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Introduction

This Dissertation is concerned with two different areas of “quantum mathe-
matics”, namely, geometric quantization and knot theory. These have been
linked via Topological Quantum Field Theory since the late 1980’s. In 1988
Atiyah [Ati1] asked for a physical interpretation of the link invariant made by
Jones [Jon] in 1985. Witten [Wit] in 1989 gave an outline for an answer. He
argued that quantizing Chern-Simons theory with gauge group SU(n) would
produce a (2 + 1)-dimensional Topological Quantum Field Theory and that
this would be related to the Jones polynomial. On the geometric side, the
two-dimensional part of the TQFT was constructed by geometric quantization
of the moduli space of flat SU(n)-connections on a surface Σ. On the other
hand, the TQFT also gave a new three-manifold invariant and invariants of
links related to the Jones polynomials, now called the coloured Jones poly-
nomial. This was made mathematically rigorous by Reshetikhin and Turaev
([RT1],[RT2]) using representation theory of quantum groups. Later Blanchet,
Habegger, Masbaum and Vogel ([BHMV1], [BHMV2]) gave a skein theoretical
construction.

Regarding the geometric quantization, an auxilliary Kähler structure on
the moduli space was needed. To remove this dependency, Hitchin [Hit] con-
structed a projectively flat connection in a bundle of quantum spaces over
Teichmüller space. In the first part of this dissertation, we will study ana-
logues of this connection in geometric quantization of any symplectic manifold,
not necessarily moduli spaces. This is based on the construction of Andersen
[And2]. As a main result, we extend his construction to a more physically
sound metaplectically corrected quantization.

In the second part we investigate a conjecture in knot theory named the AJ
conjecture by Garoufalidis [Gar]. This relates the coloured Jones polynomial
with another knot invariant, the A-polynomial of Cooper, Culler, Gillet Long
and Shalen [CCG+]. The key observation here, is that the coloured Jones
polynomial satisfies a non-trivial recursion relation, as proved by Garoufalidis
and Lê [GL]. This relation is captured by a polynomial in two q-commuting
variables. The conjecture is that in the q = 1 limit, this becomes the A-
polynomial.

v



vi Introduction

We formulate a series of related conjectures, some of which employs the ties
to geometric quantization. Along the way we prove a formula for the coloured
Jones polynomials for a new class of knots, which we call double twist knots.
As a part of the investigation of one of these geometric AJ conjectures, we write
the coloured Jones polynomial for double twist knots as a multiple contour in-
tegral using Faddeev’s quantum dilogarithms. By a non-rigorous analysis of
the asymptotics of these integrals, we verify the conjecture for twist knots.

The dissertation is organized as follows.

Chapter 1 is a brief introduction to the concept of geometric quantization.
Also, we discuss Berezin-Toeplitz deformation quantization, primarily to in-
troduce Toeplitz operators.

Chapter 2 reviews the construction of a Hitchin connection made by Ander-
sen in [And2]. At the end we give a brief account of the moduli space of flat
SU(n)-connections and another example of symplectic manifolds with a rigid
family of Kähler structures.

Chapter 3 contains original work by the author in collaboration with Ander-
sen and Gammelgaard [AGL]. Here, we introduce a metaplectic structure in
the scheme of geometric quantization. We then construct a Hitchin connection
in this setting while removing several of the needed assumptions of the previ-
ous chapter. Then we discuss a setting, where the constructions from this and
the previous chapter of Hitchin connections both can be carried out, and show
that they agree.

Chapter 4 gives a geometric quantization of abelian varieties and writes down
both a Hitchin connection and concrete formulas for Toeplitz operators as done
in [And4]. This is applied to the moduli space of flat SU(2)-connections on a
genus one surface, where we discuss a good basis for the quantum spaces.

Chapter 5 introduces knots, in particular two-bridge knots and their knot
groups. We also introduce a certain family of two-bridge knots called double
twist knots. Finally, we construct the A-polynomial and discuss computations
for two-bridge knots as well as a theorem of Hoste and Shanahan [HS] on the
A-polynomial of twist knots.

Chapter 6 is devoted to TQFT and the coloured Jones polynomial. We dis-
cuss the construction of a TQFT in [BHMV2] and thereby introduce Skein
theory. This leads to a definition of the coloured Jones polynomial of a knot
or link. In the end we prove a closed formula for the coloured Jones polynomial
for double twist knots.



Introduction vii

Chapter 7 contains the AJ conjectures. We start with the original (alge-
braic) AJ conjecture of Garoufalidis, where we introduce the noncommutative
A-polynomial and discuss the current status of the conjecture. Then, following
Gukov [Guk], we introduce the Generalized Volume Conjecture, which contains
an AJ conjecture. Via the link between geometric quantization of the moduli
space of flat SU(2)-connections on a genus one surface and the coloured Jones
polynomial of a knot, we employ the Toeplitz operators from Chapter 4 to
formulate new geometric AJ conjectures. One of these are treated at the very
end of the chapter for the unknot. We also make an AJ conjecture in TQFT,
much more general than the conjectures in knot theory. We find this conjec-
ture very interesting, but have no results in this direction.

Chapter 8 starts with the introduction of Faddeev’s quantum dilogarithms,
which we use to formulate the new result in Theorem 8.1, expressing the
coloured Jones polynomial of double twist knots as a multiple countour in-
tegral. This is an extension of the work of Andersen and Hansen [AH] on the
figure eight knot. We conclude by a non-rigorous asymptotic analysis of the
integral, which for twist knots show the AJ conjecture in the sense of Gukov,
by referring to work by Hikami [Hik2].





1

Quantization of Symplectic
Manifolds

In this chapter we will discuss quantization as a mathematical concept. This,
of course, has a base in the world of physics, but the physical motivation for
the different approaches will only be touched upon briefly, if at all. Instead
we will take a more axiomatic way of reasoning, where we will will set forth
a wish-list for a quantization to fulfill. The main references are [AE], [Woo]
and [Sch1]. First we discuss general axioms for quantization. As these leads to
contradictions we turn to geometric quantization. This will be our preferred
method of quantizing symplectic manifolds. Finally, deformation quantization
is mentioned, in particular Berezin-Toeplitz quantization and Toeplitz opera-
tors.

1.1 Canonical Quantization

Quantization is the passage from a classical theory to a quantum theory. I.e.,
given a classical theory we seek to produce a quantum theory, which would
yield back the classical theory as a certain (semi-) classical limit. For our needs,
a classical system will be a symplectic manifold (M,ω). If we look at classical
mechanics in Rn, we have the phase space T ∗Rn = R2n with coordinates pj , qj
descibing momentum and position. The symplectic form in these coordinates
is ω =

∑
dpj ∧ dqj . Observables on this phase space are smooth functions

f ∈ C∞(R2n). An important operator on observables is the Poisson bracket
given by

{f, g} =
∑
j

∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj
.

This can be desribed by the symplectic form as

{f, g} = ω(Xg, Xf )

where Xf is the Hamiltonian vector field of f defined by df = ω(Xf , ·).

1



2 Quantization of Symplectic Manifolds

A quantization of this system is a way of assigning to an observable f
(or rather, as large a class of them as possible) a self-adjoint operator Qf on
L2(Rn, dq). This assignment should satisfy the following 5 properties

(q1) The assignment is linear

(q2) The constant function 1 should go to the identity, Q1 = I

(q3) The functional calculus for self-adjoint operators should yield ϕ(Qf ) =
Qϕ◦f for ϕ : R→ R where defined.

(q4) The operators corresponding to the coordinate functions pj and qj are

Qqjψ = qjψ, Qpjψ = − ih
2π

∂ψ

∂qj
, ψ ∈ L2(Rn)

(q5) The canonical commutation relation [Qf , Qg] = ih
2πQ{f,g}.

A quantization satisfying these rules is called canonical quantization. However,
this is not possible to do without getting something trivial or a contradiction;
if, for instance, the class of quantizable observables contains polynomials in
pj and qj up to degree four, this is not possible. Indeed, one can express
p2

1q
2
1 = (p1qi)

2 in two different ways. Using (q1), (q5) and (q3) for the squaring
function one obtains

Q(p1q1)2 = (Qp1q1)2 = Qp2
1q

2
1

+
h2

4π2
I.

But this is just the tip of the iceberg in terms of contradictions for the axioms
(q1)-(q5) (see [AE] for references and further discussions).

1.2 Geometric Quantization

The way we will deal with these problems, is by so-called geometric quantiza-
tion. The idea is to drop the axiom (q3) and reduce the space of observables.
We also want to quantize other symplectic manifolds, e.g. cotangent bundles.
For this we impose axioms for geometric quantization.

Given a symplectic manifold (M,ω) of dimension 2m we assign a (sepa-
rable) Hilbert space H. Also, fix a collection of real valued functions on M
as the observables F , which are closed under {·, ·}. The quantization assigns
self-adjoint operators on H to functions in F , satisfying

(Q1) The assignment is linear

(Q2) Q1 = I

(Q3) [Qf , Qg] = ih
2πQ{f,g} for f, g ∈ F
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(Q4) Given two symplectic manifolds (M,ω) and (M̃, ω̃) and a symplectomor-
phism ϕ : (M,ω)→ (M̃, ω̃), then for f ∈ F̃ we require Qf◦ϕ and Q̃f are
conjugate by a unitary operator from H to H̃.

(Q5) For M = R2m with the symplectic structure as above, we recover the
operators Qpj and Qqj as in (q4).

We will find a solution to the above by ignoring (Q5) and see what happens
when we take the naive approach on a cotangent bundle. Namely, let M =
T ∗N and let τ be the tautological one-form on M defined by

τ(ξ) = η(π∗(ξ)), ξ ∈ T(η,p)M

where p ∈ N and π : M → N is the projection. In local coordinates qj on N
and (pj , qj) on M we get

τ =
m∑
j=1

pjdqj

and thus the standard symplectic form w = dτ.
Now, given a function f on M , we can write its Hamiltonian vector field

in local coordinates as

Xf =
m∑
j=1

∂f

∂qj

∂

∂pj
− ∂f

∂pj

∂

∂pj
.

Since Xf acts on functions on M , one could try to set Qf = Xf and indeed
[Xf , Xg] = X{f,g} so Qf = ih

2πXf is a candidate, which satisfies (Q1), (Q3)
and (Q4), but obviously not (Q2). Instead, let us try and modify it by adding
multiplication by f

Qf =
ih

2π
Xf + f.

One immediately sees that Xf (g) = {f, g} and so we almost get the desired
commutator

[Qf , Qg] =
ih

2π

(
ih

2π
X{f,g} + 2{f, g}

)
=
ih

2π

(
Q{f,g} + {f, g}

)
.

From observing τ(Xf ) = −
∑
pj

∂f
∂pj

, a straight-forward calculation reveals that

Xf (τ(Xg))−Xg(τ(Xf ) = τ(X{f,g})− {f, g}

and we finally arrive at the formula

Qf =
ih

2π
Xf + τ(Xf ) + f

satisfying (Q1)-(Q4). This works well on a cotangent bundle, where we have
a (canonical) one-form τ satisfying dτ = ω. On a general symplectic manifold
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we could always choose Darboux coordinates Uα with τα to get the desired
local description, but what about on overlaps Uα ∩Uβ where we have another
τβ? The difference is τα − τβ = duαβ where uαβ : Uα ∩ Uβ → R. By direct
computation, we see that

e−
2π
ih
uαβQαf

(
e

2π
ih
uαβϕ

)
= Qβf (ϕ), ϕ ∈ C∞(M).

This ambiguity tells us that, whereas Qf is not defined on functions onM , it is
an operator on sections of the complex line bundle L with transition functions
gαβ = e

2πi
h
uαβ . This, however, requires that on Uα ∩ Uβ ∩ Uγ

gαβgβγgγα = 1

that is, if
uαβuβγuγα

h
= zαβγ ∈ Z.

Here, with respect to the covering of U = {Uα}, zαβγ is a cocycle representing
the Chern class of L in Ȟ2(U,Z). As we shall see, the real Chern class is
represented by ω

h , so this is really a condition on ω.
Let L be the line bundle descibed above. Since |gαβ| = 1 we can choose a

Hermitian structure on L as

〈s1, s2〉p = s1(p)s2(p) s1, s2 ∈ C∞(M,L), p ∈M.

To compute the first real Chern class of L we find a connection ∇, compatible
with 〈·, ·〉, and compute its curvature. The connection is descibed locally on
Uα as

∇Y (s) = Y (s) +
2π

ih
τα(Y )s

for a section s and a vector field Y in the complexified tangent bundle. Here
τ is extended complex linearly. That ∇ is compatible with the Hermitian
structure means that

Y 〈s1, s2〉 = 〈∇Y (s1), s2〉+ 〈s1,∇Ȳ (s2)〉

and this indeed the case. On the other hand the curvature of this connection
is

R∇(Y,Z) = ∇Y∇Z −∇Z∇Y −∇[Y,Z] =
2π

ih
ω(Y,Z)

and we find the first real Chern class as cR1 (L) =
[
i

2πR∇
]

=
[
ω
h

]
. The above

construction can be gathered in a definition

Definition 1.1. A prequantum line bundle on a symplectic manifold (M,ω)
is a triple (L,∇, 〈·, ·, 〉) of a Hermitian line bundle on M with a compatible
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connection satisfying the prequantum condition

F∇ =
2π

ih
ω.

We say that (M,ω) is prequantizable if such a bundle exists, which is to say ω
h

defines an integral cohomology class.

In the language of prequantum line bundles, the prequantum operator Qf
can now be written globally on M as

Qf =
ih

2π
∇Xf + f. (1.1)

Now we have a construction satisfying (Q1)-(Q4) on any symplectic mani-
fold. But what about the Hilbert space? We could consider the L2-completion
of C∞(M,L). This is what is called prequantization, but we get a dimension
problem for M = R2m, where we obtain L2(R2m) instead of L2(Rm). Some-
how we have twice the amount of variables and so we need to choose half of
them. On R2m this is easy, but what about on a general symplectic manifold?
To this end we introduce the notion of a polarization.

A polarization is a choice of a Lagrangian distribution of the tangent bun-
dle. We will focus on complex polarization, but note that there also is a real
version.

A complex polarization on (M,ω) is a complex distribution P of the com-
plexified tangent bundle TMC, i.e. to each point p ∈M , a (complex) subspace
Pp ⊂ TpMC, satisfying the following properties:

(P1) P is involutive, i.e. closed under Lie bracket

(P2) It is Lagrangian, meaning dimC Pp = m = 1
2 dimRM and ω|P = 0 for all

p ∈M

(P3) dimC Pp ∩ P̄p = k is constant

(P4) P + P̄ is involutive

A general account of quantization using a complex polarization can be
found in [Woo] or [AE]. We will be using a particularly nice one, namely
where k = 0. We will call such a polarization pseudo-kähler1. Let us see how
one can construct such a polarization.

First, choose an almost complex structure J ∈ C∞(M,End(TM)) onM , a
smooth choice of endomorphisms of TM where each J2

p = − idp. Extending J
complex linearly to TMC, we can split it into eigenspaces TMC = T+T̄ , where

1In e.g. [Woo] this is called a Kähler polarization, but we will reserve this name for a
more obvious candidate.
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T is the i-eigenspace and T̄ is the −i-eigenspace. This is our polarization. We
notice (P3) and (P4) are automatically satisfied. To satisfy (P1) exactly means
that J is integrable, and so it makes M into a complex manifold.

Regarding (P2), we see that the dimension is fine and given X,Y ∈ T , we
observe that

ω(X,Y ) = 0 ⇐⇒ ω(X,Y ) = −ω(X,Y ) = ω(iX, iY ) = ω(JX, JY )

so (P2) is satisfied if and only if ω is J-invariant. This amounts to (M,ω, J)
being a pseudo-Kähler manifold with the pseudo-Riemannian metric g(X,Y ) =
ω(X, JY ). If g is positive definite, we call it a Kähler polarization.

Now to define the Hilbert space HJ we simply take the completion of{
s ∈ C∞(M,L) | ∇Xs = 0, ∀X ∈ T̄ and

∫
M
〈s, s〉Ω <∞

}
where Ω = (−1)

n(n−1)
2

ωm

m! is the Liouville form on M . This is the space of
square integrable holomorphic sections of L. Now, there might not be many,
if any, holomorphic sections of L, but if we choose a Kähler polarization, L
becomes an ample line bundle, so at least a power of L has holomorphic sec-
tions.

Now we are left with the problem of the family of obsevables F we can
quantize. We need for f ∈ F and s ∈ HJ that

Qf (s) = Qf =
ih

2π
∇Xf s+ fs ∈ HJ .

This means that for all X ∈ T̄ and all s ∈ HJ we need

∇X(Qf (s)) =
ih

2π
∇[X,Xf ]s = 0 ⇐⇒ [X,Xf ] ∈ T̄ .

As shown in [Woo] this amounts to Xf being a Killing vector field, so this
means the family of quantizable functions is rather small. The dimension of
the space of Killing vector fields on (M, g) is finite (bounded by n(n−1)

2 )..
Also, applying this method to e.g. quantum mechanics, it can be observed

that the energy levels for the harmonic oscillator is wrong ([AE]). A way to fix
this is to introduce metaplectic correction. This technique will be explored in
Chapter 3 along with the main problem addressed in this thesis, namely the
dependence of the choice of polarization.

1.3 Deformation Quantization

To be able to quantize most (if not all) smooth functions we could abandon
geometric quantization and turn to deformation quantization. As is customary,
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we let ~ = h
2π . The idea here is to relax the canonical commutation relation

(Q3) so that it only holds asymptotically in ~, that is

(Q3’) [Qf , Qg] = i~Q{f,g} +O(~2).

A way to do this is by deforming the algebra stucture on C∞(M) by in-
troducing an associative product ? on formal power series C∞[[~]] where for
f, g ∈ C∞(M) we write

f ? g =
∞∑
j=0

Cj(f, g)~j

for bilinear operators Cj : C∞(M)× C∞(M)→ C∞(M) satisfying

(d1) C0(f, g) = fg

(d2) C1(f, g)− C1(g, f) = i~{f, g}

(d3) Cj(f, 1) = Cj(1, f) = 0 for j ≤ 1.

We do not require the power series to converge for any values of h. The hope
is that the above algebra structure fits well with our quantum observables, so
that

QfQg = Qf?g.

A way of securing this identity is to start from this and producing the star
product accordingly. This means that we need operators on our Hilbert space
with an asymptotical expansion for the product

QfQg ∼
∞∑
j=0

QCj(f,g)~
j

where ∼ means

‖QfQg −
L∑
j=0

QCj(f,g)~
j‖ ∈ O(~L+1).

We will now describe a specific construction of both operators and sub-
sequently a star product which fits well together with geometric quantization
with Kähler polarization. This follows Schlichenmaier [Sch1].

Let (M,ω) be a compact symplectic manifold and choose a Kähler structure
J . We assume that (M,ω) is prequantizable with respect to ~ = h

2π = 1 that
is, [ ω2π ] is an integral cohomology class. Choose a prequantum line bundle
(L,∇, 〈·, ·〉). This means in particular that R∇ = −iω. Now, for each k ∈
N we can produce another prequantizable symplectic manifold (M,kω) with
prequantum line bundle (Lk,∇k, 〈·, ·〉k). This corresponds to setting ~ = 1

k for
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the original manifold. We will drop the index k on both ∇ and 〈·, ·〉. Carrying
out the geometric quantization scheme, we produce a family of Hilbert spaces

H
(k)
J = {s ∈ C∞(M,Lk) | ∇Xs = 0, ∀X ∈ T̄}.

The condition on s can be reformulated as follows. Using the orthogonal
projections π1,0 : TMC → T and π0,1 : TMC → T̄ we can split ∇ = ∇1,0 +∇0,1

into types. Since ω is J-invariant it is of type (1, 1) and thus the (0, 2)-part of
the curvature of ∇ vanishes, and ∇0,1 defines a ∂̄-operator on each C∞(M,Lk)
giving the line bundles a holomorphic structure. In this language

H
(k)
J = {s ∈ C∞(M,Lk) | ∇0,1s = 0}

is the space of holomorphic sections. These are the Hilbert spaces associated
to the quantization of (M,ω) with ~ = 1

k with the inner product given by the
L2-inner product induced by 〈·, ·〉 and the Liouville form.

We now wish to produce operators on these spaces. For each k, denote by
Π

(k)
J : L2(M,Lk)→ H

(k)
J the orthogonal projection from the square-integrable

sections to H(k)
J . We note that, since M is compact, H(k)

J is finite dimensional
and thus a closed subspace.

Definition 1.2. The Toeplitz operator T (k)
f ∈ End(H

(k)
J ) associated to a func-

tion f ∈ C∞(M) is given by

T
(k)
f s = Π

(k)
J (fs).

A few remarks on these operators are in order. First of all, the map
T : C∞(M) → End(H

(k)
J ) is surjective. As k goes to infinity, we also re-

cover some faithfulness, stated in the theorem by Bordemann, Meinrenken
and Schlichenmaier [BMS]

Theorem 1.3 ([BMS]). Given a function f ∈ C∞(M) there exists a constant
C > 0 such that

‖f‖∞ −
C

k
≤ ‖T (k)

f ‖ ≤ ‖f‖∞

as k →∞.

In particular this theorem states that if limk→∞‖T
(k)
f − T

(k)
g ‖ = 0 then

f = g. Another theorem from the same paper is

Theorem 1.4 ([BMS]). For functions f, g ∈ C∞(M) the commutator of
Toeplitz operators behaves as

‖k[T
(k)
f , T (k)

g ]− iT (k)
{f,g}‖ ∈ O

(
1

k

)
as k →∞.
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The sign is different here than in the original paper, due to our choice of
Poisson bracket.

From this one can show that the product of Toeplitz operators allows an
asymptotical expansion in Toeplitz operators as follows

Theorem 1.5 ([Sch1]). For functions f, g ∈ C∞(M) there exists a family of
functions Cj(f, g) ∈ C∞ satisfying (d1)-(d3) and for each N ∈ N there is a
constant KN (f, g) such that

‖
L∑
j=0

T
(k)
Cj(f,g)

(
1

k

)j
− T (k)

f T (k)
g ‖ ≤ KN (f, g)

(
1

k

)L+1

.

This means that we get a star product, which we call the Berezin-Toeplitz
star product, given by

f ?BT g =
∞∑
j=0

(−1)jCj(f, g)

(
1

k

)j
.

Now, the prequantum operator Qf from (1.1) is not a Toeplitz operator
and, as we discussed, it does not allow many quantizable obervables. This was
because it did not necessarily preserve the space of holomorphic sections. One
way of increasing the number quantizable functions could be by considering the
operator π0,1 ◦Qf . This is in fact a Toeplitz operator, as proven by Tuynman.

Theorem 1.6 ([Tuy2]). For any smooth function f ∈ C∞(M), we have

π0,1 ◦Qf = T
(k)

f− 1
2k

∆f

as operators from C∞(M,Lk) to H(k)
J , where ∆ is the Laplace operator.

We will not be concerned with deformation quantization in this disserta-
tion, but the Toeplitz operators will appear in Chapter 4 and 7.





2

The Hitchin Connection

In this chapter we address the dependence of the choice of Kähler structure for
geometric quantization. Assuming that we have a family of Kähler structures
parametrized by a manifold, we show that the different spaces of holomorphic
sections form a vector bundle over the parametrizing manifold. To compare
different choices, we thus need to descibe a connection in this bundle. This
is an approach which has been used by Hitchin [Hit] and also by Axelrod,
Della Pietra and Witten [APW] in the context of quantizing Chern-Simons
theory to get a topological quantum field theory. The symplectic manifolds
they considered were moduli spaces of flat SU(n)-connections on a surface.

Our point of view is not that of TQFT but rather the general problem of
writing down such a connection, which we will call a Hitchin connection. The
following is an account of the first half of the paper [And2] in which Andersen
constructs a Hitchin connection for compact symplectic manifolds.

2.1 A Hitchin Connection for Symplectic Manifolds

Let (M,ω) be a compact prequantizable symplectic manifold. Choose a pre-
quantum line bundle (L,∇, 〈·, ·〉) onM . Now, let T be a manifold parametriz-
ing Kähler structures on (M,ω) by a smooth map

I : T → C∞(M,End(TM)).

By smooth we mean that I gives rise to a smooth section in the pull-back
bundle π∗M (End(TM))→ T ×M under the projection on M . This means, for
each σ ∈ T , we have that I(σ) = Iσ is an integrable complex structure on M ,
compatible with ω, such that

gσ(X,Y ) = ω(X, IσY )

is a Riemannian metric. We denote the splitting of the complexified tangent
bundle by TMC = Tσ + T̄σ and remark that the orthogonal projections are
given by

π1,0
σ = 1

2(id−iIσ) and π0,1
σ = 1

2(id +iIσ)

11
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respectively. This means that ∇0,1
σ = 1

2(id +iIσ)∇. As before, we define our
quantum spaces

H(k)
σ = H0(Mσ,Lk) =

{
s ∈ C∞(M,Lk) | ∇0,1

σ s = 0
}
.

It is not clear that these spaces form a bundle, let alone have the same di-
mension, but nevertheless we proceed to construct a Hitchin connection and
thereby also showing that they produce a bundle over T . The plan is to con-
sider the infinite rank trivial bundle H(k) = T × C∞(M,Lk) over T . Clearly,
H

(k)
σ ⊆ H(k)

σ and so we seek a connection in H(k) preserving these subspaces.
This leads us to a definition of a Hitchin connection.

Definition 2.1. A Hitchin connection is a connection ∇ in H(k) preserving
the subspaces H(k)

σ of the form

∇V = ∇tV + u(V ), (2.1)

where V is a vector field on T , ∇t is the trivial connection, and u is a one-form
in T with values in differential operators on sections of Lk, which we denote
by D(M,Lk).

Our goal is to write down an explicit formula for u. But first, we need to
analyze the condition that ∇ preserves the subspaces, meaning for any σ ∈ T ,
any s ∈ H(k)

σ , and any vector field V on T we require

∇0,1
σ ∇V s = 0.

As a condition on u this can be written by (2.1) as

∇0,1
σ V [s] +∇0,1

σ u(V )s = 0. (2.2)

By taking the derivative of ∇0,1
σ s = 0 along V , we find that

0 = V [∇0,1
σ s] = V [1

2(id +iIσ)∇s] = i
2V [Iσ]∇s+∇0,1

σ V [s] (2.3)

and so by comparing (2.2) and (2.3) and using that s is holomorphic, we get
the lemma

Lemma 2.2. The connection defined by (2.1) preserves the subspaces H(k)
σ if

and only if u satisfies the equation

∇0,1
σ u(V )s =

i

2
V [Iσ]∇1,0

σ s (2.4)

for all σ ∈ T and all vector fields V on T .
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To solve (2.4) we need some extra assumptions. First, let us assume that T
is a complex manifold. Extend Iσ, ω, and gσ complex linearly to TMC. Given
a vector field V on T , we can differentiate our parametrization map to get

V [I] : T → C∞(M,End(TMC).

Differentiating the identity I2 = − id we see that V [I] and I anti-commute
and so V [I] interchanges T and T̄ . This means that

V [I]σ ∈ C∞(M, (T ∗σ ⊗ T̄σ) � (T̄ ∗σ ⊗ Tσ))

and we get a splitting of V [I]σ in V [I]′σ ∈ C∞(M, T̄ ∗σ ⊗ Tσ) and V [I]′′σ ∈
C∞(M,T ∗σ ⊗ T̄σ). Now, we make the assumption that I is holomorphic in the
sense that

V ′[I] = V [I]′ and V ′′[I] = V [I]′′

where V ′ is the (1, 0)-part of V and V ′′ is the (0, 1)-part of V . A justification
for the term “holomorphic” can be seen from the following observation made
in [AGL]. Namely, let J denote the (integrable almost) complex structure on
T . Induce an almost complex structure Î on T ×M by the following

Î(V �X) = JV � IσX, for V �X ∈ Tσ,p(T ×M).

The proposition is now

Proposition 2.3. Î is integrable if and only if the family I is holomorphic.

Proof. We will show that the Nijenhuis tensor vanishes if and only if I is
holomorphic. This suffices due to the Newlander-Nirenberg theorem. First,
we remark that if two vector fields X and Y are tangent to M that is, pull-
backs of vector fields on M , then the Nijenhuis tensor vanishes, since Iσ is
integrable. Like-wise for vector fields tangent to T . This means that it is
enough to check on vector fields X and V , where X is tangent to M and V is
tangent to T . Also, we notice that [V,X] = [ÎV,X] = 0 and [V, ÎX] = V [I]X.
So we calculate the Nijenhuis tensor

Nij(V,X) = [ÎV, ÎX]− [V,X]− Î[ÎV,X]− Î[V, ÎX]

= [JV, IX]− Î[V, IX]

and by splitting V = V ′ + V ′′ we calculate futher that

= iV ′[I]X − IV ′[I]X − iV ′′[I]X − IV ′′[I]X

= 2i(π0,1V ′[I]X − π1,0V ′′[I]X)
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and so by a consideration of types, we see that this vanishes for all X and V
if and only if we have

π0,1V ′[I]X = π1,0V ′′[I]X = 0

meaning V ′[I] ∈ C∞(M, T̄ ∗ ⊗ T ) and V ′′[I] ∈ C∞(M,T ∗ ⊗ T̄ ) which proves
the proposition.

Similarly we can consider

V [g] = ωV [I].

Since ω is of type (1,1) and V [I] interchanges types, V [g] only has components
of type (2,0) and (0,2). Furthermore V [g] is symmetric, since g is, and so we
have V [g]σ ∈ C∞(M,S2T ∗σ � S2T̄ ∗σ ).

By (2.1) and the type of ω we can define G̃(V )σ ∈ C∞(M, (Tσ ⊗ Tσ) �
(T̄σ ⊗ T̄σ)) by the equation

V [I] = G̃(V )ω, (2.5)

and split it in G̃(V )σ = G(V )σ + Ḡ(V )σ with G(V )σ ∈ C∞(M,Tσ ⊗ Tσ) for
all real vector fields V on T . Thus we see that G̃ and G are one-forms on T
with values in C∞(M,TMC ⊗ TMC) and C∞(M,Tσ ⊗ Tσ), respectively. By
construction we have

V [g] = ωG̃(V )ω

and since V [g] is symmetric so is G̃(V ) and G(V ). We also notice that
G(V ′) = G(V ) since V ′[I] = G(V )ω by the holomorphicity condition on I.

We want to construct a one-form on T with values in differential operators
D(M,Lk). To this end, consider G(V )σ ∈ C∞(M,S2(Tσ)). This can be
viewed a linear map C∞(M,T ∗σMC)→ C∞(M,Tσ) by contraction. From this
we construct the second order differential operator ∆G(V )σ ∈ D(Mσ,Lk) given
by

C∞(Mσ, T
∗MC ⊗ Lk)
G(V )σ⊗id
��

∆G(V )σ : C∞(Mσ,Lk)

∇
66

C∞(Mσ, Tσ ⊗ Lk)

∇̃σ⊗id + id⊗∇
��

C∞(Mσ, T
∗MC ⊗ Tσ ⊗ Lk)

Tr

ff

where ∇̃σ is the Levi-Civita connection for gσ. For short will write ∆G(V )σ =
Tr∇σG(V )σ∇σ.

This operator will be at the heart of u, and when we test the condition
(2.4) we compute ∇0,1

σ ∆G(V )σ . In this computation, the trace of the curvature
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of Mσ appears, that is, the Ricci form ρσ. Since we are on a compact kähler
manifold and the Ricci form is of type (1, 1), the Hodge decomposition and
∂∂̄-lemma allows us to write

ρσ = ρHσ + 2i∂σ∂̄σFσ,

where ρHσ is harmonic and Fσ is a real function on M called a Ricci potential.
If we choose Fσ such that

∫
Fσω

m = 0 for all σ ∈ T , we get a smooth family
of Ricci potentials F : T → C∞(M,R). Such families will play a big role in
the next chapter.

We now define a one-form u ∈ Ω1(T ,D(M,Lk)) by

u(V ) =
1

4k + 2n

(
∆G(V ) + 2∇G(V )∂F + 4kV ′[F ]

)
. (2.6)

for some n ∈ Z, where 2k + n 6= 0. This will turn out to satisfy (2.4) under
some further assumptions.

Definition 2.4. We say that the family I of Kähler structures on (M,ω) is
rigid if

∇̃0,1
σ G(V )σ = 0

for all vector fields V on T and all σ ∈ T .

This seems like a rather restrictive condition, and attempts has been made
to remove it, though without success. In Section 2.2 and 2.3 we give two
examples of symplectic manifolds, satisfying this condition, starting with the
moduli space of flat SU(n)-connection as in Hitchin’s original construction.

The theorem is now

Theorem 2.5 ([And2]). Suppose that I is a holomorphic, rigid family of Käh-
ler structures on a compact prequantizable symplectic manifold (M,ω). Fur-
thermore assume that the first real Chern class satisfies c1(M,ω) = n[ω] ∈
Im
(
H2(M,Z) → H2(M,R)

)
and H1(M,R) = 0. Then u given by (2.6) sat-

isfies (2.4) for all k such that 2k + n 6= 0.

The proof follows from the following three lemmas adapted to our con-
ventions from [And2]. In the following we drop the σ-subscript. Also, we
see that since ω is harmonic, the assumption on the Chern class implies that
ρ = nω + 2πi∂∂̄F .

Lemma 2.6. For s ∈ H(k)
σ the equation

∇0,1
(
∆G(s) + 2∇G∂F s

)
= i
(
(2k + n)Gω∇s+ kTr(2G∂Fω + ∇̃(G)ω)s

)
,

holds at any point σ in T , where G = G(V ) for any tangent vector V on T .
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Proof. The proof is a straight-forward calculation

∇0,1∆Gs = Tr∇0,1∇1,0G∇s
= Tr∇1,0G∇0,1∇s− ikωG∇s− iρG∇s
= ikTr∇1,0Gωs+ ikGω∇s+ iGρ∇s
= ikTr ∇̃(G)ωs+ 2ikTrGω∇s+ +iGρ∇s
= ikTr ∇̃(G)ωs+ 2ikTrGω∇s+ +inGω∇s− 2G∂∂̄F∇s
= ikTr ∇̃(G)ωs+ i(2k + n) TrGω∇s+ 2ikTrG∂Fωs

− 2∇0,1∇G∂F s,

where we use that ∇(ω) = 0 and the rigidity of I.

Lemma 2.7. For any vector field V on T we get

∂̄(V ′[F ]) = − i
2

TrG∂(F )ω − i

4
∇1,0(G)ω.

which is established from the following result

Lemma 2.8. For any vector field V on T we get

V ′[ρ] =
1

2
d
(
Tr∇1,0(G(V ))ω

)
.

This lemma will be proven in Section 3.2.1.

Proof of Lemma 2.7. Differentiating the decomposition ρ = nω+2id∂̄F along
V ′ we find

V ′[ρ] = V ′[nω] + 2iV [d∂̄F ]

= −dV ′[I]dF + 2id∂̄V ′[F ]

thus we can apply Lemma 2.8 and (2.5)

0 = d∂̄V ′[F ] +
i

2
V ′[ρ]− i

2
dV ′[I]dF

= d

(
∂̄V ′[F ] +

i

4
Tr∇(G(V ))ω +

i

2
G(V )ωdF

)
.

Since H1(M,R) = 0

(∂̄V ′[F ] +
i

4
Tr∇(G(V ))ω +

i

2
G(V )ωdF

is an exact form and we see that it is of type (0, 1). But M is compact and
thus it is 0 and we get the desired formula.
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Proof of Theorem 2.5. Piecing together Lemma 2.7 and Lemma 2.6 we see that

∇0,1u(V )s =
i

2
G(V )ω∇s =

i

2
V ′[I]∇s =

i

2
V [I]′∇s =

i

2
V [I]∇s

since s is a holomophic section.

It is worth noticing that, in the case of the moduli space of flat SU(n)-
connections, this is the same connection as the one Hitchin constructed as it
is shown in [And2]. In the next section we give a short overview of the moduli
space. The focus of the next chapter will be on removing some of the conditions
in the above theorem, most notably the compactness and the condition on the
Chern class.

2.2 The Moduli Space of Flat Connections

Regarding the TQFT mentioned in the introduction, we review the moduli
space of flat SU(n)-connections on a surface. Let Σ be a closed, compact,
connected, orientable surface. The moduli space of flat SU(n)-connections
on Σ is the set of gauge equivalence classes of flat connections in a principal
SU(n)-bundle over Σ. Since Σ is a surface and SU(n) is simply connected,
all principal SU(n)-bundles are trivial, and thus we need not choose a specific
bundle to realize the moduli space. As a set, this is in bijection with

MSU(n)(Σ) = Hom(π1(Σ),SU(n))
/

SU(n)

via the holonomy map. From now on we will make no distinction, and refer
to MSU(n) as the moduli space of flat connections. This is in general not a
smooth manifold, but a singular variety. However, it can be made smooth in
two different ways.

First, we can restrict to the irreducible representations ρirr : π1(Σ) →
SU(n), meaning the stabilizer of ρirr is the center of SU(n). Then it can
be shown that

Mirr
SU(n)(Σ) = Homirr(π1(Σ),SU(n))

/
SU(n) ⊆MSU(n)(Σ)

is an open, dense subset and a smooth manifold. Another way is considering
the punctured surface Σ′ = Σ − {p} and a loop γ going once around the
puncture. Then choose a d ∈ Z/nZ coprime with n and let D = e

2πid
n id be

the corresponding central element of SU(n). The space

Md
SU(n)(Σ

′) = {ρ ∈ Hom(π1(Σ′),SU(n)) | ρ(γ) = D}
/

SU(n) ⊆Mirr
SU(n)(Σ

′)

is a smooth, compact manifold.
In [Gol], Goldman gave a symplectic structure for these manifolds. This is

based on an identification of the tangent space with the first cohomology of Σ
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with coefficients in the adjoint bundle. The symplectic form is then basically
the integral of the cup product.

These moduli spaces have a prequantum line bundle (see [Qui], [BF], [Fre]).
By choosing an element in the Teichmüller space T of Σ, we get a complex
structure on Σ induced by the Hodge star operator and by Narasimhan and
Seshadri [NS], the moduli space inherits a Kähler structure.

Now, we have a symplectic manifold with a prequantum line bundle and
a complex manifold parametrizing Kähler structures. As to the cohomological
conditions, Atiyah and Bott [AB] showed that these moduli spaces are simply
connected and that the image Im(H2(MSU(n),Z) → H2(MSU(n),R)) is gen-
erated by n[ω]. Finally, rigidity of the family of Kähler structures were part
of the original construction of the Hitchin connection, made by Hitchin in [Hit].

Hitchin showed that this connection is projectively flat, allowing to identify
the (projective) quantum spaces for different Kähler structures by parallel
transport.

2.3 Example of Rigid Family of Kähler Structures

As promised, we now give an example, aside from the moduli spaces above, of
a symplectic manifold with a rigid family of Kähler strucures. We will use the
notation introduced above.

Let (M,ω) be R2 with the standard symplectic form ω = dx ∧ dy and let
T = Rl. We want to analyze a family of complex structures

Iσ

(
∂

∂x

)
= A(σ, x, y)

∂

∂x
+B(σ, x, y)

∂

∂y

given by functions A,B ∈ C∞(T ×M). Then the identity I2
σ = − id yields

Iσ

(
∂

∂y

)
= −

(
1

B
+
A2

B

)
∂

∂x
−A ∂

∂y
.

It is clear that ω is Iσ invariant and gσ is positive definite when B > 0. From
this one finds

∂

∂z
=

1

2

(
(1− iA)

∂

∂x
− iB ∂

∂y

)
∂

∂z̄
=

1

2

(
(1 + iA)

∂

∂x
+ iB

∂

∂y

)
and thus

∂

∂x
=

∂

∂z
+

∂

∂z̄
∂

∂y
=
i−A
B

∂

∂z
− i+A

B

∂

∂z̄
.
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Writing I as a tensor

I =

(
A
∂

∂x
+B

∂

∂y

)
dx−

((
1

B
+
A2

B

)
∂

∂x
+A

∂

∂y

)
dy

we see that a variation along a vector field V on T

V [I] =

(
V [A]

∂

∂x
+ V [B]

∂

∂y

)
dx

−
(

2ABV [A]− (1 +A2)V [B]

B2

∂

∂x
+ V [A]

∂

∂y

)
dy

and the identity G̃(V )ω = V [I] gives the formula

G̃(V ) = −2V [A]
∂

∂x

∂

∂y
− V [B]

∂2

∂y2
− 1

B2

(
2ABV [A]− (1 +A2)V [B]

) ∂2

∂x2
.

By the above formulas we can write G̃(V ) in the basis ∂
∂z ,

∂
∂z̄ as

G̃(V ) =
2

B2
(−iBV [A] + V [B] + iAV [B])

∂2

∂z2

+
2

B2
(iBV [A] + V [B]− iAV [B])

∂2

∂z̄2
.

Let us assume that B is a function on M only. Then ∂
∂z̄ of the coefficient of

∂2

∂z2 is reduced to

∂

∂z̄

(
−2i

B
V [A]

)
=
A

B

∂V [A]

∂x
+
∂V [A]

∂y
− A

B2
V [A]

∂B

∂x
− 1

B
V [A]

∂B

∂y

+ i

(
1

B2
V [A]

∂B

∂x
− 1

B

∂V [A]

∂x

)
.

Setting this equal to zero and splitting into real and imaginary parts, we get
the equations

0 = −V [A]
∂B

∂y
+B

∂V [A]

∂y

0 = V [A]
∂B

∂x
−B∂V [A]

∂x
.

These equations have solutions B(x, y) = B0(x, y) and A(σ, x, y) = A0(x, y) +∑l
i=1 σiB0(x, y) where A0 and B0 are arbitrary functions on (M,ω). This

means that given any complex structure

I0

(
∂

∂x

)
= A0(x, y)

∂

∂x
+B0(x, y)

∂

∂y

we have obtained a rigid family of deformations parametrized by Rl. This
means, that for any symplectic two-manifold with a Kähler structure, we can
find a rigid family of Kähler structures locally.
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The Hitchin Connection and
Metaplectic Correction

This chapter contains one of the main results of this thesis, namely an extension
of the Hitchin connection from the previous chapter to geometric quantization
with metaplectic correction. This serves two purposes. First and foremost,
this is the “right” theory in terms of physics ([AE], [Woo]). Second, it removes
many of the assumptions of the previous chapter. Most notably, there is no
requirement on the first real Chern class of the manifold, other than it should
be divisible by two. But also, we need not assume M compact, T complex,
or I holomorphic to descibe the connection. The price, however, is the loss of
the trivial connection, which served as reference point for Definition 2.1. This
results in the construction of a reference connection in Section 3.2. A new
Hitchin connection is defined and constructed. At the end of the chapter, the
setting from Chapter 2 is introduced and a comparison between the Hitchin
connections is carried out, culminating in Theorem 3.18. But before all this,
we need to introduce the metaplectic structure on (M,ω).

3.1 Metaplectic Structure

As mentioned in Chapter 1, geometric quantization does not give the right the-
ory in terms of physics. As it turns out, the prequantum line bundle must be
corrected by a square root of the canonical line bundle. However, this bundle
depends on the choice of Kähler structure, and so we need to take the square
root of the canonical line bundles associated to all Kähler structures simulta-
neously. This is the notion of a metaplectic structure. It can be formulated in
terms of structure groups, as the metaplectic group is the double cover of the
symplectic group (a symplectic analogue of a spin structure, if you will). This
in not the approach we will take. We will construct the bundle itself following
[Woo] (in the spirit of Rawnsley [Raw]).

Let (M,ω) be a symplectic manifold of dimension 2m, not necessarily com-
pact. Given a compatible almost complex structure J on (M,ω), we seek to
find a line bundle δJ which satisfies that δJ ⊗ δJ = KJ =

∧
T ∗J , i.e. a square

root of the canonical line bundle. Clearly, there is more than one choice of a

21
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square root of KJ (when it exists), and we would like to choose δJ in a unified
way for different J .

Consider the positive Lagrangian Grassmannian L+M consisting of pairs
(p, Jp), where p ∈M and Jp is a compatible almost complex structure on the
tangent space TpM . This space has the structure of a smooth bundle over
M , with the obvious projection, and with sections corresponding precisely to
compatible almost complex structures on (M,ω).

At each point (p, Jp) ∈ L+M , we can consider the one dimensional space
KJp =

∧m T ∗Jp . These form a smooth bundle K over L+M , and the pullback
by a section of L+M yields the canonical line bundle associated to the almost
complex structure on M given by the section.

We want to find a square root δ → L+M of the bundle K → L+M .
Such a square root is called a metaplectic structure on M . Since the space of
compatible almost complex structures is contractible, L+M has contractible
fibers, and so we can find local trivializations of K with constant transition
functions along the fibers. The construction of a metaplectic structure on M
amounts to choosing square roots of these transition functions in such a way
that they still satisfy the cocycle conditions. But since the transition functions
are constant along the fibers, we only have to choose a square root at a single
point in each fiber. In other words, a square root δJ of KJ , for a single almost
complex structure J onM , determines a metaplectic structure. We summarize
this in a proposition.

Proposition 3.1. Let M be a manifold with vanishing second Stiefel-Whitney
class, and let ω be any symplectic structure on M . Then (M,ω) admits a
metaplectic structure δ → L+M .

For the rest of this chapter, we shall assume thatM satisifies the conditions
of this proposition, and fix a metaplectic structure δ. In this way, for every
almost complex structure J on M , viewed as a section of L+M , we have
a canonical choice of square root of the canonical line bundle, given as the
pullback of δ by J .

3.2 The Reference Connection

As before let I : T → C∞(M,End(TM)) be a smooth family of Kähler struc-
tures on (M,ω) parametrized by a manifold T . We can also view I as a
map I : T ×M → L+M . This allows us to pull back δ to get a line bundle
δ → T ×M which we will call the metaplectic line bundle on T ×M . We note
that the restriction δσ → {σ} ×M = M is a square root of the canonical line
bundle Kσ on Mσ. The Riemannian metric gσ on Mσ induces a Hermitian
metric hTσ in Tσ →Mσ by

hTσ (X,Y ) = gσ(X, Ȳ ).
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Likewise, the Levi-Civita connection ∇̃σ induces a compatible connection ∇Tσ
in Tσ. We further let (hTσ ,∇Tσ ) induce compatible Hermitian metric and con-
nection (hδσ,∇δσ) in δσ →Mσ.

Pick a prequantum line bundle (L,∇L, hL) on (M,ω). Instead of consid-
ering holomorphic sections of Lk we look at the bundle Lk ⊗ δσ → Mσ. In
this bundle we have a Hermitian structure induced from hL and hδσ and a
compatible connection

∇σ =
(
∇L
)k ⊗ id + id⊗∇δσ. (3.1)

This connection also splits ∇σ = ∇1,0
σ +∇0,1

σ by the projections π1,0
σ and π0,1

σ .
Letting H(k)

σ = C∞(Mσ,Lk⊗δσ) we again look at the subspace of holomorphic
sections

H(k)
σ = {s ∈ H(k)

σ | ∇0,1
σ s = 0}.

Our goal is, as before, to write down a connection in H(k) → T which preserves
the subspaces H(k)

σ and thereby proving that these form a subbundle H(k) ⊆
H(k) and at the same time providing it with a connection. But this time the
bundle H(k) → T is not a trivial bundle, as the fibers vary along T , and so
we do not have the trivial connection we used in Definition 2.1 to define a
Hitchin connection. Therefore, we wish to construct some kind of reference
connection.

It has proven useful to work on the product space T ×M and so we pull
back our prequantum line bundle L to L̂ → T ×M by the projection πM .
We will in general but a hat on object which are extended or pulled back to
T × M . In that fashion, we let ĥL be the Hermitian metric and so L̂ ⊗ δ
becomes a Hermitian line bundle over T ×M with the metric ĥ induced by
ĥL and hδ, coming from hδσ. Also, we let ∇̂L denote the pullback connection
which is explicitly given by the following:

Let s be a section of L̂ and (σ, p) ∈ T ×M . Then for a vector field X on
T ×M , which is the pullback of a vector field on M , we have

(∇̂LXs)(σ,p) = (∇Xsσ)p .

For the vector field V , a pullback of a vector field on T , we get

(∇̂LV s)(σ,p) = V [sp]σ,

which is the derivative along V at σ ∈ T of the section sp of the trivial bundle
T × Lp → T × {p} = T . This connection is compatible with ĥL and has
curvature

R∇̂L = π∗MR∇L = −iπ∗Mω. (3.2)

We now wish to describe a connection in δ → T ×M . First, we consider
the bundle T → T ×M with the obvious fibers Tσ,p = (Tσ)p. In this bundle
we have a natural connection ∇̂T .
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Let Y be a section of T . In the directions of M , that is, for a vector field
X that is a pullback of a vector field on M , we use the connection ∇Tσ from
above

(∇̂TXY )(σ,p) = ((∇Tσ )XY )p.

In the directions of T , we use the trivial connection in T ×TMC → T and the
projections π1,0

σ to define

(∇̂TV Y )(σ,p) = π1,0
σ V [Yp]σ.

Here, as before, we view Yp as a section of T × TpMC → T .
This connection induces a connection ∇̂K in K → T × M and thus a

connection ∇̂δ in δ → T ×M . This leads us to the following definition.

Definition 3.2. The reference connection ∇̂r in L̂k ⊗ δ → T ×M is

∇̂r = (∇̂L)k ⊗ id + id⊗∇̂δ.

A few remarks on this connection are in order. First of all, let s be a section
of H(k) → T , i.e. a map σ 7→ sσ ∈ C∞(Mσ,Lk ⊗ δσ), we see that this is also
a section of L̂k ⊗ δ over T ×M . Choosing a vector field V on T we therefore
get a connection in H(k) → T by ∇̂rV s. Furthermore, if we fix a point σ ∈ T
and restrict ∇̂r to M we get the connection ∇σ in Lk ⊗ δσ → Mσ defined in
(3.1). In this way, the reference connection is both a connection in the bundle
H(k) → T and our prequantum connection ∇σ in Lk ⊗ δσ →Mσ.

3.2.1 Curvature

We will now calculate the curvature of the reference connection. This is split
into three different formulas, namely the curvature in the pure directions of
T and M , and in the mixed direction. First, we address the curvature in the
direction of M .

Proposition 3.3. Let X,Y be pullbacks of tangent vectors on M to T ×M .
Then the curvature of ∇̂r in Lk ⊗ δ is

R∇̂r(X,Y ) = −ikω(X,Y ) +
i

2
ρσ(X,Y )

at σ ∈ T .

Proof. The first term is from (3.2) and the second term is by the formula

R∇̂δ =
1

2
R∇̂K (3.3)

and the fact that the the curvature of the canonical line bundle Kσ is iρσ.
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We also note for later use that

R∇̂K = −TrR∇̂T , (3.4)

which is part of the calculation of the curvature of Kσ.
As in the previous chapter, we consider the variation of I along a vector

field V on T . From this we can construct a two-form θ on T with values in
C∞(M). Namely, let V,W be vector fields on T . Then the commutator

[V [I],W [I]]σ ∈ C∞(Mσ, (T
∗
σ ⊗ Tσ) � (T̄ ∗σ ⊗ T̄σ))

since both V [I] and W [I] interchange types. If we precompose with π1,0
σ we

get the restriction to a section in the first summand

[V [I],W [I]]σπ
1,0
σ ∈ C∞(Mσ, T

∗
σ ⊗ Tσ).

From this we define

θ(V,W ) = − i
4

Tr([V [I],W [I]]π1,0)

which is a real two-form on T . This will turn out to be the curvature in the
direction on T . Another useful observation is, given V tangent to T and Y a
section of T ,

V [Y ] = V [π1,0Y ] = V [π1,0]Y + π1,0V [Y ] = − i
2
V [I]Y + ∇̂rV Y. (3.5)

We are now ready to formulate and prove the following proposition.

Proposition 3.4. For vector fields V and W tangent to T we have

R∇̂r(V,W ) =
i

2
θ(V,W ).

Proof. Let V and W be the pullback of commuting vector fields on T . Apply-
ing (3.5) we find, for a section Y of T

∇̂TV ∇̂TWY = ∇̂TV (W [Y ] +
i

2
W [I]Y )

= VW [Y ] +
i

2
V [I]W [Y ] +

i

2
(V [W [I]Y ] +

i

2
V [I]W [I]Y )

= VW [Y ] +
i

2
V [I]W [Y ] +

i

2
VW [I]Y +

i

2
W [I]V [Y ]− 1

4
V [I]W [I]Y.

Using that [V,W ] = 0 we get the curvature

R∇̂T (V,W )Y = −1

4
(V [I]W [I]Y −W [I]V [I]Y )

=
1

4
[V [I],W [I]]Y
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and we see that

R∇̂r(V,W ) = kR∇̂L(V,W )− 1

2
TrR∇̂T (V,W ) =

i

2
θ(V,W )

since R∇̂L(V,W ) = 0.

For the calculation of the curvature in the mixed direction, we recall the
tensors G̃(V ) and G(V ) from Chapter 2.

Proposition 3.5. For vector fields V and X, tangent to T andM respectively,
we have

R∇̂r(V,X) =
i

4
Tr ∇̃(G̃(V ))ωX

Proof. First we calculate the curvature of ∇̂T . Let X and V be pullbacks of
real vector fields on M and T respectively, and let Y be any section of T .
Then we get

R∇̂T (V,X)Y = ∇̂TV ∇̂TXY − ∇̂TX∇̂TV Y
= π1,0V [∇̃XY ]− ∇̃Xπ1,0V [Y ]

= π1,0V [∇̃XY ]− π1,0∇̃XV [Y ]

= π1,0V [∇̃]XY

By Theorem 1.174 in [Bes], we get that the variation of the Levi-Civita
connection in the tangent bundle is a symmetric (2,1)-tensor given by

g(V [∇̃]XY, Z) = 1
2(∇̃X(V [g])(Y,Z)

+∇̃Y (V [g])(X,Z)

−∇̃Z(V [g])(X,Y ))

for vector fields X, Y and Z on M and V on T . We focus our attention on a
point p ∈M , and let e1, . . . , em be a basis of TpM satisfying the orthogonality
condition that g(e′j , e

′′
l ) = δjl. Then

TrR∇̂T (V,X) = Trπ1,0V [∇̃]Xπ
1,0 =

∑
ν

g(V [∇̃]Xe
′
ν , e
′′
ν).

But taking into account the type of V [g], and the fact that ∇̃ preserves types,
we get

g(V [∇̃]Xe
′
ν , e
′′
ν) =

1

2
∇̃e′ν (V [g])(X, e′′ν)− 1

2
∇̃e′′ν (V [g])(X, e′ν)

=
1

2
Xω∇̃e′ν (G̃(V ))ωe′′ν −

1

2
Xω∇̃e′′ν (G̃(V ))ωe′ν

=
i

2
Xω∇̃e′ν (G(V ))ge′′ν +

i

2
Xω∇̃e′′ν (Ḡ(V ))ge′ν

= − i
2
g(∇̃e′ν (G(V ))ωX, e′′ν)− i

2
g(∇̃e′′ν (Ḡ(V ))ωX, e′ν).
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Summing over ν, we conclude that

TrR∇̂T (V,X) = − i
2

Tr ∇̃(G(V ))ωX − i

2
Tr ∇̃(Ḡ(V ))ωX

= − i
2

Tr ∇̃(G̃(V ))ωX,

at the point p which was arbitrary. Finally we get by (3.2) and (3.4) that

R∇̂r(V,X) = R
(k)

∇̂L
(V,X)− 1

2
TrR∇̂T (V,X)

=
i

4
Tr ∇̃(G̃(V ))ωX,

which was the claim.

We have now calculated the curvature for the reference connection. This
allows us to prove Lemma 2.8.

Proof of Lemma 2.8. From the Bianchi identity for R∇̂K with vector fields X
and Y along M and V along T we find

V [ρ](X,Y ) = −i∇̂KV R∇̂K (X,Y )

= i
(
∇̂KXR∇̂K (Y, V ) + ∇̂KY R∇̂K (V,X)

)
= −1

2

(
∇̂KX(Tr ∇̃(G̃(V ))ωY )− ∇̂KX(Tr ∇̃(G̃(V ))ωX)

)
=

1

2
d(Tr ∇̃(G̃(V ))ω)(X,Y )

by Proposition 3.5. Letting V = V ′ be of type (1, 0) we get G̃(V ) = G(V ) and
thus by rigidity of our family I (Definition 2.4), we get

V ′[ρ] =
1

2
d(Tr∇1,0(G(V ))ω)

which the statement of the lemma.

3.3 The Hitchin Connection with Metaplectic
Correction

As in Chapter 2 we wish to define and construct a connection in H(k) → T
which preserves the subspaces H(k)

σ . Now, let D(Mσ,Lk⊗δσ) denote the space
of differential operators on H(k)

σ . These are collected as the fibers of a bundle
D(M, L̂k ⊗ δ) over T . Again, we adopt the viewpoint of bundles over T ×M
where we see D(M, L̂k⊗δ) as differential operators on sections of L̂k⊗δ, which
are of order zero in the T direction. We can now define a Hitchin connection
on H(k) → T .
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Definition 3.6. By a Hitchin connection ∇ in H(k) → T we mean a connec-
tion preserving the subspaces H(k)

σ of the form

∇V = ∇̂rV + u(V )

for any vector field V on T , where u is a one-form on T with values in
D(M, L̂k ⊗ δ).

The aim of this section is of course to find such a connection. The first
step is to find a parallel to Lemma 2.2.

Lemma 3.7. A Hitchin connection ∇ preseves the subspaces H(k)
σ if and only

if

∇0,1u(V )s =
i

2
V [I]∇s+

i

4
Tr ∇̃(G(V ))ωs

for all vector fields V on T and all s ∈ H(k).

Proof. The proof is again a straight forward calculation. Let X and V be pull-
backs of vector field onM and T , respectively, to T ×M . Let s ∈ C∞(T ,H(k))

such that sσ ∈ H(k)
σ . Then

∇X′′∇V s = ∇̂rX′′∇̂rV s+∇X′′u(V )s

= ∇̂rV ∇̂rX′′s−R∇̂r(V,X
′′)s− ∇̂r[V,X′′]s+∇X′′u(V )s

= − i
4

Tr(∇̃(G(V ))ωX)s− i

2
∇V [I]Xs+∇X′′u(V )s

at σ ∈ T . Then simply apply Proposition 3.5 to get the desired.

To solve this we turn to the same second order differential operator ∆G. At
a point σ ∈ T , ∆G(V )σ is the operator in D(M,Lk,⊗δσ) given by the diagram

C∞(Mσ, T
∗MC ⊗ Lk ⊗ δσ)

G(V )σ⊗id⊗ id
��

C∞(Mσ,Lk ⊗ δσ)

∇σ
66

C∞(Mσ, Tσ ⊗ Lk ⊗ δσ)

∇̃σ⊗id + id⊗∇σ
��

C∞(Mσ, T
∗MC ⊗ Tσ ⊗ Lk ⊗ δσ)

Tr

ff

which again can be written ∆G(V )σ = Tr∇σG(V )σ∇δ for short. Now, assume
that the family I of Kähler structures is rigid. The following lemma calculates
∇0,1∆G(V ).

Lemma 3.8. At every point σ ∈ T , the operator ∆G(V ) satisfies

∇0,1∆G(V )s = 2ikV [I]′∇s+ ikTr ∇̃(G(V ))ωs− i
2 Tr ∇̃(G(V )ρ)s

for all vector fields V on T and all (local) holomorphic sections s of the line
bundle Lk ⊗ δ →M .
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Proof. The proof is, as in the previous chapter, by direct calculation. For
clarity, we comment on the steps, although the arguments are similar. Letting
G denote G(V ) we have

∇0,1∆Gs = ∇0,1 Tr∇G∇s = Tr∇0,1∇G∇s.

Working further on the right side we commute the two connections, giving as
ekstra terms the curvature of Mσ and of the line bundle Lk ⊗ δσ,

∇0,1∆Gs = Tr∇∇0,1G∇s− ikωG∇s+ i
2ρG∇s− iρG∇s.

Collecting the last two terms, and using the fact that J is rigid on the first,
we obtain

∇0,1∆Gs = Tr∇G∇0,1∇s− ikωG∇s− i
2ρG∇s.

Commuting the two connections, and using that s is holomorphic, we get

∇0,1∆Gs = ikTr∇Gωs− i
2 Tr∇Gρs− ikωG∇s− i

2ρG∇s.

Expanding the covariant derivatives in the first two terms by the Leibniz rule,
and using the fact that ω is parallel, we get the following, after collecting and
cancelling terms,

∇0,1∆Gs = ikTr ∇̃(G)ωs− 2ikωG∇s− i
2 Tr ∇̃(Gρ)s

Finally applying V [I]′ = ωG(V ) was the desired expression. Moreover we
notice, that the above is a local computation, so that the identity is valid for
local holomorphic sections of Lk ⊗ δ as well.

We notice that for s ∈ H(k)
σ we have

V [I]∇Xs = ∇V [I]Xs = ∇V [I]′Xs

since ∇s = ∇1,0s and π1,0
σ (V [I]X) = V [I]′X by definiton. Thus we see that

1
4k∆G(V ) solves Lemma 3.7 if not for an error term. Fortunately, this can be
dealt with under an additional assumption.

Lemma 3.9. Provided that H0,1(Mσ) = 0 for all σ ∈ T , we have that
Tr ∇̃(G(V )ρ) is exact with respect to the ∂̄-operator on Mσ.

Proof. By appealing to Lemma 3.8 in the case where k = 0, we get for any
local holomorphic section s of Lk ⊗ δσ →Mσ that

0 =
i

2
∇0,1
σ Tr ∇̃σ(G(V )σρσ)s =

i

2
∂̄σ(Tr ∇̃σ(G(V )σρσ))s.

This immediately implies that

0 = ∂̄σ(Tr ∇̃σ(G(V )σρσ)),

and since H0,1(M) = 0, the corollary follows.
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This extra assumption is reminescent of the assumption H1(M) = 0 from
Chapter 2, and indeed for a compact Kähler manifold the Hodge decomposition
theorem implies H0,1(M) = 0 if H1(M) = 0.

So, assuming H0,1(Mσ) = 0 for all σ ∈ T , we can choose a one-form
β ∈ Ω1(M,C∞(M)) satisfying

∂̄β(V ) =
i

2
Tr ∇̃(G(V )ρ),

for all vector fields V on T . This implies the theorem.

Theorem 3.10. Let (M,ω) be a prequantizable symplectic manifold with van-
ishing second Stiefel-Whitney class. Further, let I be a rigid family of Kähler
structures on M , all satifying H0,1(M) = 0. Then, there exists a one-form
β ∈ Ω1(T , C∞(M)) such that the connection ∇, in the bundle H(k), given by

∇V = ∇̂rV +
1

4k
(∆G(V ) + β(V )),

is a Hitchin connection. The connection is unique up to addition of the pullback
of an ordinary one-form on T .

3.4 Comparing the Connections

In this section we compare the constructions of Hitchin connections in Sec-
tion 2.1 and Section 3.3. While this means that we need to adopt all of the
assumptions from both constructions, the upshot is a formula for the one-form
β from Theorem 3.10.

The setup is now the following. We let (M,ω) be a compact prequantizable
symplectic manifold with H1(M) = 0 and choose a prequantum line bundle
(L, hL,∇L). Let I be a rigid, holomorphic family of Kähler structures on
(M,ω) parametrized by a complex manifold T . Also, we assume that the first
real Chern class of (M,ω) satisfies c1(M,ω) = n[ ω2π ] for some n ∈ 2Z. This
ensures that w2(M) = 0 which allows us to choose a metaplectic structure δ.

In order to distiguish the exterior differentials we let d̂ denote the differ-
ential on T ×M . Similarly, by Proposition 2.3 the holomorphicity of I gives
rise to ∂̂ and ˆ̄∂. When necessary, we will adopt the notation

d̂ = dT + dM

for the splitting into differentials on T and M . Likewise for ∂ and ∂̄.
In Section 2.1 we chose a particular family of Ricci potentials F : T →

C∞(M) satisfying

ρ− nω = 2i∂σ∂̄σFσ and
∫
M
Fσω

m = 0.
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The latter condition was only to ensure smoothness (and uniqueness). But
now we will have use for the more general concept.

Definition 3.11. A smooth family of Ricci potentials on (M,ω) is a function
F ∈ C∞(T ×M) satisfying

ρ = nω + 2i∂M ∂̄MF. (3.6)

The following proposition gives a formula for β.

Proposition 3.12. Let F be any smooth family of Ricci potentials. Then the
one-form β ∈ Ω1(T , C∞(M)) given by

β(V ) = −2nV ′[F ]− ∂MFG(V )∂MF − Tr ∇̃(G(V )∂MF )

satisfies ∂̄Mβ(V ) = i
2∇̃(G(V )ρ).

Proof. Since we only consider ∂ and ∂̄ in directions of M , we will drop the
subscript in the proof.

Using (3.6) we calculate

Tr ∇̃(G(V )ρ) = Tr ∇̃(G(V )(nω + 2i∂∂̄F ))

= nTr ∇̃(G(V ))ω + 2iTr ∇̃(G(V )∂∂̄F )

where the last equality comes from the fact that ∇̃(ω) = 0. Examining the
last term we see that it can be found in the calculation

∂̄ Tr ∇̃(G(V )∂F ) = Tr ∇̃(G(V )∂∂̄F )− iρG(V )∂F

where we use that I is rigid. Furthermore, by using (3.6), rigidity of I, and
the symmetry of G(V ) we see that

−iρG(V )∂F = i∂FG(V )ρ

= in∂FG(V )ω − 2∂FG(V )∂∂̄F

= in∂FG(V )ω − ∂̄ (∂FG(V )∂F ) .

Piecing these calculations together yields the expression

i

2
Tr ∇̃(G(V )ρ) =

i

2
nTr ∇̃(G(V ))ω + in∂FG(V )ω

+ ∂̄
(

Tr ∇̃(G(V )∂F ) + ∂FG(V )∂F
)

an so by Lemma 2.7 we have the desired formula.



32 The Hitchin Connection and Metaplectic Correction

Having calculated the curvature of the reference connection in all direc-
tions, we see that it is of type (1,1) over T ×M and thus the (0,2)-part of
the curvature vanishes. This means that the reference connection defines a
holomophic structure on the line bundle L̂k ⊗ δ, over the complex manifold
T ×M . Moreover, we observe that (∇̂r)0,1 preserves the bundle H(k) → T ,
since u(V ′′) = 0 solves (3.3). Thus the reference connection defines a holomor-
phic structure on the bundle H(k) → T .

These families of Ricci potentials carry a lot of local information about the
curvature of the reference connection as will be stated in Theorem 3.16. This
is established through three lemmas.

Lemma 3.13. For any smooth family of Ricci potentials F ∈ C∞(T ×M)
and vector fields V along T and X along M the curvature of the reference
connection satisfies

R∇̂r(V,X) = −∂̂ ¯̂
∂F (V,X).

Proof. Since R∇̂r is of type (1,1), we split V and X and calculate from the
right-hand side

¯̂
∂∂̂F (X ′′, V ′) = d̂∂̂F (X ′′, V ′)

= X ′′(∂̂F (V ′))− V ′(∂̂F (X ′′))− ∂̂F ([X ′′, V ′])

= X ′′V ′[F ] +
i

2
∂̂F (V ′[I]X)

= X ′′V ′[F ] +
i

2
∂MFG(V )ωX ′′.

Now we can apply Lemma 2.7 and conclude

¯̂
∂∂̂F (X ′′, V ′) = − i

4
Tr ∇̃(G(V ))ωX ′′

= −R∇̂r(V
′, X ′′).

The case of X ′ and V ′′ follows from

∂MV
′′[F ] =

i

4
Tr ∇̃(Ḡ(V )ω) +

i

2
∂̄MFḠ(V )ω

which is just the conjugate of 2.7.

Lemma 3.14. For any smooth family F of Ricci potentials, the expression

θ − 2i∂T ∂̄T F (3.7)

defines an ordinary two-form on T .
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Proof. Take V , W and X to be commuting vector fields so that V and W are
tangent to T and X is tangent to M . We must prove that (3.7) takes values
in constant functions on M , i.e. that

0 = X
[
θ(V,W )− 2i∂̂ ˆ̄∂F (V,W )

]
.

Now, by the Bianchi identity and Proposition 3.4 we have

0 = ∇̂rXR∇̂r(V,W ) + ∇̂rVR∇̂r(W,X) + ∇̂rWR∇̂r(X,V )

=
i

2
X[θ(V,W )]− ∇̂rVR∇̂r(X,W ) + ∇̂rWR∇̂r(X,V ).

Then Lemma 3.13 yields

i

2
X[θ(V,W )] = W [∂̂ ˆ̄∂F (X,V )]− V [∂̂ ˆ̄∂F (X,W )]

= WXV ′′[F ]−WVX ′′[F ]− V XW ′′[F ] + VWX ′′[F ]

= XWV ′′[F ]−XVW ′′[F ]

= −X[∂̂ ˆ̄∂F (V,W )]

as desired.

Lemma 3.15. Over any open subset U of T with H1(U,R) = 0, we can find
a family F̃ of Ricci potentials satisfying

θ = 2i∂T ∂̄T F̃ . (3.8)

Proof. Let σ ∈ T and fix a smooth family F of Ricci potentials. Let V and W
be vectorfields tangent to T . Then, by Lemma 3.14, we can define a two-form
α ∈ Ω1,1(T ) by

α = θ − 2i∂T ∂̄T F.

By applying the Bianchi identity to the reference connection it follows that θ
is closed on T . Thus, we see that α is a closed two-form on T . Since θ is real,
so is α, and therefore we can find a real function A on U such that

α|U = 2i∂T ∂̄T A.

But then F̃ = F |U + A defines a new smooth family of Ricci potentials with
the desired property.

We are now ready to establish a theorem relating the curvature of the
reference connection and the curvature of ∇̂L.
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Theorem 3.16. Let (M,ω) be a compact prequantizable symplectic manifold
with the real first Chern class satisfying c1(M,ω) = n[ ω2π ], n ∈ 2Z, and
H1(M,R) = 0. Let I be a rigid, holomorphic family of Kähler structures
on M , parametrized by a complex manifold T . Then, for any open subset U of
T with H1(U,R) = 0 there exists a family of Ricci potentials F̃ over U such
that

R
(k)

∇̂r
= R

(k−n/2)

∇̂L
− ∂̂ ˆ̄∂F̃ , (3.9)

where R(k)

∇̂r
denotes curvature of the reference connection in L̂k⊗δ and R(k−n/2)

∇̂L
denotes the curvature of ∇̂L in L̂k−n/2.

Proof. Let X and Y be vector fields tangent toM , and let V andW be vector-
fields tangent to T . Use Lemma 3.15 to find a family of Ricci potentials over
U satisfying (3.8). Then, by Proposition 3.3, Proposition 3.4 and Lemma 3.13
we have that

R∇̂r(X + V, Y +W ) = −ikω(X,Y ) +
i

2
ρ(X,Y )

+
i

2
θ(V,W ) +R∇̂r(V, Y ) +R∇̂r(X,W )

= − i(k − n
2 )ω(X,Y )− ∂M ∂̄M F̃ (X,Y )

− ∂T ∂̄T F̃ (V,W )− ∂̂ ˆ̄∂F̃ (V, Y )− ∂̂ ˆ̄∂F̃ (X,W )

= R
(k−n/2)

∇̂L
(X,Y )− ∂̂ ˆ̄∂F̃ (X + V, Y +W )

= R
(k−n/2)

∇̂L
(X + V, Y +W )− ∂̂ ˆ̄∂F̃ (X + V, Y +W )

since the curvature R(k−n/2)

∇̂L
vanishes in all other directions thanM (see (3.2)).

We are now in good shape to compare the formulas in Section 2.1 and
Proposition 3.12 for Hitchin connections. However, this requires a comparable
settting. As it turns out, we must be more careful in choosing the prequantum
line bundle. Because even though δ and L−n/2 have the same first real Chern
class, they may not be isomorphic, as there could be some torsion lost in the
passage from integral cohomology to real cohomology. The following lemma
ensures us that there exists a prequantum line bundle, which will satisfy our
needs.

Lemma 3.17. If c1(M,ω) is divisible by n in H2(M,Z), there exists a pre-
quantum line bundle L over M such that

n
2 c1(L) = −c1(δ),

where c1 is the first Chern class in H2(M,Z).
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Proof. Let L0 be any prequantum line bundle on M and pick an auxiliary
Kähler structure J on M . Let FJ be a Ricci potential on MJ and consider the
line bundles (L−n/20 , eFJhL0) and (δJ , h

δ
J) over M . Then a small calculation

∂̄∂ log(eFJhL0) = ∂̄∂FJ + in2ω

= i
2(nω + 2i∂∂̄FJ)

= i
2ρJ

shows that the line bundles have the same curvature. Thus, the tensor product
of the former with the dual of the latter yields a flat Hermitian line bundle
L1. Since c1(δ) is divisible by n

2 , there exists a flat Hermitian line bundle L2

such that Ln/22
∼= L1. Finally, the line bundle L = L0 ⊗ L2 has the structure

of a prequantum line bundle, and n
2 c1(L) = c1(Ln/2) = −c1(δ). Thus L is the

desired prequantum line bundle.

From now on assume we have chosen a prequantum line bundle L as in
Lemma 3.17. Note that, only when H2(M,Z) has torsion is this a further
restriction.

Next, let F̃ be a family of Ricci potentials over U , with H1(U,R) = 0, such
that (3.9) in Theorem 3.16 is satisfied. We wish to construct an isomorphism
ϕ̂ of holomorphic Hermitian line bundles over U ×M

ϕ̂ : (L̂k−n/2, eF̃ ĥL)→ (L̂k ⊗ δ, ĥ).

Since n
2 c1(L) = −c1(δ), the line bundles are isomorphic as complex line bun-

dles, and with the given Hermitian structures, a simple calculation and applica-
tion of (3.9) reveals that they have the same curvature. Thus, the obstruction
to finding the structure preserving isomorphism ϕ̂ lies in the first cohomology
of U ×M . But this is trivial by the Künneth formula, since H1(U,R) = 0 and
H1(M,R) = 0 by assumption.

Moreover, it is easily seen that the pullback under ϕ̂ of the reference con-
nection is given by

ϕ̂∗∇̂r = ∇̂L + ∂̂F̃ , (3.10)

since the right hand side is the unique Hermitian connection compatible with
the holomorphic structure of L̂k−n/2.

Now the final theorem compares the two constructed Hitchin connections.

Theorem 3.18. Let (M,ω) be a compact prequantizable symplectic manifold
with H1(M,R) = 0. Further, let I be a rigid, holomorphic family of Kähler
structures on M parametrized by a complex manifold T . Assume that the first
Chern class of (M,ω) is divisible by an even integer n and that its image in
H2(M,R) satisfies

c1(M,ω) = n[ ω2π ].
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Then, around every point σ ∈ T , there exists an open neighborhood U , a local
smooth family F̃ of Ricci potentials onM over U and an isomorphism of vector
bundles over U

ϕ : H̃(k−n/2)|U → H(k)|U ,

such that

ϕ∗∇ = ∇̃,

where ϕ∗∇ is the pullback of the Hitchin connection given by Theorem 3.10,
and ∇̃ is the Hitchin connection in H0(M,L(k−n/2)) constructed in Section 2.1,
both of which are expressed in terms of F̃ .

Proof. First, let us set the notation. The connection from Section 2.1 will be
denoted by

∇̃V = ∇̂LV + ũ(V )

where

ũ(V ) =
1

4k + 2n

(
∆LG(V ) + 2∇L

G(V )∂M F̃
+ 4kV ′[F̃ ]

)
. (3.11)

The operator ∆G(V ) from Section 3.3 was given by Tr∇σG(V )∇σ, but by the
remark after Definition 3.2 suggests the viewpoint of the reference connection,
from which (3.10) gives us

ϕ̂∗(∆G(V )) = ϕ̂∗
(

Tr(∇̃ ⊗ id + id⊗∇̂r)G(V )∇̂r
)

= Tr
(
∇̃ ⊗ id + id⊗(∇̂L + ∂M F̃ )

)
G(V )(∇̂L + ∂M F̃ )

= ∆LG(V ) + 2∇̂L
G(V )∂M F̃

+ Tr ∇̃(G(V )∂M F̃ ) + ∂M F̃G(V )∂M F̃

= ∆LG(V ) + 2∇̂L
G̃(V )∂M F̃

− β(V )− 2nV ′[F̃ ]

where the last equality is by Proposition 3.12. But in Lk−n/2 the formula
(3.11) becomes

ũ(V ) =
1

4k

(
∆LG(V ) + 2∇̂L

G̃(V )∂M F̃
+ (4k − 2n)V ′[F̃ ]

)
=

1

4k

(
∆LG(V ) + 2∇̂L

G̃(V )∂M F̃
− 2nV ′[F̃ ]

)
+ V ′[F̃ ]

=
1

4

(
ϕ̂∗∆G(V ) + β(V )

)
V ′[F̃ ]

= ϕ̂∗u(V ) + V ′[F̃ ]
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where u is the one-form from Theorem 3.10. Thus the pullback of the Hitchin
connection is

ϕ̂∗∇V = ϕ̂∗∇̂r + ϕ̂∗u(V )

= ∇̂L + V ′[F̃ ] + ϕ̂∗u(V )

= ∇̂L + ũ(V )

= ∇̃V

and so the two connections agree in the bundle H̃(k).

In the case of the moduli space of flat connection, a Hitchin connection
was constructed, using Hitchin’s techniques, by Scheinost and Schottenloher
[SS]. However, we believe that the scope of our construction is much larger,
since geometric quantization of symplectic manifolds is a general quantiza-
tion scheme. As for the curvature of this connection, Gammelgaard has been
addressing this and has shown some partial results in that direction.





4

Abelian Varieties and Toeplitz
Operators

In the previous chapters we have constructed Hitchin connections under vari-
ous assumptions. In this chapter we look at a case where the conditions on the
first cohomology (H1(M) = 0 in Chapter 2 and H0,1(M) = 0 in Chapter 3)
is not satisfied. Indeed, we will discuss geometric quantization of abelian va-
rieties, including a Hitchin connection and Toeplitz operators. We start by
following the paper [And4]. Regarding moduli spaces, the tori we will consider
can also be viewed as moduli spaces of flat U(1)-connections on surfaces. Later
we discuss the quantization of SU(2)-moduli space of a genus one surface (see
[Jef]) and consider Toeplitz operators in this setting.

4.1 Geometric Quantization of Abelian Varieties

Let V be a real vector space of dimension 2m with a symplectic structure ω.
Let Λ be a maximal lattice in V such that ω is integral and unimodular on Λ.
Then there is a lemma in [GH] saying that Λ admits a basis λ1, . . . , λ2m with
dual coordinates x1, . . . , xm, y1 . . . , ym such that

ω =
m∑
j=1

dxj ∧ dyj .

Let
H = {Z ∈ Matm(C) | ZT = Z, Im(Z) is positive definite}

denote the Siegel generalized upper half space. Since ω is positive, by the third
Riemann condition in [GH], any Z ∈ H determines a complex structure on
M = V/Λ compatible with ω, with complex coordinates

z = x+ Zy.

If we denote by I(Z) the corresponding integrable almost complex structure
on M , we find that (M,ω, I(Z)) is Kähler. We now wish to proceed with

39
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geometric quantization of (M,ω). But rather than choosing a fixed prequan-
tum line bundle on (M,ω), we will instead choose a family of holomorphic line
bundles parametrized by H. First, let us review the theory of line bundles on
abelian varieties.

Suppose L → M is a line bundle. Then we can pull back this bundle by
the quotient map π : V → V

/
Λ to a bundle π∗L → V . Now, every bundle

over V is trivializable since V is contractible, and so we let ϕ : π∗L → V × C
be a global trivialization. If we let z ∈ V and λ ∈ Λ we know that the fibers
π∗Lz and π∗Lz+λ coincide and so there is a (nonzero) complex number eλ(z)
making the diagram of linear maps

π∗Lz
ϕz // C

eλ(z)

��
π∗Lz+λ

ϕz+λ // C

commute. This way we get a family of nonzero complex-valued functions eλ,
λ ∈ Λ. These are called multipliers. We note that if L is a holomorphic line
bundle, the multipliers become holomorphic. Considering the slightly more
complicated diagram

π∗Lz
ϕz // C

eλ(z)

��
eλ′ (z)

		

eλ+λ′ (z)

zz

π∗Lz+λ
ϕz+λ // C

eλ′ (z+λ)

��
eλ′ (z+λ)

		

π∗Lz+λ′
ϕz+λ′ // C

eλ(z+λ′)

��
π∗Lz+λ+λ′

ϕz+λ+λ′ // C

we get the equations

eλ′(z + λ)eλ(z) = eλ(z + λ′)eλ′(z) = eλ+λ′(z) (4.1)

for all λ, λ′ ∈ Λ.
Conversely, given a collection of nonzero holomorphic functions {eλ ∈

O∗(V )}λ∈Λ satifying the above relation (4.1), we can construct a line bun-
dle as the quotient

V × C
/
∼
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where (z, v) ∼ (z + λ, eλ(z)v).

Now suppose a line bundle L is given by multipliers {eλ ∈ O∗(V )}λ∈Λ.
Given a function f : V → C it defines a section of L if and only if it satisfies
the equation

f(z + λ) = eλ(z)f(z)

for all λ ∈ Λ. Let f̃ denote the corresponding section. Furthermore, given
a metric ‖ · ‖ on L we can compare ‖f̃(z)‖2 and |f(z)|2, where | · | is the
standard metric on C. Then there must exist a positive smooth function
h ∈ C∞(M,R+) such that

‖f̃(z)‖2 = h(z)|f(z)|2

which clearly must satisfy a similar equation

h(z + λ) = |eλ(z)|2h(z) (4.2)

for all λ ∈ Λ. Again, any metric can be given by such a function h.
Since H2(M,Z) has no torsion, we can compute the Chern class of this line

bundle by computing the curvature of the canonical connection corresponding
to h. Indeed, setting Θ = ∂̄∂ log h, we get that

c1(L) = [ iΘ2π ].

Now, fix Z ∈ H. We define multipliers on our basis by

eλj (z) = 1 eλm+j
(z) = e−2πizj−πiZjj , j = 1, . . . ,m

and extend them uniquely to all of Λ. This defines a line bundle L = LZ on
M . We choose a Hermitian metric on L given by the function

h(z) = e−2πy·Y y,

where Z = X + iY . This can also be written in terms of z and z̄ as

h(z) = e
π
2

∑
jkWjk(zj−z̄j)(zk−z̄k),

where W = Y −1. For this to be a Hermitian structure, we need to check (4.2).
Let 1 ≤ j ≤ n. For λj it is immediate, since it only affects the real part of z.
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now,

log h(z + λm+j) =
π

2

∑
kl

(zk − z̄k + Zkj − Z̄kj)(zl − z̄l + Zlj − Z̄lj)

=
π

2

∑
kl

Wkl(zk − z̄k)(zl − z̄l)

+ πi
∑
kl

Wkl (Ykj(zl − z̄l) + Ylj(zk − z̄k) + 2iYkjYlj)

= log h(z)

+ πi
∑
kl

(δlj(zl − z̄l) + δkj(zk − z̄k) + 2iδkjYkj)

= log h(z) + 2πi(zj − z̄j)− 2πYjj

which shows (4.2). Since we have a Hermitian structure on L we can choose
the canonical compatible connection (Chern connection). The curvature of this
connection is given by Θ = ∂̄∂ log h. A direct computation of this reveals that
Θ = −2πiω and so c1(L) = [ω]. We note that this is a different normalization
than in the previous chapters.

The space of holomorphic sections H(k)
Z = H0(MZ ,Lk) has dimension km

and a basis given by Theta-functions

θγ,k(Z, z) =
∑
l∈Zm

eiπk(l+ γ
k

)·Z(l+ γ
k

)+2πik(l+ γ
k

)·z, γ ∈ {0, . . . , k − 1}m.

We also induce the L2-inner product from h on H0(MZ ,Lk) given by

(s1, s2) =

∫
M
s1(z)s2(z)h(z)dxdy.

We wish to produce a Hitchin connection in the bundle H(k) → H. To this
end, consider the trivial bundle H × C∞(Cm) → H. For each Z ∈ H we can
view H

(k)
Z as a subspace of C∞(Cm).

Writing out the Theta-functions

θγ,k(Z, z) =
∑
l∈Zm

eiπk
∑
ab Zab(la+ γa

k
)(lb+

γb
k

)+2πik
∑
a(la+ γa

k
)za

we see that
∂2θγ,k
∂za∂zb

= 4πik
∂θγ,k
∂Zab

.

And so this heat equation yields a Hitchin connection given by

∇ ∂
∂Zab

=
∂

∂Zab
− 1

4πik

∂2

∂za∂zb
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preserving H(k). This is obviously a flat connection in H(k) → H and so we
can identify the different quantum spaces by parallel transport with respect
to ∇. This means we get a canonical quantum space by considering covarant
constant holomorphic sections, which also have a basis of Theta-functions.

We wish to compute Toeplitz operators for certain phase functions on M ,
so to do this we investigate the inner products of Theta-functions. Writing
out the integral for (θα,k, θβ,k) one interchanges the sum and the integration
and consider the x-integrals for each factor. These are easily shown to be

δ
(l+α

k
),(j+β

k
)

where l is the summing variable for θα,k and j is the summing variable for θβ,k.
Thus the Theta-functions are orthogonal and their inner product is a single
sum over Zm of integrals. Now, computing the norm, one finds

‖θγ,k‖2 =
∑
l∈Zm

∫
[0,1]m

e−2πk((l+ γ
k

)·Y (l+ γ
k

)+2(l+ γ
k

)·Y y+y·Y y)dy

=
∑
l∈Zm

∫
[0,1]m

e−2πk(l+ γ
k

+y)·Y (l+ γ
k

+y)dy

=

∫
[0,1]m

e−2πk(l+ γ
k

+y)·Y (l+ γ
k

+y)dy

=

∫
Rm

e−2πk( γ
k

+y)·Y ( γ
k

+y)dy

=

√(
(2π)m

(4πk)m det(Y )

)
.

This leads us to normalizing the inner product to

(·, ·)Y =
√

2mkm det(Y )(·, ·).

This normalized Hermitian structure is compatible with ∇ on H(k).
The functions on M we consider are phase functions of the type

Fr,s(x, y) = e2πi(r·x+s·y),

where r, s ∈ Zm. Now, fix r, s. We want a formula for the matrix coefficients
(Fr,sθα,k, θβ,k)Y . As before, we consider the x-integral first. Writing rj =
pjk + [r]j , p ∈ Z, 0 ≤ [r]j ≤ k − 1, the formula in [And4] states that

(Fr,sθα,k, θβ,k)Y = δα−β,−[r]e
−πi
k
r·Z̄r−2πis·α

k
−π2(s−Z̄r)·(2πkY )−1(s−Z̄r).

This is the coefficient (T
(k)
Fr,s

)α,β of the Toeplitz operator written in the basis of
the Theta-functions. Evidently, these depend on Z and are thus not covariantly
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constant with respect to the Hitchin connection induced in the endomorphism
bundle of H(k) by ∇. This fixed by a function depending on k

f(r, s, Z)(k) = e
π
2k

(s−Xr)·Y −1(s−Xr)e
π
2k
r·Y re−

πi
k
s·r

which lets us define(
T̂

(k)
Fr,s

)
α,β

=
(
T

(k)
f(r,s,Z)(k)Fr,s

)
α,β

= δα−β,−[r]e
− 2πi

k
(s·(r+α)),

covariant constant operators on H(k). These are slightly different than in
[And4], but they fit better with the use we have in mind in Section 7.2

Example 4.1. A good example of such abelian varieties are the moduli spaces
of flat U(1)-connections on a closed, compact surface Σg of genus g.

Mg = Hom(π1(Σg),U(1)).

since U(1) is abelian the Universal Coefficient Theorem and the long exact
cohomology sequence tells us that

Mg = H1(Σg,U(1)) = H1(Σg,R)/H1(Σg,Z).

The symplectic structure on H1(Σg,R) given by the cup-product makes Mg

into an abelian variety as above (see e.g. [GH] p. 306 – 307).

4.2 The SU(2) Moduli Space of a Genus One
Surface

Let us consider geometric quantization of the moduli space of flat SU(2)-
connections on a genus one surface T . As in Section 2.2 we look at

MSU(2)(T ) = Hom(π1(T ), SU(2))
/

SU(2)

Since π1(T ) ∼= Z×Z is abelian, it maps into the maximal torus of SU(2) which
is U(1). Thus the moduli space reduces to

MSU(2)(T ) = U(1)×U(1)/W

where W is the Weyl group of SU(2), so W = Z2, and we see thatMSU(2)(T )
is topologically a sphere with a torus as a double cover. It has singularities,
however, so instead of choosing a prequantum line bundle over MSU(2)(T ),
we pick a prequantum line bundle over the torus T = U(1)× U(1) with a Z2

action.
Since T is a double cover, the line bundle L̃ corresponding to the funda-

mental class ofMSU(2)(T ) pulls back to a line bundle L̃ corresponding to twice
the fundamental class on T . Thus L̃ ∼= L2 over T , for the prequantum line
bundle L on T with Chern class 1.
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4.2.1 Theta-functions

Choose a Kähler structure τ ∈ H = {z ∈ C | Im(z) > 0}. Above we saw that
dimCH

0(T,Ll) = l, with a basis given by

θγ,l(τ, z) =
∑
m∈Z

eiπlτ(m+ γ
l
)2+2πilz(m+ γ

l
), γ = 0, . . . , l − 1.

We construct the Weyl invariant Theta-functions θ+
θ,l by

θ+
γ,l(τ, z) = θγ,l(τ, z) + θγ,l(τ,−z)

= θγ,l(τ, z) + θl−γ,l(τ, z).

Let H0(T,Ll)W denote the Weyl invariant subspace of holomorphic section.
Let us calculate the dimension.

First we notice that if γ ∈ {0, . . . , l − 1} then so is l − γ and θ+
γ,l = θ+

l−γ,l.
Assume l even. The Weyl action has two fixed points, namely 0 and l

2 . Away
from these points,W maps the subset {1, . . . , l2−1} bijectively to { l2 +1, . . . , l−
1}. from this we conclude that we get the basis {θ+

γ,l | γ = 0, . . . , l2} and the
dimension becomes l

2 + 1.
Now, our level k quantum space is H0(T, L̃k)W = H0(T,L2k)W and there-

fore has dimension k + 1.
However, this is not the basis we are interested in using. In [APW] they

consider the following corrected Theta-functions, as they are parallel with
respect to the Hitchin connection. Consider the space H0(T,Ll)W− of Weyl
anti-invariant holomorphic sections. Clearly this is spanned by the Weyl anti-
invariant theta functions

θ−γ,l = θγ,l − θl−γ,l, γ = 0, . . . , l − 1.

As above we find seek to find a basis from this spanning set.
Clearly θ−γ,l = −θ−l−γ,l and if [γ]l = [−γ]l we find that θ−γ,l = 0. So for l

even, we see that we have a basis

{θ−γ,l | γ = 1, . . . , l2 − 1}

and for l odd

{θ−γ,l | γ = 1, . . . , l−1
2 }.

From this we see that dimH0(T,L2(k+2))W− = k+ 1 = dimH0(T,L2k)W . We
want to construct an isomorphism between these spaces.

Let ϕ : H0(T,L2k) ⊗ H0(T,L4) → H0(T,L2k+4) be the natural map in-
duced from the tensor product. If we restrict ϕ to

ϕ′ : H0(T,L2k)W ⊗H0(T,L4)W− → H0(T,L2k+4)
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we see that Im(ϕ′) ⊆ H0(T,L2k+4)W− . We notice that dimH0(T,L4)W− = 1
and thus we have the isomorphism

ϕ′′ : H0(T,L2k)W → H0(T,L2k)W ⊗H0(T,L4)W−

given by ϕ′′(s) = s ⊗ θ−1,4. Now we can define the map

Φ = ϕ′ ◦ ϕ′′ : H0(T,L2k)W → H0(T,L2k+4)W− .

We want to show that this map is injective and thus an isomorphism.
Suppose Φ(s) = 0. This means that

0 = ϕ′′(s ⊗ θ−1,4) = s ⊗ θ−
1,4
∈ C∞(T,L2k)⊗ C∞(T,L4)

which implies that s is the zero section.
Now we can pull back the basis on H0(T,L2k+4)W− by Φ to get the basis

ψγ,k = Φ−1(θ−γ,2k+4), γ = 1, . . . , k + 1

for H0(T,L2k)W .

The Toeplitz operators on H0(T,Ll) from the previous section can now be
written as

(T̂
(l)
Fr,s

)α,β = δα−β,−[r]e
− 2πis

l
(r+α).

The inner product (·, ·)Y on H0(T,Ll) induce an inner product (·, ·)W− given
by

(θ−α,l, θ
−
β,l)W− =

1

2
(θ−α,l, θ

−
β,l)Y

in which the basis is orthonormal.

Let us investigate which combinations of phase functions have Toeplitz
operators that preserve the Weyl anti-invariant subspaces.

Let r = (r1, . . . , rd) and s = (s1, . . . , sd) be vectors in Zd and consider the
function

Gr,s(x, y) =

d∑
j=1

cjFrj ,sj (x, y)
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for some constants cj ∈ C\{0}. We now apply the corrected Toeplitz operators
for such a function to a Weyl anti-invariant Theta-function

T̂
(l)
Gr,s

θ−α,l = T̂
(l)
Gr,s

θα,l − T̂
(l)
Gr,s

θl−α,l

=

l∑
β=0

(T̂
(l)
Gr,s

)α,βθβ,l − (T̂
(l)
Gr,s

)l−α,βθβ,l

=

l∑
β=0

(T̂
(l)
Gr,s

)α,βθβ,l − (T̂
(l)
Gr,s

)l−α,l−βθl−β,l

=

l∑
β=0

d∑
j=1

cj(T̂
(l)
Frj ,sj

)α,βθβ,l − cj(T̂
(l)
Frj ,sj

)l−α,l−βθl−β,l.

To preserve the Weyl anti-invariant subspace, we need the coefficient for θα,β
to agree with the coefficient for θl−α,l−β . I.e. we need a bijection permutation
σ ∈ Sd satisfying

cj(T̂
(l)
Frj ,sj

)α,β = cp(T̂
(l)
Frp,sp

)l−α,l−β, σ(j) = p

for all α, β. Writing out the condition

cjδα−β,−[rj ]e
−

2πisj
l

(rj+α) = cpδβ−α,−[rp]e
− 2πisp

l
(rj+l−α)

= cpδα−β,[rp]e
− 2πisp

l
(rp−α).

This is satisfied if

cj = cp, rj = −rp and sj = −sp.

In particular we see if rj 6= 0 for all j this yields that d must be even and we
get an l-independent family of functions

Gr,s(x, y) =

d/2∑
j=1

cj
(
e2πi(rjx+sjy) + e−2πi(rjx+sjy)

)
preserving the Weyl anti-invariant subspace. We shall use this type of functions
later in Section 7.3.
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Knots

The goal of this chapter is to introduce the A-polynomial of a knot. We start
by defining the knot group and introduce two-bridge knots, a particularly nice
class of knots. We discuss the knot group of two-bridge knots and calculate it
for twist knots and double twist knots. Then we construct the A-polynomial
and show how it can be calculated for two-bridge knots. We end with a theorem
by Hoste adn Shanahan [HS] giving a recursive formula for the A-polynomial
of twist knots.

5.1 Knots and Knot Groups

In this dissertation, a knot K is an embedding of S1 in either S3 or R3 and the
equivalence of knots is ambient isotopy. We will not distinguish the knot itself
and its equivalence class and whenever the existence of a certain projection
for a knot is needed, it will be implied that we refer to the equivalence class
of the knot.

We start by discussing the knot group of a knot, namely the fundamen-
tal group of the knot complement, π1(S3 − K). We will give the Wirtinger
presentation of the knot group, which can be describe directly from a diagram.

Namely, place the knot “close” to its projection and label the arcs in the
projection from undercrossing to undercrossing by v1, . . . , vn. Orient the knot.
Now, pick a basepoint x0 above the knot and for each vi choose a loop si
based at x0 circling vi according to the right-hand rule (see Figure 5.1). It
is clear that s1, . . . , sn generate π1(R3 −K) = π1(S3 −K). Now, let us find
the generators. Make a small circle c below the crossing around the double
point of the projection and connect it to x0 by a path l (Figure 5.2). Then
lcl−1 is a loop based at x0 and it is contractible. This corresponds to a word
in the generators involved in the crossing and so we can read off the relations
corresponding to positive and negative crossings as in the figure. This gives
rise to n relations r1, . . . , rn. These can be shown, e.g. by a Van Kampen
argument, to be a complete set of relations and we have

π1(R3 −K) = 〈s1, . . . , sn | r1, . . . , rn〉.

49
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x0

s1

v1

s2 v2

s3

v3

Figure 5.1: Wirtinger generators for the trefoil.

c
vivj

vk

sj = s−1
i sksi

c
vjvi

vk

sj = sisks
−1
i

Figure 5.2: Wirtinger relation at a positive and negative crossing.

One thing to observe, however, is that a loop encircling the whole projection
is the product of (conjugates) of all of the above relations, and so we find that
any single relation is a consequence of all of the others.

The knot group is in itself a powerful knot invariant, but will not be of
direct interest to us, as it will only be used to build the invariant called the
A-polynomial.

5.2 Two-bridge Knots

In this section we will focus our attention to a certain well-understood class of
knots, called the two-bridge knots. First, we will review the concept of braids.

Definition 5.1. Choose a rectangle in R3 and place n equidistant points di-
rectly across from each other on two opposite sides. An n-braid is a collection
of simple disjoint arcs connecting points on opposite sides such that for all



5.2 Two-bridge Knots 51

1 i− 1 i i+ 1 i+ 2 n

Figure 5.3: The generator σi for the braid group on n strands.

planes orthogonal to the rectangle and parallel to the distinguished sides in-
tersects each arc only once.

We consider braids equivalent if they are isotopic by an ambient isotopy
relative to the endpoints. A braid gives rise to a knot or a link by connecting
the endpoints by simple arcs. In fact all links and knots can be presented by a
closed braid. This can, of course, be done in different ways but for 2m-braids
the closure called the plat-closure will be of special interest. This consists of
connecting the endpoints with a neighbouring endpoint on both ends of the
braid

Braids on n strands can be composed in the obvious way and this gives
rise to the braid group Bn. This has n− 1 generators σi (Figure 5.3) which is
a positive crossing of the i’th and the (i + 1)’th strand. It is immediate that
a complete set of relations is

σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi, |i− j| ≥ 2.

Definition 5.2. A knot K ⊆ R3 is said to have an m-bridge presentation if a
plane V can be placed in R3 in such a way that it intersects K in 2m distinct
points (bridge points) and for each of the resulting half-spaces, the part of K it
contains projects orthogonally onto V as m simple and disjoint arcs (bridges).
The minimal number of bridges is called the bridge number.

We notice that all knots (and links) have an m-bridge presentation. In-
deed, project the knot to a diagram and choose points between over- and
undercrossings. Then lift overcrossing strands up from the plane and push the
undercrossing strands to the other side. This gives a bridge presentation (and
shows that the bridge number is bounded by the number of crossings in any
diagram).

Given this m-bridge presentation, one can show that all knots (and links)
can be obtained as the closure of a braid. In fact, we will show that m-bridge
knots and 2m-plats are the same.

Lemma 5.3. An m-bridge knot allows a presentation as a 2m-plat.
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Proof. By ambient isotopy, it suffices to show that a given m-bridge knot
can be deformed into having m maxima and m minima in the z-direction.
First, arrange the knot so that the plane containing the bridge points is the
xy-plane. We can arrange the m arcs in the upper-half plane such that their
vertical projections onto the xy-plane does not intersect. This means that their
projection cylinders in the upper-half plane are disjoint. Now we can deform
the strands within their projection cylinders to have only one maximum. A
similar thing can be done in the lower-half plane and we have proved the
lemma.

The converse can be shown through the following lemma (Lemma 10.4 in
[BZ2])

Lemma 5.4. An n-braid has a projection with no double points.

Proof. Place the rectangle of the braid at an 45◦ angle to the xy-plane so
the projections onto the xy-plane and the yz-plane are regular. Choose the
lowest double point (in the z- and hence x-direction) of the xy-projection and
pull the overcrossing strand in the x-direction until the double point vanishes.
Continue this process until the projection onto the xy-plane has no double
points.

Figure 5.4: A two-bridge knot.

Proposition 5.5. The m-bridge knots are the 2m-plats.

Proof. From the above lemmas, we only need to construct an m-bridge pre-
sentation from the projection of a 2m-braid with no double points. From the
above construction, we see that the 2m endpoints of the projection furthest
in the x-direction can be connected pairwise by m simple closed arcs in the
plane. Now, connect the remaining 2m endpoints by m simple closed arcs in
the lower-half space. This gives an m-bridge presentation.
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In particular, this shows that two-bridge knots are the 4-plats (see Fig-
ure 5.4).

These are well-understood and are for instance prime and invertible, as
well as alternating. These knots have also been classified by Schubert ([Sch2])
by associating a pair of coprime integers to the knot. We will now describe
how to obtain these integers. First, we introduce the reduced diagram of a
two-bridge knot (Figure 5.5).

A B C D
w1 w2

v1

v2

Figure 5.5: Reduced diagram for the two-bridge knot K(7, 3).

We can arrange the knot in its two-bridge presentation such that the two
upper bridges projects to two intervals of the same straight line and these are
directed towards each other. We refer to the points on the plane as A,B,C,D
and w1 = [A,B], w2 = [D,C]. Let v1 be the curve under the plane from B to
D, and v2 the curve connecting C from A.

Starting by following v1 we can arrange that it crosses w2 first. Indeed,
if it crosses w1 first, the bi-gon this produces can be emptied for vi’s and
subsequently this crossing can be eliminated. Similarly, it can be arranged to
meet the wi’s alternately, ending at D on w2. The same can be done for v2,
crossing w1 first. This also means that the wi’s meet the vi’s alternately. Label
the double points on along w1 from B to A by numbers 0 to α. We remark
that α is odd. Then follow v2 from C to the first intersection with w1. We
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denote the label β̂. Notice that this number is also odd. If v2 crosses w1 from
below, we let β = β̂. If it crosses from above, then β = −β̂. These numbers
(α, β) classify the two-bridge knots by the following theorem

Theorem 5.6 ([Sch2]). Let K(α, β) and K(α′, β′) are equvalent if and only if

α = α′ and β±1 ≡ β′ mod α.

Furthermore K(α,−β) is the mirror image of K(α, β).

The numbers α and β have the following geometric meaning. Project the
reduced diagram to the plane and consider the one-point campactification of
R2 so it becomes a diagram on S2. The sphere has a torus as a two-fold
branched covering, branched over A,B,C and D. Choose a preferred sheet.
The lift of w1 to the preferred sheet concatenated with the inverse of the other
lift yields a meridian m. By lifting a small circle around B and C we get a
longitude l, which together with m generate H1(T ). Similarly, v1 lifts to a
simple curve from B to C on the preferred sheet, and by concatenating with
the inverse of the other lift, we get an element v̂ ∈ H1(T ) which has exactly
the coefficients

v̂ = βm+ αl.

A proposition, a proof of which can be found in [BZ2], gives an algorithmic
way of constructing K(α, β) as a 4-plat

Proposition 5.7. Let 0 < β < α, α odd and gcd(α, β) = 1. Then K(α, β) is
the plat closure of ξ = σa1

2 σ−a2
1 σa3

2 · · ·σ
αm
2 where m is odd and

β

α
=

1

a1 + 1

a2+ 1
a3+ . . . 1

am−1+ 1
am

.

We remark in the above that if the euclidean algorithm producing the ai’s
yields m even, we can just replace am by am ± 1 and let am+1 = ∓1. In
particular the above proposition shows that 4-plats can all be obtained as the
plat closure of a 3-braid with a trivial fourth strand. Also, given a knot with
a 4-plat diagram in only the two first generators, we can easily find α and β.

Now we want to compute the knot group of a two-bridge knot. This turns
out to be done the easiest from a reduced diagram. Fortunately, there is an
algorithm for drawing such a diagram, knowing α and β. The proof of this
algorithm comes from the geometrical picture on the torus, where the curve v̂
is lifted to R2.

Let 0 < β < α α, β odd and gcdα, β = 1. For i = 1, . . . , α − 1, Let
0 < γ̂i < α such that iβ ≡ γ̂i mod α. If γ̂i ≡ i mod 2, define γi = γ̂i.
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Otherwise, let γi = γ̂i − α. Now draw w1 and w2 as above and draw v1 from
point B by the following prescription: Let v1 cross w2 at |γ1| from above,
if γ1 > 0, and from below otherwise. From there, let v1 cross w1 at |γ2|
from below, if γ2 > 0, and from above otherwise. Continue in this fashion until
|γα1 | on ω1, from where v1 is continued to D. Then rotate v1 by 180◦ to get v2.

The knot group of a two-bridge knot has a presentation with the two bridges
as generators. Let x be the Wirtinger generator corresponding to w1 and y
corresponding to w2. We wish to read off the relations from the reduced
diagram, following v1. We notice that at the starting point v1 is just w1. The
first time v1 meets w2, x is conjugated by y to get y−1xy if v1 crosses from
above and yxy−1 if from below, or y−ε1xyε1 where εi = γi

|γi| . This number can
also be computed as εi = (−1)ki , where iβ = kiαi + γ̂i. Continuing along v1

we conjugate by x when meeting w1 to x−ε2y−ε1xyε1xε2 . This procedure stops
when v1 meets D and we get the equation

y = W−1xW, W = yε1xε2 · · ·xεα−1 .

Now, doing the same for v2 we get the relation

x = W̄−1yW̄ ,

where W̄ is the inverse word of W . However, the one relation implies the
other as remarked in Section 5.1. So we are left with the single relation and
the following proposition.

Proposition 5.8. Let 0 < β < α, where α, β odd and gcd(α, β) = 1. Then
the knot group is

π1(S3 −K(α, β)) = 〈x, y | xW = Wy〉, W = yε1xε2 · · ·xεα−1

where εi = (−1)b
iβ
α
c.

Note that since β is odd, we have εi = εα−i.
From the reduced diagram we can also give a presentation of the longitude

of the knot, i.e. the longitude of the boundary torus of a tubular neighbour-
hood. This is a parallel to the knot inself, which does not link with the knot.
Starting from point B again, we follow the knot along v1 and every time we go
under a strand we pick up the corresponding generator with the appropriate
sign. When we get to point D we have exactly the word W and continuing
along w2, v2 and finally w1, we pick up W̄ . To unlink the longitude from
the knot, we then run around w1, i.e. add x, enough times to make the total
exponent zero. This yields the longitude

l = WW̄x−2
∑
εi . (5.1)
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(a) K2 (b) K2,2

Figure 5.6: Braid presentation for the knots K2 and K2,2.

We now turn our attention to two special classes of two-bridge knots called
twist and double twist knots.

Definition 5.9. given p ∈ Z, the p-twist knot Kp is the plat closure of the
braid σ2σ

−1
1 σ−2p

2 . In general, given p, p′ ∈ Z, the double twist knot Kp,p′ (In
[HS], denoted J(2p, 2p′)) is the plat closure of the braid σ2σ

−(2p′−1)
1 σ−2p

2 . See
Figure 5.6 and 5.7.

2p crossings

(a) Kp with 2p vertical crossings.

2p crossings 2p′ crossings

(b) Kp,p′ with 2p vertical crossings on
the left and 2p′ horizontal crossings on
the right.

Figure 5.7: Twist and double twist knots.

The first few (double) twist knots can be found in the Rolfsen table of
knots at the Knot Atlas [BNM]. We have listed them with a note on whether
these are the actual knots in the table or the mirror image. The knot K−p,−p′
is the mirror of Kp,p′ , and so we will let p′ ≥ 1 and p ∈ Z.
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p p′ Name Mirror
1 1 31 No
−1 1 41 achiral
2 1 52 No
−2 1 61 Yes
3 1 72 No
2 2 74 Yes
−3 1 81 Yes
−2 2 83 achiral
4 1 92 No
3 2 95 Yes
−4 1 101 Yes
−3 2 103 No

From the definition, we can use Proposition 5.7 to calculate α and β for
the double twist knots, where we let p′ ≥ 1.

β

α
=

1

1 + 1
2p′−1+ 1

−2p

=
4pp′ − 2p− 1

4pp′ − 1
.

So for p > 0, we then get Kp,p′ = K(4pp′ − 1, 4pp′ − 2p− 1) and, by imposing
α > 0, K−p,p′ = K(4pp′ + 1, 4pp′ − 2p + 1). As an example, we can calculate
the knot groups for the twist knots. For K−p we see that

iβ = i(2p+ 1) =
i

2
(4p+ 1) +

i

2

and thus εi = (−1)b
i
2
c and W = (yx−1y−1x)p. Similarly, for Kp

iβ = i(2p− 1) =
i− 1

2
(4p− 1) +

4p− 1− i
2

and we get W = (yxy−1x−1)p−1yx.
For the more general double twist knots we find by similar methods that

for Kp,p′ we get εi = (−1)
i−1−b i

2p′ c and thus

W =
(
y(x−1y)p

′−1(xy−1)p
′
x−1

)p−1
y(x−1y)p

′−1(xy−1)p
′−1x,

and for K−p,p′ we find εi = (−1)
i−1−b i−1

2p′ c giving

W =
(

(yx−1)p
′
(y−1x)p

′
)p
.
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5.3 The A-Polynomial

We now introduce a very strong knot invariant, the A-polynomial, as defined in
[CCG+]. First, for a space M we define the representation variety Rep(M) =
Hom(π1(M),SL(2,C)). Also, we denote by χ(M) the set af characters of
the representations, which by [CS] is a closed algebraic set, so we call it the
character variety. We remark that the map t : Rep(M)→ χ(M) is surjective
and that t factors through the moduli space of flat SL(2,C)-connections. In
[CS] it is shown that this map is injective on the irreducible representations.

Now, let K ⊂ S3 be a knot and let N(K) be a tubular neighbourhood
of K. Also, we write the knot complement as XK = S3 − N(K). Fix and
isomorphism ∂N(K) = ∂XK

∼= T to a standard torus. Choosing standard
generators π1(T ) = 〈l,m〉 we see these are mapped to a peripheral system
on ∂N(K). Using the inclusion of the boundary, we get the induced maps
r : Rep(XK)→ Rep(T ) and r : χ(XK)→ χ(T ).

The aim is to describe the image of r in χ(T ) in a nice way. To this end,
consider the subset

∆ =

{
ρ ∈ Rep(T )

∣∣∣∣ ρ(l) =

(
L 0
0 L−1

)
, ρ(m) =

(
M 0
0 M−1

)
L,M ∈ C∗

}
of diagonal representations in ρ(T ). Clearly, the restriction t|∆ : ∆→ χ(T ) is
still surjective, and generically 2 : 1. By choosing the upper-left entry, we can
identify ∆ with C∗ × C∗. Call this isomorphism p. Also, we notice that

χ(T ) ∼= C∗ × C∗
/

(L,M) ∼ (L−1,M−1).

The above is summarized in the diagram below.

Rep(XK)

t

��

r // Rep(T )

t

��

⊇ ∆
p

//

t∆
��

C∗ × C∗

χ(XK)
r // χ(T )

Now, we define the deformation variety in C∗×C∗. Let Y be the collection
of components in χ(XK) such that for all V ∈ Y , r(V ) has one-dimensional
closure in χ(T ). The deformation variety DK is

DK = p

( ⋃
V ∈Y

t−1
|∆ (r(V ))

)
⊆ C∗ × C∗

Definition 5.10. The A-polynomial of a knot K is the defining polynomial
AK(L,M) of the closure of DK in C2. This is unique up to a scalar.
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It can be shown that this can be chosen with integer coeficients ([CCG+])
and is a knot invariant.

Let V ∈ Y be a component of characters of reducible representations
of π1(XK). Let ρ ∈ ∆ be a diagonal reducible representation, such that
t|∆(ρ) ∈ r(V ). In [CS] it is shown that for any c ∈ [π1(XK), π1(XK)],
Tr(ρ(c)) = 2. Since the longitude is in the commutator subgroup, we see
that ρ(L) = I and so V in DK is just the component given by L = 1. This
means that L− 1 is always a factor of AK(L,M). On the other hand, if K is
the unknot all representations are reducible and so AU (L,M) = L− 1.

In [CCG+] it was shown, that the A-polynomial is non-trivial (i.e. AK 6=
L − 1) for torus knots and hyperbolic knots. Dunfield and Garoufalidis [DG]
and Boyer and Zhang [BZ1] independently showed that the A-polynomial is
non-trivial for all non-trivial knots in S3. Both of their proofs are based on
the following theorem by Kronheimer and Mrowka.

Theorem 5.11 ([KM2]). Let K be a non-trivial knot in S3, and let Yr be the
three-manifold obtained by Dehn surgery on K with surgery-coefficient r ∈ Q.
If |r| ≤ 2, then there is a homomorphism ρ : π1(Yr) → SU(2) with non-cyclic
image.

Remark 5.12. The map r : χ(XK) → χ(T ), whose image basically defines
DK can also be viewed as a map MSL(2,C)(XK) → MSL(2,C)(T ). In this
language, DK is the variety of flat SL(2,C)-connections on ∂XK which extend
to flat connections on all of XK . We will use this geometric interpretation in
Section 7.1.

5.3.1 Computing the A-polynomial

Given a presentation of the knot group, in principle, the A-polynomial is com-
putable through elimination theory. In case of two-bridge knots, the simple
presentation of the knot group allows for a direct calculation, which we will
describe below.

We are looking for representations ρ : π1(XK) → SL2(C) that restricts to
a diagonal representation on the peripheral subgroup, that is, the subgroup
π1(∂XK) generated by m and l. Now, any representation can be conjugated
to a representation, which is uppertriangular on l and thus on π1(∂XK), since
this is abelian. But given such a representation ρ, we can construct another ρ′

ρ(γ) =

(
a(γ) b(γ)

0 d(γ)

)
ρ′(γ) =

(
a(γ) 0

0 d(γ)

)
which is an element of ∆. Thus we get a point (a(l), a(m)) on DK . This
procedure produces a dense subset of DK .

Let K ⊂ S3 be a two-bridge knot and π1(XK) = 〈x, y | xW = Wy〉 a pre-
sentation of the knot group, where W = yε1xε2 . . . xεα−1 as in Proposition 5.8.
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We choose m = x and get a longitude as l = WWx−2
∑
εi by (5.1). Now, let

ρ be an irreducible representation of π1(XK). Since ρ is irreducible, we can
only get a point of DK away from the component L = 1. Also, ρ(x) and ρ(y)
have the same trace and does not commute, Lemma 7 in [Ril2] allows us to
conjugate ρ to the form

ρ(x) =

(
M 1
0 M−1

)
ρ(y) =

(
M 0
t M−1

)
.

For this to be a representation, the equation ρ(xW )− ρ(Wy) = 0 must hold.
From now on, we drop ρ from the notation, where it causes no confusion. To
analyze this, we need a lemma.

Lemma 5.13 ([Ril1]). Let

W =

(
W11 W12

W21 W22

)
written in x and y as above. Then W21 = tW12.

Proof. Let

V =

(√
t 0

0
√
t
−1

)
.

Conjugating (aij) by this matrix multiplies a21 by t−1 and a12 by t. Thus we
need to show that VWV −1 = W T . Evidently, V xV −1 = yT and V yV −1 = xT .
Using that εi = εα−i we then see that

VWV −1 = (xT )ε1(yT )ε2 . . . (xT )εα−2(yT )εα−1

= (xT )εα−1(yT )εα−2 . . . (xT )ε2(yT )ε1

= W T

and we have the desired.

Computing

ρ(xW )− ρ(Wy) =

(
W21 − tW12 (M −M−1)W12 +W22

−(M −M−1)W21 − tW22 0

)
we see that by Lemma 5.13 this vanishes if

p(M, t) = (M −M−1)W12 +W22 = 0.

To get the L-coordinate in DK , we need the upperleft entry of the matrix
ρ(WWx−2

∑
εi). Call this polynomial q(M,L).

From this we can produce A′K(L,M) = (L − 1)−1AK(L,M) as the resul-
tant of M rp(M, t) and M s(q(M, t) − L) with respect to t, where r and s are
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chosen to clear negative powers of M . One should clear any monomial and
repeated factors from A′K to get the unique expression.

For twist knots, Hoste and Shanahan proved a recursive formula for the
A-polynomial in [HS]. Their theorem is

Theorem 5.14 ([HS]). For p 6= −1, 0, 1, 2, the A-polynomial for the Kp twist
knot is given recursively by

A′Kp(L,M) = xA′Kp−p/|p|(L,M)− yA′Kp−2p/|p|
(L,M),

where

x = L2(1 +M4) + L(−1 + 2M2 + 2M4 + 2M6 −M8) +M4 +M8

y = M4(L+M2)4,

with initial conditions

A′K2
(L,M) = L3 + L2(−1 + 2M2 + 2M4 −M8 +M10)

+ L(M4 −M6 + 2M10 + 2M12 −M14) +M14

A′K1
(L,M) = L+M6

A′K0
(L,M) = 1

A′K−1
(L,M) = L2M4 + L(−1 +M2 + 2M4 +M6 −M8) +M4.
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TQFT and the Coloured Jones
Polynomial

In this chapter we introduce Topological Quantum Field Theory in the spirit
or Blanchet, Habegger, Masbaum and Vogel [BHMV2]. This is done by pro-
ducing a quantum invariant of three-manifolds from Skein theory, which has
been shown to give rise to a TQFT via the universal construction. We will
describe just enough Skein theory to formulate the invariant. At the core of
this invariant lies an invariant of links which generalizes the Jones polynomial,
called the coloured Jones polynomial. We conclude the chapter by proving a
new formula for the coloured Jones polynomial of double twist knots.

6.1 Topological Quantum Field Theory

We will now descibe a Topological Quantum Field Theory, as is defined in
[BHMV2]. This is very closely related to the Atiyah-Segal axioms for TQFT
(see [Ati2]). It is build from a quantization functor. Choose a cobordism
category C, with oriented d−1-dimensional manifolds (maybe with some extra
structure) as objects and oriented d-manifolds bounded by d− 1-manifolds as
morphisms. Also, we let disjoint union be a monoidal structure on objects
with unit object ∅. Let Z : C → VectC be a functor to the category of complex
vector spaces. The notation is the following:

If M is a cobordism from Σ1 to Σ2, then ZM : Z(Σ1) → Z(Σ2). Let Z
satisfy

Z(∅) = C.

Then, if M is a cobordism from ∅ to ∂M , then Z(M) = ZM (1) ∈ Z(∂M).
If M is closed then Z(M) ∈ C and we denote the number τ(M), called the
quantum invariant of M .

Definition 6.1. A quantization functor is a functor Z as above from a cobor-
dism category C to VectC with a sesquilinear form 〈·, ·〉Σ on Z(Σ) for every
Σ ∈ C such that for corbordisms M1,M2 with ∂M1 = ∂M2 = Σ we get

〈ZM1 ,ZM2〉Σ = τ(M1 ∪Σ −M2) ∈ C.
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We say that a quantization functor is cobordism generated if the elements
Z(M), with ∂M = Σ, generate Z(Σ). The quantum invariant τ is called
multiplicative if

τ(M1 tM2) = τ(M1)τ(M2)

and involutive if
τ(−M) = τ(M).

Now, given a quantization functor, the corresponding quantum invariant is
multiplicative and involutive. The converse is also true.

Proposition 6.2. If τ is a multiplicative and involutive invariant of closed
cobordisms of C, the there is a unique cobordism generated quantization functor
extending it.

The universal construction of the functor from the quantum invariant τ is
the following:

Let V (Σ) denote the C-vector space generated by all cobordisms M with
∂M = Σ (as a cobordism from ∅ to Σ). Then we define our sesquilinear form
on V (Σ)

〈M1,M2〉 = τ(M1 ∪Σ M2).

Let
N(Σ) = {M ∈ V (Σ) | 〈M,M ′〉 = 0, ∀M ′ ∈ V (Σ)}

and define
Z(Σ) = V (Σ)/N(Σ).

The morphisms are defined by gluing, i.e. given M a cobordism from Σ1 to
Σ2, then for M ′ ∈ Z(Σ1)

ZM (M ′) = M ′ ∪Σ1 M ∈ Z(Σ2).

There are natural maps Z(−Σ) → Z(Σ)∗ and Z(Σ1) ⊗ Z(Σ2) → Z(Σ1 t
Σ2). We say that the quantization functor is involutive if the former is an
isomorphism and multiplicative if the latter in an isomorphism. Also, we can
impose a finiteness condition (F) saying that Z(Σ) is of finite rank and 〈·, ·〉Σ
induces an isomorphism Z(Σ)→ Z(Σ)∗.

Definition 6.3. A Topological Quantum Field Theory on a cobordism cate-
gory C is an involutive, multiplicative cobordism generated quantization func-
tor satisfying the property (F).

We are interested in a (2 + 1)-dimensional TQFT, that is, the objects are
surfaces and the cobordisms are three-manifolds. By the above proposition,
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we can construct such a functor by finding an involutive and multiplicative
three-manifold invariant.

Such quantum invariants was introduced by Witten in [Wit] in the context
of quantum Chern-Simons theory and its relation to the Jones polynomial of
links. Witten’s invariants were constructed by Reshetikhin and Turaev ([RT1],
[RT2]) by the use of the representation theory of sl2-quantum groups at a root
of unity. Blanchet, Habegger, Masbaum and Vogel gave a skein theoretical
construction of the quantum invariant in [BHMV1] based on work by Lick-
orish ([Lic]). These were shown to produce a TQFT in ([BHMV2]). Also,
Kirby and Melvin gave a very nice presentation of invariants by Reshetikhin
and Turaev in [KM1].

6.2 Quantum Invariants from Skein Theory

We will present the quantum invariant from [BHMV1]. Let M be a compact,
oriented three-manifold. By a banded link inM we mean a link inM provided
with a framing on each component, that is, an isotopy class of disjoint embed-
ded annuli in M . Let A be an indeterminate and define the Kauffman bracket
skein module of M K(M) as the Z[A,A−1]-module generated by banded links
in M , subject to the so-called skein relations

= A +A−1

= −A2 −A−2.

Given a banded link L ⊂ M we denote the image of L in K(M) by 〈L〉.
This is called the Kauffman bracket. It can be shown that

(i) K(S3) ∼= Z[A,A−1] by letting the empty link have value 1.

(ii) The skein module for the solid torus is K(S1 × I × I) = Z[A,A−1]z,
where z is the banded link given by S1 × [1

4 ,
3
4 ]× {pt}.

We denote the latter by B = K(S1 × I × I). Now, given a banded link L =
L1t · · · tLn ⊂ S3, we can supply each component by a tubular neighborhood
to get n disjoint copies of a (knotted) solid torus, where we indentify Li with
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the element z. The skein module of the disjoint union of the tori is simply
B⊗n and so L induces a multilinear map

〈·, . . . , ·〉L : Bn → Z[A,A−1]

which we will refer to as the meta-bracket. This meta-bracket acts as follows.
Given a collection of monomials za1 , . . . , zan , the meta-bracket 〈za1 , . . . , zan〉L
is the Kauffman bracket of the banded link obtained from L by replacing Li
by ai parallel copies. We say that the component Li is coloured by zai .

We will now describe the necessary ingredients to create a three-manifold
invariant from the Kauffman bracket. Let t be the map on B induced from a
full positive twist of the torus. Also, let c be the map that adds an annulus
coloured by z linking once with the element of B it acts on.

Lemma 6.4 ([BHMV1]). There is a family ei of eigenvectors for t and c given
by e0 = 1, e1 = z and en = zen−1 − en−2, for n ≥ 2 with

t(en) = µnen and c(en) = λnen,

where
µn = (−1)nAn

2−2n and λn = −(A2n+2 +A−2n−2).

Now, let Λ be an integral domain containing a homomorphic image of
Z[A,A−1] and let ϕd be the d-th cyclotomic polynomial. We define the quo-
tient ring Λp = Z[A,A−1]/ϕ2p(A) and change coefficients in B to get

Bp = B ⊗ Λp.

We fix the bilinear form 〈·, ·〉 on B induced by the zero-framed Hopf link. As
in the universal construction above we let

Np = {u ∈ Bp | 〈u, v〉 = 0∀v ∈ Bp}.

This allows us to define the Λp-algebra Vp = Bp/Np. It is also a free Λp-module
of rank n(p) = bp−1

2 c. From now on assume that p is even and let p = 2r,
r ≥ 2. Then n(p) = r − 1 and Vp has basis e0, . . . , er−2. As is shown in
[BHMV1], the twist map t preserves Np and thus it induces a map on Vp. In
Vp we define the element

Ωp =

r−2∑
i=0

〈ei〉ei.

Now we can define the quantum invariant.



6.2 Quantum Invariants from Skein Theory 67

Theorem 6.5 ([BHMV1]). Let M be a three-manifold and let L ⊂ S3 be a
banded link such that surgery on L yields M . Then

τr(M) =
〈Ω2r, . . . ,Ω2r〉L

〈t(Ω2r)〉b+(L)〈t−1(Ω2r)〉b−(L)
∈ Λ2r[

1
2r ]

is an invariant of M , where b+(L) (b−(L)) is the number of positive (resp.
negative) eigenvalues of the linking matrix of L.

Also, they prove

Theorem 6.6 ([BHMV2]). Let Λ = C and A = e
πi
2r . The quantization functor

induced by the quantum invariant τr is a TQFT.

For completeness sake, we remark that the cobordism category for which
this gives a TQFT is extended by so-called p1-structures to get rid of anomalies.

Remark 6.7. Andersen and Ueno has made a correspondence in a series of
papers ([AU1],[AU2],[AU3],[AU4] building on [TUY1]) between this TQFT
and the one proposed by Witten. Concretely, letting r = k + 2, the two-
dimensional part of the BHMV-construction agrees with the quantum spaces
from Chapter 2, when geometrically quantizing the moduli space of flat SU(2)-
connections. We call k the level of the quantization and denote the correspond-
ing TQFT functor by Zk.

The Kauffman bracket of the en can be calculated to be

〈en〉 = (−1)n[n+ 1]

where [n+ 1] is the quantum integer defined by

[k] =
A2k −A−2k

A2 −A−2
.

So, by this we can express the quantum invariant as

τr(M) = α(L)

r−1∑
k1=1

· · ·
r−1∑
kn=1

n∏
i=1

(−1)ki−1[ki]〈ek1−1, . . . , ekn−1〉L

where Cr,n = {1, . . . , r−1}n and α(L) is the normalization factor of τr coming
from the denominator. At the heart of the quantum invariant is an invariant
of the banded link.

Definition 6.8. The coloured Jones polynomial of a banded link L = L1 t
· · · t Ln with colour (k1, . . . , kn) is

JL(k1, . . . , kn) = (−1)
∑
i(ki−1)〈ek1−1, . . . , ekn−1〉L ∈ Z[A,A−1].
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This invariant generalizes the Jones polynomial, in the sense that when all
colours are 2, it gives the original Jones polynomial. This invariant was con-
structed by Reshetikhin and Turaev in [RT1] and a colour ki can be interpreted
as the unique irreducible ki-dimensional representation of sl2. Furthermore,
Andersen notes that it detects the unknot [And3].

Remark 6.9. In the above TQFT, the vector space associated to a genus
one surface is exactly Vp. As mentioned, this has the basis e0, . . . , er−2. Now,
considering the complement of a knot XK = S3 \N(K) as in Section 5.3, we
see that the TQFT yields a vector in Vp. The coefficient (up to an overall
normalization) of en−1 is the coloured Jones polynomial of colour n, and so we
can write

Zk(XK) =
k+1∑
n=1

JK(n;A = e
πi

2(k+2) )en−1. (6.1)

6.3 A Formula for the Coloured Jones Polynomial
of Double Twist Knots

In the following, let q = A4. In [Mas], Masbaum produces a closed formula for
the coloured Jones polynomial of twist knots. We observe, that this construc-
tion can be modified to include all double twist knots. We follow the notation
of [Mas] closely, and refer the reader to this paper for details on many of the
formulas, as we only state what is needed here.

We are searching for an element ω such that when encircling an even num-
ber of strands it adds a full twist.

ω

even

=

even

This can also be expressed as

〈ω, x〉 = 〈t(x)〉,

for any even element x ∈ B. We can equip B with the basis

Rn =

n−1∏
i=0

(z − λ2i).
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By definition of c we observe

〈zk, ei〉 = 〈1, ck(ei)〉 = λki 〈ei〉.

We see directly that 〈Rn, e2k〉 = 0 if k < n. Since e2k consist only of even
powers of z, we also get

〈Rn, z2k〉 = 0 (6.2)

when k < n. For later use, we record the fact that

〈Rn, e2n〉 = (−1)n
{2n+ 1}!
{1}

(6.3)

where {n} = A2n −A−2n. And so in this basis we are seaching for coefficients
such that

ω =

∞∑
n=0

cnRn.

We also want to consider powers of ω, to get more twists, i.e.

〈ωp, x〉 = 〈tp(x)〉, p ∈ Z

and find coefficients such that

ωp =
∞∑
n=0

cn,pRn.

Following [Mas] we let R′n = ({n}!)−1Rn and thus c′n,p = {n}!cn,p to let ωp =∑∞
n=0 c

′
n,pR

′
n. These coefficients are computed in [Mas].

Assume p ≥ 1. First, we consider a vector k = (k1, . . . , kp) such that ki ≥ 0
and

∑
ki = n. From this we can define

ϕ(k) =
1

2

p−1∑
i=1

(n− si)(2n− si − si−1 + 2) (6.4)

where si =
∑i

l=1 kl. Second, we define[
n
k

]
=

[n]!

[k1]! · · · [kp]!

to write the expression

c′n,p = (−1)nq
n(n+3)

4

∑
k

qϕ(k)

[
n
k

]
(6.5)

for p ≥ 1. For negative p the conversion goes as

c′n,−p = (−1)nc′n,p.
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We now wish to extend a formula for the coloured Jones polynomial for
twist knots given in [Mas] to the double twist knots Kp,p′ as in Definition 5.9.
This will make use of the concept of admissibly coloured trivalent graphs as in
[MV], but since all the formulas needed are stated in [Mas], we will use this as
a ’black box’. An essential formula we will need is

µ2p′
n

2p′ crossings

2n

n

n

2n

= (−1)n{n}c′n,p′

2n

Recall the coloured Jones polynomial of a knot K ⊂ S3

JK(k) = (−1)k−1〈ek−1〉.

By using the recursive definition of en, these can be written in the basis Rn as

ek−1 =

k−1∑
n=0

(−1)k−1−n
[

k + n
k − 1− n

]
Rn. (6.6)

We are now ready to state and prove the theorem, a corollary to the theorem
of Masbaum.

Theorem 6.10. The coloured Jones polynomial of the double twist knot Kp,p′,
p, p′ ∈ Z is given by

JKp,p′ (k) =
k−1∑
n=0

(−1)n
1− qk

q
1
2 − q−

1
2

q−nk−
k
2 c′n,pc

′
n,p′

n∏
l=1

(1− qk−l)(1− qk+l). (6.7)

Proof. We use the surgery description of Kp,p′ in Figure 6.1.

ωp 2p′ crossings
2p′ twists

Figure 6.1: Surgery description for unframed Kp,p′ .
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The crucial observation made in [Mas] (referring to Lê) is that

R′k

Rn

= 0 (6.8)

when k 6= n. This is by (6.2), since circling with Rn annihilates all even
polynomials z2k when k < n. Both components are unframed unknots having
spanning disks pierced twice by the other component. Also, since both Rn and
en are monic polynomials of degree n, we get that

R′n

Rn

= R′n

en

Each twist gives rise to a µn and so, in the notation of [MV] we get

µ2p′
n · R

′
n

n

n

2n

2n

and so by (6.8) we can write it as

(−1)n{n}!c′n,p′ ·
R′n

2n

= (−1)n{n}!c′n,p′〈R′n, e2n〉

= c′n,p′
{2n+ 1}!
{1}
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by (6.3). Combining this with (6.6) we get the equation

JKp,o(k) =
k−1∑
n=0

(−1)n
[

k + n
k − 1− n

]
c′n,pc

′
n,o

{2n+ 1}!
{1}

=
k−1∑
n=0

(−1)nc′n,pc
′
n,p′
{k + n} · · · {k − n}

{1}
.

Using that {l} = −q−
l
2 (1− ql) we get the desired formula.
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The AJ Conjecture

In this chapter we will discuss various conjecures related to the AJ conjecture of
Garoufalidis [Gar] . The AJ conjectures relate the coloured Jones polynomial
and the A-polynomial of the two previous chapters. We will formulate differ-
ent types of such conjectures, the original algebraic AJ conjecture, geometric
versions, and a more general conjecture in TQFT. One of the geometric con-
jectures will arise from Gukov’s Generalized Volume Conjecture [Guk]. Then
we will observe that the Toeplitz operators of Chapter 4 corresponding to the
A-polynomial are well-suited to formulate another geometric version of the AJ
conjecture. Finally, we go out on a limb and give a very general conjecture in
TQFT. At the end of the chapter we prove the Toeplitz operator-version for
the unknot.

7.1 The Algebraic AJ Conjecture

The starting point of the algebraic AJ conjecture is an action of a non-
commutative torus on the coloured Jones polynomial. From this we construct
the non-commutative A-polynomial ÂK . For this, it is convenient to write the
coloured Jones polynomial as a function

JK : N→ Z[q±
1
4 ]

or even as a formal power series

JK(h) =
∞∑
n=1

JK(n)hn. (7.1)

Let A = Z[q±]〈E,Q〉
/
EQ = qQE be what we will call the non-commutative

torus (also known as the q-Weyl algebra). We let E and Q act on JK by

E(JK)(n) = JK(n+ 1) Q(JK)(n) = qnJK (7.2)

and see that this gives an action of A. Now we can ask if any elements of A
annihilates JK and thus form the annihilation ideal

IK = {P ∈ A | PJK = 0} ⊆ A.
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It was shown in [GL] that this ideal is non-trivial by showing that the coloured
Jones function is q-holonomic, which in our case precisely states that IK 6= 0.
The ÂK is should now be defined as a generator for IK . But this would require
that IK is a principal left ideal, which in general it is not. A way to fix this
is by inverting polynomials in Q by going to the Ore algebra Aloc. This is an
algebra over the field of fractions Q(q,Q), which additively is

Aloc =
{∑

akE
k | ak ∈ Q(q,Q), ak = 0 for k >> 0

}
and has multiplication given by

aEk · bEl = aσk(b)Ek+l, σ(f)(q,Q) = f(q, qQ)

on monomials. It turns out that every left ideal over Aloc is principal (see
reference in [Gar]). To define the annihilation ideal over this algebra, consider
the ring

F = {f : N→ Q(q)} / ∼

where f ∼ g if f and g agree everywhere but a finite set. Aloc acts on this
ring and thus we can define the annihilation ideal ĨK of a knot in this setting.
It turns out that IK 6= 0 if and only if ĨK 6= 0. As these are proven not to
vanish, we can find a generator for ĨK , denoted ÂK , satisfying

• ÂK ∈ A

• ÂK has minimal E-degree

• We can write ÂK =
∑
akE

k where ak ∈ Z[q,Q] are coprime.

This is called the non-commutative A-polynomial.
We now wish to relate this polynomial to the A-polynomial of Section 5.3

as limit when q → 1. For polynomials f, g ∈ C[L,M ], we say that polynomials
f and g are M -essentially equal, denoted by f M

= g, if f/g does not depend
on L. Similarly, two algebraic sets in C2 with coordinates L and M are M -
essentially equal if they are the same up to adding lines parallel to the L-axis.
Clearly, if f M

= g then {f = 0} M= {g = 0}.
We can now formulate the AJ conjecture of Garoufalidis ([Gar]), which he

proved in the same paper for the trefoil and the figure eight knot.

Conjecture 7.1 (AJ conjecture). For every knot K ⊂ S3, AK(L,M)
M
=

ÂK(L,M2)|q=1.

This have also been proven true for torus knots by Hikami in [Hik1] and
for twist knots (and some other 2-bridge knots) by T. T. Q. Lê in [Lê], as the
following theorem states.
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Theorem 7.2 ([Lê]). For the two-bridge knot K = K(α, β) the algebraic set
{(ÂK)|q=1 = 0} is M -essentially equal to an algebraic subset of the closure of
the deformation variety DK .

Furthermore, if AK/(L− 1) is irreducible over Z and the L-degree is α−1
2

then Conjecture 7.1 holds.

By Theorem 5.14 the L-degree of positive twist knotsKp = K(4p−1, 2p−1)
is 2p−1 and for negative twist knots K−p = K(4p+1, 2p+1) is 2p. Hoste and
Shanahan also show irreducibility of A′Kp in [HS], and so the above theorem
proves the AJ conjecture for twist knots. It should also be noted that the
proof does not rely on explicit formulas for the coloured Jones polynomial as
opposed to previous results.

7.2 Geometric AJ Conjectures

The AJ conjecture above relates the annihilation of the coloured Jones poly-
nomial with the zero-locus of the A-polynomial. We will in this section formu-
late related conjectures in a more geometric setting. Around the same time as
Garoufalidis formulated his AJ conjecture, Gukov [Guk] made his Generalized
Volume Conjecture, which contains a more geometric picture.

It studies the asymptotic behaviour of the coloured Jones polynomial JK(k)

at q =
2πi
r as both k and r goes to infinity. This is, however, done in a controlled

manor, as the ratio a = k
r is fixed in the limit. Allowing colours from R, we

can view this as
lim
r→∞

JK(ra; q = e
2πi
r ), a ∈]0, 1[.

The conjecture made was for hyperbolic knots and carried information of the
value of the limit. We introduce the generalizations of the hyperbolic volume
and the Chern-Simons invariant of the knot complement to the deformation
variety

Vol(L,M) = Vol(XK) + 2

∫
(− log|L|d(argM) + log|M |d(argL))

Vol(L,M) = CS(XK)− 1

π2

∫
(arg|L|d(argM) + arg|M |d(argL)) ,

where AK(L,M) = 0.

Conjecture 7.3 (Generalized Volume Conjecture). For a (hyperbolic) knot
K ∈ S3 the limit of the coloured Jones polynomial is

lim
r→infty

log JK(ra; q = e
2πi
r )

r
=

1

2π
(Vol(L,M) + i2π2 CS(L,M)),

where AK(L,M) = and M = eπia, L = ∂
∂a limr→∞

log JK(ra;q=e
2πi
r )

r .
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The actual value of the limit will not be studied here, but we will try to
recover the A-polynomial though an analysis of the left-hand side for not nec-
essarily hyperbolic knots in Chapter 8.

Now we turn to geometric quantization and TQFT. We will start by
discussing a unified setting for the coloured Jones polynomial and the A-
polynomial. As mentioned in Remark 5.12, we can view the deformation
variety DK as a subvariety of the moduli space of flat SL(2,C)-connections
on a torus. Inside this moduli space lies the SU(2)-moduli space of a torus,
which we discussed a bit in Section 4.2. This was the Z2-quotient of the torus
U(1)×U(1). The qoutient map is the map t as in Section 5.3.

U(1)×U(1)

t
��

� � // C∗ × C∗

t

��

MSU(2)(T ) � � i //MSL(2,C)(T )

From this diagram we can form the Weyl-invariant subset

D̂K = t−1(i−1t(DK)) ∈ U(1)×U(1).

This is a restriction from an SL(2,C) theory to an SU(2) theory.

Question 7.4. Does D̂K determine the A-polynomial?

As mentioned in Chapter 6, the TQFT from the BHMV-construction is
the same as the one arising from geometric quantization. In particular, the
vector space Zk(T ) is the same as H0(T,L2k)W . This means that the TQFT
boundary vector of the complement of a knot Zk(XK) can be viewed as a
holomorphic section of L2k over T . If we make the correspondence en−1 7→
ψn,k, we can use the description (6.1) to write the section

Zk(XK) =

k+1∑
n=1

JK(n; q = e
2πi
k+2 )ψn,k ∈ H0(T,L2k)W ,

resembling (7.1). This correspondence is consistent with the original interpre-
tation of Witten (see Appendix A.3 in [Jef]). The conjecture is now

Conjecture 7.5. The family of functions P k on T = U(1)×U(1) given by

P k(z) =
‖Zk(XK)(z)‖

maxx∈T ‖Z(XK)(x)‖

satisfies limk→∞ P
k(z) = 0 if and only if z ∈ D̂K .

One could take this a step further, and consider any three-manifoldM with
boundary ∂M = Σ. The TQFT vector space associated to Σ is by Chapter 2
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Zk(Σ) = H0(MSU(2)(Σ),Lk) (or at least covariant constant holomorphic sec-
tions, with respect to the Hitchin connection) and we can make an even more
general conjecture.

Conjecture 7.6. The family of functions P kM onMSU(2)(Σ) given by

P kM (z) =
‖Zk(M)(z)‖

maxx∈MSU(2)(Σ)‖Zk(M)(x)‖

satisfies limk→∞ P
k
M (z) = 0 if and only if z corresponds to a flat SU(2)-

connection on Σ that extends to a flat SU(2)-connection on M .

Let us investigate Conjecture 7.5 in connection with the original AJ con-
jecture. Since the polynomial ÂK is conjectures to have AK as the limit q → 1,
we could see it as a quantization of the A-polynomial. This inspires us to try
and write down a Toeplitz operator as a quantization of the A-polynomial.
First, we restrict the A-polynomial to a function on U(1)×U(1) and since D̂K

is Weyl invariant, we make the Weyl invariant A-polynomial

A+
K(L,M) = AK(L,M) +AK(L−1,M−1).

Given a monomial term LtM s in AK , we thus get it replaced by LtM s +
L−tM−s. Since L andM are the two coordinates on the torus, we can represent
them by the phase functions F1,0 and F0,1 from Chapter 4. This means that
we make the correspondence

LtM s + L−tM−s 7→ Ft,s + F−t,−s =: F+
t,s.

By Section 4.2.1, we see that the Toeplitz operators for F+
t,s preserves the Weyl

anti-invariant spaceH0(T,L2k+4)W− , as is needed. For brevity, let l = 2k+4 =
2r. We compute the action of the Toeplitz operators for these functions on
our basis.

T̂
(l)

F−t,s
θ−n,l = T̂

(l)
Ft,s

θn,l + T̂
(l)
F−t,−s

θn,l

− T̂ (l)
Ft,s

θl−n,l − T̂
(l)
F−t,−s

θl−n,l

= e−
2πis
l

(t+n)θn+t,l + e
2πis
l

(−t+n)θn−t,l

− e−
2πis
l

(t+l−n)θl−n+t,l − e
2πis
l

(−t+l−n)θl−n−t,l

= e−
2πis
l

(t+n)θ−n+t,l + e−
2πis
l

(t−n)θ−n−t,l.

The action of E and Q on the coloured Jones polynomial in (7.2) induces the
action on the Theta-functions given by

Eθ−n,l =

{
θ−n−1,l, n ≥ 2

0, γ = 1
Qθ−n,l = qnθ−n,l.
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By this we see that

T̂
(l)

F+
t,2s

θ−n,l = (QsEt +Q−sE−t)θ−n,l,

which fits perfectly with the correspondence L 7→ E, M2 7→ Q as in Conjec-
ture 7.1.

In this setting, we could the make the following conjecture, where T (k)
AK

is short-hand for the operator associated to the A-polynomials, described on
monomials above.

Conjecture 7.7. For any knot K ⊂ S3 AK there is an element ÂK ∈ IK
such that

‖T (k)
AK
− ÂK‖ ∈ O( 1

k ).

In particular, this will imply this statement, which also shows the ties to
TQFT.

Conjecture 7.8. For any knot K ⊂ S3 the A-polynomial AK and the TQFT
boundary vector Zk(XK) satisfy

‖T (k)
AK
Zk(XK)‖ ≤ c(k)‖Zk(XK)‖

where c(k) ∈ O( 1
k ).

We find these two conjectures very interesting, since a whole new set of
tools from the world of Toeplitz operators, such as the techniques used by
Andersen in e.g. [And1] could be applied here. In the following section, we
will do a small example, where Conjecture 7.8 will be proved for the unknot.

7.3 Unknot and Toeplitz Operators

Recall the A-polynomial and coloured Jones polynomial for the unknot U ⊂ S3

AU (L,M) = L− 1 JU (n) = [n].

We fix the level k and let q = e
2πi
k+2 . It is not hard to see that if m+n = k+ 2,

then [m] = [n]. The norm of the TQFT boundary vector is

‖v(k)‖2 =
k+1∑
n=1

[n]2,
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where Z(k)(XU ) = v(k) for short. The Toeplitz operator for AU has the matrix
form

T
(k)
AU

=



−2 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2


and so

T
(k)
AU
v(k) =



−2[1] + [2]
[1]− 2[2] + [3]
[2]− 2[3] + [4]

...
[k − 1]− 2[k] + [k + 1]

[k]− 2[k + 1]


.

Computing the norm of this amounts to

‖T (k)
AU
v(k)‖2 =

(
− 2[1] + [2]

)2
+

k−1∑
n=1

(
[n]− 2[n+ 1] + [n+ 2]

)2
+ ([k]− 2[k + 1]

)2
= 4[1]2 + [2]2 − 4[1][2]

+ [1]2 + 4[2]2 + [3]2 − 4[1][2] + 2[1][3]− 4[2][3]

+ [2]2 + 4[3]2 + [4]2 − 4[2][3] + 2[2][4]− 4[3][4]

+ [3]2 + 4[4]2 + [5]2 − 4[3][4] + 2[3][5]− 4[4][5]

...

+ [k − 1]2 + 4[k]2 + [k + 1]2 − 4[k − 1][k]

+ 2[k − 1][k + 1]− 4[k][k + 1]

+ [k]2 + 4[k + 1]2 − 4[k][k + 1]

= −[1]2 +
k−1∑
n=1

[n]
(
6[n]− 8[n+ 1] + 2[n+ 2]

)
+ 6[k]2 + 5[k + 1]2 − 8[k][k + 1]

=

k+1∑
n=1

[n]
(
6[n]− 8[n+ 1] + 2[n+ 2]

)
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where the last equation use the facts [1] = [k+1] = −[k+3] = 1 and [k+2] = 0.
Recall the Euler-Maclaurin formula

n∑
j=a

f(j) =

∫ n

a
f(x)dx+ 1

2(f(n) + f(a))

+
m−1∑
s=1

B2s

(2s)!
(f (2s−1)(n)− f (2s−1)(a)) +Rm(n)

where Bi is the i’th Bernoulli number and

|Rm(n)| ≤ 2

(2π)m−1

∫ n

a
|f (m−1)(x)|dx.

Let gr,l(x) = sin πx
r sin π(x+l)

r . Then we see that

k+1∑
α=1

[α][α+ l] =
1

sin2 π
r

r−1∑
j=1

gr,l(j).

Calculating derivatives of gr,l we find that

g
(2s−1)
r,l (x) = (−1)s−1 (2π)2s−1

2r2s−1
sin π(2x+l)

r .

So we can reduce the sum to

r−1∑
j=1

gr,l(j) = Ir,l + sin π
r sin π(l+1)

r

+
m−1∑
s=1

B2s

(2s)!
(−1)s−1 (2π)2s−1

2r2s−1

(
sin π(l−2)

r − sin π(l+2)
r

)
+Rm(r − 1)

= Ir,l + sin π
r sin π(l+1)

r

+

m−1∑
s=1

B2s

(2s)!
(−1)s

(2π)2s−1

r2s−1
cos πl2 sin 2π

r +Rm(r − 1)

where

Ir,l =

∫ r−1

1
sin πx

r sin π(x+l)
r dx.

By substitution and the addition formula for sine, we see that

Ir,l = cos πlr Ir,0.
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From the above bound on the remainder term, we see that |Rm(r−1)| ≤ 1
rm−2

so we find the asymptotic behaviour as

1

sin2 π
r

r−1∑
j=1

gr,l(j) =
cos πlr
sin2 π

r

Ir,0 +O(1).

The integral Ir,0 can be calculated to be

Ir,0 =
r

2
− 1 +

r

π
sin π

r cos πr ∈ Θ(r)

and so

1

sin2 π
r

r−1∑
j=1

gr,l(j) ∈ Θ(r3).

In particular, this shows that ‖v(k)‖2 ∈ Θ(r3). On the other hand

‖T (k)
AU
v(k)‖2 =

k+1∑
α=1

[α]
(
6[α]− 8[α+ 1] + 2[α+ 2]

)
=

2

sin2 π
r

3
r−1∑
j=1

gr,0(j)− 4
r−1∑
j=1

gr,1(j) +
r−1∑
j=1

gr,2(j)


=

2

sin2 π
r

(
3− 4 cos πr + cos 2π

r

)
Ir,0 +O(1)

=

(
8(1− cos πr )

sin2 π
r

− 4

)
Ir,0 +O(1) ∈ O(r)

and we have the desired estimate.
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Asymptotics of the Coloured Jones
Polynomial for Double Twist Knots

In is chapter we address Conjecture 7.3, or at least the conjectured connection
to the A-polynomial. We approach the formula in Theorem 6.10 by Faddeev’s
quantum dilogarithm and write the coloured Jones polynomial of double twist
knots as a multiple contour integral. The hope is that this can be used to
give a full asymptotic expansion of the coloured Jones polynomial. As a part
of this, we investigate the leading order asymptotic behaviour of the integral
and produce equations that, for twist knots, have been shown to give the
A-polynomial.

8.1 The Coloured Jones Polynomial Using
Quantum Dilogarithms

We start by introducing Faddeev’s quantum dilogarithms

Sγ(ζ) = exp

(
1

4

∫
CR

eζz

sinh(πz) sinh(γz)z
dz

)
for |Re(ζ)| < π + γ, where 0 < γ < 1 and CR is the contour from −∞ to ∞
going clock-wise around the half-circle of radius R < 1. Sγ was constructed to
solve the functional equation

Sγ(ζ − γ) = (1 + eiζ)Sγ(ζ + γ) (8.1)

(see [Fad] and [AH] for a proof). This allows us to extend the function toa
meromorphic function on the complex plane. Letting γ = π

r for an integer
r > 3, (8.1) implies that

Sγ(−π + 2πx) = (1 + e2πixr)Sγ(−π + 2π(x+ 1)). (8.2)

The function

x 7→ Sγ(−π + 2γx+ γ)

83
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is analytic on C \ {r, r + 1, . . .}. It has poles of order m on the set

Pm = {mr,mr + 1, . . . ,mr + r − 1}

and zeroes of order m on

Nm = {−mr,−mr + 1, . . . ,−mr + r − 1}. (8.3)

The functional equation (8.2) implies the formulas

n∏
l=0

(1− e
2πi
r

(k−l)) =
Sγ(−π + 2γ(k − n)− γ)

Sγ(−π + 2γk + γ)

n∏
l=0

(1− e
2πi
r

(k+l)) =
Sγ(−π + 2γk − γ)

Sγ(−π + 2γ(k + n) + γ)
.

We notice here that, if k + n ≥ r, there is a pole in the denominator
reflecting the fact that the left-hand side is zero in that case.

Introducing the notation S̃γ(z) = Sγ(−π + 2γz + γ) and using the above
lets us write

n∏
l=0

(1− e
2πi
r

(k−l))(1− e
2πi
r

(k+l)) = (1− e
2πi
r
k)
S̃γ(k − n− 1)

S̃γ(k + n)
.

If we fix q = e
2πi
r , we can rewrite (6.7) from Theorem 7.2 as

JKp,p′ (k) =
k−1∑
n=0

(−1)n
q−nk−

k
2

(q
1
2 − q−

1
2 )(1− qk)

c′n,pc
′
n,p′

n∏
l=0

(1− qk−l)(1− qk+l)

=
i

2 sin(πr )

k−1∑
n=0

(−1)nq−nk−
k
2 c′n,pc

′
n,p′

S̃γ(k − n− 1)

S̃γ(k + n)
, (8.4)

where the coefficients c′n,p were defined in (6.5). The formula for c′n,p contained
the quantum binomials

[ n
k

]
. These can be written in terms of the sums si =

k1 + · · ·+ ki (writing n = sp for brevity) as[
n
k

]
=

p∏
i=1

[
si
si−1

]
.

Using the functional equation (8.2) one can calculate that[
n
j

]
= q

j(j−n)
2

S̃γ(n− j)S̃γ(j)

S̃γ(n)S̃γ(0)



8.1 The Coloured Jones Polynomial Using Quantum Dilogarithms 85

and so we get [
n
k

]
= qϕ̃(k)

p∏
i=1

S̃γ(si − si−1)S̃γ(si−1)

S̃γ(si)S̃γ(0)

= qϕ̃(k) S̃γ(n− sp−1)
∏p−1
i=1 S̃γ(si − si−1)

S̃γ(n)
(
S̃γ(0)

)p−1

where

ϕ̃(k) =
1

2

p∑
i=1

si−1(si−1 − si).

Adding ϕ from (6.4) and ϕ̃ yields

ϕ(k) + ϕ̃(k) = (p− 1)n(n+ 1) +

p−1∑
i=1

si(si − 2n− 1)

and so we get the formula

c′n,p = (−1)nq
n(n+3)

4

n∑
sp−1=0

· · ·
si+1∑
si=0

· · ·
s2∑
s1=0

q(p−1)n(n+1)+
∑p−1
i=1 si(si−2n−1)

×
S̃γ(n− sp−1)

∏p−1
i=1 S̃γ(si − si−1)

S̃γ(n)
(
S̃γ(0)

)p−1 .

We now wish to extend the sums in the above. Namely, consider the case
where si < si−1, i = 2, . . . , p. Then by (8.3) we see that the factor S̃γ(si−si−1)
vanishes, and thus we can extend all the sums to

c′n,p = (−1)nq
n(n+3)

4

k−1∑
sp−1=0

· · ·
k−1∑
s1=0

q(p−1)n(n+1)+
∑p−1
i=1 si(si−2n−1)

×
S̃γ(n− sp−1)

∏p−1
i=1 S̃γ(si − si−1)

S̃γ(n)
(
S̃γ(0)

)p−1 . (8.5)

Recall that c′n,−p = (−1)nc′n,p. To this end, notice that
[ n
k

]
is real since

the quantum integers are real. Thus

c′n,−p = q−
n(n+3)

4

k−1∑
sp−1=0

· · ·
k−1∑
s1=0

qϕ̃(k)−ϕ(k) S̃γ(n− sp−1)
∏p−1
i=1 S̃γ(si − si−1)

S̃γ(n)
(
S̃γ(0)

)p−1 .
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As before we find

ϕ̃(k)− ϕ(k) = −(p− 1)n(n+ 1)− nsp−1 +

p−1∑
i=1

si(2n− si−1 − 1)

and so

c′n,−p = q−
n(n+3)

4

k−1∑
sp−1=0

· · ·
k−1∑
s1=0

q−(p−1)n(n+1)−nsp−1+
∑p−1
i=1 si(2n−si−1−1)

×
S̃γ(n− sp−1)

∏p−1
i=1 S̃γ(si − si−1)

S̃γ(n)
(
S̃γ(0)

)p−1 . (8.6)

The idea is to write the formula for the coloured Jones polynomial as
the sum of evaluations of analytic functions. Thus, we define the following
functions, where z = (z1, . . . , zp−1)

g(a, y) = eπirye
2πi
r (−r2ya− ra

2 ) S̃γ(r(a− y)− 1)

S̃γ(r(a+ y))

fp(a, y, z) = e
πiry+ 2πi

r

(
ry(ry+3)

4
+(p−1)ry(ry+1)+

∑p−1
i=1 rzi(rzi−2ry−1)

)

×
S̃γ(r(y − zp−1))

∏p−1
i=1 S̃γ(r(zi − zi−1))

S̃γ(ry)

f−p(a, y, z) = e
2πi
r

(
−ry(ry+3)

4
−(p−1)ry(ry+1)−r2yzp−1−

∑p−1
i=1 rzi(2ry+rzi−1−1)

)

×
S̃γ(r(y − zp−1))

∏p−1
i=1 S̃γ(r(zi − zi−1))

S̃γ(ry)

Let ε, ε′ ∈ {±1}. Then by (8.4), (8.5) and (8.6) we can write the coloured
Jones polynomial of the double twist knot Kεp,ε′p′ as

JKεp,ε′p′ (k) = βr(p, p
′)

k−1∑
n,si,ti=0

fεp
(
k
r ,

n
r ,

1
rs
)
fε′p′

(
k
r ,

n
r ,

1
r t
)
g
(
k
r ,

n
r

)
Where 1

rs =
(
s1
r , . . . ,

sp−1

r

)
, 1
r t =

(
t1
r , . . . ,

tp′−1

r

)
and

βr(p, p
′) =

i

2 sin(πr )
(
S̃γ(0)

)p+p′−2
.

We are now in good shape to write the coloured jones polynomial as an
integral. Namely, let Ck,r be the curve in C parametrized as

Ck,r(t) =
k − 1

2r
+
k − 1

2

2r
e2πit, t ∈ [0, 1],
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that is, a circle with center in k−1
2r , encircling the points 0, 1

r , . . . ,
k−1
r with a

1
4r margin. Then we can apply the Residue Theorem p+p′−1 times to obtain
the following theorem.

Theorem 8.1. For p, p′ ∈ N and ε, ε′ ∈ {±1}, the coloured Jones polynomial
of the (εp, ε′p′) double twist knot Kεp,ε′p′ at q = e

2πi
r is

JKεp,ε′p′ (k) = αp,p′(r)

∫
T p+p

′−1
k,r

fεp(
k
r , y, z)fε′p′(

k
r , y, w)g(kr , y)

× cot(πry)

p−1∏
l=1

cot(πrzl)

p′−1∏
j=1

cot(πrwj) dydzdw, (8.7)

where T p+p
′−1

k,r = (Ck,r)
p+p′−1, z = (z1, . . . , zp−1), w = (w1, . . . , wp′−1), and

αp,p′(r) =
−rp+p′−1

(2i)p+p′ sin(πr )
(
S̃γ(0)

)p+p′−1
.

8.2 Asymptotic Behaviour

We now wish to investigate the asymptotic behaviour of the integral above,
where we let the ratio k

r → a as r → ∞, for some fixed a ∈]0, 1[. This is
to address the version of the AJ conjecture coming from Gukov’s Generalized
Volume Conjecture (Conjecture 7.3). As we are only interested in the large r
asymptotics, we replace the ratio k

r by a. We can not do the analysis completely
rigorously yet, but we will sketch how we believe one could get to a point where
the method of steepest descend could be applied. This done through a number
of leading order estimates on the factors of the integral.

8.2.1 Asymptotics of Quantum Dilogarithms

Recall our notation S̃γ(x) = Sγ(−π + 2γx+ γ). In [AH] the γ → 0 behaviour
for Sγ is investigated. This is based on Euler’s dilogarithm

Li2(w) = −
∫ w

0

Log(1− z)
z

dz

defined on C\]1,∞[.
Assume

− 1
2r < Re(x) < 1− 1

2r , (8.8)

then

Sγ(rx) = exp
( r

2πi
Li2(e2πix+πi

r ) +Rγ(x)
)

(8.9)
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where

|Rγ(x)| ≤

(
AR

(
1

1− 1
2r − Re(x)

+
1

1
2r + Re(x)

)
+BR

(
1 + e−2πR Im(x)

)) 1

r

for some constants AR and BR only depending on R. This means that in a
leading order asymptotical analysis of the integral in Theorem 8.1, we should
be able to replace the quantum dilogarithms by Euler’s dilogarithms. This,
however, is only where the condition (8.8) is satisfied. Let us take a look at
how the quantum dilogarithms enter in Theorem 8.1. There are four ways:

(1) S̃γ(ry)

(2) S̃γ(r(a− y)− 1)

(3) S̃γ(r(a+ y))

(4) S̃γ(r(zi − zi−1)).

First, let us rewrite the curve Ck,r as Ca,r with

Ca,r(t) =
a

2
− 1

2r
+

(
a

2
− 1

4r

)
e2πit, t ∈ [0, 1].

We then see that for x ∈ Ca,r

Re(x) ∈ [− 1
4r , a−

3
4r ].

Let us consider the different quantum dilogarithms one by one. In (1) we see
that (8.8) is satisfied immediately.

In (2) we can rewrite it as S̃γ(r(a− y − 1
r )) and we find that

− 1

4r
≤ a− Re(y)− 1

r
≤ 1− 3

4r

and we have the estimate (8.8).
(3) is a bit more tricky, as it depends on what a is. We immediately get

the lower bound satisfied, as a+ y ≥ a− 1
4r and if a ≤ 1

2 , we see that

a+ Re(y) ≤ 1− 3

4r
.

But if a ≥ 1
2 + 1

8r , the upper bound may not hold. Indeed, then there is y ∈ Ca,r
such that Re(y) ≥ 1−a− 1

2r , which implies that a+ Re(y) ≥ 1− 1
2r . But then

a+ y − 1 will satisfy the bounds in (8.8). Using the functional equation (8.2)
we see that

S̃γ(r(a+ y)) = (1 + e2πir(a+y−1+ 1
2r

))−1S̃γ(r(a+ y − 1))

= (1− e2πir(a+y−1))−1S̃γ(r(a+ y − 1)) (8.10)
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And we can use the estimates on this instead. This requires a change of
contour. First assume that r satisfies that r(1 − a) − 1

2 ∈ R \ Z, and let
εa(r) > 0 such that

[r(1− a)− 1

2
− εa(r), r(1− a)− 1

2
+ εa(r)] ∩Z = ∅

Define the contours

C1
a,r(t) =

1− a
2
− 3

8r
− εa(r)

2
+

(
1− a

2
− 1

8r
− εa(r)

2

)
e2πit, t ∈ [0, 1]

C2
a,r(t) =

1

2
− 5

8r
+
εa(r)

2
+

(
a− 1

2
− 1

8r
− εa(r)

2

)
e2πit, t ∈ [−1

2 ,
1
2 ]

C3
a,r =

[
(1− a)− 1

2r
− εa(r), (1− a)− 1

2r
+ εa(r)

]
.

Here, C1
a,r intersects the real axis in− 1

4r and 1−a− 1
2r−εa(r), and C

2
a,r intersect

in (1 − a) − 1
2r + εa(r) and a − 3

4r . The contour C1
a,r + C3

a,r + C2
a,r − C3

a,r is
a deformation of Ca,r encircling the same part of the real axis, except that it
meets the real axis twice in C3

a,r. By the choice of r and εa(r), all the poles for
cot(πry) are on the inside of either C1

a,r or C2
a,r. Then we can use the estimate

(8.9) directly on the integral over C1
a,r and use the transformation (8.10) on

C2
a,r to again apply (8.9).
An analysis of case (4) poses an even greater challenge. When Re(zi) −

Re(zi−1) > − 1
2r , the other inequality also holds, as

Re(zi)− Re(zi−1) ≤ a− 1

2r
< 1− 1

2r
.

And if Re(zi)− Re(zi−1) < − 1
2r , then

1− 1

2r
> 1 + Re(zi)− Re(zi−1) > 1− 1

4r
− a+

3

4r
>

1

2r
,

and so we can use the transformation

S̃γ(r(zi − zi−1)) = (1− e2πir(zi−zi−1+1))−1S̃γ(r(zi − zi−1 + 1)). (8.11)

But when Re(zi−zi−1) = − 1
2r we have no estimate. In [AH], they have another

estimate, when Im(zi − zi−1) ≥ 0, but this is obviously not always satisfied.
This is indeed a place where the analysis is lacking and should be addressed
more in depth.

This concludes the discussion of the asymptotical behaviour of the quantum
dilogarithms.
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8.2.2 Approximating Cotangents

In [AH], tan(πry) is approximated by ±i away from the real axis as

|tan(πry)− i| ≤

{
4e−2πi Im(y), Im(y) ≥ 1

πr

2e−2πi Im(y), Im(y) ≥ 0, rRe(y) ∈ Z

|tan(πry) + i| ≤

{
4e2πi Im(y), Im(y) ≤ − 1

πr

2e2πi Im(y), Im(y) ≤ 0, rRe(y) ∈ Z.

Using that cot(πry) = tan(πr( 1
2r − y)) we see that it switches

|cot(πry) + i| ≤

{
4e−2πi Im(y), Im(y) ≥ 1

πr

2e−2πi Im(y), Im(y) ≥ 0, 1
2 − rRe(y) ∈ Z

|cot(πry)− i| ≤

{
4e2πi Im(y), Im(y) ≤ − 1

πr

2e2πi Im(y), Im(y) ≤ 0, 1
2 − rRe(y) ∈ Z.

With these estimates, they replace tan by ±i in a setting similar to ours,
albeit not as complicated. Their proof is somewhat technical, but with a
careful analysis, it should be possible to show a similar result in our case. This
will be addressed in future work.

8.2.3 Leading Order Asymptotics

We now assume that our integral has the same large r asymptotic behaviour
as an integral of the form∫

D
h(y, z, w)e2πirΦ(y,z,w)dydzw,

where D is a deformation of T p+p
′−1

a,r such that the method of steepest descend
can be applied. We search for critical values of Φ, as these stationary point
determine the leading order asymptotics. The leading order term for such an
integral near a stationary point x for Φ is(

2π

r

)n
2 e

iπ
4

sign(A)

|detA|
1
2

h(x)e2πirΦ(x) (8.12)

where n is the real dimension of D and A is the Hessian of Φ (for precise
condition where this holds, see [Won]).

For this, we rewrite the functions fp and g to determine a possible Φ.

Letting

Φ1
p(a, y, z) =

1

2
y +

1

4
y2 + (p− 1)y2 +

p−1∑
i=1

(z2
i − 2ziy)
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and

Φ2
p(a, y, z) =

3

4
y + (p− 1)y −

p−1∑
i=1

zi

we see that

fp(a, y, z) = e2πirΦ1
p(a,y,z)e2πiΦ2

p(a,y,z) S̃γ(r(y − zp−1))
∏p−1
i=1 S̃γ(r(zi − zi−1))

S̃γ(ry)
.

Similarly,

Φ1
−p(a, y, z) = −1

4
y2 − (p− 1)y2 − yzp−1 +

p−1∑
i=1

(2ziy − zizi−1)

and

Φ2
−p(a, y, z) = −3

4
y − (p− 1)y +

p−1∑
i=1

zi = −Φ2
p(a, y, z)

gives

f−p(a, y, z) = e2πirΦ1
−p(a,y,z)e2πiΦ2

−p(a,y,z) S̃γ(r(y − zp−1))
∏p−1
i=1 S̃γ(r(zi − zi−1))

S̃γ(ry)
.

Finally,

Ψ(a, y) =
1

2
y − ay

lets us write

g(a, y) = e2πirΨp(a,y)e−πia
S̃γ(r(a− y)− 1)

S̃γ(r(a+ y))

Assuming we can approximate the quantum dilogarithms by Euler’s dilog-
arithm, we need the following functions

Λp(a, y, z) = − 1

4π2

(
Li2(e2πi(y−zp−1)) +

p−1∑
i=1

Li2(e2πi(zi−zi−1))− Li2(e2πiy)

)

Γ(a, y) = Ψ(a, y)− 1

4π2

(
Li2(e2πi(a−y))− Li2(e2πi(a+y))

)
Note that Λ1 is constant. However, there is the delicate matter of the shifts
in (8.10) and (8.11), but let us ignore this for a moment.

If we can approximate cot by constants, we see that Φ is composed by
Φ1
±p’s, ψ, Λp and Γ. More precisely, for Kεp,ε′p′ we get

Φ = Φ1
εp + Λεp + Φ1

ε′p′ + Λε′p′ + ψ + Γ.
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We need the derivatives of Φ. As we are aiming for the A-polynomial with the
correspondence

M = eπia, L =
∂

∂a
lim
r→∞

log JK(ra; q = e
2πi
r )

r
(8.13)

we will write write the expressions for the derivatives in the coordinates

M = eπia, xi = e2πizp−i , x0 = e2πiy.

The possible shift factors for the quantum dilogarithm will be integers, and so
they disappear in these coordinates. We calculate

e
2πi

∂Φ1
p

∂y = −x
1
2
0 x

2(p−1)
0

p−1∏
i=1

x−2
i

e
2πi

∂Φ1
p

∂zp−i = x2
ix
−2
0 , for p > 1

e
2πi

∂Φ1
−p
∂y = x

− 1
2

0 x
−2(p−1)
0 x−1

1

p−1∏
i=1

x2
i

e
2πi

∂Φ1
−p

∂zp−i = x2
0(xi+1xi−1)−1, for p > 1

e
2πi

∂Λp
∂y = (1− x0)(1− x0x

−1
1 )−1, for p > 1

e
2πi

∂Λp
∂zp−i = (1− xi−1x

−1
i )(1− xix−1

i+1)−1, for p > 1

e
2πi ∂Γ

∂y = −M−2(1−M2x−1
0 )(1−M2x0).

From these, we can piece together equations for the stationary points for
the integral (8.7) for Kεp,ε′p′ as the equations

1 = e
2πi

∂Φ1
εp

∂y e
2πi

∂Φ1
ε′p′
∂y e

2πi
∂Λp
∂y e

2πi
∂Λp′
∂y e

2πi ∂Γ
∂y (8.14)

1 = e
2πi

∂Φ1
εp

∂zp−i e
2πi

∂Λp
∂zp−i , i = 1, . . . , p− 1. (8.15)

1 = e
2πi

∂Φ1
ε′p′

∂zp−i e
2πi

∂Λp′
∂zp′−i , i = 1, . . . , p′ − 1. (8.16)

By a small calculation (8.15) (and similarly (8.16)) becomes

1 =

(
x2
i

x2
0

)ε 1−
(
xi−1

xi

)ε
1−

(
xi
xi+1

)ε
which implies

p−1∏
i=1

x2ε
i = x

2ε(p−1)
0

1− xεp−1

1−
(
x0
x1

)ε .
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This lets us rewrite

x
2(p−1)
0

p−1∏
i=1

x−2
i =

1−
(
x0
x1

)
1− xp−1

and

x
−2(p−1)
0 x−1

1

p−1∏
i=1

x2
i = −x−1

0

1−
(
x0
x1

)
1− x−1

p−1

.

Writing out (8.14) for ε = ε′ = 1 we get

1 =
(1− x0)2

(1− xp−1)
(
1− vp′−1

) (1− x0

m2

)
(1−m2x0),

for ε = −1, ε′ = 1

x2
0(1− x−1

p−1)(1− vp−1) = −(1− x0)2
(

1− x0

m2

)
(1−m2x0)

and finally, for ε = ε′ = −1

x4
0(1− x−1

p−1)(1− v−1
p−1) = −(1− x0)2

(
1− x0

M2

)
(1−M2x0).

As for L, we use (8.13) and (8.12) to compute, for a critical point (y0, z0, w0),

L = e2πi ∂Φ
∂a

(a,y0,z0,w0) = e2πi
∂(Γ)
∂a

(a,y0) =
1− x0M

2

x0 −M2
.

Isolating x0, one finds

x0 =
1 + LM2

L+M2
. (8.17)

This means, that if we can eliminate x1, . . . , xp−1 and v1, . . . , vp′−1 in the
above system of equations, we get a polynomial in x0 and M , in which we
insert (8.17) to obtain what should be the A-polynomial.

This has so far only been succesful for the twist knots Kεp,1, where the
equations to solve for ε = 1 take the form

1− xp−1 = (1− x0)

(
1− x0

m2

)
(1−m2x0) (8.18)

1 =
x2
i

x2
0

1− xi−1

xi

1− xi
xi+1

, i = 1, . . . , p− 1, (8.19)
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and for ε = −1

x2
0(1− x−1

p−1) = −(1− x0)
(

1− x0

m2

)
(1−m2x0) (8.20)

1 =
x2

0

x2
i

1− xi
xi−1

1− xi+1

xi

, i = 1, . . . , p− 1. (8.21)

These are exactly the formulas obtained in [Hik2]. We solved these for
p = −5, . . . , 7 by use of computers, but since Hikami has solved these equations
for all p, we present his solution.

8.2.4 Recursively defined solution

We follow [Hik2] in recursively defining a family of rational functions Ck giving
rise the A-polynomial.

We let xp−k = x0Ck(x0). Rewriting (8.19) for i = p− k and inserting the
corresponding Ck’s, we find that

1 =
xp−k
x0

(
xp−k
x0
−
xp−k−1

x0

)(
1−

xp−k
xp−k+1

)−1

= Ck(x0)(Ck(x0)− Ck+1(x0))

(
1− Ck(x0)

Ck−1(x0)

)−1

Which implies the relation

Ck+1(x) = Ck(x)− 1

Ck(x)
+

1

Ck−1(x)
.

As for the base cases (8.18) gives rise to the equation

C1(x) =
1− (1− x)(1−M2x)(1−M−2x)

x

Finally, we have the obvious condition C0(x) = 1
x . The A-polynomial is now

determined by Cp(x0) = 1 and the equation

x0 =
1 + LM2

L+M2
.

A similar recursive formula was also established for ε = −1 from the equations
(8.20) and (8.21).

The way Hikami showed this gave the Apolynomial, was by showing that
the equation Cp(x0)− 1 satisfied the recursion relation of 5.14.

Unfortunately, a similar approach to p′ ≥ 2 does not seem to work, as of
this moment. Moreover, if we eliminate the variables x1 and v1 for p = p′ = 2
using Gröbner bases, we do not get anything related to the A-polynomial.
This is a particular interesting case, since the knot K2,2 = 74 (mirror) does
not satisfy the condition in Theorem 7.2 for the full AJ conjecture to hold.
Therefore, it would be of interest to consider this knot in greater detail, as we
plan to do in the future.
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