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Abstract
A class of integrals with respect to homogeneous Lévy bases on Rk is con-

sidered. In the one-dimensional case k = 1 this class corresponds to the self-
decomposable distributions. Necessary and sufficient conditions for existence
as well as some representations of the integrals are given. Generalizing the
one-dimensional case it is shown that the class of integrals corresponds to Ur-
banik’s class Lk−1(R). Finally, multiparameter Ornstein-Uhlenbeck processes
are defined and studied.
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1 Introduction
The purpose of this note is twofold. First of all, for any integer k ≥ 1 we study the
integral ∫

Rk
+

e−t. M(dt), (1.1)

where M = {M(A) : A ∈ Bb(Rk)} is a homogeneous Lévy basis on Rk and t. =
t1 + · · ·+ tk is the sum of the coordinates. Recall that a homogeneous Lévy basis is
an example of an independently scattered random measure as defined in [5]; see the
next section for further details. The one-dimensional case k = 1, whereM is induced
by a Lévy process, is very well studied; see [6] for a survey. For example, in case
of existence when k = 1 the integral has a selfdecomposable distribution ([4, 10])
and it is thus the marginal distribution of a stationary Ornstein-Uhlenbeck process.
Moreover, necessary and sufficient conditions for the existence of (1.1) for k = 1
are also well known. In the present note we give necessary and sufficient conditions
for the existence of (1.1) for arbitrary k and provide several representations of the
integral. The main result, Theorem 3.1, shows that for arbitrary k ≥ 1 the law of
(1.1) belongs to Urbanik’s class Lk−1(R) and conversely that any distribution herein
is representable as in (1.1). The proof of the main theorem is in fact very easy. It
relies only on a transformation rule for random measures (see Lemma 2.1) and well
known representations of Urbanik’s classes.
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Assuming that (1.1) exists we may define a process Y = {Yt : t ∈ Rk} as

Yt =

∫

s≤t
e−(t.−s.) M(ds),

where s ≤ t should be understood coordinatewise. The second purpose of the
note is to study some of the basic properties of this process. It is easily seen that
Y is stationary and can be chosen lamp, where we recall that the latter is the
multiparameter analogue of being càdlàg. In the case k = 1, Y is often referred to
as an Ornstein-Uhlenbeck process and we shall thus call Y a k-parameter Ornstein-
Uhlenbeck process. In the case k = 1, Y is representable as

Yt = Y0 −
∫ t

0

Ys ds+M((0, t]) for t ≥ 0.

We give the analogous formula to this equation in the case k = 2.
The next section contains a few preliminary results. Section 3 concerns the main

result, namely characterizations of (1.1). Finally, in Section 4 we study multiparam-
eter Ornstein-Uhlenbeck processes.

2 Preliminaries

Let Leb denote Lebesgue measure on Rk. Throughout this note all random variables
are defined on a probability space (Ω,F , P ). The law of a random vector is denoted
by L(X) and for a set N and two families {Xt : t ∈ N} and {Yt : t ∈ N} of random
vectors write {Xt : t ∈ N} D

= {Yt : t ∈ N} if all finite dimensional marginals are
identical. Furthermore, we say that {Xt : t ∈ N} is a modification of {Yt : t ∈ N} if
Xt = Yt a.s. for all t ∈ N . Let ID = ID(R) denote the class of infinitely divisible
distributions on R. That is, a distribution µ on R is in ID if and only if

µ̂(z) :=

∫

R

eizxµ(dx) = exp

[
−1

2
z2σ2 + iγz +

∫

R

g(z, x) ν(dx)

]
for all z ∈ R,

where g(z, x) = eizx − 1− izx1D(x), D = [−1, 1], and (σ2, ν, γ) is the characteristic
triplet of µ, that is, σ2 ≥ 0, ν is a Lévy measure on R and γ ∈ R. For t ≥ 0 and
µ ∈ ID, µt denotes the distribution in ID with µ̂t = µ̂t.

For S ∈ B(Rk) let Λ = {Λ(A) : A ∈ Bb(S)} denote a family of (real valued)
random variables indexed by Bb(S), the set of bounded Borel set in S. Following [5]
we call Λ an independently scattered random measure on S if the following conditions
are satisfied:

(i) Λ(A1), . . . ,Λ(An) are independent whenever A1, . . . , An ∈ Bb(S) are disjoint.

(ii) Λ(
⋃∞
n=1 An) =

∑∞
n=1 Λ(An) a.s. whenever A1, A2, . . . ∈ Bb(S) are disjoint with⋃∞

n=1An ∈ Bb(S). Here the series converges almost surely.

(iii) L(Λ(A)) ∈ ID for all A ∈ Bb(S).
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If in addition there is a µ ∈ ID such that L(Λ(A)) = µLeb(A) for all A ∈ Bb(S) then
Λ is called a homogeneous Lévy basis on S and Λ is said to be associated with µ.

Let Λ denote an independently scattered random measure on S. Recall from [5]
that there exists a control measure λ for Λ and a family of characteristic triplets
(σ2

s , νs(dx), γs)s∈S, measurable in s, such that, for A ∈ Bb(S), L(Λ(A)) has charac-
teristic triplet (σ2(A), ν(A)(dx), γ(A)) given by

σ2(A) =

∫

A

σ2
s λ(ds), ν(A)(dx) =

∫

A

νs(dx)λ(ds), γ(A) =

∫

A

γs λ(ds). (2.1)

If Λ is a homogeneous Lévy basis associated with µ then λ equals Leb and we have
(σ2

s , νs(dx), γs) = (σ2, ν(dx), γ) where (σ2, ν, γ) is the characteristic triplet of µ.
As an example let k = 1. If Λ is a homogeneous Lévy basis on R associated with

µ then for all s ∈ R the process {Λ((s, s+ t]) : t ≥ 0} is a Lévy process in law in the
sense of [8], p. 3. In particular it has a càdlàg modification which is a Lévy process
and L(Λ((s, s + 1])) = µ for all s ∈ R. Conversely, if Z = {Zt : t ∈ R} is a Lévy
process indexed by R (i.e. it is càdlàg with stationary independent increments) then
Λ = {Λ(A) : A ∈ Bb(R)} defined as Λ(A) =

∫
1A dZs is a homogeneous Lévy basis.

Similarly, a so-called natural additive process induces an independently scattered
random measure; see [9].

Integration with respect to an independently scattered random measure Λ will
always be understood in the sense developed in [5]. Let BΛ denote the set of A in
B(S) for which 1A is Λ-integrable. Then BΛ contains Bb(S) and we can extend Λ to
BΛ by setting

Λ(A) =

∫
1A dΛ, A ∈ BΛ.

Moreover, {Λ(A) : A ∈ BΛ} is an independently scattered random measure; that is,
(i)–(iii) above are satisfied when Bb(S) is replaced by BΛ. For A ∈ BΛ, Λ(A) still
has characteristic triplet given by (2.1).

Let T ∈ B(Rd) for some d. Given an independently scattered random measure
Λ on S and a function φ : S → T satisfying φ−1(B) ∈ BΛ for all B ∈ Bb(T ), we
can define an independently scattered random measure on T , called the image of Λ
under φ, to be denoted Λφ = {Λφ(B) : B ∈ Bb(T )}, as

Λφ(B) = Λ(φ−1(B)), B ∈ Bb(T ).

Similarly, if ψ : S → R is measurable and locally bounded then Λ̃ = {Λ̃(A) :
A ∈ Bb(S)}, defined as

Λ̃(A) =

∫

A

ψ dΛ, A ∈ Bb(S), (2.2)

is an independently scattered random measure on S. Note that (2.2) makes it
reasonable to say that Λ̃ has density ψ with respect to Λ.

Keeping this notation we have the following result.

Lemma 2.1. (1) Let g : S → R be measurable. Then g is Λ̃-integrable if and only
if gψ is Λ-integrable and in this case

∫
S
g dΛ̃ =

∫
S
(gψ) dΛ.
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(2) Let f : T → R be measurable. Assume that (σ2
s , νs(dx), γs) in (2.1) only

depends on s through φ; that is, there is a family of characteristic triplets
(σ2

t , νt(dx), γt)t∈T , measurable in t, such that

σ2(A) =

∫

A

σ2
φs λ(ds),

ν(A)(dx) =

∫

A

νφs(dx)λ(ds),

γ(A) =

∫

A

γφs λ(ds).

(2.3)

Then f is Λφ-integrable if and only if f ◦ φ is Λ-integrable and in this case∫
T
f dΛφ =

∫
S
(f ◦ φ) dΛ.

(3) Let f : T → R be measurable. If f ◦ φ is Λ-integrable then f is Λφ-integrable
and

∫
S
(f ◦ φ) dΛ =

∫
T
f dΛφ.

Proof. Using [5], Theorem 2.7(iv) and formula (2.1) we see that for every A ∈ Bb(S)
the characteristic triplet (σ̃2(A), ν̃(A)(dx), γ̃(A)) of L(Λ̃(A)) is given by

σ̃2(A) =

∫

A

σ̃2
s λ(ds), ν̃(A)(dx) =

∫

A

ν̃s(dx)λ(ds), γ̃(A) =

∫

A

γ̃s λ(ds),

where

σ̃2
s = ψ2

sσ
2
s , γ̃s = ψsγs +

∫

R

ψsx[1D(ψsx)− 1D(x)] νs(dx)

ν̃s(B) =

∫

R

1B(ψsx) νs(dx), B ∈ B(R \ {0}).

According to [5], Theorem 2.7, gψ is Λ-integrable if and only if the following three
conditions are satisfied: ∫

S

(ψsgs)
2σ2

s λ(ds) <∞ (2.4)
∫

S

∫

R

(1 ∧ [ψsgsx]2) νs(dx)λ(ds) =

∫

S

∫

R

(1 ∧ [gsx]2)ν̃s(dx)λ(ds) <∞ (2.5)
∫

S

|ψsgs| · |γs +

∫

R

x[1D(ψsgsx)− 1D(x)] νs(dx)|λ(ds) <∞. (2.6)

Similarly, g is Λ̃-integrable if and only if (2.4) and (2.5) are satisfied and
∫

S

|gsγ̃s +

∫

R

(gsx)[1D(gsx)− 1D(x)] ν̃s(dx)|λ(ds) <∞. (2.7)

But noticing that the last integral equals
∫

S

|gsψs| · |γs +

∫

R

x[1D(ψsx)− 1D(x)] νs(dx)

+

∫

R

x[1D(gsψsx)− 1D(xψs)] νs(dx)|λ(ds)

=

∫

S

|ψsgs| · |γs +

∫

R

x[1D(ψsgsx)− 1D(x)] νs(dx)|λ(ds),
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one sees that (2.6) and (2.7) are equivalent. Thus we have (1).
(2): Note that by (2.3) L(Λφ(B)), B ∈ Bb(T ), has characteristic triplet given by

(∫

B

σ2
t λφ(dt),

∫

B

νt(dx)λφ(ds),

∫

B

γt λφ(dt)
)
,

where λφ is the image measure of λ under the the function φ. Thus, (2) follows also
from [5], Theorem 2.7 using the ordinary transformation rule.

(3): According to [5], p. 460, f ◦ φ is Λ-integrable if and only if there is a
sequence of simple functions gn approximating f ◦ φ such that

∫
A
gn dΛ converges

in probability for all A ∈ Bb(S). By the explicit construction in the proof of [5],
Theorem 2.7, we can choose gn on the form gn = hn ◦ f ◦ φ where hn is simple.
Thus, since, by definition,

∫
B

(hn ◦ f) dΛφ =
∫
φ−1(B)

(hn ◦ f ◦ φ) dΛ for all n and all
B ∈ Bb(T ) it follows by definition of integrability that f is Λφ-integrable.

Before continuing we recall a few basic properties of the class of selfdecomposable
distributions and the classes Lm. See e.g. [3, 4, 7, 10, 11, 12] for fuller information,
and [6] for a nice summary of the results used below. Let L0 = L0(R) denote the
class of selfdecomposable distributions on R. For m = 1, 2, . . . define Lm = Lm(R)
recursively as follows: µ ∈ Lm if and only if for all b > 1 there is a ρb ∈ Lm−1 such
that µ̂(z) = µ̂(b−1z)ρ̂b(z) for all z ∈ R.

Let IDlog denote the class of infinitely divisible distributions µ with Lévy measure
ν satisfying

∫
|x|>2

log |x| ν(dx) < ∞. It is well known that IDlog consists precisely
of those µ ∈ ID for which the integral

∫∞
0
e−s dZs exists (in the sense of [5]). Here

{Zt : t ≥ 0} is a Lévy process with µ = L(Z1). In case of existence L(
∫∞

0
e−s dZs)

is in L0. Using this, an alternative useful characterization of Lm can be formulated
as follows: Let Φ : IDlog → L0 be given by Φ(µ) = L(

∫∞
0
e−s dZs) where Z is as

above. Then Φ is one-to-one and onto L0. Moreover, for m = 1, 2, . . . we have
Lm = Φ(Lm−1 ∩ IDlog).

3 Existence and characterizations of the integral
Assume that M = {M(A) : A ∈ Bb(Rk

+)} is a homogeneous Lévy basis on Rk
+

associated with µ ∈ ID which has characteristic triplet (σ2, ν, γ).
Let f : Rk

+ → R+ be given by f(t) = t. =
∑k

j=1 tj and let g : R+ → R+ be given
by g(x) = xk

k!
. Then the image of M under f , Mf = {Mf (B) : B ∈ Bb(R+)}, is an

independently scattered random measure on R+ and L(Mf ((0, x])) = µx
k/t! for all

x ≥ 0. Since in particular

L(Mf (g
−1([0, y]))) = L(Mf ([0, g

−1(y)])) = µy for y ≥ 0,

it follows that Mg◦f = {Mg◦f (B) : B ∈ Bb(R+)} is a homogeneous Lévy basis on
R+ associated with µ. Writing Φ(k) for Φ ◦ · · · ◦Φ (k times), the main result can be
formulated as follows.

Theorem 3.1. (1) The three integrals
∫

Rk
+

e−t. M(dt),

∫

R+

e−xMf (dx),

∫

R+

e−(k!y)1/k Mg◦f (dy) (3.1)
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exist at the same time and are identical in case of existence. Assume exis-
tence and let µ̃ = L(

∫
Rk

+
e−t. M(dt)). Then µ̃ = Φ(k)(µ) ∈ Lk−1 and µ̃ has

characteristic triplet (σ̃2, ν̃, γ̃) given by

σ̃2 =
σ2

2k
(3.2)

ν̃(B) =
1

(k − 1)!

∫

R

∫ ∞

0

sk−11B(e−sy) ds ν(dy), B ∈ B(R) (3.3)

γ̃ = γ +
1

(k − 1)!

∫ ∞

0

sk−1e−s
∫

1<|y|≤es
ν(dy) ds. (3.4)

(2) A necessary and sufficient condition for the existence of the integrals in (3.1)
is that ∫

|x|>2

(log |x|)k ν(dx) <∞. (3.5)

(3) Let k ≥ 2 and assume that the integrals in (3.1) exist. Then
∫

Rk
+

e−t. M(dt) =

∫

R+

e−x Λ(dx), (3.6)

where Λ = {Λ(B) : B ∈ Bb(R+)} is given as

Λ(B) =

∫

B×Rk−1
+

e−
∑k

l=2 tl M(dt), B ∈ Bb(R+). (3.7)

Moreover, Λ is a homogeneous Lévy basis on R+. The distribution associated
with Λ is Φ(k−1)(µ) which has characteristic triplet given by (3.2)–(3.4) with k
replaced by k − 1.

(4) Conversely, to every distribution µ̃ ∈ Lk−1 there exists a distribution µ ∈ ID
with characteristic triplet (σ2, ν, γ) satisfying equation (3.5) such that µ̃ =
L(
∫
Rk

+
e−t. M(dt)) where M is a homogeneous Lévy basis on Rk

+ associated
with µ.

Proof. We can apply Lemma 2.1(2) to the first two integrals in (3.1) since Λ is
homogeneous. Likewise, the lemma applies to the last two integrals since g is one-to-
one. It hence follows immediately that the three integrals in (3.1) exist at the same
time and are identical in case of existence. The remaining assertions, except (3),
follow from Theorem 49 and Remark 58 of Rocha-Arteaga and Sato [6]. First of
all, by Remark 58 a distribution is in Lk−1 if and only if it is representable as the
law of the last integral in (3.1). That µ̃ = Φ(k)(µ) in case of existence follows from
Remark 58 combined with Theorem 49. Using this, the result in (2) is equation
(2.44) in Theorem 49, and the representation of the characteristic triplet in (1) is
(2.47)–(2.49) in Theorem 49.

To prove (3) assume t 7→ e−t. is M -integrable and let M̃(A) =
∫
A
ψ(t)M(dt)

for A ∈ Bb(Rk
+) where ψ(t) = e−

∑k
l=2 tl . Since for B ∈ Bb(R+) there is a constant
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c > 0 such that ψ(t)1B×Rk−1
+

(t) ≤ ce−t.1B×Rk−1
+

(t) we have by Lemma 2.1(1) that
B × Rk−1

+ ∈ BM̃ . Thus, Λ in (3.7) is well defined and a homogeneous Lévy basis.
Moreover, Λ = (M̃)φ where φ : Rk

+ → R+ is φ(t) = t1. Since, with f : R+ → R+

given by f(x) = e−x, the mapping f ◦ φ(t) = e−t1 is M̃ -integrable by Lemma 2.1(1)
it follows from Lemma 2.1(3) that f is Λ-integrable and we have (3.6). That is, µ̃
in (1) is of the form µ̃ = L(

∫∞
0
e−s dZs) where Z = {Zt : t ≥ 0} is the Lévy process

in law given by Zt = Λ((0, t]). As previously noted this means that µ̃ = Φ(L(Z1)).
But since, by (1), µ̃ = Φ(k)(µ) it follows that L(Z1) = Φ(k−1)(µ), i.e. L(Λ((0, 1])) =
Φ(k−1)(µ).

4 Multiparameter Ornstein-Uhlenbeck processes
For a = (a1, . . . , ak) ∈ Rk and b = (b1, . . . , bk) ∈ Rk write a ≤ b if aj ≤ bj
for all j and a < b if aj < bj for all j. Define the half-open interval (a, b] as
(a, b] = {t ∈ Rk : a < t ≤ b} and let [a, b] = {t ∈ Rk : a ≤ t ≤ b}. Further, let
A = {t ∈ Rk

+ : tj = 0 for some j}, and for R = (R1, . . . , Rk) where Rj is either ≤ or
> write aRb if ajRjbj for all j.

Consider a family F = {Ft : t ∈ S} where S is either Rk or Rk
+ and Ft ∈ R for

all t ∈ S. For a, b ∈ S with a ≤ b define the increment of F over (a, b], ∆b
aF , as

∆b
aF =

∑

ε=(ε1,...,εk)∈{0,1}k
(−1)ε.F(c1(ε1),...,ck(εk)),

where cj(0) = bj and cj(1) = aj. That is, ∆b
aF = Fb − Fa if k = 1, and ∆b

aF =
F(b1,b2) + F(a1,a2) − F(a1,b2) − F(b1,a2) if k = 2. Note that ∆b

aF = 0 if a ≤ b and
b− a ∈ A.

We say that F = {Ft : t ∈ S} is lamp if the following conditions are satisfied:

(i) for t ∈ Rk
+ the limit F (t,R) = limu→t,tRu Fu exists for each of the 2k relations

R = (R1, . . . , Rk) where Rj is either ≤ or >. When S = Rk
+ let F (t,R) = Ft

if there is no u with tRu.

(ii) Ft = F (t,R) for R = (≤, . . . ,≤);

Here lamp stands for limits along monotone paths. See Adler et al. [1] for references
to the literature on lamp trajectories. When S = Rk

+, one often assumes in addition
that Ft = 0 for t ∈ A, i.e. F vanishes on the axes.

Assume that M = {M(A) : A ∈ Bb(Rk)} is a homogeneous Lévy basis on Rk

associated with µ ∈ ID which has characteristic triplet (σ2, ν, γ). Define U = {Ut :
t ∈ Rk

+} and X = {Xt : t ∈ Rk
+} as

Ut =

∫

[0,t]

es. M(ds) and Xt = e−t.Ut for t ∈ Rk
+. (4.1)

Since for a, b ∈ Rk
+ with a ≤ b,

∆b
aU =

∫

(a,b]

es.M(ds),
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the random variables ∆b1

a1U, . . . ,∆
bn

anU are independent whenever (a1, b1], . . . , (an, bn]
are disjoint intervals in Rk

+. Moreover, U is continuous in probability since M is
homogeneous. Thus, U is a Lévy process in the sense of Adler et al. [1], p. 5, and a
Lévy sheet in the sense of Dalang and Walsh [2] (in the case k = 2). It hence follows
e.g. from [1], Proposition 4.1, that by modification we may and do assume that U ,
and hence also X, is lamp. Similarly, we may and do assume that t 7→ M((0, t]) is
lamp for t ∈ Rk

+.
Assuming in addition that (3.5) is satisfied we can define processes V = {Vt :

t ∈ Rk} and Y = {Yt : t ∈ Rk} as

Vt =

∫

s≤t
es. M(ds) and Yt = e−t.Vt for t ∈ Rk. (4.2)

For fixed t ∈ Rk define φt : Rk → R
k as φt(s) = t− s. By Lemma 2.1 and the fact

that M and Mφt are homogeneous Lévy bases associated with µ we have

Yt =

∫

s≤t
e−(t.−s.) M(ds) =

∫

Rk
+

e−s. Mφt(ds)
D
=

∫

Rk
+

e−s. M(ds) for t ∈ Rk.

That is, Yt has the same law as the three integrals in (3.1). The same kind of
arguments show that Y is stationary in the sense that

(Yt1 , . . . , Ytn)
D
= (Yt+t1 , . . . , Yt+tn) for all n ≥ 1 and t, t1, . . . , tn ∈ Rk.

When k = 1, Y is often referred to as an Ornstein-Uhlenbeck process. The above
is a natural generalization so we shall call Y a k-parameter Ornstein-Uhlenbeck
process. There are many nice representations and properties of Y as the next remarks
illustrate.
Remark 4.1. Denote a generic element in Rk−1 by t̃ = (t1, . . . , tk−1) and let t̃. =∑k−1

j=1 tj. A generic element t in Rk can then be decomposed as t = (t̃, tk). For
B ∈ B(R) and t̃ ∈ Rk−1, {s̃ ≤ t̃} ×B is the subset of Rk given by

{s̃ ≤ t̃} ×B = {s = (s̃, sk) : s̃ ≤ t̃ and sk ∈ B}.

Assuming that (3.5) is satisfied, Yt is representable as

Yt = e−tk
∫ tk

−∞
esk M t̃(dsk) = e−t̃.

∫

s̃≤t̃
es̃. M tk(ds̃). (4.3)

Here M t̃ = {M t̃(B) : B ∈ Bb(R)} and M tk = {M tk(C) : C ∈ Bb(Rk−1)} are given
as

M t̃(B) = e−t̃.
∫

{s̃≤t̃}×B
es̃. M(ds), B ∈ Bb(R)

M tk(C) = e−tk
∫

C×(∞,tk]

esk M(ds), C ∈ Bb(Rk−1).

Arguments as in the proof of Theorem 3.1(3) show thatM t̃ andM tk are well defined
homogeneous Lévy bases associated with respectively Φ(k−1)(µ) and Φ(µ), and we
have (4.3).
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The first expression in (4.3) shows that for fixed t̃, {Yt : tk ∈ R} is a one-
parameter Ornstein-Uhlenbeck process. By the second expression, {Yt : t̃ ∈ Rk−1}
is a (k − 1)-parameter Ornstein-Uhlenbeck process for fixed tk.

Remark 4.2. Assume (3.5) is satisfied. We may and do assume that V , and thus
also Y , is lamp. To see this, note that for arbitrary s = (s1, . . . , sk) ∈ Rk and
t = (t1, . . . , tk) ∈ Rk

+ \ A we have

Vs+t = ∆s+t
s V −

∑

ε∈{0,1}k
ε 6=(1,...,1)

(−1)ε.V(s1+ε1t1,...,sk+εktk).

Hence it suffices to show:

(i) for arbitrary s ∈ Rk the process {∆s+t
s V : t ∈ Rk

+} has a lamp modification.

(ii) If at least one coordinate is fixed, then V has a lamp modification in the
remaining coordinates. That is, if e.g. tk = 0 then t̃ = (t1, . . . , tk−1) 7→ V(t̃,0) is
a.s. lamp on Rk−1.

Condition (i) follows as for U above since ∆s+t
s V =

∫
(s,s+t]

eu. M(du). To check (ii)
consider for simplicity the case where tk is fixed at tk = 0 while all other coordinates
vary freely. As in Remark 4.1 we have

V(t̃,0) =

∫

s̃≤t̃
es̃. M̃(ds̃) for t̃ ∈ Rk−1,

where M̃ = {M̃(B) : B ∈ Bb(Rk−1)} is the homogeneous Lévy basis on Rk−1 given
by

M̃(B) =

∫

B×(−∞,0]

esk M(ds), B ∈ Bb(Rk−1).

By recursion we can reduce to k = 1 in which case t 7→
∫ t
−∞ e

sM(ds) has a càdlàg
modification, implying the result.

From now on let k = 2. Recall that X and Y are defined in (4.1) and (4.2). If
t = (t1, t2) write Xt1,t2 as an alternative to Xt.

Proposition 4.3. With probability one we have for all t = (t1, t2) ∈ R2
+ that

Xt1,t2 = M((0, t])−
∫ t1

0

Xs1,t2 ds1 −
∫ t2

0

Xt1,s2 ds2 −
∫ t1

0

∫ t2

0

Xs1,s2 ds2ds1.

Assume that (3.5) is satisfied. Then with probability one we have for all t =
(t1, t2) ∈ R2

+ that

Yt1,t2 = Y0,t2 + Yt1,0 − Y0,0 +M((0, t])−
∫ t1

0

Ys1,t2 ds1 −
∫ t2

0

Yt1,s2 ds2

+

∫ t1

0

Ys1,0 ds2 +

∫ t2

0

Y0,s2 ds2 −
∫ t1

0

∫ t2

0

Ys1,s2 ds2ds1.
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Proof. Since the proofs are similar we only prove the representation of Y .
First we fix t2 ∈ R+. Arguing as in the proof of Theorem 3.1(3), cf. also Re-

mark 4.3, we can represent {Vt1,t2 : t1 ≥ 0} as

Vt1,t2 = V0,t2 +

∫ t1

0

es1 U t2(ds1),

where U t2 = {U t2(B) : B ∈ Bb(R+)} is the homogeneous Lévy basis given by

U t2(B) =

∫

B×(−∞,t2]

es2 M(ds), B ∈ Bb(R+).

Thus, {Vt1,t2 : t1 ≥ 0} is a semimartingale in the filtration of the Lévy process
{U t2((0, t1]) : t1 ≥ 0}.

Let R = {Rt : t ∈ R2
+} be given by

Rt =

∫

(0,t1]×(−∞,t2]

es2 M(ds) = U t2((0, t1]) for t ∈ R2
+.

Since R has independent increments and is continuous in probability we may and
do assume that it is lamp, see [1].

Since for fixed t2, {Vt1,t2 : t1 ≥ 0} is a semimartingale we can apply integration
by parts, together with Lemma 2.1(1) and the fact that all terms are lamp, to obtain

e−t1Vt = V0,t2 +

∫ t1

0

e−s1es1 U t2(ds1)−
∫ t1

0

e−s1Vs1,t2 ds1

= V0,t2 +Rt1,t2 −
∫ t1

0

e−s1Vs1,t2 ds1 for all t = (t1, t2) ∈ R2
+ a.s. (4.4)

The same kind of argument for t2 instead of t1 gives

Yt1,t2 = e−t2V0,t2 + e−t2Rt1,t2 −
∫ t1

0

Ys1,t2 ds1

= e−t2V0,t2 +Rt1,0 +M((0, t])−
∫ t2

0

e−s2Rt1,s2 ds2

−
∫ t1

0

Ys1,t2 ds1 for all t = (t1, t2) ∈ R2
+ a.s.

From (4.4) we have

e−s2Rt1,s2 = Yt1,s2 − Y0,s2 +

∫ t1

0

Ys1,s2 ds1 for all (t1, s2) ∈ R2
+ a.s.

and hence
∫ t2

0

e−s2Rt1,s2 ds2 =

∫ t2

0

Yt1,s2 ds2 −
∫ t2

0

Y0,s2 ds2

+

∫ t1

0

∫ t2

0

Ys1,s2 ds2ds1 for all (t1, s2) ∈ R2
+ a.s.
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Inserting this we get

Yt1,t2 = e−t2V0,t2 +Rt1,0 +M((0, t])−
∫ t1

0

Ys1,t2 ds1

−
∫ t2

0

Yt1,s2 ds2 +

∫ t2

0

Y0,s2 ds2 −
∫ t1

0

∫ t2

0

Ys1,s2 ds2ds1

= Y0,t2 +Rt1,0 +M((0, t])−
∫ t1

0

Ys1,t2 ds1 −
∫ t2

0

Yt1,s2 ds2

+

∫ t2

0

Y0,s2 ds2 −
∫ t1

0

∫ t2

0

Ys1,s2 ds2ds1 for all t = (t1, t2) ∈ R2
+ a.s.

Using (4.4) with t2 = 0 we get

Rt1,0 = Yt1,0 − Y0,0 +

∫ t1

0

Ys1,0 ds1 for all t1 ≥ 0 a.s.

The result follows by inserting this in the expression for Yt1,t2 .
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