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Abstract

We give necessary and sufficient conditions for existence of proper integrals
from 0 to infinity or from minus infinity to 0 of one exponentiated Lévy process
with respect to another Lévy process. The results are related to the existence
of stationary generalized Ornstein-Uhlenbeck processes. Finally, in the square
integrable case the Wold-Karhunen representation is given.
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1 Introduction

Let (ξ, η) = (ξt, ηt)t∈R denote a bivariate Lévy process indexed by R satisfying ξ0 =
η0 = 0, that is, (ξ, η) is defined on a probability space (Ω,F , P ), has càdlàg paths and
stationary independent increments. We are interested in the two integrals

(a) :

∫ ∞

0

e−ξs− dηs and (b) :

∫ 0

−∞
eξs− dηs. (1.1)

The first of these has been thoroughly studied, see e.g. [4, 5, 8, 12, 14, 17], where it is
treated as an improper integral, i.e. as the a.s. limit as t→∞ of

∫ t
0
e−ξs− dηs. Recall that

Erickson and Maller [8], Theorem 2, give necessary and sufficient conditions in terms of
the Lévy-Khintchine triplet of (ξ, η) for the existence of (1.1)(a) in the improper sense.
In the following this integral is considered as a semimartingale integral up to infinity
in the sense of e.g. Cherny and Shiryaev [6] or Basse-O’Connor et al. [2], which we can
think of as a proper integral. Theorem 3.1 shows that the conditions given by Erickson
and Maller are also necessary and sufficient for the existence of (1.1)(a) in the proper
sense.
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To the best of our knowledge the second integral has previously only been studied in
special cases, in particular when ξ is deterministic. As we shall see in the next section,
η is a so-called increment semimartingale in the natural filtration of (ξ, η), that is, the
least right-continuous and complete filtration to which (ξ, η) is adapted. Integration
with respect to increment semimartingales has been studied in Basse-O’Connor et al.
[2], and we use the results obtained there to give necessary and and sufficient conditions
for the existence of (1.1)(b); see Theorem 3.1.

As an application, generalized Ornstein-Uhlenbeck processes (and some generaliza-
tions hereof) are considered. Recall that a càdlàg process V = (Vt)t∈R is a generalized
Ornstein-Uhlenbeck process if it satisfies

Vt = e−(ξt−ξs)Vs + e−ξt
∫ t

s

eξu− dηu for s < t.

See Lindner and Maller [13] for a thorough study of these processes and references to
theory and applications. Assuming ξt → ∞ as t → ∞ a.s., Theorem 3.4 shows that a
necessary and sufficient condition for the existence of a stationary V is that (1.1)(b)
exists, and in this case V is represented as

Vt = e−ξt
∫ t

−∞
eξu− dηu for t ∈ R.

This result complements Theorem 2.1 in [13] where the stationary distribution is ex-
pressed in terms of an integral from 0 up to infinity. Finally, assuming second moments,
Theorem 3.5 gives the Wold-Karhunen representation of V .

2 Integration with respect to increment
semimartingales

In this section we first recall a few general results related to integration with respect to
increment semimartingales. Afterwards we specialize to integration with respect to η.

Let (Ft)t∈R denote a filtration satisfying the usual conditions of right-continuity
and completeness. Recall from [2] that a càdlàg R-valued process Z = (Zt)t∈R is
called an increment semimartingale with respect to (Ft)t∈R if for all s ∈ R the process
(Zt+s − Zs)t≥0 is an (Fs+t)t≥0-semimartingale in the usual sense. Equivalently, by
Example 4.1 in [2], Z is an increment semimartingale if and only if it induces an
L0(P )-valued Radon measure on the predictable σ-field P . Note that in general an
increment semimartingale is not adapted. Let µZ = µZ(ω; dt × dx) denote the jump
measure of Z defined as

µZ(A) = #{s ∈ R : (s,∆Zs) ∈ A} for A ∈ B(R×R0),

where R0 = R \ {0}, and let (B,C, ν) denote the triplet of Z; see [2]. That is, ν =
ν(ω; dt× dx) is the predictable compensator of µZ in the sense of Jacod and Shiryaev
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[11], Theorem II.1.8. Moreover, B = B(ω; dt) is a random signed measure on R of finite
total variation on compacts satisfying that t 7→ B((s, s+ t]) is an (Fs+t)t≥0-predictable
process for all s ∈ R and C = C(ω; dt) is a random positive measure on R which is
finite on compacts. Finally, for all s < t we have

Zt − Zs = Zc
t − Zc

s +

∫

(s,t]×{|x|≤1}
x [µZ(du× dx)− ν(du× dx)]

+

∫

(s,t]×{|x|>1}
xµZ(du× dx) +B((s, t])

where Zc = (Zc
t )t∈R is a continuous increment local martingale and for all s ∈ R the

quadratic variation of (Zc
s+t−Zc

s)t≥0 is C((s, s+t]), t ≥ 0. Choose a predictable random
positive measure λ = λ(ω; dt) onR which is finite on compacts, a real-valued predictable
process b = bt(ω), a positive predictable process c = ct(ω), and a transition kernel
K = K(t, ω; dx) from (R × Ω,P) into (R,B(R)) satisfying

∫
R

(1 ∧ x2)K(t; dx) < ∞
and K(t; {0}) = 0 for all t ∈ R such that

B(dt) = btλ(dt), C(dt) = ctλ(dt), ν(dt× dx) = K(t; dx)λ(dt).

As shown in [2] a necessary and sufficient condition for the existence of
∫
R
φs dZs is

that we have the following:
∫

R

∣∣∣φsbs +

∫

R

[
τ(φsx)− φsτ(x)

]
K(s; dx)

∣∣∣λ(ds) <∞, (2.1)
∫

R

φ2
scs λ(ds) <∞,

∫

R

∫

R

(
1 ∧ (φsx)2

)
K(s; dx)λ(ds) <∞, (2.2)

where τ : R → R is a truncation function, i.e. it is bounded, measurable and satisfies
τ(x) = x in a neighborhood of 0. Moreover, when these conditions are satisfied the
process

∫ t
−∞ φs dZs, t ∈ R, is a semimartingale up to infinity. Here we use the usual

convention that for a measurable subset A of R,
∫
A
φs dZs :=

∫
R
φs1A(s) dZs, and∫ t

s
:=
∫

(s,t]
for s < t.

Let us turn to integration with respect to η where (ξ, η) is a bivariate Lévy process
indexed by R with ξ0 = η0 = 0, that is, η plays the role of Z from now on. Denote
the Lévy-Khintchine triplet of ξ1 by (γξ, σ

2
ξ ,mξ), and let σξ,η denote the covariance of

the Gaussian components of ξ and η at time t = 1. A similar notation will be used for
all other Lévy processes. Let (F (ξ,η)

t )t∈R denote the natural filtration of (ξ, η). Note
that (ηt)t≥0 is a Lévy process in (F (ξ,η)

t )t≥0, i.e. for all 0 ≤ s < t, ηt − ηs is independent
of F (ξ,η)

s . Using this it is easily seen that the increment semimartingale triplet of η in
(F (ξ,η)

t )t∈R is, for t > 0, given by λ(dt) = dt and (bt, ct, K(t; dx)) = (γη, σ
2
η,mη(dx)).

Thus, (2.1)–(2.2) provide necessary and sufficient conditions that
∫∞

0
φs dηs exists for an

arbitrary (F (ξ,η)
t )t∈R-predictable process φ. This in particular includes (1.1)(a). When

it comes to integrals involving the negative half axis, such as (1.1)(b), the situation is
more complicated since η is not a Lévy process in (F (ξ,η)

t )t∈R (see [2], Section 5). In fact,
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a priori it is not even clear that η is an increment semimartingale in the natural filtration
of (ξ, η) (or in any other filtration). However, using an enlargement of filtration result
due to Jacod and Protter [10], Theorem 5.3 in [2] shows that this is indeed the case,
and the triplet of η is calculated in an enlarged filtration. Theorem 5.5 in [2] provides
sufficient conditions for integrals of the form

∫
R
φs dηs to exist and as this result will

be used throughout the paper we rephrase it as a remark.

Remark 2.1. Assume E[η2
1] < ∞. Then for any (F (ξ,η)

t )t∈R-predictable process having
a.a. paths locally bounded the integral

∫
R
φs dηs exists if

∫
R

(|φs|+ φ2
s) ds <∞ a.s.

3 Main results

As above let (ξ, η) denote a bivariate Lévy process indexed by R with ξ0 = η0 = 0. To
avoid trivialities assume that none of them are identically equal to 0. Often we will
assume that ξt → ∞ a.s. as t → ∞ because if this fails, Theorem 2 in [8] shows that∫ t

0
e−ξs− dηs does not converge as t→∞ a.s., implying that (1.1)(a) does not exist. We

need the function Aξ defined, cf. [8] and [13], as

Aξ(x) = max{1,mξ((1,∞))}+

∫ x

1

mξ((y,∞)) dy, x ≥ 1.

To study (1.1)(b) we follow Lindner and Maller [13] and introduce (Lt)t≥0 given by

Lt = ηt +
∑

0<s≤t
(e−∆ξs − 1)∆ηs − tσξ,η for t ≥ 0. (3.1)

The process (Lt, ξt)t≥0 is then a bivariate Lévy process in the (F (ξ,η)
t )t≥0-filtration

(see [13], Proposition 2.3) and for all t ≥ 0 we have
∫ 0

−t
eξs− dηs

D
= e−ξt

∫ t

0

eξs− dηs
D
=

∫ t

0

e−ξs− dLs. (3.2)

(Here D
= denotes equality in distribution.) Indeed, the second equality follows from [13],

Proposition 2.3. To prove the first equality note that
∫ 0

−t
eξs− dηs = e−(ξ0−ξ−t)

∫ 0

−t
eξs−−ξ−t dηs,

which by the stationary increments has the same law as

e−(ξt−ξ0)

∫ t

0

eξs−−ξ0 dηs = e−ξt
∫ t

0

eξs− dηs.

The existence of (1.1)(a)–(b) is characterized in the following. All integrals over infinite
intervals are defined in the proper sense of [2], implying in particular that they exist as
improper integrals.
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Theorem 3.1. Assume ξt →∞ as t→∞ a.s.

(1) The following statements are equivalent:

(a) The integral (1.1)(a) exists.

(b)
∫ t

0
e−ξs− dηs converges in distribution as t→∞.

(c) We have ∫

[−e,e]c

log |y|
Aξ(log |y|) mη(dy) <∞.

(2) The following statements are equivalent:

(a) The integral (1.1)(b) exists.

(b)
∫ 0

−t e
ξs− dηs converges in distribution as t→∞.

(c) We have ∫

[−e,e]c

log |y|
Aξ(log |y|) mL(dy) <∞. (3.3)

If (1.1)(b) exists then
∫ 0

−∞ e
ξs− dηs

D
=
∫∞

0
e−ξs−dLs.

It should be noted that (1c) coincides with the condition in Erickson and Maller [8],
Theorem 2, for (1.1)(a) to exist as an improper integral. In the case when ξt → ∞
as t → ∞ a.s, (1c) implies (2c); this is shown in [13], where also further interesting
relations between these conditions can be found.

Proof. Throughout the proof assume ξt → ∞ as t → ∞ a.s. The equivalence between
(1b) and (1c) is given in [13], Proposition 2.4. Using (3.2) it thus follows that (2b) and
(2c) are equivalent. We prove the remaining assertions in a few steps.

Step 1. Assume there is an ε > 0 such that mη({|x| > ε}) = 0. (That is, η has
no big jumps, implying in particular square integrability). We show that in this case
(1.1)(a)–(b) both exist.

Note that if E[|ξ1|] < ∞ then by the law of large numbers ξt/t → E[ξ1] as t → ∞
a.s. and in this case E[ξ1] > 0. Recall that we assume ξt →∞ as t→∞ a.s. It follows
from Kesten’s trichotomy theorem (see e.g. [7], Theorem 4.4) that if E[|ξ1|] =∞ then
limt→∞ ξt/t = ∞ a.s. Thus, there is a µ ∈ (0,∞] such that ξs/s → µ as s → −∞ and
ξt/t→ µ as t →∞ a.s. In particular

∫ 0

−∞
(eξs + e2ξs) ds+

∫ ∞

0

(e−ξt + e−2ξt) dt

=

∫ 0

−∞
(es(ξs/s) + e2s(ξs/s)) ds+

∫ ∞

0

(e−t(ξt/t) + e−2t(ξt/t)) dt <∞

which by Remark 2.1 implies the existence of (1.1)(a)–(b).
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Step 2. Assume η is a compound Poisson process, that is,

mη(R) <∞, σ2
η = 0, γη =

∫

|x|≤1

xmη(dx)

and ηt is given by ηt =
∑

0<s≤t ∆ηs for all t > 0 a.s. Assume in addition that (1c) holds.
We show that in this case

∑
s>0 e

−ξs−|∆ηs| <∞ a.s. (This clearly implies that (1.1)(a)
exists and equals

∑
s>0 e

−ξs−∆ηs).
For this purpose we first prove

∫ ∞

0

∫

R

1 ∧ (e−ξs|x|)mη(dx) ds <∞ a.s. (3.4)

The integral in (3.4) can be written as
∫∞

0
g(ξs) ds, where, for y ∈ R, g(y) =

∫
R

(1 ∧
(e−y|x|))mη(dx). Therefore, since g is non-increasing it follows from [8], Theorem 1,
that (3.4) is satisfied if and only if

∫

(1,∞)

y

Aξ(y)
|dg(y)| <∞. (3.5)

Simple manipulations show that

g(y) = mη(R)−
∫ y

−∞

∫

|x|≤ez
|x|mη(dx)e−z dz

and hence the integral in (3.5) equals
∫

(1,∞)

y

Aξ(y)

∫

|x|≤ey
|x|mη(dx)e−y dy.

Since Aξ is non-decreasing we can use Fubini to rewrite and dominate this integral as
∫

[−e,e]c
|x|
∫ ∞

log |x|

ye−y

Aξ(y)
dy mη(dx)

≤
∫

[−e,e]c

|x|
Aξ(log |x|)

∫ ∞

log |x|
ye−y dy mη(dx)

=

∫

[−e,e]c

|x|
Aξ(log |x|)e

− log |x|(1 + log |x|)mη(dx),

which is finite by assumption. Now, by Cherny and Shiryaev [6], Lemma 3.4, (3.4) is
equivalent to

∑
s>0

(
1 ∧ (e−ξs−|∆ηs|)

)
<∞ a.s. Hence

∑
s>0 e

−ξs−|∆ηs| <∞ a.s.
Step 3. Proof that (1c) implies (1a). Decompose (ηt)t≥0 as ηt = η1

t + η2
t where

η2
t =

∑
0<s≤t ∆ηs1{|∆ηs|>1}, that is, η2 contains all jumps of magnitude larger than 1.

By Step 1,
∫∞

0
e−ξs− dη1

s exists and by Step 2,
∫∞

0
e−ξs− dη2

s exists if (1c) is fulfilled.
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Step 4. We first prove that (2c) implies (2a). As in the proof of Step 2 we may
and will assume that η is a compound Poisson process. In this case (Lt)t≥0 in (3.1) is
a compound Poisson process as well. By definition of (Lt)t≥0 and Step 2 we have

∑

0<s<∞
e−ξs |∆ηs| =

∑

0<s<∞
e−ξs− |∆Ls| <∞ a.s.

Since (ξt, ηt)t≥0
D
= (−ξ(−t)−,−η(−t)−)t≥0 it follows that

∑

0<s<∞
e−ξs|∆ηs| D

=
∑

−∞<s<0

eξs− |∆ηs|.

Thus, the right-hand side is finite a.s., implying that the integral
∫ 0

−∞ e
ξs− dηs exists

and equals
∑
−∞<s<0 e

ξs−∆ηs.
Finally, if (1.1)(b) exists then the condition in (3.3) is satisfied implying by (1) that∫∞

0
e−ξs− dLs exists. From (3.2) it follows that

∫ 0

−∞
eξs− dηs = lim

t→∞

∫ 0

−t
eξs− dηs

D
= lim

t→∞

∫ t

0

e−ξs− dLs =

∫ ∞

0

e−ξs− dLs

where the first and third equality signs hold a.s.

Next we use the above theorem to study generalized Ornstein-Uhlenbeck processes.
For this, consider a bivariate Lévy process (U, η) = (Ut, ηt)t∈R with U0 = η0 = 0
and assume that none of them are identically equal to 0. Assume in addition that
mU({−1}) = 0, meaning that U has no jumps of size −1. Following Basse-O’Connor
et al. [2], Subsection 5.2, we introduce an extended filtration (F (U,η),ex

t )t∈R which is
defined as F (U,η),ex

t = F (U,η)
t for t ≥ 0 and

F (U,η),ex
t = F (U,η)

t ∨ σ(µ(U,η)((t, 0]× A) : A ∈ B(R2)) for t < 0,

where µ(U,η) is the jump measure of (U, η). By [2], Theorem 5.3, η and U are increment
semimartingales in the extended filtration, ensuring a well-defined integration theory
with respect to these processes.

Since the index set is R rather than R+, we define the stochastic exponential of U ,
E(U) = (E(U)t)t∈R, as the càdlàg process satisfying E(U)0 = 1 and

E(U)t
E(U)s

= e(Ut−Us)− (t−s)
2

σ2
U

∏

s<u≤t
(1 + ∆Uu)e

−∆Uu for s < t. (3.6)

Put differently, E(U) is given by

E(U)t =




eUt− t2σ

2
U
∏

0<u≤t(1 + ∆Uu)e
−∆Uu for t ≥ 0,

e−Ut+
t
2
σ2
U
∏

t<u≤0(1 + ∆Uu)e
−∆Uu for t ≤ 0.
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Equation (3.6) shows that for s ∈ R, (E(U)t+s/E(U)s)t≥0, is the usual stochastic expo-
nential (with index set R+) of (Ut+s − Us)t≥0, cf. [11], II.8.

To describe E(U) in a more convenient way we follow [3] and introduce two important
auxiliary processes N = (Nt)t∈R and ξ = (ξt)t∈R as follows. Let N0 = ξ0 = 0 and

Nt −Ns = µU((s, t]× (−∞, 1)) for s < t (3.7)

ξt − ξs = −(Ut − Us) + (t−s)
2
σ2
U +

∑

s<u≤t
[∆Uu − log |1 + ∆Uu|] for s < t. (3.8)

These are essentially the definitions given in [3] except that the index set is R rather
than R+, and our ξ corresponds to the process called Û there. As noted in [3], Nt−Ns

is the number of jumps in U of size less than −1 on the interval (s, t]. Moreover, N
and ξ are both Lévy processes.

Lemma 3.2. The process (ξt, Nt)t∈R is (F (U,η),ex
t )t∈R-adapted.

Proof. For t ≥ 0 we let s = 0 in (3.7)–(3.8), which trivially shows that (Nt, ξt) is FUt -
measurable and hence also F (U,η),ex

t -measurable. For t < 0 note that (use t = 0 and
s = t in (3.7)) −Nt = µU((t, 0] × (−∞, 1]) implying that Nt is F (U,η),ex

t -measurable by
definition of this σ-field. Moreover, by a standard argument,

∫

(t,0]×R
φ(x)µU(du× dx) (3.9)

is F (U,η),ex
t -measurable for all measurable φ : R→ R for which (3.9) exists. In particular∑

t<u≤0[∆Uu− log |1+∆Uu|] is measurable, implying by (3.8) that ξt is measurable with
respect to F (U,η),ex

t .

The importance of N and ξ is due to the fact that E(U) is given as

E(U)t
E(U)s

= (−1)Nt−Nse−(ξt−ξs) for s < t. (3.10)

By Lemma 3.2 this shows that E(U) is (F (U,η),ex
t )t∈R-adapted. When U does not have

jumps of size less than −1, we have

E(U)t
E(U)s

= e−(ξt−ξs) for s < t.

In this case [11], II.8, shows that for all s ∈ R and t ≥ 0, Ut+s−Us = Log(e−(ξ·+s−ξs))t,
where Log denotes the stochastic logarithm.

Finally, we need the process L∗ = (L∗t )t∈R defined as L∗0 = 0 and

L∗t − L∗s = ηt − ηs + ([η, U ]t − [η, U ]s) (3.11)

= ηt − ηs +
∑

s<u≤t
∆Uu∆ηu + (t− s)σU,η for s < t.
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It follows from (3.8) that when E(Ut) = e−ξt for t ∈ R (that is, U has no jumps of size
less than −1), then L∗t = Lt, t ≥ 0, where the latter is defined in (3.1). Clearly, L∗ is
determined by (U, η). Conversely, η is determined by (U,L∗) since

ηt − ηs = L∗t − L∗s −
∑

s<u≤t

∆Uu∆L
∗
u

1 + ∆Uu
− (t− s)σU,L∗ for s < t.

Note that since L∗ differs from η only by a term which is of bounded variation on
compacts and η is an increment semimartingale in the extended filtration, so is L∗.
Similarly it follows that (Lt)t≥0 is a semimartingale in (F (U,η)

t )t≥0.
In the following we consider càdlàg processes V = (Vt)t∈R satisfying

Vt =
E(U)t
E(U)s

(
Vs +

∫ t

s

E(U)s
E(U)u−

dηu

)
(3.12)

=
E(U)t
E(U)s

Vs + E(U)t

∫ t

s

[E(U)u−]−1 dηu for s < t. (3.13)

Remark 3.3. Assume V = (Vt)t∈R is càdlàg and (F (U,η),ex
t )t∈R-adapted. Then V is given

by (3.12) if and only if it satisfies the linear stochastic differential equation

Vt = Vs + (L∗t − L∗s) +

∫ t

s

Vu− dUu for s < t. (3.14)

For a proof, see [3], Proposition 3.2, or [9], Theoreme VI(6.8). A detailed study of
stationary solutions to (3.14), including the nasty case mU({−1}) > 0, can be found
in [3].

In the case when E(Ut) = e−ξt for t ∈ R, (3.12)–(3.13) reduce to so-called generalized
Ornstein-Uhlenbeck processes :

Vt = e−(ξt−ξs)

(
Vs +

∫ t

s

eξu−−ξs dηu

)
(3.15)

= e−(ξt−ξs)Vs + e−ξt
∫ t

s

eξu− dηu for s < t. (3.16)

Theorem 3.4. (1) Assume ξt → ∞ as t → ∞ a.s. The integral
∫ 0

−∞ E(U)−1
u− dηu

exists if and only if
∫ 0

−∞ e
ξu− dηu exists, and

∫ 0

−∞ E(U)−1
u− dηu

D
=
∫∞

0
E(U)u− dL∗u in case

of existence. Moreover, there is a stationary càdlàg process V = (Vt)t∈R satisfying (3.12)
if and only if

∫ 0

−∞ E(U)−1
u− dηu exists. In this case V = (Vt)t∈R is uniquely determined

as

Vt = E(U)t

∫ t

−∞
E(U)−1

u− dηu, t ∈ R. (3.17)
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(2) Assume ξt → −∞ as t→∞. The integrals
∫∞

0
E(U)−1

u− dηu and
∫∞

0
eξu− dηu exist

at the same time. There is a stationary càdlàg process V = (Vt)t∈R satisfying (3.12) if
and only if

∫∞
0
E(U)−1

u− dηu exists. In this case V = (Vt)t∈R is uniquely determined as

Vt = −E(U)t

∫ ∞

t

E(U)−1
u− dηu, t ∈ R. (3.18)

Recall that necessary and sufficient conditions that
∫∞

0
eξu− dηu and

∫ 0

−∞ e
ξu− dηu

exist are given in Theorem 3.1. In particular,
∫ 0

−∞ e
ξu− dηu and

∫∞
0
e−ξu− dLu exist at the

same time. This is also equivalent to the existence of
∫∞

0
e−ξu− dL∗u; indeed, it is easily

verified that |∆Lt| = |∆L∗t | for all t > 0, and thus the condition in Theorem 3.1(1c)
with η = L is equivalent to the one with η = L∗. Moreover, as in the proof of the first
part of (1) below it follows that

∫∞
0
e−ξu− dL∗u and

∫∞
0
E(U)u− dL∗u exist at the same

time.
The above conditions for existence of V are also given in Behme et al. [3], Theo-

rem 2.1, and so is the representation (3.18); thus, (2) is completely contained in [3] (ex-
cept that we use proper integrals) but it is restated here for completeness. When ξt = λt
for some non-zero constant λ, (3.15)–(3.16) simplify to a usual Ornstein-Uhlenbeck pro-
cess; see e.g. [1] and [15]. In this case, (3.17) and (3.18) are well known representations
of stationary Ornstein-Uhlenbeck processes cf. e.g. [15], Theorem 55.

The case when ξt does not converge to ±∞ as t → ∞ is treated in Theorem 2.1
of [3].

Proof. (1) Since E(U)−1
u− and eξu− only differ by a factor of absolute value 1 the two

proper integrals exist at the same time. The identity in distribution follows as in the
proof of the last assertion of Theorem 3.1(2), where instead of (3.2) we use that for
t ≥ 0, ∫ 0

−t
E(U)−1

u− dηu
D
= E(U)t

∫ t

0

E(U)−1
u− dηu

D
=

∫ t

0

E(U)u− dL∗u, (3.19)

where the first equality follows as in the proof of (3.2) and the second comes from
Lemma 3.1 in [3].

Assume V is stationary and satisfies (3.12). Letting s → −∞ and using that
ξs → −∞ a.s. it follows from (3.13) and (3.10) that

∫ 0

s
E(U)−1

u− dηu converges in distri-
bution. From (3.19) it follows that

∫ t
0
E(U)u− dL∗u converges in distribution as t→∞.

Theorem 3.6 in [3] shows that the condition in Theorem 3.1(2c) (with L replaced by
L∗) is satisfied, implying that

∫ 0

−∞ E(U)−1
u− dηu exists.

Conversely, assuming that
∫ 0

−∞ E(U)−1
u− dηu exists and defining V by (3.17) it is easily

seen that (3.12) is satisfied. Moreover, since Vt is given a.s. as

Vt = lim
h→∞
E(U)t

∫ t

t−h
E(U)−1

u− dηu = lim
h→∞

E(U)t
E(U)t−h

∫ t

t−h

E(U)t−h
E(U)u−

dηu

and the distribution of the right-hand side does not depend on t, the distribution of Vt
is also independent of t. The variable Vt is moreover determined by (ηt−ηu, Ut−Uu)u≤t
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and is hence in particular independent of (ηu+t−ηt, Uu+t−Ut)u≥0. From (3.12) it follows
that V is stationary.

The proof of (2) is similar except that in (3.12)–(3.13) we fix s, rearrange terms to
isolate Vs, and let t→∞.

In the next theorem we study integrability properties and the Wold-Karhunen rep-
resentation of generalized Ornstein-Uhlenbeck processes. As above we consider the
bivariate Lévy process (U, η) as well as ξ and L∗ defined in (3.8) and (3.11). From now
on we assume mU((−∞,−1]) = 0, that is, U has no jumps of size −1 or smaller. We
will thus not need the process N . Whenever U is integrable let λ := E[−U1] and define
U = (U t)t∈R as U0 = 0 and U t − U s = Ut − Us + λ(t− s) for s < t.

Theorem 3.5. Assume mU((−∞,−1]) = 0.

(1) For r > 0 we have U1 ∈ Lr(P ) if and only if E[e−rξ1 ] < ∞. When U1 ∈ L1(P )
we have

exp(E[U1]) = E[e−ξ1 ] = exp
[
− γξ + 1

2
σ2
ξ +

∫

R

(e−x − 1 + x1{|x|≤1})mξ(dx)
]
. (3.20)

(2) Assume L∗1 ∈ L2(P ) and E[e−2ξ1 ] < 1. Then ξt →∞ as t→∞ a.s and the inte-
gral

∫∞
0
e−ξt dL∗t exists and is in L2(P ). Moreover, λ is strictly positive, the generalized

Ornstein-Uhlenbeck process satisfying (3.15) exists and is square integrable, and

Vt =

∫ t

−∞
e−λ(t−s) dL∗s +

∫ t

−∞
e−λ(t−s)Vs− dU s, t ∈ R. (3.21)

Remark 3.6. Assume L∗1 ∈ L2(P ), E[e−2ξ1 ] < 1 and E[L∗1] = 0. By (3.21),

Vt =

∫ t

−∞
e−λ(t−s) dΞs, t ∈ R, (3.22)

where, for s < t, Ξt − Ξs = L∗t − L∗s −
∫ t
s
Vu− dUu and Ξ0 = 0. The process Ξ is square

integrable with zero mean and stationary orthogonal increments, implying that (3.22)
is the Wold-Karhunen representation of V . To verify this fix s ∈ R. It was noted in
the proof of Theorem 3.4 that Vs is independent of (L∗s+t − L∗s, Us+t − Us)t≥0. Using
that the distribution of Vs as well as of (L∗s+t − L∗s, Ut+s − Us)t≥0 does not depend on
s, it follows from (3.15) that Ξ has stationary increments. Since L∗ as well as U are
zero mean square integrable Lévy processes and V is square integrable and stationary
it follows by definition of Ξ that (Ξt+s−Ξs)t≥0 is a square integrable martingale in the
filtration generated by Vs and (L∗s+t −L∗s, Ut+s −Us)t≥0. In particular this implies that
Ξ has zero mean and orthogonal increments.

Proof. (1) Since Ut = Log(−ξt) for t > 0, [11], Corollary II.8.16, shows that
∫

u>1

urmU(du) =

∫

erx−1>1

(erx − 1)m−ξ(dx) =

∫

x>
log 2
r

(erx − 1)m−ξ(dx).
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Thus, the left-hand side is finite if and only if
∫
|x|>1

erxm−ξ(dx) is finite. On the other
hand, since mU((−∞,−1]) = 0, [16], Corollary 25.8, shows that finiteness of the left-
hand side is equivalent to U1 ∈ Lr(P ), and similarly finiteness of

∫
|x|>1

erxm−ξ(dx) is
equivalent to E[e−rξ1 ] <∞.

Now assume E[e−ξ1 ] < ∞. The second equality in (3.20) follows from [16], The-
orem 25.17. Moreover, since Ut = Log(−ξt) for t > 0, [11], Theorem II.8.10, implies
that

Ut = −ξt + t
2
σ2
ξ + [(e−x − 1 + x) ∗ µξ]t, t ≥ 0.

Recalling the Lévy-Itô decomposition of ξ:

ξt = x1{|x|≤1} ∗ (µξ − νξ)t + [x1{|x|>1} ∗ µξ]t + tγξ +Gt, t ≥ 0,

where G denotes the (mean zero) Gaussian component of ξ and νξ(dt×dx) = mξ(dx) dt,
it follows that

Ut = −x1{|x|≤1} ∗ (µξ − νξ)t − tγξ −Gt + t
2
σ2
ξ + [(e−x − 1 + x1{|x|≤1}) ∗ µξ]t, t ≥ 0.

All terms on the right-hand side have finite mean, and the first and third term have
mean zero, implying

E[U1] = −γξ + 1
2
σ2
ξ +

∫

R

(e−x − 1 + x1{|x|≤1})mξ(dx).

In particular this gives (3.20).
(2) Since E[e−ξ1 ] ≤

√
E[e−2ξ1 ] < 1 it follows from (3.20) that λ > 0. It is shown

in [13], Proposition 4.1, that ξt →∞ a.s. Recall ([16], Theorem 25.17) that E[e−2ξt ] =
(E[e−2ξ1 ])t for t ≥ 0. Using that L∗1 is square integrable we can decompose (L∗t )t≥0 as
L∗t = Mt+ c1t where c1 is a constant and (Mt)t≥0 is a square integrable martingale with
〈M〉t = c2t for some c2 ≥ 0. Since

E
[ ∫ ∞

0

e−2ξt d〈M〉t
]

=

∫ ∞

0

(E[e−2ξ1 ])t d(c2t) <∞

the integral
∫∞

0
e−ξt dMt exists and is square integrable. Moreover, since ξs is indepen-

dent of ξu − ξs for all 0 ≤ s < u and E[e−ξ1 ], E[e−2ξ1 ] < 1, we get

E
[( ∫ ∞

0

e−ξs ds
)2]

= 2

∫ ∞

0

∫ ∞

s

E[e−ξs−ξu ] du ds

= 2

∫ ∞

0

∫ ∞

s

E[e−2ξs−(ξu−ξs)] du ds = 2

∫ ∞

0

∫ ∞

s

(E[e−2ξ1 ])s(E[e−ξ1 ])u−s du ds <∞

and hence the integrals
∫∞

0
e−ξs d(c1s) and

∫∞
0
e−ξs dL∗s exist and are square integrable.

By Theorem 3.4 and the remarks following it the generalized Ornstein-Uhlenbeck pro-
cess V = (Vt)t∈R exists and is square integrable. From (3.14) we have

Vt = Vs + [(L∗t − L∗s) +

∫ t

s

Vu− dUu]− λ
∫ t

s

Vu du for s < t.

12



Thus, by [9], Theoreme VI(6.8),

Vt = e−λ(t−s)Vs +

∫ t

s

e−λ(t−u) dL∗u +

∫ t

s

e−λ(t−u)Vu− dUu for s < t. (3.23)

Since V is a stationary square integrable process, λ is positive and U and L∗ are square
integrable, it follows from Remark 2.1 that (Vu−eλu1{u≤t})u∈R is integrable with respect
to U and (eλu1{u≤t})u∈R is integrable with respect to L∗. Letting s→ −∞ in (3.23) it
follows that

Vt =

∫ t

−∞
e−λ(t−u) dL∗u +

∫ t

−∞
e−λ(t−u)Vu− dUu for t ∈ R.
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