we have E[(

∑
s≤σk(W̃s)

2)1/2] < ∞. We use the notation W ∗ (µ − ν) for the
integral over R×Rn

0 of W with respect to µ− ν.
The next result concerns the canonical decomposition of m relative to a truncation

function τ . Other decomposition results of Lp-valued measure are studied in Bichteler
and Jacod (1983). As usual we generally suppress ω in random variables.

Theorem 4.2. There exist a continuous martingale measure mc = (mc,i)i≤n, a pre-
dictable compensator ν of µ and an n-dimensional P-σ-finite random signed measure
B = (Bi)i≤n on R such that for all A ∈Pm, 1A ∈ L1(mc,i) for i = 1, . . . , n, and

m(A) = mc(A) +
(
1A(s)τ(x)

)
∗ (µ− ν) +

(
1A(s)(x− τ(x))

)
∗µ+

∫

R

1A(s)B(ds). (4.1)

Furthermore, there exists an n×n-dimensional predictable P-σ-finite random signed
measure C = (Ci,j)i,j≤n on R such that for i, j = 1, . . . , n and t ∈ R

〈mc,i(A)·,m
c,j(A)·〉t =

∫ t

−∞
1A(s)Ci,j(ds), A ∈Pm

where 〈·, ·〉t denotes the predictable quadratic variation. Moreover, (B,C, ν) is unique.
Finally, there are a P-σ-finite predictable random positive measure λ = λ(ω; ds)

on R, two predictable processes, b = {(bit)i≤n : t ∈ R} with values in Rn and c =
{(ci,jt )i,j≤n : t ∈ R} taking values in the symmetric positive semidefinite n× n-matrices,
and a transition kernel K = K(s, ω; dx) from (R× Ω,P) into (Rn,B(Rn)) such that
K(s; {0}) = 0 and

∫
Rn

(
1 ∧ ‖x‖2

)
K(s; dx) <∞ for all s ∈ R and

B(ds) = bs λ(ds), C(ds) = cs λ(ds), ν(ds× dx) = K(s; dx)λ(ds). (4.2)

The triplet (B,C, ν) given in Theorem 4.2 is called the triplet of m and will play an
important role in this paper. From the proof follows that if m is a finite measure then
so is mc. When Z = (Zt)t∈R is an increment semimartingale with associated random
measure m, (B,C, ν) will also be called the triplet of Z.
Remark 4.3.

(i) Let us describe the right-hand side of (4.1) in more detail. The second term is
defined coordinatewise and W (s, x) = 1A(s)τ i(x) is in Gloc,∞(µ) for all i = 1, . . . , n
(τ i is the ith coordinate). The third term is defined coordinatewise as well and is
in fact just a finite sum. Finally,

∫
1A(s) Var(Bi; ds) <∞ a.s. for all i = 1, . . . , n.

(ii) In Section 2 we noted that L(m) is invariant under the choice of (Ok)k≥1. Similarly,
it follows by uniqueness that the triplet is invariant under the choice of (Ok)k≥1.
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Proof of Theorem 4.2. For k ≥ 1 let mk be the finite measure defined by mk(A) =
m(A ∩ Ok) for A ∈ P. In other words, mk is the measure associated with X(k) as
described in Example 4.1. As shown in Jacod and Shiryaev (2003), Theorem II.2.34,
there exists a unique triplet (Bk, Ck, νk) such that

Xt(k) = Xc
t (k) + τ(x) ∗ (µX(k) − νk)t + (x− τ(x)) ∗ µX(k)

t +Bk((−∞, t]).

and so, denoting by mc
k the n-dimensional finite measure corresponding to Xc(k), we

get, for A ∈P,

mk(A) = mc
k(A) + (1A(s)τ(x)) ∗ (µk − νk) + (1A(s)(x− τ(x))) ∗ µk +

∫

R

1A(s)Bk(ds).

Since
mk(A) = mk+1(A) for A ∈ Dk := {B ∈P : B ⊆ Ok} (4.3)

we have mc
k = mc

k+1 on Dk by uniqueness. Hence we can define a σ-finite measure mc

on Pm = ∪∞k=1Dk to be equal to mc
k on each Dk. Again by (4.3) it follows that

µk(ds× dx) = 1Ok
(s)µk+1(ds× dx),

Bk(ds) = 1Ok
(s)Bk+1(ds), Ck(ds) = 1Ok

(s)Ck+1(ds),

and therefore we may define B(ds) to be equal to Bk(ds) on Dk and C(ds) to be equal to
Ck(ds) on Dk. By construction of (B,C, ν), (4.1) holds. Note also that µ by definition
equals µk on Dk for all k ≥ 1 and hence ν = supk≥1 νk by monotone convergence. The
uniqueness of (B,C, ν) follows by the uniqueness of (Bk, Ck, νk) for all k ≥ 1.

Due to the fact that ν is a P̃-σ-finite measure the existence of a P-σ-finite mea-
sure λ̃ and a transition kernel K̃ such that ν(ds × dx) = K̃(s; dx) λ̃(ds) follows by
general disintegration theory, see e.g. Jacod and Shiryaev (2003), Chapter II, 1.2. The
construction of b, c,K and λ satisfying (4.2) is now obvious.

Throughout let τ1 and τn denote truncation functions on respectively R and Rn.

Proposition 4.4. For all Rn-valued predictable processes φ, the σ-finite measure φ •m
has jump measure µφ•m and continuous martingale measure (φ •m)c given by

µφ•m = µ ◦
(

(s, x) 7→ (s, 〈φs, x〉)
)−1

, (φ •m)c = φ •mc,

and its triplet (B̃, C̃, ν̃) is given by

B̃(ds) =
(
〈φs, bs〉+

∫

Rn

[τ1(〈φs, x〉)− 〈φs, τn(x)〉
]
K(s, dx)

)
λ(ds),

C̃(ds) = 〈φs, csφs〉λ(ds), ν̃ = ν ◦
(

(s, x) 7→ (s, 〈φs, x〉)
)−1

.
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Here for all x, y ∈ Rn, 〈x, y〉 =
∑n

i=1 x
iyi denotes the usually inner product in Rn.

To prove Proposition 4.4 it is enough to consider each of the measures m(· ∩Ok) for
k ≥ 1 where Ok is defined just below Example 4.1. However, m(· ∩Ok) corresponds to
an Rn-valued semimartingale up to infinity and φ1Ok

is a bounded predictable process,
so the results follows from Jacod and Shiryaev (2003), Chapter IX, Proposition 5.3.

Let φ ∈ L(m). Since in this case φ•m is a finite measure it follows from Theorem 4.2
and Proposition 4.4 that φ ∈ L(mc), τ1

(
〈φs, x〉

)
∈ Gloc,∞(µ), B̃ is a finite random signed

measure on R and
∫
φ · dm

=

∫
φ · dmc + τ1

(
〈φs, x〉

)
∗ (µ− ν) +

(
〈φs, x〉 − τ1(〈φs, x〉)

)
∗ µ+ B̃((−∞,∞)).

(4.4)

4.2 A characterization of L(m)

In Section 2 we characterized L(m) by means of ‖ · ‖m which, however, is rarely known
explicitly. The next result characterizes L(m) in terms of the triplet (B,C, ν) of m
which is often known; see e.g. Section 5. We assume throughout this subsection that m
has triplet of the form (4.2) with respect to τ = τn.

Theorem 4.5. For all Rn-valued predictable processes φ we have φ ∈ L(m) if and only
if the following (a)–(c) are satisfied almost surely:

(a)

∫

R

∣∣∣〈φs, bs〉+

∫

Rn

[
τ1(〈φs, x〉)− 〈φs, τn(x)〉

]
K(s; dx)

∣∣∣λ(ds) <∞, (4.5)

(b)

∫

R

〈φs, csφs〉λ(ds) <∞, (c)

∫

R

∫

Rn

(
1 ∧ |〈φs, x〉|2

)
K(s; dx)λ(ds) <∞. (4.6)

Note that when m is a continuous measure (i.e., µ = 0), (4.5)–(4.6) reduce to
∫

R

(
|〈φs, bs〉|+ 〈φs, csφs〉

)
λ(ds) <∞ a.s.

Set

U(s, x) =
∣∣∣〈x, bs〉+

∫

Rn

[
τ1(〈x, y〉)− 〈x, τn(y)〉

]
K(s; dy)

∣∣∣, s ∈ R, x ∈ Rn,

Φ(s, x) = 〈x, csx〉+ U(s, x) +

∫

Rn

(1 ∧ |〈x, y〉|2)K(s; dy), s ∈ R, x ∈ Rn,

LΦ,0 =
{
φ ∈M(P;Rn) :

∫

R

Φ(s, φs)λ(ds) <∞ a.s.
}
,

ΨΦ,0(φ) = E
[∣∣
∫

R

Φ(s, φs)λ(ds)
∣∣ ∧ 1

]
, φ ∈ LΦ,0,
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and Ũ(s, x) = supc∈[−1,1] U(s, cx). Recall that A ∈Pm is called a null-set for m if for all
B ∈Pm with B ⊆ A, m(B) = 0. Moreover, a deterministic positive σ-finite measure κ
on P with the same null-sets as m is called a control measure for m. The following
result extends Theorem 4.5:

Theorem 4.6. L(m) = LΦ,0 and for all (φk)k≥1 and φ in L(m), φk → φ in L(m) if
and only if ΨΦ,0(φk − φ)→ 0.

Moreover λ⊗ P, given by (λ⊗ P)(A) = E[
∫
R

1A(s)λ(ds)], is a control measure for
m whenever λ is chosen such that λ

(
s ∈ R : bs = 0, cs = 0, K(s;Rn) = 0

)
= 0 a.s.

When n = 1 and m is finite and quasi-left continuous, Theorem 4.6 is obtained by
Kwapień and Woyczyński (1991), Theorem 6.1, via decoupling techniques, whereas our
approach is based on martingale theory.

Assume n = 1 and set

Φ̃(s, x) = csx
2 + Ũ(s, x) +

∫

R

(1 ∧ |xy|2)K(s; dy),

ΨΦ̃,0(φ) = E
[∣∣
∫

R

Φ̃(s, φs)λ(ds)
∣∣ ∧ 1

]
, φ ∈ LΦ,0.

From Musielak-Orlicz theory (see Musielak (1983), Definition 7.2) it follows that ΨΦ̃,0

is a modular. Moreover, by arguing as in Rajput and Rosiński (1989) it can be shown
that ΨΦ̃,0 satisfies the ∆2-condition, i.e., there exists a constant v > 0 such that
ΨΦ̃,0(2φ) ≤ vΨΦ̃,0(φ) for all φ ∈ LΦ,0. Hence by Musielak (1983), Theorems 1.5 and 7.7,
LΦ,0 is an F -space in the F -norm,

‖φ‖Φ̃,0 = inf
{
t > 0 : ΨΦ̃,0(φ/t) ≤ t

}
,

and ΨΦ̃,0(φk)→ 0 if and only if ‖φk‖Φ̃,0 → 0. Therefore, by Lemma 4.9, we can restate
Theorem 4.6 as follows:

Theorem 4.7. For n = 1, L(m) and LΦ,0 are equivalent F -spaces, that is, the F -norms
induce the same topology.

4.3 Proofs of Theorems 4.5–4.6 and convergence in SM
To prove Theorem 4.5 we need the following Lemmas 4.8–4.9.

Lemma 4.8. Let µ be a P̃-σ-finite optional random positive measure on Rn
0 with

predictable compensator ν and let W = W (s, ω, x) be a positive P̃-measurable function
on R× Ω×Rn

0 . Then W ∗ ν <∞ a.s. implies W ∗ µ <∞ a.s.

Proof. For all k ≥ 1 let σk = inf{t ∈ R : W ∗ νt > k} which is a predictable stopping
time since (W ∗ νt)t∈R is a predictable process, and hence (−∞, σk) ∈P for all k ≥ 1.
Therefore,

E[(W1(−∞,σk)) ∗ µ] = E[(W1(−∞,σk)) ∗ ν] ≤ k,

implying W ∗ µσk− <∞ a.s. for all k ≥ 1. Furthermore, since σk =∞ for k sufficiently
large we obtain W ∗ µ <∞ a.s.
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The next lemma follows as Rajput and Rosiński (1989), Lemma 2.8.

Lemma 4.9. There exists a constant C1 ∈ (0,∞), only depending on τ1, such that

Ũ(s, x) ≤ U(s, x) + C1

∫

Rn

(
1 ∧ |〈x, y〉|2

)
K(s; dy), s ∈ R, x ∈ Rn.

Proof of Theorem 4.5. Let φ ∈ L(m). In this case φ • m is a finite measure, and its
triplet (B̃, C̃, ν̃) is given in Proposition 4.4. From usual semimartingale theory we
know that B̃ has finite total variation on (−∞,∞) (implying (a)), C̃ has finite total
variation on (−∞,∞) a.s. (implying (b)) and finally

∫
R×R(1 ∧ |y|2) ν̃(ds× dy) <∞ a.s.

(implying (c)).
Conversely, assume that φ satisfies (4.5)–(4.6) and let us show that φ ∈ L(m), i.e.,

with
D = {ψ ∈M(P;R) : |ψ| ≤ 1, ψφ ∈ L1(m)}, (4.7)

we need by (2.4)–(2.5) to show that {
∫

(ψφ) · dm : ψ ∈ D} is bounded in L0. Let ψ ∈ D.
By (a), (c) and Lemma 4.9 (with C1 > 0 given there), we have

∫

R

U(s, ψsφs)λ(ds) ≤
∫

R

Ũ(s, ψsφs)λ(ds) ≤
∫

R

Ũ(s, φs)λ(ds)

≤ C1

[ ∫

R

∣∣∣〈φs, bs〉+

∫

Rn

[
τ1(〈φs, x〉)− 〈φs, τn(x)〉

]
K(s; dx)

∣∣∣λ(ds)

+

∫

R

∫

Rn

(
1 ∧ |〈φs, x〉|2

)
K(s; dx)λ(ds)

]
<∞,

which shows that

B(ψ) :=

∫

R

(
〈ψsφs, bs〉+

∫

Rn

[τ1(〈ψsφs, x〉)− 〈ψsφs, τn(x)〉
]
K(s; dx)

)
λ(ds),

is well-defined and supψ∈D|B(ψ)| <∞ a.s. In particular, {B(ψ) : ψ ∈ D} is bounded in
L0.

For ψ ∈ D we have by Lenglart’s inequality (Lenglart (1977), Théorème I) that for
all δ, θ > 0

P
(
|
∫

(ψφ) · dmc| ≥ θ
)
≤ δ/θ2 + P

(∫

R

ψ2
s〈φs, csφs〉λ(ds) ≥ δ

)

≤ δ/θ2 + P
(∫

R

〈φs, csφs〉λ(ds) ≥ δ
)
,

which by (b) shows that {
∫

(φψ) · dmc : ψ ∈ D} is bounded in L0.
Using (c) and the fact that |τ1(x)| ≤ r(1 ∧ |x|) for some r > 0, Lenglart’s inequality

shows

P
(
|τ1(〈x, ψsφs〉) ∗ (µ− ν)| > θ

)
≤ δ/θ2 + P

(
τ1(〈x, ψsφs〉)2 ∗ ν > δ

)

≤ δ/θ2 + P
((

1 ∧ 〈x, ψsφs〉2
)
∗ ν > δ/r

)
≤ δ/θ2 + P

((
1 ∧ 〈x, φs〉2

)
∗ ν > δ/r

)
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implying that {τ1(〈x, ψsφs〉) ∗ (µ− ν) : ψ ∈ D} is bounded in L0.
Let f(x) = r|x|1{|x|>ε} where r, ε > 0 are chosen such that |x− τ1(x)| ≤ f(x). Using

that f is symmetric and increasing on R+ it follows that

|(〈x, ψsφs〉 − τ1(〈x, ψsφs〉)) ∗ µ| ≤ f(〈x, ψsφs〉) ∗ µ ≤ f(〈x, φs〉) ∗ µ.

By (c) and Lemma 4.8, (|〈x, φs〉|2 ∧ 1) ∗ µ <∞ a.s. In particular, we find that the sum∑
s∈R 1{|〈∆ms,φs〉|>ε} <∞ a.s. and hence

f(〈x, φs〉) ∗ µ = r
∑

s∈R
|〈∆ms, φs〉|1{|〈∆ms,φs〉|>ε} <∞ a.s.

implying that {(〈x, ψφ〉 − τ1(〈x, ψφ〉))) ∗ µ : ψ ∈ D} is bounded in L0.
By (4.4) with ψφ playing the role of φ we have

∫
(ψφ) · dm =

∫
(ψφ) · dmc + τ1

(
〈x, ψsφs〉

)
∗ (µ− ν)

+
(
〈x, ψsφs〉 − τ1(〈x, ψsφs〉)

)
∗ µ+B(ψ),

and the above shows that the right-hand side is bounded in L0 as ψ runs through D.
Therefore, {

∫
(ψφ) · dm : ψ ∈ D} is bounded in L0 and the proof is complete.

Before proving Theorem 4.6 we study the relations between convergence in SM
and convergence of triplets. Let Xk = (Xk

t )t∈R and X = (Xt)t∈R be real-valued
semimartingales up to infinity with Xk

−∞ = X−∞ = 0 and let
((

BX

BXk

)
,

[
CX CX,Xk

CX,Xk
CXk

]
, ν(X,Xk)

)

denote the triplet of the R2-valued semimartingale (X,Xk). Write e.g. Bk
t instead of

Bk((−∞, t]) and Bk
∞ for Bk(R).

Theorem 4.10. Xk → X in SM if and only if for k →∞,

CXk

∞ + CX
∞ − 2CXk,X

∞ −→ 0 (4.8)

(1 ∧ |xk − x|2) ∗ ν(Xk,X) −→ 0 (4.9)

Var
(
BXk −BX + [τ(xk − x)− (τ1(xk)− τ1(x))] ∗ ν(Xk,X)

)
∞ −→ 0, (4.10)

where the convergences are in L0.

In particular,

Corollary 4.11. Xk → 0 in SM if and only if Var(BXk
)∞ → 0, CXk

∞ → 0 and
(1 ∧ x2) ∗ νXk → 0 in L0.

For the proof we need the following.
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Lemma 4.12. Let W = W (s, ω, x) be a positive, predictable and bounded function.
Then, W ∗ µXk → 0 in L0 if and only if W ∗ νXk → 0 in L0.

Proof of Lemma 4.12. Assume that W ∗ µXk → 0 in L0. For all k ≥ 1 let

σk = inf{t ∈ R : W ∗ µXk

t > 1}.

Assume W ≤ c, then for all k ≥ 1, W ∗ µXk

σk
≤ 1 + c and therefore,

0 = lim
k→∞

E[W ∗ µXk

σk
] = lim

k→∞
E[W ∗ νXk

σk
]. (4.11)

For all δ > 0 we have by (4.11),

lim sup
k→∞

P(W ∗ νXk

> δ) ≤ lim sup
k→∞

P(W ∗ νXk

σk
> δ) + lim sup

k→∞
P(σk <∞)

= lim sup
k→∞

P(σk <∞) ≤ lim sup
k→∞

P(W ∗ µXk

> 1) = 0,

which shows that W ∗ νXk → 0 in L0. The reverse implication follows similarly.

Proof of Theorem 4.10. First assume X = 0. To show the if -implication let (4.8)–(4.10)
be satisfied. For all t ∈ R,

Xk
t = Xk,c

t + τ1(x) ∗ (µX
k − νXk

)t + (x− τ1(x)) ∗ µXk

t +BXk

t (4.12)

where Xk,c denotes the continuous martingale part of Xk. We shall show that each
term on the right-hand side converges to 0 in SM. The total variation of the last term
converges to 0 in L0, which, since it is predictable, by Mémin (1980), Théorème IV.7, is
equivalent to convergence in SM. By Lenglart’s inequality, for all predictable processes φ
with |φ| ≤ 1 and θ, δ > 0,

sup
|φ|≤1

P
(
|
∫ ∞

−∞
φs dXk,c

s | ≥ θ
)
≤ δ/θ2 + P(CXk

∞ ≥ δ)

and with Mk
t := τ1(x) ∗ (µX

k − νXk
)t and using that (τ1(x))2 ≤ a(1∧x2) for some a > 0,

sup
|φ|≤1

P
(
|
∫ ∞

−∞
φs dMk

s | ≥ θ
)

≤ δ/θ2 + P(τ1(x)2 ∗ νXk ≥ δ) ≤ δ/θ2 + P((1 ∧ x2) ∗ νXk ≥ δ/a).

With Akt := (x−τ1(x))∗µXk

t and if ε, v > 0 are chosen such that |x−τ1(x)| ≤ v|x|1{|x|>ε}
we have

sup
|φ|≤1

∣∣∣
∫ ∞

−∞
φs dAks

∣∣∣ ≤ sup
|φ|≤1

∑

s∈R
v|φs∆Xk

s |1{|∆Xk
s |>ε} ≤ v

∑

s∈R
|∆Xk

s |1{|∆Xk
s |>ε}. (4.13)
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By Lemma 4.12 and (4.9), (1 ∧ x2) ∗ µXk → 0 in L0, and therefore for all θ ∈ (0, ε ∧ 1),

P
(∑

s∈R
|∆Xk

s |1{|∆Xk
s |>ε} > θ

)
= P

(∑

s∈R
1{|∆Xk

s |>ε} > θ
)
→ 0.

Thus, all terms on the right-hand side of (4.12) converge to 0 in SM, which completes
the proof of the if-part.

To show the only if -part assume that Xk → 0 in SM. By Emery (1979), cf.
also Dellacherie and Meyer (1982), p. 307, this implies that the quadratic variation
[Xk]∞ = CXk

∞ + x2 ∗ µXk converges to 0 in L0. Thus CXk

∞ → 0 and (1 ∧ x2) ∗ µXk → 0
and therefore by Lemma 4.12 (1 ∧ x2) ∗ νXk → 0 in L0. It remains to be shown that
Var(BXk

)∞ → 0 in L0. As in (4.13) there exists a constant l > 0 only depending only
on the truncation function τ1 such that for Ak, the third term on the right-hand side of
(4.12),

‖Ak‖SM ≤ lE[[Xk]∞ ∧ 1].

Thus Ak, and therefore by linearity the special semimartingales Xk −Ak, converges to 0
in SM. Since, cf. Emery (1979), p. 273, the map X 7→ A(X) is continuous in the space
of special semimartingales (A(X) denotes the predictable bounded variation component
of X) this implies that BXk

= A(Xk −Ak)→ 0 in SM. But as noted above this means
that Var(BXk

)∞ → 0 in L0.
The general case now follows by observing that

νX
k−X = ν(Xk,X) ◦

(
(x, y) 7→ x− y

)−1
,

CXk−X
t = 〈(Xk −X)c〉t = 〈Xk,c −Xc〉t = CXk

t + CX
t − 2CX,Xk

t ,

BXk−X
t = BXk

t −BX
t + [τ1(x− y)− (τ1(x)− τ1(y))] ∗ ν(X,Xk)

t .

As an application of Theorem 4.10 we get the following simple condition for SM-
convergence for Lévy processes.

Corollary 4.13. For all k ≥ 1 let (Xk
t )t∈[0,1] be a Lévy process with respect to (Ft)t∈[0,1]

with Lévy-Khintchine triplet (γk, σ
2
k, κk). Set Xk

t = Xk
0 = 0 for t ≤ 0 and Xk

t = Xk
1

for t ≥ 1. Then, Xk → 0 in SM if and only if Xk
1 → 0 in L0 (or equivalently,∫

R
(x2 ∧ 1)κk(dx)→ 0, σ2

k → 0 and γk → 0).

Proof. By Jacod and Shiryaev (2003), Theorem II.5.15, we have Bk
t = γkt, Ck

t = tσ2
k

and νk(ds× dx) = κk(dx) ds for s, t ∈ [0, 1]. Hence by Corollary 4.11, Xk → 0 in SM
if and only if

∫
R

(x2 ∧ 1)κk(dx) → 0, σ2
k → 0 and |γk| → 0. Moreover by Sato (1999),

Theorem 8.7, the latter conditions are equivalent to Xk
1 → 0 in L0.

Proof of Theorem 4.6. Assume φk → 0 in L(m), which, as previously noted, is equivalent
to φk • m → 0 in SM. If (Bk, Ck, νk) denotes the triplets of φk • m we get by
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Proposition 4.4 and Corollary 4.11 that for k →∞,
∫

R

∣∣∣〈φks , bs〉+

∫

Rn

[τ1(〈x, φks〉)− 〈φks , τn(x)〉]K(s; dx)
∣∣∣λ(ds) −→ 0 in L0, (4.14)

∫

R

〈φks , csφks〉λ(ds) −→ 0 in L0, (4.15)
∫

R

∫

Rn

(
1 ∧ |〈x, φks〉|2

)
K(s; dx)λ(ds) −→ 0 in L0, (4.16)

implying ΨΦ,0(φ
k) → 0. On the other hand if ‖φk‖Φ,0 → 0 then (4.14)–(4.16) are

satisfied. By Corollary 4.11, φk •m→ 0 in SM, showing that ‖φk‖m → 0.
For x ∈ Rn and A ∈P the above shows in particular that ‖x1A‖Φ,0 = 0 if and only

if ‖x1A‖m = 0. Thus if (P ⊗ λ)(A) = 0 then for all x ∈ Rn, ‖x1A‖Φ,0 = 0 and hence
‖x1A‖m = 0, showing that A is a null-set for m. On the other hand, if A is a null-set
for m then ‖ei1A‖m = 0 for all i = 1, . . . , n (ei denote the ith Euclidean standard basic
vector) and hence ‖ei1A‖Φ,0 = 0. Therefore, for all i = 1, . . . , n, a.s.

0 =

∫
1A(s)ci,is λ(ds), 0 =

∫

R

∫

Rn

(1 ∧ |1A(s)xi|2)K(s; dx)λ(ds). (4.17)

Since c is symmetric and positive semidefinite and K(s; {0}) = 0, (4.17) shows that
λ(s ∈ R : s ∈ A, cs 6= 0) = 0 and λ(s ∈ R : s ∈ A,K(s;Rn) 6= 0) = 0 a.s., and hence,
for all i = 1, . . . , n,

0 =

∫

R

∣∣∣〈ei1A(s), bs〉+

∫

Rn

[τ1(〈ei1A(s), x〉)− 〈ei1A(s), τn(x)〉]K(s; dx)
∣∣∣λ(ds)

=

∫

R

|bis1A(s)|λ(ds) a.s.

Thus if λ(s : bs = 0, cs = 0, K(s;Rn) = 0) = 0 a.s., it follows that (λ⊗ P)(A) = 0 and
the proof is complete.

4.4 Quadratic variation and local martingales

As above let m be an n-dimensional σ-finite measure with triplet (B,C, ν) and jump
measure µ. Define the optional and P-σ-finite random signed measure on R [m] =
([m]i,j)i,j≤n as

∫
1A(s) [m](ds) =

∫
1A(s)C(ds) + 1A(s)xxᵀ ∗ µ, A ∈Pm,

where ᵀ denotes the transpose and we use column vectors as default; that is, xxᵀ is n×n.
For each A ∈Pm, by Jacod and Shiryaev (2003), Theorem I.4.52,

∫ t

−∞
1A(s) [m](ds), t ∈ R,
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is the quadratic variation of (m((A ∩ Ωt))t∈R which is an Rn-valued semimartingale up
to infinity. Thus we call [m] the quadratic variation measure of m. As in Theorem 4.2
choose an optional and P-σ-finite random positive measure π = π(ω; ds) on R and an
optional process q = {(qi,jt ) : t ∈ R} with values in the symmetric positive semidefinite
n× n matrices such that [m](ds) = qs π(ds).

Proposition 4.14. Let Z = (Zt)t∈R be an Rn-valued increment local martingale with
associated measure m described in Example 4.1 and let φ denote an Rn-valued predictable
process. Then φ ∈ L(Z) and the process (

∫
Ωt
φ · dm)t∈R is a local martingale up to

infinity if and only if there is a localizing sequence (σk)k≥1 with P(σk =∞)→ 1 and

E
[( ∫ σk

−∞
〈φs, qsφs〉π(ds)

)1/2]
<∞ for all k ≥ 1.

Proof. Recall that by definition
∫ t
−∞ φ · dm = (φ •m)(Ωt) whenever 1Ωt ∈ L1(φ •m). In

this case Ok = [−k, k]× Ω is m-feasible. If ξ is an Rn-valued predictable process then
by Proposition 4.4

[ξ •m](ds) = 〈ξs, csξs〉λ(ds) + 〈ξs, x〉2 ∗ µ = 〈ξs, qsξs〉π(ds).

Moreover, if ξ is also bounded and ξt(ω) = 0 for all (t, ω) 6∈ Ok for some k then the
process ((ξ •m)(Ωt))t∈R is a local martingale up to infinity.

For ψ ∈ D defined in (4.7) let Xψ
t = (ψφ) •m(Ωt). By the above

|∆Xψ
s | = [ψφ •m]({s})1/2 = |ψs|(〈φs, qsφs〉π({s}))1/2 ≤ (〈φs, qsφs〉π({s})1/2.

That is, with L defined by

Lt =
(∫ t

−∞
〈φs, qsφs〉 π(ds)

)1/2

, t ∈ R,

we have |∆Xψ
s | ≤ Ls for all ψ ∈ D.

Assume there is a sequence (σk)k≥1 with the properties in the if -part of the proposi-
tion. We then have E[Lσk ] <∞. By the above, for all ψ ∈ D for which ψφ is a bounded
process satisfying (ψφ)t(ω) = 0 for all (t, ω) 6∈ Ok for some k the process Xψ is a local
martingale up to infinity and it is in the set denoted by S ′′L by Stricker (1981), p. 505.
By his Theorem 1.11, Xψ is a local martingale up to infinity for all ψ ∈ D. Finally,
using

[(ψφ) •m]((−∞, t]) ≤ [φ •m]((−∞, t])
it follows from Davis’ inequality that the set {

∫
(ψφ) · dm : ψ ∈ D} is bounded in L0,

implying φ ∈ L(Z). Another application of Stricker (1981), Theorem 1.11, shows that
(φ •m(Ωt))t∈R is a local martingale up to infinity.

The converse implication follows from Jacod and Shiryaev (2003), Corollary 4.55(a).
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5 Lévy processes
In this section Z = {(Zi

t)i≤n : t ∈ R} is an n-dimensional Lévy process indexed by
R satisfying Z0 = 0 a.s. Let (γ,Σ, κ) denote the Lévy-Khintchine triplet of Z1. Our
concern is integration with respect to Z in a filtration F = (Ft)t∈R in which Z is an
increment semimartingale, that is, induces a Radon measure. Two such filtrations are
FZ,inc and FZ , given up to completion as

FZ,inc
t = σ(Zu − Zs : −∞ < s < u ≤ t), FZt = σ(Zu : −∞ < u ≤ t), t ∈ R.

(The superscript inc is short for increment). However, a major difference between
the two is that Z is a Lévy process in FZ,inc but (except in trivial cases) not in FZ .
Here we recall that by definition Z is a Lévy process in a filtration F if, for all s < t,
Zt −Zs is independent of Fs, measurable with respect to Ft, the distribution of Zt −Zs
depends only on t− s, and Z has càdlàg paths with Z0 = 0. Thus, it is obvious that Z
is a Lévy process in FZ,inc. To see that it is not Lévy in FZ note that for all s < 0,
Z0 − Zs = −Zs is FZs -measurable and hence not independent of FZs except when it is
deterministic. Therefore we first consider the case when Z is a Lévy process in F and
then turn to FZ .

5.1 The case when Z is a Lévy process in F

Let F be a filtration and assume Z is a Lévy process in F . Note that in this case Z is
an increment semimartingale in F and hence induces an L0-valued Radon measure as
described in Example 4.1. Furthermore, it is easily seen that the triplet of Z is given by

bs = γ, cs = Σ, K(s; dx) = κ(dx), λ(ds) = ds,

and therefore, by Theorem 4.5, we have the following:

Corollary 5.1. For all Rn-valued F -predictable processes φ = (φt)t∈R, φ ∈ L(Z) if
and only if the following (a)–(c) hold almost surely

(a)

∫

R

〈φs,Σφs〉 ds <∞, (b)

∫

R

∫

Rn

(
1 ∧ |〈φs, x〉|2

)
κ(dx) ds <∞,

(c)

∫

R

∣∣∣〈γ, φs〉+

∫

Rn

[
τ1(〈x, φs〉)− 〈φs, τn(x)〉

]
κ(dx)

∣∣∣ ds <∞.

Consider the special case where Z is an Rn-valued strictly α-stable Lévy process
with α ∈ (0, 2). In this case the conditions in Corollary 5.1 become particularly
simple. Since Σ = 0 only (b) and (c) have to be verified. According to Sato (1999),
Theorem 14.3, there exists a finite measure Θ, often referred to as the spherical part of
κ, on Sn−1 = {x ∈ Rn : ‖x‖ = 1}, such that the Lévy measure κ of Z is of the form

κ(A) =

∫

Sn−1

(∫ ∞

0

1A(rx)

r1+α
dr
)

Θ(dx), A ∈ B(Rn). (5.1)
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The following corollary extends results by Rosiński and Woyczyński (1986) and Cherny
and Shiryaev (2005) to processes indexed by R and with values in Rn.

Corollary 5.2. Let Z = (Zt)t∈R be an Rn-valued strictly α-stable Lévy process with
Lévy measure given by (5.1) (for α = 1, assume Z is symmetric, which in particular
implies γ = 0). Then for all F -predictable Rn-valued processes φ, the integral

∫
R
φs ·dZs

exists if and only if
∫

R

(∫

Sn−1

|〈φs, x〉|α Θ(dx)
)

ds <∞ a.s. (5.2)

Proof. For simplicity let τn and τ1 be the truncation functions on Rn and R given by
τn(x) = x1{‖x‖≤1} and τ1(x) = x1{|x|≤1}. Due to the fact that Z is strictly stable we
have for α ∈ (1, 2), γ =

∫
Rn(τn(x)− x)κ(dx) and for α ∈ (0, 1), γ =

∫
Rn τn(x)κ(dx), cf.

Sato (1999), Theorem 14.7. Using (5.1), a simple calculation shows

C1,α

∫

Rn

(
1 ∧ |〈φs, x〉|2

)
κ(dx) =

∫

Sn−1

|〈φs, x〉|α Θ(dx) (5.3)

≥ C2,α

∣∣∣〈φs, γ〉+

∫

Rn

[
τ1(〈φs, x〉)− 〈φs, τn(x)〉

]
κ(dx)

∣∣∣, (5.4)

where the equality (5.3) holds for all α ∈ (0, 2) and C1,α = ((2 − α)α)/2, and the
inequality (5.4) holds for α 6= 1 and C2,α = |α− 1|. In the case α = 1 (5.4) remains true
for some constant C2,1. This shows that (a)–(c) of Corollary 5.1 are equivalent to (5.2)
and completes the proof.

5.2 Integrability in FZ

When considering integrals as (1.2)(β) the process {f(s, Zs−) : s ∈ R} is usually not
predictable (nor adapted) in FZ,inc (or in any other filtration in which Z is a Lévy
process). Thus, (1.2)(β) can not be studied in FZ,inc, forcing us to consider instead
the filtration FZ . Although Z is an increment semimartingale in FZ (by Theorem 5.3
below and Stricker’s theorem), it is in general difficult to calculate its triplet in this
filtration. Therefore we consider the larger filtration FZ,ex given by FZ,ex

t = FZt for
t ≥ 0 and

FZ,ex
t = FZt ∨ σ

(
µZ
(
(t, 0]× A

)
: A ∈ B(Rn)

)
, for t < 0,

in which we are able to calculate the triplet explicitly. (The superscript ex is short
for extended). Note that FZ,inc

t ⊆ FZt ⊆ FZ,ex
t for all t ∈ R. Let Zc = (Zc

t )t∈R be the
Gaussian component of Z chosen such that Z0 = 0. Recall that µZ is the jump measure
of Z, and set ν(ds× dx) = κ(dx) ds and

Mt = Zc
t −

∫ 0

t

∫

Rn

τn(x) (µZ − ν)(ds× dx), t < 0.
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Due to the fact that FZt ⊆ FZ,ex
t for all t ∈ R, the next result gives in particular sufficient

conditions for the integral
∫
R
φs ·dZs to exist for any FZ-predictable process φ. It relies

on an enlargement of filtration result essentially due to Jacod and Protter (1988); see
Appendix.

Theorem 5.3. In the filtration FZ,ex, Z is an increment semimartingale with triplet

bs = γ + (Ms/s)1{s<0}, cs = Σ, λ(ds) = ds, (5.5)

K(s; dx) =
µZ((s, 0]× dx)

|s| 1{s<0} + κ(dx)1{s≥0}. (5.6)

Hence for all FZ,ex-predictable processes φ, the integral
∫
R
φs · dZs exists if and only if

(4.5)–(4.6) are satisfied with b, c, λ and K given by (5.5)–(5.6).

Note that the triplet of Z with respect to FZ,ex is random, reflecting that Z does
not have independent increments with respect to FZ,ex. Note also that for all s < 0,
µZ((s, 0]× dx) is a Poisson random measure with intensity measure |s|κ(dx).

Proof of Theorem 5.3. Fix an r < 0 and define Z(r) = (Z
(r)
t )t≥r as Z(r)

t = Zt − Zr.
Consider the filtration FZ(r),ex = (FZ(r),ex

t )t≥r where

FZ(r),ex
t = σ

(
Z(r)
u : u ∈ [r, t]

)
∨ σ
(
Z

(r)
0

)
∨ σ
(
µZ

(r)(
(r, 0]× A

)
: A ∈ B(Rn)

)
.

Using that Zr = −(Z0 − Zr) = −Z(r)
0 , we get for t ≥ r,

FZ,ex
t = FZ(r),ex

t ∨ Gr, where Gr = σ(Zr − Zu : u < r). (5.7)

By Theorem A.1 (where r plays the role of zero, and zero plays the role of t0), Z(r) is a
semimartingale with respect to FZ(r),ex. Let b(r), c(r), K(r) and λ(r) denote the quantities
defining the triplet of Z(r) in (A.1) and (A.2). Let Z(r),c denote the Gaussian component
of the Lévy process Z(r) and note that Z(r),c

t = Zc
t − Zc

r . Thus, with

M
(r)
t := Z

(r),c
t +

∫

(r,t]×Rn

τn(x) (µZ
(r) − ν)(ds× dx),

= (Zc
t − Zc

r) +

∫

(r,t]×Rn

τn(x) (µZ − ν)(ds× dx), t ≥ r,

we have by Theorem A.1 that

b(r)
s = γ +

M
(r)
0 −M (r)

s

0− s 1{r≤s<0} = γ + (Ms/s)1{r≤s<0}.

Similarly,

K(r)(s; dx) =
µZ

(r)(
(s, 0]× dx

)

0− s 1{r≤s≤0} + κ(dx)1{s≥0}

=
µZ
(
(s, 0]× dx

)

|s| 1{r≤s≤0} + κ(dx)1{s≥0}.
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Finally, λ(r)(ds) = 1{s≥r} ds and cs = Σ. Since Gr is independent of Z(r) = (Zt − Zr)t≥r
it follows by (5.7) that Z(r) is an (FZ,ex

t )t≥r-semimartingale with the above triplet.
Furthermore, since this is true for all r < 0, it follows that the triplet of Z is given by
(5.5)–(5.6).

Remark 5.4. Even though bs and K(s; dx) are random for s ∈ (−∞, 0) it follows by the
strong law of large numbers for Lévy processes (see e.g. Sato (1999), Theorem 36.5) that
they are both deterministic in the limit s→ −∞; in fact, for all measurable functions
f : Rn → R+,

∫
Rn f(x)K(s; dx)→

∫
Rn f(x)κ(dx) and bs → γ a.s. as s→ −∞.

In the next result we use Remark 5.4 to give a simple condition that
∫
R
φs · dZs

exists.

Theorem 5.5. Assume E[‖Z1‖2] <∞. Then, for all FZ-predictable processes φ with
a.s. locally bounded sample paths the integral

∫
R
φs · dZs exists if

∫

R

(
‖φs‖2 + ‖φs‖

)
ds <∞ a.s.

Proof. Let us show that (a)–(c) of Theorem 4.5 are satisfied with b, c,K and λ as in
Theorem 5.3. Property (b) follows from the fact that 〈φs,Σφs〉 ≤ CΣ‖φs‖2 for some
constant CΣ ≥ 0 depending only on Σ.

In the proof of (a) and (c) we will use the following consequences of Remark 5.4:
∫

Rn

‖x‖2K(s; dx) −−−−→
s→−∞

∫

Rn

‖x‖2 κ(dx), a.s. (5.8)
∫

{‖x‖>1}
‖x‖K(s; dx) −−−−→

s→−∞

∫

{‖x‖>1}
‖x‖κ(dx), a.s. (5.9)

bs −−−−→
s→−∞

γ, a.s. (5.10)

For simplicity let τn(x) = x1{‖x‖≤1} for x ∈ Rn and τ1(y) = y1{|y|≤1} for y ∈ R. To
verify (c) it suffices, due to the fact that φ has a.s. locally bounded sample paths, to
show that there exists a k = k(ω) ∈ N such that

∫

[−k,k]c

∫

Rn

(
1 ∧ 〈φs, x〉2

)
K(s; dx) ds <∞, (5.11)

However, since
∫

Rn

(
1 ∧ |〈φs, x〉|2

)
K(s; dx) ≤ ‖φs‖2

∫

Rn

‖x‖2K(s; dx),

equation (5.8) implies (5.11). To show (a) note that

|τ1(〈φs, x〉)− 〈φs, τn(x)〉| =
∣∣∣〈φs, x〉

(
1{|〈φs,x〉|≤1} − 1{‖x‖≤1}

)∣∣∣
≤ ‖φs‖2‖x‖2 + ‖φs‖‖x‖1{‖x‖>1},
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and therefore (a) follows in the same way as (c) using (5.8)–(5.10) and the estimates

∣∣∣〈φs, bs〉+

∫

Rn

[
τ1(〈φs, x〉)− 〈φs, τn(x)〉

]
K(s; dx)

∣∣∣

≤ ‖φs‖‖bs‖+

∫

Rn

∣∣∣τ1(〈φs, x〉)− 〈φs, τn(x)〉
∣∣∣K(s; dx)

≤ ‖φs‖‖bs‖+ ‖φs‖2

∫

Rn

‖x‖2K(s; dx) + ‖φs‖
∫

{‖x‖>1}
‖x‖K(s; dx).

A Appendix

In this Appendix we consider an expansion of filtration result for Rn-valued Lévy
processes Z = (Zt)t≥0 indexed by R+. Let t0 > 0 be fixed and let FZ,ex = (FZ,ex

t )t≥0

be the least filtration to which Z is adapted and for all Borel sets A that are bounded
away from zero, µZ((0, t0] × A) and Zt0 are FZ,ex

t -measurable. For all t ≥ 0 let Mt =
Zc
t + τn(x)∗ (µZ−ν)t, where we use the notation of Subsection 5.2. The following results

extend Theorems 2.6 and 2.9 in Jacod and Protter (1988) to the multivariate case.

Theorem A.1. Let Z = (Zt)t≥0 be an Rn-valued Lévy process on R+ with Lévy-
Khintchine triplet (γ,Σ, κ). Then Z is a semimartingale with respect to FZ,ex with
triplet

bs = γ +
Mt0 −Ms

t0 − s
1{0≤s<t0}, cs = Σ, λ(ds) = ds, (A.1)

K(s; dx) =
µZ((s, t0]× dx)

t0 − s
1{0≤s<t0} + κ(dx)1{s≥t0}. (A.2)

To prove Theorem A.1 we need the following two lemmas.

Lemma A.2. Let Yi for i = 1, . . . , k be integrable, independent and identically distributed
R
n-valued random vectors. Then E[Y1|

∑k
i=1 Yi] = 1

k

∑k
i=1 Yi.

Lemma A.2 follows by standard arguments and hence its proof is omitted. For fixed
t0 > 0 let FZ,t0 = (FZ,t0t )t≥0 denote the least filtration for which Zt0 is FZ,t00 -measurable
and Z is adapted.

Lemma A.3. Let Z = (Zt)t≥0 be an Rn-valued integrable Lévy process with mean zero.
Then N = (Nt)t≥0 is an FZ,t0-martingale, where N is given by

Nt = Zt −
∫ t∧t0

0

Zt0 − Zs
t0 − s

ds, t ≥ 0.

Proof. We may and do assume that t0 = 1. To show that (Nt)t≥0 is an FZ,1-martingale
it is enough to show that for all t > 0 we have that limnA

n
t = At in L1, where for all
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n ≥ 1

Ant =

[nt]∑

i=1

E[Ztni − Ztni−1
|FZ,1tni−1

] and At =

∫ t∧1

0

Z1 − Zs
1− s ds,

where tni = i/n. For 0 ≤ s < t ≤ 1 with t = k/n and s = j/n we have by Lemma A.2
that

E[Zt − Zs|FZ,1s ] = E[Zt − Zs|Z1 − Zs] =
Z1 − Zs

1− s (t− s),

and therefore

Ant =
an∑

i=1

Z1 − Ztni−1

1− tni−1

(tni − tni−1). (A.3)

Moreover, using that Z is an integrable Lévy process there exist c1, c2 > 0 such that for
all s ∈ [0, 1],

∥∥∥Z1 − Zs
1− s

∥∥∥
1

=
‖Z1−s‖1

1− s ≤ c1(1− s)1/2 + c2(1− s)
1− s ≤ c1

(1− s)1/2
+ c2,

and hence ∫ 1

0

∥∥∥Z1 − Zs
1− s

∥∥∥
1

ds <∞.

Therefore by (A.3) and for t > 0, limnA
n
t = At in L1, which completes the proof.

Proof of Theorem A.1. We may and do assume that t0 = 1. To show (A.2) let B0(Rn)
be the family of all bounded Borel sets bounded away from zero. Let ρ(ds × dx) =
K(s; dx) ds where K is given in (A.2). Note that ρ is an FZ,ex-predictable random
positive measure on R×Rn. For all A ∈ B0(Rn) let ZA

t = µZ((0, t]× A) and

UA
t := µZ((0, t]× A)− ρ((0, t]× A) = ZA

t −
∫ t∧1

0

ZA
1 − ZA

s

1− s ds−
∫ t∨1

1

κ(A) ds.

Since ZA is an integrable Lévy process, UA is a FUA,1-martingale by Lemma A.3.
If (Ai)

k
i=1 ⊆ B0(R

n) are pairwise disjoint, (UAi)ki=1 are independent and
∑k

i=1 U
Ai =

U∪
k
i=1Ai . Therefore by the Monotone Class Lemma, UA is an FZ,ex-martingale for all

A ∈ B0(Rn). For any positive function W of the form

W (s, ω, x) =
k∑

i=1

αi1(ti−1,ti](s)1Ai
(x)1Bi

(ω), Bi ∈ FZ,ex
ti−1

for i = 1, . . . , n,

we have

W ∗ (µZ − ρ) =
k∑

i=1

αi1Bi
(UAi

ti − UAi
ti−1

).
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Thus, since for all i = 1, . . . , k, UAi is an FZ,ex-martingale,

E[W ∗ µZ ] = E[W ∗ ρ],

which shows that ρ is the predictable compensator of µZ . To show that b is given by
(A.1) let N c be given by

N c
t = Zc

t −
∫ t∧1

0

Zc
1 − Zc

s

1− s ds, t ≥ 0.

We have

Zt = N c
t + τn(x)∗ (µZ −ρ)t + (x− τn(x))∗µZt +

(
γt+

∫ t

0

Zc
1 − Zc

s

1− s ds+ τn(x)∗ (ρ− ν)t

)
,

which shows that

Bt = γt+

∫ t∧1

0

Zc
1 − Zc

s

1− s ds+ τn(x) ∗ (ρ− ν)t = γt+

∫ t∧1

0

M1 −Ms

1− s ds.

Since C is the continuous part of the matrix [Z] we have cs = Σ, completing the
proof.
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