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PHASE RETRIEVAL FOR CHARACTERISTIC FUNCTIONS OF
CONVEX BODIES AND RECONSTRUCTION FROM

COVARIOGRAMS

GABRIELE BIANCHI, RICHARD J. GARDNER, AND MARKUS KIDERLEN

Abstract. We propose strongly consistent algorithms for reconstructing the charac-
teristic function 1K of an unknown convex body K in Rn from possibly noisy mea-

surements of the modulus of its Fourier transform 1̂K . This represents a complete
theoretical solution to the Phase Retrieval Problem for characteristic functions of
convex bodies. The approach is via the closely related problem of reconstructing K
from noisy measurements of its covariogram, the function giving the volume of the
intersection of K with its translates. In the many known situations in which the
covariogram determines a convex body, up to reflection in the origin and when the
position of the body is fixed, our algorithms use O(kn) noisy covariogram measure-
ments to construct a convex polytope Pk that approximates K or its reflection −K
in the origin. (By recent uniqueness results, this applies to all planar convex bodies,
all three-dimensional convex polytopes, and all symmetric and most (in the sense of
Baire category) arbitrary convex bodies in all dimensions.) Two methods are pro-
vided, and both are shown to be strongly consistent, in the sense that, almost surely,
the minimum of the Hausdorff distance between Pk and ±K tends to zero as k tends
to infinity.

1. Introduction

The Phase Retrieval Problem of Fourier analysis involves determining a function f

on Rn from the modulus |f̂ | of its Fourier transform f̂ . This problem arises naturally
and frequently in various areas of science, such as X-ray crystallography, electron mi-
croscopy, optics, astronomy, and remote sensing, in which only the magnitude of the
Fourier transform can be measured and the phase is lost. (Sometimes, as when recon-

structing an object from its far-field diffraction pattern, it is the squared modulus |f̂ |2
that is directly measured.) In 1984, Rosenblatt [42] wrote that the Phase Retrieval
Problem “arises in all experimental uses of diffracted electromagnetic radiation for de-
termining the intrinsic detailed structure of a diffracting object.” Today, the word “all”
is perhaps too strong in view of recent advances in coherent diffraction imaging. In
any case, the literature is vast; see the surveys [32], [34], [36], and [42], as well as the
articles [9] and [18] and the references given there.
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Phase retrieval is fundamentally under-determined without additional constraints,
which usually take the form of an a priori assumption that f has a particular support
or distribution of values. An important example is when f = 1K , the characteristic
function of a convex body K in Rn. In this setting, phase retrieval is very closely related
to a geometric problem involving the covariogram of a convex body K in Rn. This is
the function gK defined by

gK(x) = Vn (K ∩ (K + x)) ,

for x ∈ Rn, where Vn denotes n-dimensional Lebesgue measure and K+x is the translate
of K by the vector x. It is also sometimes called the set covariance and is equal to the
autocorrelation of 1K , that is,

gK = 1K ∗ 1−K ,

where ∗ denotes convolution and −K is the reflection of K in the origin. Taking Fourier
transforms, we obtain the relation

ĝK = 1̂K 1̂−K = 1̂K 1̂K =
∣∣1̂K
∣∣2. (1)

This connects the Phase Retrieval Problem, restricted to characteristic functions of
convex bodies, to the problem of determining a convex body from its covariogram.
Both the definition of covariogram and this connection extend to arbitrary measurable
sets, but the reason for restricting to convex bodies will become clear.

The covariogram was introduced by Matheron in his book [38] on random sets. He
showed that for a fixed u ∈ Sn−1, the directional derivatives ∂gK(tu)/∂t, for all t > 0,
of the covariogram of a convex body K in Rn yield the distribution of the lengths of all
chords of K parallel to u. This explains the utility of the covariogram in fields such as
stereology, geometric tomography, pattern recognition, image analysis, and mathemat-
ical morphology, where information about an unknown object is to be retrieved from
chord length measurements; see, for example, [15], [20], and [45]. The covariogram has
also played an increasingly important role in analytic convex geometry. For example,
it was used by Rogers and Shephard in proving their famous difference body inequality
(see [46, Theorem 7.3.1]), by Gardner and Zhang [26] in the theory of radial mean
bodies, and by Tsolomitis [47] in his study of convolution bodies, which via the work
of Schmuckenschläger [44] and Werner [50] allows a covariogram-based definition of the
fundamental notion of affine surface area.

Here we effectively solve the following three problems. In each, K is a convex body
in Rn.
Problem 1 (Reconstruction from covariograms). Construct an approximation to
K from a finite number of noisy (i.e., taken with error) measurements of gK .
Problem 2 (Phase retrieval for characteristic functions of convex bodies:
squared modulus). Construct an approximation to K (or, equivalently, to 1K) from

a finite number of noisy measurements of |1̂K |2.
Problem 3 (Phase retrieval for characteristic functions of convex bodies:
modulus). Construct an approximation to K from a finite number of noisy measure-

ments of |1̂K |.
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In order to discuss our results, we must first address the corresponding uniqueness
problems. In view of (1), these are equivalent, so we shall focus on the covariogram.
It is easy to see that gK is invariant under translations of K and reflection of K in the
origin. Matheron [40] asked the following question, known as the Covariogram Problem,
to which he conjectured an affirmative answer when n = 2.

Is a convex body in Rn determined, among all convex bodies and up to translation
and reflection in the origin, by its covariogram?

The focus on covariograms of convex bodies is natural. One reason is that Mallows
and Clark [37] constructed non-congruent convex polygons whose overall chord length
distributions (allowing the directions of the chords to vary as well) are equal, thereby
answering a related question of Blaschke. Thus the information provided by the covari-
ogram cannot be weakened too much. Moreover, there exist non-congruent non-convex
polygons, even (see [22, p. 394]) horizontally- and vertically-convex polyominoes, with
the same covariogram, indicating that the convexity assumption also cannot be signifi-
cantly weakened.

Interest in the Covariogram Problem extends far beyond geometry. For example,
Adler and Pyke [1] ask whether the distribution of the difference X−Y of independent
random variables X and Y , uniformly distributed over a convex body K, determines
K up to translations and reflection in the origin. Up to a constant, the convolution
1K ∗ 1−K = gK is just the probability density of X −Y , so the question is equivalent to
the Covariogram Problem. In [2], the Covariogram Problem also appears in deciding
the equivalence of measures induced by Brownian processes for different base sets.

A detailed historical account of the covariogram problem may be found in [4]. The
current status is as follows, in which “determined” always means determined by the
covariogram among all convex bodies, up to translation and reflection in the origin.
Averkov and Bianchi [4] showed that planar convex bodies are determined, thereby
confirming Matheron’s conjecture. Bianchi [8] proved, by a long and intricate argument,
that three-dimensional convex polyhedra are determined. It is easy to see that centrally
symmetric convex bodies are determined. (In the symmetric case, convexity is not
essential; see [22, Proposition 4.4] for this result, due to Cabo and Jensen.) Goodey,
Schneider, and Weil [27] proved that most (in the sense of Baire category) convex
bodies in Rn are determined. Nevertheless, the Covariogram Problem in general has a
negative answer, as Bianchi [7] demonstrated by constructing convex polytopes in Rn,
n ≥ 4, that are not determined. It is still unknown whether convex bodies in R3 are
determined.

None of the above uniqueness proofs provide a method for actually reconstructing a
convex body from its covariogram. We are aware of only two papers dealing with the
reconstruction problem: Schmitt [43] gives an explicit reconstruction procedure for a
convex polygon when no pair of its edges are parallel, an assumption removed in an
algorithm due to Benassi and D’Ercole [6]. In both these papers, all the exact values
of the covariogram are supposed to be available.

In contrast, our first set of algorithms take as input only a finite number of values of
the covariogram of an unknown convex bodyK0. Moreover, these measurements are cor-
rupted by errors, modeled by zero mean random variables with uniformly bounded pth
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moments, where p is at most six and usually four. It is assumed that K0 is determined
by its covariogram, has its centroid at the origin, and is contained in a known bounded
region of Rn, which for convenience we take to be the unit cube Cn

0 = [−1/2, 1/2]n.
We provide two different methods for reconstructing, for each suitable k ∈ N, a convex
polytope Pk that approximates K0 or its reflection −K0. Each method involves two
algorithms, an initial algorithm that produces suitable outer unit normals to the facets
of Pk, and a common main algorithm that goes on to actually construct Pk.

In the first method, the covariogram of K0 is measured, multiple times, at the origin
and at vectors (1/k)ui, i = 1, . . . , k, where the ui’s are mutually nonparallel unit vec-
tors that span Rn. From these measurements, the initial Algorithm NoisyCovBlaschke
constructs an o-symmetric convex polytope Qk that approximates ∇K0, the so-called
Blaschke body of K0. (See Section 3 for definitions and notation.) The crucial property
of ∇K0 is that when K0 is a convex polytope, each of its facets is parallel to some
facet of ∇K0. It follows that the outer unit normals to the facets of Pk can be taken
to be among those of Qk. Algorithm NoisyCovBlaschke utilizes the known fact that
−∂gK0(tu)/∂t, evaluated at t = 0, equals the brightness function value bK0(u), that
is, the (n − 1)-dimensional volume of the orthogonal projection of K0 in the direction
u. This connection allows most of the work to be done by a very efficient algorithm,
Algorithm NoisyBrightLSQ, designed earlier by Gardner and Milanfar (see [24]) for
reconstructing a o-symmetric convex body from finitely many noisy measurements of
its brightness function.

The second method achieves the same goal with a quite different approach. This time
the covariogram of K0 is measured once at each point in a cubic array in 2Cn

0 = [−1, 1]n

of side length 1/k. From these measurements, the initial Algorithm NoisyCovDiff(ϕ)
constructs an o-symmetric convex polytope Qk that approximates DK0 = K0 + (−K0),
the difference body of K0. The set DK0 has precisely the same property as ∇K0, that
when K0 is a convex polytope, each of its facets is parallel to some facet of DK0. Fur-

thermore, DK0 is just the support of gK0 . The known property that g
1/n
K0

is concave
(a consequence of the Brunn-Minkowski inequality [21, Section 11]) can therefore be
combined with techniques from multiple regression. Algorithm NoisyCovDiff(ϕ) em-
ploys a Gasser-Müller type kernel estimator for gK0 , with suitable kernel function ϕ,
bandwidth, and threshold parameter.

The output Qk of either initial algorithm forms part of the input to the main common
Algorithm NoisyCovLSQ. The covariogram of K0 is now measured again, once at each
point in a cubic array in 2Cn

0 = [−1, 1]n of side length 1/k. Using these measurements,
Algorithm NoisyCovLSQ finds a convex polytope Pk, each of whose facets is parallel
to some facet of Qk, whose covariogram fits best the measurements in the least squares
sense.

Much effort is spent in proving that these algorithms are strongly consistent. When-
ever K0 is determined among convex bodies, up to translation and reflection in the
origin, by its covariogram, we show that, almost surely,

min{δ(K0, Pk), δ(−K0, Pk)} → 0

as k → ∞, where δ denotes Hausdorff distance. (If K0 is not so determined, a rare
situation in view of the uniqueness results discussed above, the algorithms still construct
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a sequence (Pk) whose accumulation points exist and have the same covariogram as K0.)
From a theoretical point of view, this completely solves Problem 1. Naturally, the
consistency proof leans heavily on results and techniques from analytic convex geometry,
as well as a suitable version of the Strong Law of Large Numbers. Some effort has been
made to make the proof fairly self-contained, but some arguments from the proof from
[24] that Algorithm NoisyBrightLSQ is strongly consistent are used in proving that
Algorithm NoisyCovBlaschke is strongly consistent. One such argument rests on the
Bourgain-Campi-Lindenstrauss stability result for projection bodies.

With algorithms for Problem 1 in hand, we move to Problem 2, assuming thatK0 is an
unknown convex body satisfying the same conditions as before. The basic idea is simple
enough: Use (1) and the measurements of |1̂K0|2 at points in a suitable cubic array to ap-
proximate gK0 via its Fourier series, and feed the resulting values into the algorithms for
Problem 1. However, two major technical obstacles arise. The new estimates of gK0 are
corrupted by noise that now involves dependent random variables, and a new determin-
istic error appears as well. A substitute for the Strong Law of Large Numbers must be
proved, and the deterministic error controlled using Fourier analysis and the fortunate
fact that gK0 is Lipschitz. In the end the basic idea works, assuming that for suitable

1/2 < γ < 1, measurements of |1̂K0|2 are taken at the points in (1/kγ)Zn contained
in the cubic window [−k1−γ, k1−γ]n, whose size increases with k at a rate depending
on the parameter γ. The three resulting algorithms, Algorithm NoisyMod2LSQ, Al-
gorithm NoisyMod2Blaschke, and Algorithm NoisyMod2Diff(ϕ), are stated in detail
and, with suitable restrictions on γ, proved to be strongly consistent under the same
hypotheses as for Problem 1.

Our final three algorithms, Algorithm NoisyModLSQ, Algorithm NoisyModBlaschke,
and Algorithm NoisyModDiff(ϕ) cater for Problem 3. Again there is a basic simple idea,
namely, to take two independent measurements at each of the points in the same cubic
array as in the previous paragraph, multiply the two, and feed the resulting values
into the algorithms for Problem 2. No serious extra technical difficulties arise, and we
are able to prove that the three new algorithms are strongly consistent under the same
hypotheses as for Problem 2. This provides a complete theoretical solution to the Phase
Retrieval Problem for characteristic functions of convex bodies.

To summarize:

• For Problem 1, first use either Algorithm NoisyCovBlaschke or
Algorithm NoisyCovDiff(ϕ) and then use Algorithm NoisyCovLSQ.
• For Problem 2, first use either Algorithm NoisyMod2Blaschke or

Algorithm NoisyMod2Diff(ϕ) and then use Algorithm NoisyMod2LSQ.
• For Problem 3, first use either Algorithm NoisyModBlaschke or

Algorithm NoisyModDiff(ϕ) and then use Algorithm NoisyModLSQ.

These results can also be viewed as a contribution to the literature on the associated
uniqueness problems. They show that if a convex body is determined, up to translation
and reflection in the origin, by its covariogram, then it is also so determined by its
values at certain countable sets of points, even, almost surely, when these values are
contaminated with noise. Similarly, the characteristic function of such a convex body is
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also determined by certain countable sets of noisy values of the modulus of its Fourier
transform.

Our noise model is sufficiently general to apply to all the main cases of practical
interest: zero mean Gaussian noise, Poisson noise (unbiased measurements following
a Poisson distribution, sometimes called shot noise), or Poisson noise plus zero mean
Gaussian noise. However, the main text of this paper deals solely with theory. With the
exception of Corollary 6.5 and Remark 6.6, where the method of proof leads naturally
to rates of convergence for Algorithm NoisyCovDiff(ϕ) and hence for the two related
algorithms for phase retrieval, the focus is entirely on strong consistency. Further
remarks about convergence rates, sampling designs, and implementation issues have
been relegated to the Appendix. Much remains to be done. We believe, however, that
our algorithms will find applications. For example, Baake and Grimm [5] explain how
the problem of finding the atomic structure of a quasicrystal from its X-ray diffraction
image involves recovering a subset of Rn called a window from its covariogram, and
note that this window is in many cases a convex body.

We are grateful to Jim Fienup, David Mason, and Sara van de Geer for helpful
correspondence and to referees for some insightful suggestions that led to significant
improvements.
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2. Guide to the paper

§3. Definitions, notation, and preliminary results.
We recommend that the reader skip this section and refer back to it when neces-
sary.

§4. The main algorithm for reconstruction from covariograms.
This presents the main (second stage) Algorithm NoisyCovLSQ for Problem 1
and its strong consistency, established in Theorem 4.10.

§5. Approximating the Blaschke body via the covariogram.
The first of the two first-stage algorithms for Problem 1, Algorithm NoisyCov-
Blaschke, is stated with proof of strong consistency in Theorem 5.4. The latter
requires the assumption that the vectors ui, i = 1, . . . , k, are part of an infinite
sequence (ui) that is in a sense evenly spread out in Sn−1, but this is a weak
restriction.

§6. Approximating the difference body via the covariogram.
In this section, the second of the two first-stage algorithms for Problem 1, Algo-
rithm NoisyCovDiff(ϕ), is set out and proved to be strongly consistent in Theo-
rem 6.4.

§7. Phase retrieval: Framework and technical lemmas.
Necessary material from Fourier analysis is gathered, and the scene is set for
results on phase retrieval. This does not depend on the previous three sections.

§8. Phase retrieval from the squared modulus.
The algorithms for Problem 2, Algorithm NoisyMod2LSQ, Algorithm Noisy-
Mod2Blaschke, and Algorithm NoisyMod2Diff(ϕ) are presented and strong con-
sistency theorems for them are proved.

§9. Phase retrieval from the modulus.
The corresponding algorithms for Problem 3, Algorithm NoisyModLSQ, Algo-
rithm NoisyModBlaschke, and Algorithm NoisyModDiff(ϕ), are presented and
shown to be strongly consistent.

§10. Appendix.
Rates of convergence and implementation issues are discussed.
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3. Definitions, notation, and preliminary results

3.1. Basic definitions and notation. As usual, Sn−1 denotes the unit sphere, Bn

the unit ball, o the origin, and | · | the norm in Euclidean n-space Rn. It is assumed
throughout that n ≥ 2. We shall also write Cn

0 = [−1/2, 1/2]n throughout. The
standard orthonormal basis for Rn will be denoted by {e1, . . . , en}. A direction is a
unit vector, that is, an element of Sn−1. If u is a direction, then u⊥ is the (n − 1)-
dimensional subspace orthogonal to u and lu is the line through the origin parallel to u.
If x, y ∈ Rn, then x · y is the inner product of x and y, and [x, y] is the line segment
with endpoints x and y.

We denote by ∂A, intA, diamA, and 1A the boundary, interior, diameter, and char-
acteristic function of a set A, respectively. The notation for the usual (orthogonal)
projection of A on a subspace S is A|S. A set is o-symmetric if it is centrally symmet-
ric, with center at the origin.

If X is a metric space and ε > 0, a finite set {x1, . . . , xm} is called an ε-net in X if
for every point x in X, there is an i ∈ {1, . . . ,m} such that x is within a distance ε
of xi.

We write Vk for k-dimensional Lebesgue measure in Rn, where k = 1, . . . , n, and
where we identify Vk with k-dimensional Hausdorff measure. If K is a k-dimensional
convex subset of Rn, then V (K) is its volume Vk(K). Define κn = V (Bn). The notation
dz will always mean dVk(z) for the appropriate k = 1, . . . , n.

If E and F are sets in Rn, then

E + F = {x+ y : x ∈ E, y ∈ F}
denotes their Minkowski sum and

E 	 F = {x ∈ Rn : F + x ⊂ E} (2)

their Minkowski difference.

We adopt a standard definition of the Fourier transform f̂ of a function f on Rn,
namely

f̂(x) =

∫

Rn
f(y)e−ix·y dy.

If f and g are real-valued functions on N, then, as usual, f = O(g) means that there
is a constant c such that f(k) ≤ cg(k) for sufficiently large k. The notation f ∼ g will
mean that f = O(g) and g = O(f).

3.2. Convex geometry. Let Kn be the class of compact convex sets in Rn, and let
Kn(A) be the subclass of members of Kn contained in the subset A of Rn. A convex
body in Rn is a compact convex set with nonempty interior. The notation Kn(r, R) will
be used for the class of convex bodies containing rBn and contained in RBn, where
0 < r < R. The treatise of Schneider [46] is an excellent general reference for convex
geometry.

Figures illustrating many of the following definitions can be found in [20].
If K ∈ Kn, then

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}
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is the polar set of K. The function

hK(x) = max{x · y : y ∈ K},

for x ∈ Rn, is the support function of K and

bK(u) = V (K|u⊥),

for u ∈ Sn−1, its brightness function. Any K ∈ Kn is uniquely determined by its
support function. We can regard hK as a function on Sn−1, since hK(x) = |x|hK(x/|x|)
for x 6= o. The Hausdorff distance δ(K,L) between two sets K,L ∈ Kn can then be
conveniently defined by

δ(K,L) = ‖hK − hL‖∞,
where ‖ · ‖∞ denotes the supremum norm on Sn−1. Equivalently, one can define

δ(K,L) = min{ε ≥ 0 : K ⊂ L+ εBn, L ⊂ K + εBn}.

The surface area measure S(K, ·) of a convex body K is defined for Borel subsets E
of Sn−1 by

S(K,E) = Vn−1

(
g−1(K,E)

)
,

where g−1(K,E) is the set of points in ∂K at which there is an outer unit normal vector
in E. Let S(K) = S(K,Sn−1). Then S(K) is the surface area of K. The Blaschke body
∇K of a convex body K is the unique o-symmetric convex body satisfying

S(∇K, ·) = 1
2
S(K, ·) + 1

2
S(−K, ·). (3)

The projection body of K ∈ Kn is the o-symmetric set ΠK ∈ Kn defined by

hΠK = bK . (4)

Cauchy’s projection formula states that for any u ∈ Sn−1,

hΠK(u) = bK(u) =
1

2

∫

Sn−1

|u · v| dS(K, v), (5)

and Cauchy’s surface area formula is

S(K) =
1

κn−1

∫

Sn−1

bK(u)du; (6)

see [20, (A.45) and (A.49), p. 408]. By (3) and (5), we have

b∇K = bK , (7)

and it can be shown (see [20, p. 116]) that ∇K is the unique o-symmetric convex body
with this property.

The difference body of K is the o-symmetric convex body DK = K + (−K).



10 GABRIELE BIANCHI, RICHARD J. GARDNER, AND MARKUS KIDERLEN

3.3. The covariogram. The function

gK(x) = V (K ∩ (K + x)),

for x ∈ Rn, is called the covariogram of K. Note that gK(o) = V (K), and that we have

gK(x) = 0 if and only if x /∈ intDK, so the support of gK is DK. Also, g
1/n
K is concave

on its support; see, for example, [26, Lemma 3.2].
Let K be a convex body in Rn and let u ∈ Sn−1. The (parallel) X-ray of K in the

direction u is the function XuK defined by

XuK(x) =

∫

lu+x

1K(y)dy,

for x ∈ u⊥. Now define

EK(t, u) = {y ∈ u⊥ : XuK(y) ≥ t} (8)

and
aK(t, u) = V

(
EK(t, u)

)
, (9)

for t ≥ 0 and u ∈ Sn−1. Note that if u ∈ Sn−1, then EK(0, u) = K|u⊥ and aK(0, u) =
bK(u).

Let x = tu, where t ≥ 0 and u ∈ Sn−1, and define gK(t, u) = gK(tu). The simple
relationship

gK(t, u) =

∫ ∞

t

aK(s, u) ds (10)

was noticed by Matheron [38, p. 86] in the form

∂gK(t, u)

∂t
= −aK(t, u),

which also yields
∂gK(t, u)

∂t

∣∣∣∣
t=0

= −bK(u).

(Note that the partial derivative here is one-sided; gK is not differentiable at the origin.)

Lemma 3.1. Let r > 0 and let K be a convex body with rBn ⊂ K. If 0 < t ≤ 2r, then
(

1− t

2r

)n−1

bK (u) ≤ gK(o)− gK(tu)

t
≤ bK (u) , (11)

for all u ∈ Sn−1.

Proof. Let u ∈ Sn−1. By (10), we have

gK(o)− gK(tu) =

∫ t

0

aK(s, u) ds.

From this and the fact that aK(·, u) is decreasing, we obtain

aK(t, u) ≤ gK(o)− gK(tu)

t
≤ aK(0, u) = bK(u). (12)

The set
M = conv

(
(K|u⊥) ∪ [−ru, ru]

)
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is generally not a subset of K, but elementary geometry using [−ru, ru] ⊂ K and (8)
gives (

1− t

2r

)(
K|u⊥

)
= EM(t, u) ⊂ EK(t, u).

Taking the (n− 1)-dimensional volumes of these sets and using (9) yields
(

1− t

2r

)n−1

bK(u) ≤ aK(t, u).

The lemma follows from the previous inequality and (12). �
An inequality similar to (11) was derived in [33, Theorem 1] for n = 2.
Matheron [40, p. 2] showed that the covariogram of a convex body is a Lipschitz

function. For the convenience of the reader, we provide a proof of this fact based on
[19], which yields the optimal Lipschitz constant.

Proposition 3.2. If K is a convex body in Rn and x, y ∈ Rn, then

|gK(x)− gK(y)| ≤ max
u∈Sn−1

bK(u)|x− y|.

Proof. We have

(K ∩ (K + x)) \ (K ∩ (K + y)) ⊂ (K + x) \ (K + y).

This implies

Vn (K ∩ (K + x))− Vn (K ∩ (K + y)) ≤ Vn (K \ (K + y − x))

= Vn(K)− Vn (K ∩ (K + y − x)) .

Equivalently, gK(x)−gK(y) ≤ gK(o)−gK(y−x) = gK(o)−gK(x−y), and interchanging
x and y yields

|gK(x)− gK(y)| ≤ gK(o)− gK(x− y).

Using this and the right-hand inequality in (11), we get

|gK(x)− gK(y)| ≤ bK

(
x− y
|x− y|

)
|x− y|,

and the proposition follows immediately. �
Corollary 3.3. If K0 ⊂ Cn

0 is a convex body, then for all x, y ∈ Rn,

|gK0(x)− gK0(y)| ≤ √n|x− y|.
Proof. Since K0 ⊂ Cn

0 , Proposition 3.2 yields

|gK(x)− gK(y)| ≤ max
u∈Sn−1

bCn0 (u)|x− y|.

By Cauchy’s projection formula (5), for u = (u1, u2, . . . , un) ∈ Sn−1 we have

bCn0 (u) = V
(
Cn

0 |u⊥
)

=
n∑

i=1

|ui|,

from which it is easy to see that bCn0 (u) ≤ √n. �
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3.4. Miscellaneous definitions. Let µ and ν be finite nonnegative Borel measures
in Sn−1. Define

dP (µ, ν) = inf{ε > 0 : µ(E) ≤ ν(Eε) + ε, ν(E) ≤ µ(Eε) + ε, E Borel in Sn−1}, (13)

where

Eε = {u ∈ Sn−1 : ∃v ∈ E : |u− v| < ε}.
Then dP is a metric called the Prohorov metric. As Sn−1 is a Polish space, it is enough to
take the infimum in (13) over the class of closed sets. In addition, if µ(Sn−1) = ν(Sn−1),
then

dP (µ, ν) = inf{ε > 0 : µ(E) ≤ ν(Eε) + ε, E Borel in Sn−1}; (14)

see [17].
We need a condition on a sequence (ui) in Sn−1 stronger than denseness in Sn−1. To

this end, for u ∈ Sn−1 and 0 < t ≤ 2, let

Ct(u) = {v ∈ Sn−1 : |u− v| < t}
be the open spherical cap with center u and radius t. We call (ui) evenly spread if for
all 0 < t < 2, there is a constant c = c(t) > 0 and an N = N(t) such that

|{u1, . . . , uk} ∩ Ct(u)| ≥ ck,

for all u ∈ Sn−1 and k ≥ N . Often, we will apply this notion to the symmetrization

(u∗i ) = (u1,−u1, u2,−u2, u3,−u3, . . .)

of a sequence (ui).
Let p ≥ 1. A family {Xα : α ∈ A} of random variables has uniformly bounded pth

absolute moments if there is a constant C such that

E (|Xα|p) ≤ C, (15)

for all α ∈ A. Of course, if p is an even integer, we can and will omit the word
“absolute.” If 1 ≤ q ≤ p and (15) holds, then it also holds with p replaced by q and C
replaced by Cq/p.

Triangular arrays of random variables of the form {Xik : i = 1, . . . ,mk; k ∈ N} (or,
more generally, {Xαk : α ∈ Ak; k ∈ N}) are called row-wise independent if for each k,
the family {Xik : i = 1, . . . ,mk} (or {Xαk : α ∈ Ak}, respectively) is independent.

4. The main algorithm for reconstruction from covariograms

We shall assume throughout that the unknown convex body K0 is contained in the
cube C0 = [−1/2, 1/2]n, with its centroid at the origin. This assumption can be justified
on both purely theoretical and purely practical grounds. If the measurements are
exact, then from the covariogram, a convex polytope can be constructed that contains
a translate of K0. On the other hand, in practise, an unknown object whose covariogram
is to be measured is contained in some known bounded region. In either case, one may
as well suppose that K0 is contained in Cn

0 , and since in the situations we consider, the
covariogram determines K0 up to translation and reflection in the origin, we can also
fix the centroid at the origin.
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We now state the main, second-stage algorithm. Note that it requires, as part of the
input, an o-symmetric convex polytope that approximates either the Blaschke body
∇K0 or the difference body DK0 of K0. These are provided by the first-stage al-
gorithms, Algorithm NoisyCovBlaschke and Algorithm NoisyCovDiff(ϕ), described in
Sections 5 and 6, respectively.

The reader should be aware that here, and throughout the paper, double subscripts in
expressions such as xik, Mik, Nik, etc., represent triangular arrays. Thus, for a fixed k,
the index i varies over a finite set of integers that depends on k; and similarly when the
first index is labeled by another letter in expressions such as zjk, Xpk, and so on, or is
itself represented by a double index, as in Nijk. Phrases such as “the Nik’s are row-wise
independent” mean that the corresponding triangular array is row-wise independent,
i.e., independent for fixed k.

Algorithm NoisyCovLSQ

Input: Natural numbers n ≥ 2 and k; noisy covariogram measurements

Mik = gK0(xik) +Nik, (16)

of an unknown convex body K0 ⊂ Cn
0 whose centroid is at the origin, at the points xik,

i = 1, . . . , Ik = (2k + 1)n in the cubic array 2Cn
0 ∩ (1/k)Zn, where the Nik’s are row-

wise independent zero mean random variables with uniformly bounded third absolute
moments; an o-symmetric convex polytope Qk in Rn, stochastically independent of the
measurements Mik, that approximates either ∇K0 or DK0, in the sense that, almost
surely,

lim
k→∞

δ(Qk,∇K0) = 0, or lim
k→∞

δ(Qk, DK0) = 0. (17)

Task: Construct a convex polytope Pk that approximates K0, up to reflection in the
origin.

Action:
1. Compute the outer unit normals {±uj : j = 1, . . . , s} to the facets of Qk.
2. For any vector a = (a+

1 , a
−
1 , a

+
2 , a

−
2 , . . . , a

+
s , a

−
s ), where a+

j , a
−
j ≥ 0, j = 1, . . . , s,

such that
∑s

j=1(a+
j − a−j )uj = o, let P (a) = P (a+

1 , a
−
1 , a

+
2 , a

−
2 , . . . , a

+
s , a

−
s ) be the convex

polytope with centroid at the origin, facet outer unit normals in {±uj : j = 1, . . . , s}
and such that the facet with normal uj (or −uj) has (n − 1)-dimensional measure a+

j

(or a−j , respectively), j = 1, . . . , s.
Solve the following least squares problem:

min

Ik∑

i=1

(
Mik − gP (a)∩Cn0 (xik)

)2
(18)

over the variables a+
1 , a

−
1 , a

+
2 , a

−
2 , . . . , a

+
s , a

−
s , subject to the constraints

s∑

j=1

(a+
j − a−j )uj = o
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and

a+
j , a

−
j ≥ 0, j = 1, . . . , s.

These constraints guarantee that the output will correspond to a convex polytope.
3. Let a set of optimal values be â+

1 , â
−
1 , â

+
2 , â

−
2 , . . . , â

+
s , â

−
s , and call the corresponding

polytope P (â). Then the output polytope Pk is the translate of P (â)∩Cn
0 that has its

centroid at the origin. Note that in this case −Pk also corresponds to a set of optimal
values obtained by switching a+

j and a−j , j = 1, . . . , s.

Lemma 4.1. Let 0 < r < R and let Q ∈ Kn(r, R) be an o-symmetric convex polytope.
Then there are facets of Q with outer unit normals u1, . . . , un such that

| det(u1, . . . , un)| > (r/R)n(n−1)/2. (19)

Proof. The polar body Q∗ of Q is contained in Kn(1/R, 1/r) and has its vertices in the
directions of the outer unit normals to the facets of Q, so it suffices to prove that there
are vertices v1, . . . , vn of Q∗ such that with ui = vi/|vi|, (19) holds.

The proof will be by induction on n. Let n = 2. We may assume that Q∗ has a vertex,
v1 say, on the positive x2-axis. Since Q∗ ∈ K2(1/R, 1/r), there must be another vertex
v2 of Q∗ with distance at least 1/R from the x2-axis, and by the symmetry of Q∗, such
that also v2 ·e2 ≥ 0. If α is the angle between v1 and v2, we must then have θ ≤ α ≤ π/2,

where θ is the angle between the vectors (0, 1/r) and
(
1/R,

√
(1/r2)− (1/R2)

)
. Then,

if ui = vi/|vi| for i = 1, 2, we have

| det(u1, u2)| = sinα ≥ sin θ = r/R,

which proves (19) for n = 2.
Suppose that (19) holds with n replaced by n − 1 and let Q∗ ∈ Kn(1/R, 1/r). We

may assume that Q∗ has a vertex, v1 say, on the positive xn-axis, so that v1/|v1| = en.
Since Q∗|e⊥n ∈ Kn−1(1/R, 1/r) (where we are identifying e⊥n with Rn−1), by the inductive
hypothesis, there are vertices w2, . . . , wn of Q∗|e⊥n such that if zi = wi/|wi|, i = 2, . . . , n,
then

| det(z2, . . . , zn)| ≥ (r/R)(n−1)(n−2)/2. (20)

Let vi be a vertex of Q∗ such that vi|e⊥n = wi, i = 2, . . . , n, and let ui = vi/|vi|,
i = 1, . . . , n. By the symmetry of Q∗, we may also assume that vi · en ≥ 0 for i =
2, . . . , n. Let αi be the angle between vi and wi, for i = 2, . . . , n. Using the fact that
Q∗|e⊥n ∈ Kn−1(1/R, 1/r), we see that each vi, i = 2, . . . , n has distance at least 1/R
from the xn-axis. Therefore cosαi ≥ sin θ = r/R for i = 2, . . . , n. Then, using (20) and
noting that u1 = en and ui = ui|e⊥n + (ui · en)en for i = 2, . . . , n, we obtain

| det(u1, . . . , un)| = | det(u2|e⊥n , . . . , un|e⊥n )|

= | det(z2, . . . , zn)|
n∏

i=2

cosαi

≥ (r/R)(n−1)(n−2)/2(r/R)n−1 = (r/R)n(n−1)/2.

�
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Lemma 4.2. Let K ∈ Kn(r, R), let 0 < ε < κn−1r
n−1/2, and let L be a convex body

containing the origin in Rn such that

dP (S(K, ·), S(L, ·)) < ε. (21)

Then there is a constant a1 depending only on ε, r, and R such that L ⊂ a1B
n. If L is

o-symmetric, there is also a constant a0 > 0 depending only on ε, r, and R such that
a0B

n ⊂ L.

Proof. Using (4) and (5), we obtain

|hΠK(u)− hΠL(u)| = |bK(u)− bL(u)| ≤ dD(S(K, ·), S(L, ·)). (22)

Here dD is the Dudley metric, defined by

dD(µ, ν) = sup

{∣∣∣∣
∫

Sn−1

f d(µ− ν)

∣∣∣∣ : ‖f‖BL ≤ 1

}
,

where for any real-valued function f on Sn−1 we define

‖f‖L = sup
u6=v

|f(u)− f(v)|
|u− v| and ‖f‖BL = ‖f‖∞ + ‖f‖L.

(Note that for any u ∈ Sn−1, the function f(v) = |u·v|/2, v ∈ Sn−1 satisfies ‖f‖BL = 1.)
By [17, Corollary 2], we have the relation

dD(µ, ν) ≤ 2dP (µ, ν), (23)

for finite nonnegative Borel measures µ and ν in Sn−1. Now (22), (23), and (21) yield

|hΠK(u)− hΠL(u)| ≤ 2dP (S(K, ·), S(L, ·)) < 2ε,

for each u ∈ Sn−1.
Since K ∈ Kn(r, R), we have ΠK ∈ Kn (κn−1r

n−1, κn−1R
n−1), so

ΠL ∈ Kn(κn−1r
n−1 − 2ε, κn−1R

n−1 + 2ε).

Now exactly the same argument as in the proof of Lemma 4.2 of [25], beginning with
formula (16) in that paper, yields the existence of a1 and a0. (The assumption of o-
symmetry made in [25] is only needed for the latter. Explicit values for a0 and a1 can
be given in terms of ε, r, and R, but we do not need them here.) �

Lemma 4.3. Let K be a convex body in Rn. Then there is an ε0 > 0 such that for all
0 < ε < ε0, if Q is an o-symmetric convex polytope in Rn such that either

dP (S(∇K, ·), S(Q, ·)) < ε (24)

or

dP (S(DK, ·), S(Q, ·)) < ε, (25)

then there is a constant c1 > 0 depending only on K and a convex polytope J whose
facets are each parallel to some facet of Q, such that

dP (S(K, ·), S(J, ·)) < c1ε. (26)
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Proof. We choose ε0 > 0 so that Lemma 4.2 holds when ε is replaced by ε0 and K is
replaced by either ∇K or DK, as appropriate. Let 0 < ε < ε0.

Let ±u1, . . . ,±us be the outer unit normals to the facets of Q and for i = s+1, . . . , 2s,
let ui = −ui−s. Set I = {1, . . . , 2s}.

Suppose that (24) holds. By (13), S(∇K,E) < S(Q,Eε) + ε for each Borel subset E
of Sn−1. If Eε ∩ ∪i∈I{ui} = ∅, we have S(Q,Eε) = 0. This implies that S(∇K,E) < ε
and so by (3),

S(K,E) < 2ε. (27)

If instead (25) holds, then (13) implies that S(DK,E) < S(Q,Eε) + ε for each Borel
subset E of Sn−1. Then, if Eε ∩∪i∈I{ui} = ∅, we have S(DK,E) < ε. By [46, (5.1.17),
p. 275],

S(DK,E) = S(K + (−K), E) = S(K,E) +
n−1∑

j=1

(
n− 1

j

)
S(K,n− 1− j;−K, j, E),

where S(K,n − 1 − j;−K, j, ·) denotes the mixed area measure of n − 1 − j copies of
K and j copies of −K. Since all these terms are nonnegative, we obtain S(K,E) < ε
and so (27) holds again.

For i ∈ I, let

Vi = {u ∈ Sn−1 : |u− ui| ≤ |u− uj| for each j ∈ I, j 6= i}
be the Voronoi cell in Sn−1 containing ui. Choose Borel sets Wi such that relintVi ⊂
Wi ⊂ Vi for each i and Wi ∩Wj = ∅ for i 6= j, so that {Wi : i ∈ I} forms a partition
of Sn−1.

Let ai = S(K,Wi) and let w =
∑

i∈I aiui. Since S(K, ·) is balanced, i.e.,
∫

Sn−1

u dS(K, u) = o,

we have

w =
∑

i∈I
aiui =

∑

i∈I
ui

∫

Wi

dS(K, u)−
∫

Sn−1

u dS(K, u)

=
∑

i∈I

∫

Wi

(ui − u) dS(K, u).

For each u ∈ Sn−1 and t > 0, let Ct(u) = {v ∈ Sn−1 : |u − v| ≤ t}. Let W =
∪i∈I(Wi \ Cε(ui)). Then ui 6∈ Wε for i ∈ I, so (27) implies that S(K,W ) < 2ε. Using
this, we obtain

|w| =
∣∣∣∣
∑

i∈I

∫

Wi∩Cε(ui)
(ui − u) dS(K, u) +

∑

i∈I

∫

Wi\Cε(ui)
(ui − u) dS(K, u)

∣∣∣∣

≤
∑

i∈I

∫

Wi∩Cε(ui)
|ui − u| dS(K, u) + 2

∫

W

dS(K, u)

< εS(K,Sn−1) + 4ε = (S(K) + 4)ε. (28)
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Since Q is o-symmetric, we can apply Lemma 4.2 (with K and L replaced by ∇K
(or DK) and Q, respectively) and Lemma 4.1 to conclude that there exist outer unit
normals ui1 , . . . , uin to facets of Q such that | det(ui1 , . . . , uin)| > c2, where c2 depends
only on K. In particular, ui1 , . . . , uin forms a basis for Rn, so there exist real numbers
bi1 , . . . , bin such that

−w =
n∑

j=1

bijuij .

Replacing uij by −uij , if necessary, we may assume that bij > 0 for j = 1, . . . , n. By
Cramer’s rule, we obtain bij ≤ |w|/| det(ui1 , . . . , uin)| < |w|/c2, for j = 1, . . . , n. Define
bi = 0 for each i ∈ I such that i 6∈ {i1, . . . , in}. Then, by (28),

∑

i∈I
bi ≤ n|w|/c2 < c3ε, (29)

where c3 depends only on K.
Let

µ0 =
∑

i∈I
aiδui and µ1 =

∑

i∈I
biδui ,

and let µ = µ0 + µ1. Then the support of µ is not contained in a great sphere, and
since ∫

Sn−1

u dµ(u) =
∑

i∈I
(ai + bi)ui = w − w = o,

µ is balanced. By Minkowski’s existence theorem [20, Theorem A.3.2], there is a convex
polytope J such that S(J, ·) = µ. By its definition, each facet of J is parallel to a facet
of Q.

It remains to prove (26). Using (29), we obtain

dP (S(J, ·), S(K, ·)) = dP (µ0 + µ1, S(K, ·)) ≤ dP (µ0 + µ1, µ0) + dP (µ0, S(K, ·))
= dP (µ1, 0) + dP (µ0, S(K, ·)) < c3ε+ dP (µ0, S(K, ·)),

where 0 is the zero measure in Sn−1. In view of µ0(Sn−1) = S(K,Sn−1) and (14), it is
therefore enough to find a constant c4, depending only on K, such that

µ0(E) < S(K,Ec4ε) + c4ε, (30)

for any Borel set E in Sn−1. Let X = ∪{Wi : ui ∈ E} \ Eε. We have

S(K,Eε) ≥ S (K,Eε ∩ (∪{Wi : ui ∈ E}))
=
∑
{S(K,Wi) : ui ∈ E} − S(K,X) = µ0(E)− S(K,X). (31)

If x ∈ X, then for some i with ui ∈ E we have x ∈ Wi, and so |x−ui| ≥ ε since x 6∈ Eε.
Moreover, if j 6= i, then |uj − x| ≥ |ui − x| ≥ ε. Hence ∪i∈I{ui} ∩Xε = ∅, and by (27),
we have S(K,X) < 2ε. Now (31) implies that (30) holds with c4 = 2. �

For a fixed finite set z1, . . . , zq of points in Rn, define a pseudonorm | · |q by

|f |q =

(
1

q

q∑

i=1

f(zi)
2

)1/2

, (32)
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where f is any real-valued function on Rn. For a convex body K contained in Cn
0 ,

vector zq = (z1, . . . , zq) of the points z1, . . . , zq in Rn, and vector Xq = (X1, . . . , Xq) of
random variables X1, . . . , Xq, let

Ψ(K, zq,Xq) =
1

q

q∑

i=1

gK(zi)Xi. (33)

Lemma 4.4. Let k ∈ N and let K0 ⊂ Cn
0 be a convex body with its centroid at the

origin. Suppose that Pk is an output from Algorithm NoisyCovLSQ as stated above.
Let P (a) be any convex polytope admissible for the minimization problem (18). Then

|gK0 − gPk |2Ik ≤ 2Ψ(Pk,xIk ,NIk)− 2Ψ(P (a) ∩ Cn
0 ,xIk ,NIk) +

∣∣gK0 − gP (a)∩Cn0
∣∣2
Ik
, (34)

where for each k ∈ N, |·|Ik and Ψ(K,xIk ,NIk) are defined by (32) and (33), respectively,
with q = Ik, xIk = (x1k, . . . , xIkk), and NIk = (N1k, . . . , NIkk).

Proof. If P (â) ∩ Cn
0 is a solution of (18), then since gPk = gP (â)∩Cn0 , we obtain

Ik∑

i=1

(Mik − gPk(xik))2 ≤
Ik∑

i=1

(
Mik − gP (a)∩Cn0 (xik)

)2
,

Substituting for Mik from (16) and rearranging, we obtain

Ik∑

i=1

(gK0(xik)− gPk(xik))2 ≤ 2

Ik∑

i=1

gPk(xik)Nik − 2

Ik∑

i=1

gP (a)∩Cn0 (xik)Nik

+

Ik∑

i=1

(
gK0(xik)− gP (a)∩Cn0 (xik)

)2
.

In view of (32) and (33), this is the required inequality. �
Let K be any convex body in Rn and let ε > 0. The inner parallel body K 	 εBn is

the Minkowski difference of K and εBn as defined in (2). Then

K 	 εBn =
⋂

y∈εBn
(K − y),

so the inner parallel body is convex. (It may be empty.) For further properties, see [46,
pp. 133–137]. The following proposition is an immediate consequence of the fact that
if K is a convex body in Rn, then

V (K)− V (K 	 εBn) < S(K)ε. (35)

This follows directly from either an inequality of Sangwine-Yager or one of Brannen;
see Theorem 1 or Corollary 2 of [13], respectively. The estimate (35) both generalizes
and strengthens [23, Lemma 4.2], which concerns the case n = 2. The authors of the
latter paper were unaware that an even stronger estimate for n = 2 was found earlier
by Matheron [39].

Proposition 4.5. If K ⊂ Cn
0 is a convex body and ε > 0, then

V (K)− V (K 	 εBn) < 2nε.
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Let G be the class of all nonnegative functions g on Rn with support in 2Cn
0 that are

the covariogram of some convex body contained in Cn
0 , together with the function on

Rn that is identically zero. Note that for each g ∈ G and x ∈ Rn, g(x) ≤ gCn0 (x) ≤
V (Cn

0 ) = 1.

Lemma 4.6. Let 0 < ε < 1 be given. Then there is a finite set {(gLj , gUj ) : j = 1, . . . ,m}
of pairs of functions in G such that

(i) ‖gUj − gLj ‖1 ≤ ε for j = 1, . . . ,m and

(ii) for each g ∈ G, there is an j ∈ {1, . . . ,m} such that gLj ≤ g ≤ gUj .

Proof. Let 0 < ε < 1 and let c5 = c5(n) ≥ 1 be a constant, to be chosen later. Since
Kn(Cn

0 ) with the Hausdorff metric is compact, there is an ε/c5-net {K1, . . . , Km} in
Kn(Cn

0 ). For each j = 1, . . . ,m, letKU
j = (Kj+(ε/c5)Bn)∩Cn

0 andKL
j = Kj	(ε/c5)Bn.

Define gUj = gKU
j

and gLj = gKL
j

, j = 1, . . . ,m. Both gUj and gLj belong to G, j =

1, . . . ,m.
We first prove (ii). Let g ∈ G. There is a K ∈ Kn(Cn

0 ) such that g = gK . Choose
j ∈ {1, . . . ,m} such that δ(K,Kj) ≤ ε/c5. Since K ⊂ Cn

0 and K ⊂ Kj + (ε/c5)Bn, we
have K ⊂ (Kj + (ε/c5)Bn) ∩ Cn

0 = KU
j . Also, we have

(Kj 	 (ε/c5)Bn) + (ε/c5)Bn ⊂ Kj ⊂ K + (ε/c5)Bn,

yielding KL
j = Kj 	 (ε/c5)Bn ⊂ K. These facts imply that gLj ≤ g ≤ gUj , as required.

It remains to prove (i). It is easy to prove (see, for example, [46, p. 411]) that for
any convex body L in Rn, ∫

DL

gL(x) dx = V (L)2.

Applying this, Steiner’s formula with quermassintegrals (see [20, (A.30), p. 404], basic
properties of mixed volumes (see [20, (A.16) and (A.18), p. 399]) together with Kj ⊂
Cn

0 ⊂ (n/4)1/2Bn and c5 ≥ 1, and Proposition 4.5 with ε replaced by ε/c5, we obtain

‖gUj − gLj ‖1

=

∫

2Cn0

(
gUj (x)− gLj (x)

)
dx = V

(
KU
j

)2 − V
(
KL
j

)2 ≤ 2
(
V
(
KU
j

)
− V

(
KL
j

))

≤ 2

[(
V

(
Kj +

ε

c5

Bn

)
− V (Kj)

)
+

(
V (Kj)− V

(
Kj 	

ε

c5

Bn

))]

≤ 2

(
κn

n∑

i=1

(
n
i

)(n
4

)(n−i)/2
+ 2n

)(
ε

c5

)
< ε,

provided that c5 is chosen sufficiently large. �
By analogy with [48, Definition 2.2], we refer to a finite set {(gLj , gUj ) : j = 1, . . . ,m}

of pairs of functions in G satisfying (i) and (ii) of Lemma 4.6 as an ε-net with bracketing
for the class G.

The following proposition is a version of the strong law of large numbers that applies
to a triangular family, rather than a sequence, of random variables. A version with the
assumptions of full independence and uniformly bounded fourth moments is proved in
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detail in [23, Lemma 4.4], with mk = k. The stronger statement below follows directly
from [30, Corollary 1] (with p = 1 and n = mk there); in fact, it is enough to assume
the uniform boundedness of pth absolute moments where p = 2 + ε for some ε > 0, but
we prefer to avoid this extra parameter in the sequel.

Proposition 4.7. Let Xik, k ∈ N, i = 1, . . . ,mk, where mk ≥ k, be a triangular
array of row-wise independent zero mean random variables. If the array has uniformly
bounded third absolute moments, then, almost surely,

1

mk

mk∑

i=1

Xik → 0 (36)

as k →∞.

Lemma 4.8. For every k ∈ N, let xik, i = 1, . . . , Ik, be the points in the cubic array
2Cn

0 ∩ (1/k)Zn. Let Nik, k ∈ N, i = 1, . . . , Ik, be row-wise independent zero mean
random variables with uniformly bounded third absolute moments. Then, almost surely,

sup
K∈Kn(Cn0 )

Ψ(K,xIk ,NIk)→ 0

as k → ∞, where for each k ∈ N, Ψ(K,xIk ,NIk) is defined by (33) with q = Ik,
xIk = (x1k, . . . , xIkk), and NIk = (N1k, . . . , NIkk).

Proof. Let 0 < ε < 1 and let {(gLj , gUj ) : j = 1, . . . ,m} be an ε-net with bracketing
for G, as provided by Lemma 4.6. Let K ∈ Kn(Cn

0 ) and let g = gK ∈ G. Choose
j ∈ {1, . . . ,m} such that gLj ≤ g ≤ gUj . Define N+

ik = max{Nik, 0} and N−ik = N+
ik −Nik

for k ∈ N and i = 1, . . . , Ik. Then for k ∈ N, we have

Ψ(K,xIk ,NIk) =
1

Ik

Ik∑

i=1

g(xik)N
+
ik −

1

Ik

Ik∑

i=1

g(xik)N
−
ik

≤ 1

Ik

Ik∑

i=1

gUj (xik)N
+
ik −

1

Ik

Ik∑

i=1

gLj (xik)N
−
ik

≤ Wk(ε),

where

Wk(ε) = max
j=1,...,m

{
1

Ik

Ik∑

i=1

gUj (xik)N
+
ik −

1

Ik

Ik∑

i=1

gLj (xik)N
−
ik

}
(37)

is independent of K. Consequently,

sup
K∈Kn(Cn0 )

Ψ(K,xIk ,NIk) ≤ Wk(ε), (38)

for all 0 < ε < 1.
Fix j ∈ {1, . . . ,m}, and let

Xik = gUj (xik)N
+
ik − gUj (xik)E(N+

ik),



PHASE RETRIEVAL FOR CHARACTERISTIC FUNCTIONS OF CONVEX BODIES 21

for k ∈ N and i = 1, . . . , Ik. Since gUj (xik) ≤ 1, it is easy to check that the random
variables Xik satisfy the hypotheses of Proposition 4.7. By (36) with mk = Ik, we
obtain, almost surely,

lim sup
k→∞

1

Ik

Ik∑

i=1

gUj (xik)N
+
ik = lim sup

k→∞

1

Ik

Ik∑

i=1

gUj (xik)E(N+
ik).

The same argument, with limits superior replaced by limits inferior, applies when Xik is
defined by Xik = gLj (xik)N

−
ik − gLj (xik)E(N−ik). Our moment assumption on the random

variables Nik implies that there is a constant C such that

E(N+
ik) = E(N−ik) =

1

2
E(|Nik|) ≤ C.

Also, by Lemma 4.6(i) we have ‖gUj − gLj ‖1 ≤ ε and by Lemma 4.6(ii) we may assume

that gUj − gLj ≥ 0, for i = 1, . . . ,m. Therefore, almost surely,

lim
k→∞

Wk(ε) = max
j=1,...,m

{
lim sup
k→∞

1

Ik

Ik∑

i=1

gUj (xik)E(N+
ik)− lim inf

k→∞

1

Ik

Ik∑

i=1

gLj (xik)E(N−ik)

}

≤ max
j=1,...,m

{
C

(
lim sup
k→∞

1

Ik

Ik∑

i=1

gUj (xik)− lim inf
k→∞

1

Ik

Ik∑

i=1

gLj (xik)

)}

≤ max
j=1,...,m

{
C

2n

∫

2Cn0

(
gUj (x)− gLj (x)

)
dx

}
≤ Cε

2n
.

This and (38) complete the proof. �

Lemma 4.9. Let K0 ⊂ Cn
0 be a convex body with its centroid at the origin. Suppose that

Pk is an output from Algorithm NoisyCovLSQ as stated above. Then, almost surely,

lim
k→∞
|gK0 − gPk |Ik = 0. (39)

Proof. Let Qk be the o-symmetric polytope from the input of Algorithm NoisyCovLSQ
that satisfies, almost surely, (17). Fix a realization for which (17) holds. We may
assume that

lim
k→∞

δ(Qk,∇K0) = 0,

as the other case is completely analogous. By [46, Theorem 4.2.1], S(Qk, ·) converges
weakly to S(∇K0, ·) as k →∞. By [10, Theorem 6.8], weak convergence is equivalent
to convergence in the Prohorov metric, so S(Qk, ·) converges in the Prohorov metric
to S(∇K0, ·) as k → ∞. Now Lemma 4.3 ensures that if Jk is the convex polytope
corresponding to Qk in that lemma, then S(Jk, ·) converges in the Prohorov metric to
S(K0, ·) as k →∞. We may assume that the centroid of Jk is at the origin for each k.
By Lemma 4.2 (with K and L replaced by K0 and Jk, respectively), there are constants
a1 and k0 ∈ N, depending only on K0, such that Jk ⊂ a1B

n for all k ≥ k0. By Blaschke’s
selection theorem and the fact that a convex body is determined up to translation by
its surface area measure, the sequence (Jk) has an accumulation point and every such



22 GABRIELE BIANCHI, RICHARD J. GARDNER, AND MARKUS KIDERLEN

accumulation point must be a translate of K0. But Jk and K0 have their centroids at
the origin and K0 ⊂ Cn

0 , so

lim
k→∞

δ(K0, Jk ∩ Cn
0 ) = lim

k→∞
δ(K0, Jk) = 0.

(This consequence of the fact that dP (S(Jk, ·), S(K0, ·)) → 0 as k → ∞ can also be
derived from a stability estimate of Hug and Schneider [31, Theorem 3.1], but we do
not need the full force of that result here.) It follows from the continuity of volume
that ‖gK0 − gJk∩Cn0 ‖∞ → 0 as k →∞ and hence that

lim
k→∞

∣∣gK0 − gJk∩Cn0
∣∣
Ik

= 0. (40)

Next, we observe that Jk can serve as the P (a) in Lemma 4.4. By its definition, a
translate of Pk is contained in Cn

0 , and the quantity Ψ(Pk,xIk ,NIk) is unaffected by
this translation. From Lemma 4.8 we obtain

lim
k→∞

Ψ(Pk,xIk ,NIk) = 0 and lim
k→∞

Ψ(Jk ∩ Cn
0 ,xIk ,NIk) = 0. (41)

Now (39) follows directly from (34) (with P (a) replaced by Jk), (40), and (41). �

Theorem 4.10. Suppose that K0 ⊂ Cn
0 is a convex body with its centroid at the ori-

gin. Suppose also that K0 is determined, up to translation and reflection in the origin,
among all convex bodies in Rn, by its covariogram. If Pk, k ∈ N, is an output from
Algorithm NoisyCovLSQ as stated above, then, almost surely,

min{δ(K0, Pk), δ(−K0, Pk)} → 0 (42)

as k →∞.

Proof. By Lemma 4.9, almost surely,

|gK0 − gPk |Ik → 0, (43)

as k → ∞. Fix a realization for which this statement holds. For each k, Pk has its
centroid at the origin and is a translate of a subset of Cn

0 , so Pk ⊂ 2Cn
0 and by Blaschke’s

selection theorem, (Pk) has an accumulation point, L, say. Note that L must also have
its centroid at the origin and be a translate of a subset of Cn

0 .
Let (Pk′) be a subsequence converging to L. Then since gK0−gPk′ converges uniformly

to gK0 − gL as k′ →∞, we have

∣∣gK0 − gPk′
∣∣2
Ik′
→ 1

2n

∫

2Cn0

(gK0(x)− gL(x))2 dx,

as k′ → ∞. From this and (43), we obtain ‖gK0 − gL‖L2(2Cn0 ) = 0, and hence, since

covariograms are clearly continuous, gK0 = gL on 2Cn
0 . As the supports of gK0 and gL

are contained in 2Cn
0 , we have gK0 = gL in Rn. The hypothesis on K0 now implies that

L = ±K0. Since L was an arbitrary accumulation point of (Pk), we obtain (42). �



PHASE RETRIEVAL FOR CHARACTERISTIC FUNCTIONS OF CONVEX BODIES 23

5. Approximating the Blaschke body via the covariogram

Algorithm NoisyCovBlaschke

Input: Natural numbers n ≥ 2 and k; mutually nonparallel vectors ui ∈ Sn−1,
i = 1, . . . , k that span Rn; noisy covariogram measurements

M
(1)
ijk = gK0(o) +N

(1)
ijk and M

(2)
ijk = gK0((1/k)ui) +N

(2)
ijk ,

for i = 1, . . . , k and j = 1, . . . , k2, of an unknown convex body K0 ⊂ Cn
0 whose centroid

is at the origin, where the N
(m)
ijk ’s are row-wise independent (i.e., independent for fixed k)

zero mean random variables with uniformly bounded sixth moments.

Task: Construct an o-symmetric convex polytope Qk that approximates the Blaschke
body ∇K0.

Action:
1. For i = 1, . . . , k and j = 1, . . . , k2, let

yik =
1

k2

k2∑

j=1

k(M
(1)
ijk −M

(2)
ijk ).

2. With the natural numbers n ≥ 2 and k, and vectors ui ∈ Sn−1, i = 1, . . . , k use
the sample means yik instead of noisy measurements of the brightness function bK(ui)
as input to Algorithm NoisyBrightLSQ (see [24, p. 1352]). The output of the latter
algorithm is Qk.

For a fixed finite set u1, . . . , uq of points in Sn−1, define a pseudonorm | · |q by

|f |q =

(
1

q

q∑

i=1

f(ui)
2

)1/2

, (44)

where f is any real-valued function on Sn−1. For a convex body K contained in Cn
0 , a

sequence (ui) in Sn−1, and a vector Xk = (X1k, . . . , Xkk) of random variables, let

Ψ(K, (ui),Xk) =
1

k

k∑

i=1

bK(ui)Xik.

The same notations were used for a technically different pseudonorm and function Ψ
in the previous section, but this should cause no confusion.

Lemma 5.1. Let K0 be a convex body in Rn with centroid at the origin and such that
rBn ⊂ K0 ⊂ Cn

0 for some r > 0. Let (ui) be a sequence in Sn−1. If Qk is an output from
Algorithm NoisyCovBlaschke as stated above, then, almost surely, there is a constant
c6 = c6(n, r) such that

|bK0 − bQk |2k ≤ 2Ψ(Qk, (ui),Xk)− 2Ψ(K0, (ui),Xk) +
c6

k
|bK0 − bQk |k, (45)
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for all k ∈ N. Here Xk = (X1k, . . . , Xkk), with

Xik =
1

k

k2∑

j=1

(N
(1)
ijk −N

(2)
ijk ),

for i = 1, . . . , k.

Proof. For i = 1, . . . , k, we have

yik =
gK0(o)− gK0((1/k)ui)

1/k
+

1

k

k2∑

j=1

(N
(1)
ijk −N

(2)
ijk ) = µik +Xik,

where the Xik’s are row-wise independent zero mean random variables. Note that the
yik’s are also row-wise independent. Furthermore, by Khinchine’s inequality (see, for
example, [29, (4.32.1), p. 307] with α = 6), there is a constant C such that

E
(
|Xik|6

)
≤ C

k2

k2∑

j=1

E

(∣∣∣N (1)
ijk −N

(2)
ijk

∣∣∣
6
)
,

from which we see that the Xik’s also have uniformly bounded sixth moments. By
Lemma 3.1,

lim
k→∞

µik = bK0(ui).

In fact, the convergence is uniform. This is because for each u ∈ Sn−1, we have

bK0(u) ≤ bCn0 (u) ≤ b(
√
n/2)Bn(u) = (n/4)(n−1)/2κn−1

and

0 ≤ bK0(u)− µik ≤
(

1−
(

1− 1

2rk

)n−1
)
bK0(u) ≤ n− 1

2rk
bK0(u), k ≥ 1/(2r), (46)

by Lemma 3.1, so there is a constant c7 = c7(n, r) such that

0 ≤ bK0(ui)− µik ≤
c7

k
, (47)

for all k ∈ N and i = 1, . . . , k.
By the formulation of Algorithms NoisyCovBlaschke and NoisyBrightLSQ (see [24,

p. 1352] and take [24, Proposition 2.1] into account), Qk minimizes

k∑

i=1

(bK(ui)− yik)2 (48)

over the class of all o-symmetric convex bodies K in Rn. By (7), for each convex body
there is an o-symmetric convex body with the same brightness function. From this it
follows that Qk is actually a minimizer over the class of all convex bodies K in Rn.
Substituting K = Qk and K = K0 in (48), we obtain

k∑

i=1

(bQk(ui)− µik −Xik)
2 ≤

k∑

i=1

(bK0(ui)− µik −Xik)
2 .
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Rearranging and using (44), we obtain

|bK0 − bQk |2k ≤
2

k

k∑

i=1

(bQk(ui)− bK0(ui)) (Xik − (bK0(ui)− µik)).

The definition of Ψ and Cauchy-Schwarz inequality yields

|bK0 − bQk |2k

≤ 2Ψ(Qk, (ui),Xk)− 2Ψ(K0, (ui),Xk) + 2|bK0 − bQk |k
(

1

k

k∑

i=1

(bK0(ui)− µik)2

)1/2

.

In view of (47), this proves (45) with c6 = 2c7. �
Lemma 5.2. Suppose that the assumptions of Lemma 5.1 are satisfied with a sequence
(ui) such that (u∗i ) is evenly spread. Suppose also that the second moments of the Xik’s
are uniformly bounded by a constant C > 0. Then, almost surely, there are constants
c8 = c8(C, n, r, (ui)) and N1 = N1((Xik), (ui)) such that

S(Qk) ≤ c8, (49)

for all k ≥ N1.

Proof. By the Cauchy-Schwarz inequality,

Ψ(Qk, (ui),Xk)−Ψ(K0, (ui),Xk) ≤ |bK0 − bQk |k
(

1

k

k∑

i=1

X2
ik

)1/2

.

This and (45) imply that

|bK0 − bQk |k ≤ 2

(
1

k

k∑

i=1

X2
ik

)1/2

+
c6

k
,

for all k ∈ N. Since the Xik’s have uniformly bounded sixth moments, we can apply
Proposition 4.7 with mk and Xik replaced by k and X2

ik − E (X2
ik), respectively, to

conclude that the first term on the right-hand side is bounded, almost surely. Thus,
almost surely, there are constants c9 = c9(C, n, r) and N2 = N2((Xik), (ui)) such that

|bK0 − bQk |k ≤ c9, (50)

for all k ≥ N2. As (u∗i ) is evenly spread, we can apply [24, Lemma 7.1] with K and L
replaced by ΠK0 and ΠQk, respectively. Using this, the fact that ΠK0 ⊂ ΠCn

0 = 2Cn
0 ⊂√

nBn (see [20, p. 145]), and (4), we find that there are constants c10 = c10((ui)) and
N3 = N3((ui)) such that

bQk ≤ c10|bK0 − bQk |k + 2
√
n, (51)

for k ≥ N3. Finally, (49) follows directly from (50), (51), and (6). �
Lemma 5.3. Suppose that the assumptions of Lemma 5.1 are satisfied with a sequence
(ui) such that (u∗i ) is evenly spread. Then, almost surely,

lim
k→∞
|bK0 − bQk |k = 0. (52)
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Proof. Choose a constant C1 such that E (|Xik|2) ≤ C1 for all i and k. Due to (45)
and (50), there is, almost surely, a constant c11 = c11(C1, n, r) such that

|bQk − bK0|2k ≤ 2Ψ(Qk, (ui),Xk)− 2Ψ(K0, (ui),Xk) +
c11

k
, (53)

for all k ≥ N2. By Proposition 4.7 with mk = k and Xik replaced by bK0(ui)Xik, the
variable Ψ(K0, (ui),Xk) converges to zero, almost surely, as k →∞.

For m ∈ N, let Hm = {K ∈ Kn : S(K) ≤ m}. If we can show that for all m ∈ N,
almost surely,

lim
k→∞

sup
K∈Hm

|Ψ(K, (ui),Xk)| = 0, (54)

then by (49), almost surely,

lim
k→∞

Ψ(Qk, (ui),Xk) = 0.

This and (53) will yield (52), completing the proof.
To prove (54), note first that by (5), we have

|Ψ(K, (ui),Xk)| =
∣∣∣∣
1

k

k∑

i=1

bK(ui)Xik

∣∣∣∣ ≤
1

2

∫

Sn−1

∣∣∣∣
1

k

k∑

i=1

|ui · v|Xik

∣∣∣∣ dS(K, v).

Since S(K) = S(K,Sn−1) ≤ m for K ∈ Hm, it is enough to prove that, almost surely,

lim
k→∞

sup
v∈Sn−1

∣∣∣∣
1

k

k∑

i=1

|ui · v|Xik

∣∣∣∣ = 0. (55)

This follows essentially from the uniform continuity of the function |ui · v|, v ∈ Sn−1,
and the fact that Sn−1 is compact. Indeed, suppose that (55) does not hold almost
surely. Choose a constant C2 such that E(|Xik|) ≤ C2 for all i and k. Then there is a
δ > 0 such that

lim sup
k→∞

sup
v∈Sn−1

1

k

k∑

i=1

|ui · v|Xik > δC2 (56)

with positive probability. Let {w1, . . . , wm} be a δ/2-net in Sn−1. For any realization
and any k ∈ N, there is a vk ∈ Sn−1 such that

1

k

k∑

i=1

|ui · vk|Xik = sup
v∈Sn−1

1

k

k∑

i=1

|ui · v|Xik. (57)

Let Aj denote the set of all events such that an accumulation point of (vk) has distance
at most δ/2 from wj, j = 1, . . . ,m. For a realization in Aj and any subsequence (k′) of
(k) such that |vk′ − wj| ≤ δ holds for sufficiently large k, we have, almost surely,

lim sup
k′→∞

∣∣∣∣
1

k′

k′∑

i=1

|ui · vk′ |Xik′ −
1

k′

k′∑

i=1

|ui · wj|Xik′

∣∣∣∣ ≤ δ lim sup
k′→∞

1

k′

k′∑

i=1

|Xik′ | ≤ δC2,

by Proposition 4.7 with mk and Xik replaced by k′ and |Xik′| −E(|Xik′ |), respectively.
But Proposition 4.7, with mk and Xik replaced by k′ and |ui ·wj|Xik′ , respectively, also
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implies that, almost surely, the second term on the left-hand side converges to zero, as
k′ →∞. In view of (57), this yields

lim sup
k′→∞

sup
v∈Sn−1

1

k′

k′∑

i=1

|ui · v|Xik′ ≤ δC2,

for almost all events in Aj. As any sequence in Sn−1 has at least one accumulation
point, the latter inequality holds, almost surely, contradicting (56). �

Theorem 5.4. Let K0 ⊂ Cn
0 be a convex body with its centroid at the origin. Let

(ui) be a sequence in Sn−1 such that (u∗i ) is evenly spread. If Qk is an output from
Algorithm NoisyCovBlaschke as stated above, then, almost surely,

lim
k→∞

δ(∇K0, Qk) = 0. (58)

Proof. We have o ∈ intK0, so there is an r > 0 such that rBn ⊂ K0. By Lemmas 5.2
and 5.3, we can fix a realization for which both (49) and (52) are true. Using (4), we
observe that (52) is equivalent to

lim
k→∞
|hΠK0 − hΠQk |k = 0. (59)

We also have hΠQk = bQk ≤ S(Qk), so by (49), the sets ΠQk are uniformly bounded.
With these observations and the fact that (u1,−u1, u2,−u2, . . . ) is evenly spread, we

can follow the proof of [24, Theorem 6.1]), from the fourth line, with K and P̂k replaced
by ΠK0 and ΠQk, respectively, to conclude that

lim
k→∞

δ(ΠK0,ΠQk) = 0. (60)

Now rBn ⊂ K0 ⊂ Cn
0 yields sBn ⊂ ΠK0 ⊂ tBn with s = κn−1r

n−1 and t =
√
n.

Moreover, (4) and (7) give Π(∇K0) = ΠK0. Hence (60) implies that

s

2
Bn ⊂ Π(∇K0),ΠQk ⊂

3t

2
Bn,

for sufficiently large k, where s and t depend only on n and r. Exactly as in the
proof from (48) to (49) of [24, Theorem 7.2] (which in turn follows the proof of [25,
Lemma 4.2]), this leads to

r0B
n ⊂ ∇K0, Qk ⊂ R0B

n,

for sufficiently large k, where r0 > 0 and R0 depend only on n and r. Then (58) follows
from (60) and the Bourgain-Campi-Lindenstrauss stability result for projection bodies
(see [11] and [16], or [20, Remark 4.3.13]). �

6. Approximating the difference body via the covariogram

Throughout this section, ϕ will be a nonnegative bounded measurable function on
Rn with support in Cn

0 , such that
∫
Rn ϕ(x) dx = 1.
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Algorithm NoisyCovDiff(ϕ)

Input: Natural numbers n ≥ 2 and k; positive reals δk and εk; noisy covariogram
measurements

Mik = gK0(xik) +Nik, (61)

of an unknown convex body K0 ⊂ Cn
0 at the points xik, i = 1, . . . , Ik in the cubic array

2Cn
0 ∩ (1/k)Zn, where the Nik’s are row-wise independent zero mean random variables

with uniformly bounded fourth moments.

Task: Construct an o-symmetric convex polytope Qk in Rn that approximates the
difference body DK0.

Action:
1. Let ϕεk(x) = ε−nk ϕ(x/εk) for x ∈ Rn, and let

gk(x) =

Ik∑

i=1

Mik

∫

(1/k)Cn0 +xik

ϕεk(x− z) dz =

( Ik∑

i=1

Mik 1(1/k)Cn0 +xik

)
∗ ϕεk (x). (62)

2. Define the finite set

Sk = {x ∈ 2Cn
0 ∩ (1/k)Zn : gk(x) ≥ δk}. (63)

The output is the convex polytope Qk = (1/2)(convSk + (− convSk)).

The input δk in the algorithm is a threshold parameter. The function gk(x) is a
Gasser-Müller type kernel estimator for gK0 with kernel function ϕ and bandwidth
εk. As the design points xik are deterministic, gk is a multivariate fixed design kernel
estimator. Such estimators are common in multivariate regression and are discussed in
detail by Ahmad and Lin [3]. Among other things, strong pointwise consistency and
a bound for the rate of weak pointwise convergence are given there. We shall need
uniform bounds and establish them in the next two lemmas. By [3, Theorem 1], for
any x ∈ Rn, gk(x) is an asymptotically unbiased estimator for gK0(x), if εk → 0 as
k →∞. We shall show that this holds uniformly in x.

Lemma 6.1. Suppose that K0, εk, and gk are as in Algorithm NoisyCovDiff(ϕ). For
each k ∈ N and x ∈ Rn,

|E (gk(x))− gK0(x)| ≤ n(εk + 1/k).

Consequently, gk is uniformly asymptotically unbiased whenever limk→∞ εk = 0.

Proof. Using (61), (62), and the definition of ϕεk , we obtain

|E (gk(x))− gK0(x)| ≤
Ik∑

i=1

|gK0(xik)− gK0(x)|
∫

(1/k)Cn0 +xik

ϕεk(x− z) dz, (64)

for all x ∈ Rn. The support of ϕεk is contained in εkC
n
0 , so for fixed x, the support

of the integrand ϕεk(x − z) is contained in εkC
n
0 + x. Now if xik 6∈ (εk + 1/k)Cn

0 + x,
then εkC

n
0 + x and (1/k)Cn

0 + xik are disjoint, so the corresponding summand in (64)
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vanishes. Moreover, for xik ∈ (εk + 1/k)Cn
0 + x, Corollary 3.3 and the fact that the

diameter of Cn
0 is
√
n imply that

|gK0(xik)− gK0(x)| ≤ n(εk + 1/k).

Consequently,

|E (gk(x))− gK0(x)| ≤ n(εk + 1/k)

Ik∑

i=1

∫

(1/k)Cn0 +xik

ϕεk(x− z) dz

≤ n(εk + 1/k)

∫

Rn
ϕεk(x− z) dz = n(εk + 1/k),

as required. �

In [3, Lemma 1], a polynomial rate of convergence result in the weak sense is estab-
lished for independent identically distributed measurement errors with polynomial tails.
In contrast, we assume only uniformly bounded fourth moments and obtain a conver-
gence rate that holds uniformly, using the Lipschitz continuity of the covariogram.

Lemma 6.2. Suppose that K0, εk, and gk are as in Algorithm NoisyCovDiff(ϕ) and let
δ > 0 and limk→∞ εk = 0. Then there are constants c12 = c12(ϕ) and N4 = N4((εk), n) ∈
N such that

Pr (|gk(x)− gK0(x)| > δ) ≤ c12(2k + 1)nδ−4(kεk)
−3n, (65)

for all k ≥ N4 and all x ∈ Rn.

Proof. Let x ∈ Rn and k ∈ N be fixed and define

βik = βik(x) =

∫

(1/k)Cn0 +xik

ϕεk(x− z) dz, (66)

for i = 1, . . . , Ik. Then

βik ≤ ‖ϕεk‖∞V ((1/k)Cn
0 ) = ‖ϕ‖∞(kεk)

−n (67)

and
Ik∑

i=1

βik ≤
∫

Rn
ϕεk(x− z) dz = 1. (68)

In view of (61), (62), and (66),

gk(x)− E (gk(x)) =

Ik∑

i=1

βikNik

is a sum of zero mean independent random variables. The assumption that the Nik’s
have uniformly bounded fourth moments implies that E (|Nik|4) ≤ C for some constant
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C and all i and k. Now, using Markov’s inequality, Khinchine’s inequality (see, for
example, [29, (4.32.1), p. 307] with α = 4), (67), and (68), we obtain

Pr (|gk(x)− E (gk(x)) | ≥ δ/2) ≤ (δ/2)−4E

(∣∣∣∣
Ik∑

i=1

βikNik

∣∣∣∣
4 )

≤ cδ−4Ik

Ik∑

i=1

E
(
|βikNik|4

)

≤ cCδ−4Ik

Ik∑

i=1

β4
ik

≤ cCδ−4Ik
(
‖ϕ‖∞(kεk)

−n)3
Ik∑

i=1

βik

≤ c12(2k + 1)nδ−4(kεk)
−3n, (69)

for all δ > 0, where c is a constant and c12 = cC‖ϕ‖3
∞. By Lemma 6.1, there is

a constant N4 = N4((εk), n) ∈ N such that for all k ≥ N4 and x ∈ Rn, we have
|E (gk(x))− gK0(x)| ≤ δ/2 and therefore

Pr (|gk(x)− gK0(x)| > δ) ≤ Pr (|gk(x)− E (gk(x)) |+ |E (gk(x))− gK0(x)| > δ)

≤ Pr (|gk(x)− E (gk(x)) | > δ/2) .

Now (65) follows from this and (69). �

For a convex body K in Rn and δ > 0, let K(δ) = {x ∈ Rn : gK(x) ≥ δ}. Since g
1/n
K

is concave on its support, K(δ) is a compact convex set, sometimes called a convolution
body of K. References to results on convolution bodies can be found in [20, p. 378].

Lemma 6.3. Let K be a convex body in Rn. If 0 < δ < V (K), then
(

1− δ1/n

V (K)1/n

)
DK ⊂ K(δ).

Proof. Let t = (δ/V (K))1/n and let x ∈ (1 − t)DK. Since DK is the support of gK ,

there is a y in the support of gK such that x = (1− t)y + to. As g
1/n
K is concave on its

support, we have

gK(x)1/n ≥ (1− t)gK(y)1/n + tgK(o)1/n ≥ tV (K)1/n = δ1/n.

It follows that x ∈ K(δ). �
Theorem 6.4. Suppose that K0, δk, εk, and gk are as in Algorithm NoisyCovDiff(ϕ).
Assume that limk→∞ εk = limk→∞ δk = 0 and that

lim inf
k→∞

δ4
kε

3n
k k

n−3/2 > 0. (70)

Let c13 >
√
n(2/V (K0))1/n. If Qk is an output from Algorithm NoisyCovDiff(ϕ) as

stated above, then, almost surely,

δ(DK0, Qk) ≤ c13δ
1/n
k , (71)
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for sufficiently large k. In particular, almost surely, Qk converges to DK0, as k →∞.

Proof. Let
ak = max

x∈2Cn0 ∩(1/k)Zn
|gk(x)− gK0(x)|.

By Lemma 6.2 and (70), we have

Pr (ak ≥ δk) ≤
∑

x∈2Cn0 ∩(1/k)Zn
Pr (|gk(x)− gK0(x)| ≥ δk)

≤ c12(2k + 1)2nδ−4
k (kεk)

−3n = O
(
k−3/2

)
.

Therefore, by the Borel-Cantelli lemma, we see that, almost surely, ak < δk for suffi-
ciently large k. Fix a realization and a k ∈ N such that ak < δk and

(
2δk

V (K0)

)1/n

+
3

s(K0)k
≤ 1, (72)

where s(K0) = max{ρ ≥ 0 : ρCn
0 ⊂ DK0}. As ak < δk, the definition (63) of Sk implies

K0(2δk) ∩
1

k
Zn ⊂ Sk ⊂ DK0.

The set on the left is o-symmetric, and DK0 is convex and o-symmetric, so

conv

(
K0(2δk) ∩

1

k
Zn
)
⊂ Qk ⊂ DK0. (73)

We claim that

K0(2δk)	
3

k
Cn

0 ⊂ conv

(
K0(2δk) ∩

1

k
Zn
)
, (74)

where Minkowski difference 	 is defined by (2). Indeed, let x ∈ K0(2δk) 	 (3/k)Cn
0 .

As {y + (1/k)Cn
0 : y ∈ (1/k)Zn} is a covering of Rn, there is a y ∈ (1/k)Zn with

x ∈ (1/k)Cn
0 + y and hence y ∈ (1/k)Cn

0 + x. It follows that

x ∈ 1

k
(2Cn

0 ) + y ⊂ 3

k
Cn

0 + x ⊂ K0(2δk).

As the vertices of (1/k)(2Cn
0 )+y are in (1/k)Zn, we have x ∈ conv (K0(2δk) ∩ (1/k)Zn),

proving the claim.
Let tk = (2δk/V (K0))1/n. The fact that DK0 is convex and contains the origin, (72),

Lemma 6.3 (with δ = 2δk), and the definition of s(K0) imply that
(

1−
(
tk +

3

s(K0)k

))
DK0 = (1− tk)DK0 	

(
3

s(K0)k
DK0

)
⊂ K0(2δk)	

3

k
Cn

0 .

From this, (74), and (73), we obtain
(

1−
(
tk +

3

s(K0)k

))
DK0 ⊂ Qk ⊂ DK0.

As DK0 ⊂
√
nBn, this yields

δ(DK0, Qk) ≤
√
n

(
tk +

3

s(K0)k

)
=

(
√
n

(
2

V (K0)

)1/n

+
3
√
n

s(K0)kδ
1/n
k

)
δ

1/n
k .
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By (70), kδ
1/n
k →∞ as k →∞, and (71) follows. �

The estimate (71) reveals that the rate of convergence of Qk to DK0 depends on the
asymptotic behavior of the threshold parameter δk, which is linked to the bandwidth
εk by (70). If we

assume that V (K0) is bounded from below by a known constant, then c13 in the
statement of Theorem 6.4 can be chosen independent of K0. We note the resulting
rate of convergence as a corollary, where we choose εk and δk as appropriate powers of
k. In particular, it shows that a convergence rate of k−p can be attained, where p is
arbitrarily close to 1/4− 3/(8n).

Corollary 6.5. Suppose that K0, δk, εk, and gk are as in Algorithm NoisyCovDiff(ϕ).
Let 0 < b < V (K0), let δk = k−(n−3αn−3/2)/4, and let εk = k−α, for some 0 < α <
1/3 − 1/(2n). If Qk is an output from Algorithm NoisyCovDiff(ϕ) as stated above,
then, almost surely,

δ(Qk, DK0) ≤ √n
(

2

b

)1/n

k−(1−3α−3/(2n))/4,

for sufficiently large k.

Remark 6.6. Here we outline how a stronger assumption, but one that still ap-
plies to all the noise models of practical interest, on the random variables in Algo-
rithm NoisyCovDiff(ϕ) leads to a better convergence rate in Corollary 6.5.

Consider a family {Xα : α ∈ A} of zero mean random variables with variances σ2
α

that satisfy the hypothesis of Bernstein’s inequality (see [14, Theorem 5.2, p. 27] or [49,
Lemma 2.2.11]), that is,

|E (Xm
α )| ≤ m!

2
σ2
αH

m−2, (75)

for some H > 0 and all α ∈ A and m = 2, 3, . . . , and also have uniformly bounded
variances, that is,

σ2
α ≤ σ2, (76)

say, for all α ∈ A. If the family {X1, . . . , Xr} of independent zero mean random
variables satisfies (75) with A = {1, . . . , r}, then Bernstein’s inequality states that

Pr

(∣∣∣∣
r∑

i=1

Xi

∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2

2 (δH +
∑r

i=1 σ
2
i )

)
,

for all δ > 0.
Suppose that the random variables Nik in Algorithm NoisyCovDiff(ϕ) are row-wise

independent, zero mean, and satisfy (75) and (76). Then Bernstein’s inequality can be
applied in the proof of Lemma 6.2, together with (67) and (68), to show that

Pr(|gk(x)− E (gk(x)) | ≥ δ/2) ≤ 2 exp

(
− δ2(kεk)

n

4‖ϕ‖∞(δH + 2σ2)

)
, (77)

for all δ > 0. (Compare the weaker upper bound in (69).) As at the end of the proof
of Lemma 6.2, this results in the same upper bound for Pr (|gk(x) − gK0(x)| > δ).



PHASE RETRIEVAL FOR CHARACTERISTIC FUNCTIONS OF CONVEX BODIES 33

The improved bound (77), combined with the argument of Theorem 6.4, leads to the
assumption

lim inf
k→∞

δ2
k(kεk)

n

log k
> c14(n+ 2), (78)

where c14 = 12‖ϕ‖∞σ2, instead of (70). In Corollary 6.5 we take instead δk =
k−n(1−α)/2 log k and εk = k−α, for some 0 < α < 1. The final conclusion is that if
Qk is an output from Algorithm NoisyCovDiff(ϕ), then, almost surely,

δ(Qk, DK0) ≤ √n
(

2

b

)1/n

k−(1−α)/2(log k)1/n,

for sufficiently large k. In particular, a convergence rate of k−p can be attained, where
p is arbitrarily close to 1/2.

Note that families of zero mean Gaussian and centered Poisson random variables
satisfy (75) and (76). Also, if two independent families with the same index set satisfy
(75) and (76), the same is true for their sums (with possibly different constants H
and σ2).

7. Phase retrieval: Framework and technical lemmas

In this section we set the scene for our results on phase retrieval, beginning with the
necessary material from Fourier analysis.

Let g be a continuous function on Rn whose support is contained in [−1, 1]n and let
L ≥ 1. By the classical theory, the Fourier series of g is

∑

z∈Zn
cze

iπz·x/L,

for x ∈ [−L,L]n, where

cz =
1

(2L)n

∫

[−L,L]n
g(t)e−iπz·t/L dt =

1

(2L)n

∫

Rn
g(t)e−iπz·t/L dt =

1

(2L)n
ĝ(πz/L).

Let
Znk = {z ∈ Zn : z = (z1, . . . , zn), |zj| ≤ k, j = 1, . . . , n}.

If g is also Lipschitz, then by [35, Theorem 3], the square partial sums
∑

z∈Znk
cze

iπz·x/L

of the Fourier series of g converge uniformly to g. Therefore, if g is also an even function,
we can write

g(x) =
1

(2L)n

∑

z∈Zn
ĝ(πz/L)eiπz·x/L =

1

(2L)n

∑

z∈Zn
ĝ(πz/L) cos

πz · x
L

, (79)

for all x ∈ [−L,L]n, where equality is in the sense of uniform convergence of square
partial sums.

Let Znk(+) be a subset of Znk such that

Znk(+) ∩ (−Znk(+)) = ∅ and Znk = {o} ∪ Znk(+) ∪ (−Znk(+)) . (80)

Suppose that g is even and for some fixed 0 < γ < 1 and each k ∈ N, we can obtain
noisy measurements

g̃z,k = ĝ(z/kγ) +Xz,k, (81)
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of ĝ, for z ∈ {o} ∪Znk(+), where the Xz,k’s are row-wise independent (i.e., independent
for fixed k) zero mean random variables. Define Xz,k = X−z,k, for z ∈ (−Znk(+)) and
note that then Xz,k = X−z,k for all z ∈ Znk . Since g is even, ĝ is also even, and we have
g̃z,k = g̃−z,k for z ∈ Znk . Using these facts, (79) with L = πkγ, and (81), we obtain

1

(2πkγ)n

∑

z∈Znk

g̃z,k cos
z · x
kγ

= g(x) +
1

(2πkγ)n

(∑

z∈Znk

Xz,k cos
z · x
kγ
−

∑

z∈Zn\Znk

ĝ
( z
kγ

)
cos

z · x
kγ

)
,

(82)

for all x ∈ [−πkγ, πkγ]n. Here the left-hand side is an estimate of g(x) and the second
and third terms on the right-hand side are a random error and a deterministic error,
respectively.

Since it has all the required properties, we can apply the previous equation to the
covariogram g = gK0 of a convex body K0 contained in Cn

0 , in which case ĝK0 = |1̂K0|2.
In order to move closer to the notation used earlier, we now use i as an index and again
list the points in [−1, 1]n ∩ (1/k)Zn = (1/k)Znk , but this time a little differently. We
let x0k = o, list the points in (1/k)Znk(+) as xik, i = 1, . . . , I ′k = ((2k + 1)n − 1) /2, and
then let xik = −x(−i)k for i = −I ′k, . . . ,−1. Now let zik = k1−γxik, so that

(1/kγ)Znk = {zik : i = −I ′k, . . . , I ′k}.
Setting g̃jk = g̃K0zjk,k

and Xjk = Xzjk,k, we use (81) to rewrite (82) as

Mk(x) = gK0(x) +Nk(x)− dk(x), (83)

where

Mk(x) =
1

(2πkγ)n

I′k∑

j=−I′k

cos(zjk · x)g̃jk (84)

is an estimate of gK0 ,

Nk(x) =
1

(2πkγ)n

I′k∑

j=−I′k

cos(zjk · x)Xjk (85)

is a random variable, and

dk(x) =
1

(2πkγ)n

∑

z∈Zn\Znk

cos
(z · x
kγ

)
ĝK0(z/k

γ) (86)

is a deterministic error.
We shall need three technical lemmas. The first of these provides a control on the

deterministic error.

Lemma 7.1. Let dk = sup{|dk(x)| : x ∈ Rn}. Then dk = O(kγ−1(log k)n) as k →∞.
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Proof. From (86), the fact that ĝK0 = |1̂K0|2 is nonnegative, and (79) with g = gK0 and
L = πkγ, we have

dk ≤
1

(2πkγ)n

∑

z∈Zn\Znk

ĝK0(z/k
γ) = gK0(0)− 1

(2πkγ)n

∑

z∈Znk

ĝK0(z/k
γ). (87)

For t ∈ R, let

Dk(t) =
k∑

l=−k
eilt =

sin((k + 1/2)t)

sin(t/2)

be the Dirichlet kernel. Note that for x = (x1, . . . , xn) ∈ Rn, we have

∑

z∈Znk

eiz·x =
n∏

l=1

(
k∑

l=−k
eilxl

)
=

n∏

l=1

Dk(xl).

Using this and the fact that gK0 is even, with support in [−1, 1]n, we obtain

1

(2πkγ)n

∑

z∈Znk

ĝK0(z/k
γ) =

1

(2πkγ)n

∑

z∈Znk

∫

[−πkγ ,πkγ ]n
gK0(x)e−iz·x/k

γ

dx

=
1

(2πkγ)n

∫

[−πkγ ,πkγ ]n
gK0(x)

n∏

l=1

Dk(−xl/kγ) dx

=
1

(2π)n

∫

[−1,1]n
gK0(yk

γ)
n∏

l=1

Dk(yl) dy. (88)

Since
∫ π
−πDk(t) dt = 2π, we have

gK0(0) =
1

(2π)n

∫

[−π,π]n
gK0(0)

n∏

l=1

Dk(yl) dy. (89)

Thus, by (87), (88), and (89),

dk ≤
∣∣∣∣

1

(2π)n

∫

[−1,1]n
(gK0(0)− gK0(yk

γ))
n∏

l=1

Dk(yl) dy

∣∣∣∣

+ gK0(0)

∣∣∣∣
1

(2π)n

∫

[−π,π]n\[−1,1]n

n∏

l=1

Dk(yl) dy

∣∣∣∣. (90)

By Proposition 3.2, gK0 is Lipschitz and hence the Lipschitz norm of gK0(yk
γ) is O(kγ).

Now [35, Theorem 1] implies that

∣∣∣∣
1

(2π)n

∫

[−1,1]n
(gK0(0)− gK0(yk

γ))
n∏

l=1

Dk(yl) dy

∣∣∣∣ ≤ c15k
γ−1

n−1∑

l=0

(log k)n−l, (91)

for some constant c15 independent of k. (In the statement of [35, Theorem 1], Dj(Y )
should be DJ(Y ). In that theorem we are taking α = 1 and J = (k, k, . . . , k) ∈ Zn.)
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In view of (90) and (91), the proof will be complete if we show that
∫

[−π,π]n\[−1,1]n

n∏

l=1

Dk(xl)dx = O(1/k), (92)

as k →∞. To this end, observe that, by trigonometric addition formulas and integra-
tion by parts,
∫ −1

−π
Dk(t) dt =

∫ π

1

Dk(t) dt =

∫ π

1

sin(kt) cos(t/2)

sin(t/2)
dt+

∫ π

1

cos(kt) dt

=
cos k cot(1/2)

k
+

∫ π

1

cos(kt)

k

d

dt
(cot(t/2)) dt− sin k

k

= O(1/k). (93)

Now

[−π, π]n \ [−1, 1]n = ∪ni=1(Ai ∪Bi),

where

Ai = {(x1, . . . , xn) : −1 ≤ xj ≤ 1 for j < i , 1 ≤ xi ≤ π,−π ≤ xj ≤ π for j > i}
and Bi = −Ai. By (93), we have, for each i,

∫

Ai

n∏

l=1

Dk(xl)dx =

(∫ 1

−1

Dk(t)dt

)i−1 ∫ π

1

Dk(t)dt

(∫ π

−π
Dk(t)dt

)n−i

= (2π −O(1/k))i−1 O(1/k) (2π)n−i.

Since int(Ai) ∩ int(Aj) = ∅, for each i, j with i 6= j, int(Ai) ∩ int(Bj) = ∅, for each i, j,
and

∏n
l=1 Dk(xl) is even, the previous estimate proves (92). �

It is possible that the previous lemma could also be obtained via some estimates
proved in [12] for the rate of decay of

∫
Sn−1 |1̂K0(ru)|2 du as r →∞.

The next two lemmas will allow us to circumvent Proposition 4.7, the version of the
Strong Law of Large Numbers used earlier.

Lemma 7.2. Let Yjk, j = 1, . . . ,mk, k ∈ N be a triangular array of row-wise indepen-
dent zero mean random variables with uniformly bounded fourth moments, where mk ∼
kn as k → ∞. Let ν and apqk, p, q = 1, . . . ,mk be constants such that |apqk| = O(kν)
as k →∞ uniformly in p and q, where 2n− 4nγ + 2ν < −1. Then, almost surely,

Zk =
1

(2πkγ)2n

mk∑

p,q=1

apqkYpkYqk → 0,

as k →∞.

Proof. Note that E(YpkYqk) = E(Ypk)E(Yqk) = 0 unless p = q. Therefore

E(Zk) =
1

(2πkγ)2n

mk∑

p,q=1

apqkE(YpkYqk) =
1

(2πkγ)2n

mk∑

p=1

appkE(Y 2
pk).
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Since the Ypk’s have uniformly bounded second moments, |E(Zk)| = O(kn−2nγ+ν) and
hence E(Zk) converges to zero as k →∞.

Let

v(k)
pqrs = cov(YpkYqk, YrkYsk) = E(YpkYqkYrkYsk)− E(YpkYqk)E(YrkYsk).

If the cardinality of the set {p, q, r, s} is 3 or 4, then at least one of the indices, say p,
is different from all the others and

v(k)
pqrs = E(Ypk)E(YqkYrkYsk)− E(Ypk)E(Yqk)E(YrkYsk) = 0− 0 = 0.

If the cardinality of the set {p, q, r, s} is 1, then

v(k)
pqrs = v(k)

pppp = E(Y 4
pk)− E(Y 2

pk)
2.

If the cardinality of the set {p, q, r, s} is 2, then either p = q, r = s and p 6= r, and

v(k)
pqrs = v(k)

pprr = E(Y 2
pkY

2
rk)− E(Y 2

pk)E(Y 2
rk) = 0,

or p = r, q = s and p 6= q, and

v(k)
pqrs = v(k)

pqpq = E(Y 2
pkY

2
qk)− E(YpkYqk)

2 = E(Y 2
pk)E(Y 2

qk)− E(Ypk)
2E(Yqk)

2,

or p = s, q = r and p 6= q, and

v(k)
pqrs = v(k)

pqqp = E(Y 2
pkY

2
qk)− E(YpkYqk)

2 = E(Y 2
pk)E(Y 2

qk)− E(Ypk)
2E(Yqk)

2.

In view of the fact that the Yjk’s have uniformly bounded fourth moments, the covari-

ances v
(k)
pqrs are also uniformly bounded, and hence

var(Zk) =
1

(2πkγ)4n

mk∑

p,q,r,s=1

apqkarskv
(k)
pqrs

=
1

(2πkγ)4n

mk∑

p=1

a2
ppkv

(k)
pppp +

1

(2πkγ)4n

( mk∑

p 6=q=1

a2
pqkv

(k)
pqpq +

mk∑

p 6=q=1

apqkaqpkv
(k)
pqqp

)

= O
(
k2n−4nγ+2ν

)
.

Let ε > 0. For sufficiently large k, we have ε−E(Zk) > 0, and for such k, by Chebyshev’s
inequality,

Pr(Zk > ε) = Pr
(
Zk − E(Zk) > ε− E(Zk)

)
≤ var(Zk)

(ε− E(Zk))2
= O

(
k2n−4nγ+2ν

)
.

Our hypothesis and the Borel-Cantelli Lemma imply that, almost surely, Zk converges
to zero, as k →∞. �

Lemma 7.3. Let Y
(r)
jk , j = 1, . . . ,mk, r = 1, 2, k ∈ N, be a triangular array of

row-wise independent (i.e., independent for fixed k) zero mean random variables with
uniformly bounded fourth moments, where mk ∼ kn as k → ∞. Let ν and apqk, p, q =
1, . . . ,mk be constants such that |apqk| = O(kν) as k →∞ uniformly in p and q, where
2n− 4nγ + 2ν < −1. Then, almost surely,

Zk =
1

(2πkγ)2n

mk∑

p,q=1

apqkY
(1)
pk Y

(2)
pk Y

(1)
qk Y

(2)
qk → 0,
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as k →∞.

Proof. As in the proof of Lemma 7.2, we have

E(Zk) =
1

(2πkγ)2n

mk∑

p=1

appkE

((
Y

(1)
pk

)2
)
E

((
Y

(2)
pk

)2
)
,

so |E(Zk)| = O(kn−2nγ+ν) and hence E(Zk) converges to zero as k →∞.
Let

w(k)
pqrs = cov

(
Y

(1)
pk Y

(2)
pk Y

(1)
qk Y

(2)
qk , Y

(1)
rk Y

(2)
rk Y

(1)
sk Y

(2)
sk

)
.

Straightforward modifications to the proof of Lemma 7.2 and the assumption of uni-
formly bounded fourth moments yield

var(Zk) =
1

(2πkγ)4n

mk∑

p,q,r,s=1

apqkarskw
(k)
pqrs

=
1

(2πkγ)4n

mk∑

p=1

a2
ppkw

(k)
pppp +

1

(2πkγ)4n

( mk∑

p 6=q=1

a2
pqkw

(k)
pqpq +

mk∑

p 6=q=1

apqkaqpkw
(k)
pqqp

)

= O
(
k2n−4nγ+2ν

)
.

The proof is concluded as in Lemma 7.2. �

8. Phase retrieval from the squared modulus

This section addresses Problem 2 in the introduction.

Algorithm NoisyMod2LSQ

Input: Natural numbers n ≥ 2 and k; a real number γ such that 0 < γ < 1; noisy
measurements

g̃ik = |1̂K0(zik)|2 +Xik, (94)

of the squared modulus of the Fourier transform of the characteristic function of an
unknown convex body K0 ⊂ Cn

0 whose centroid is at the origin, at the points in

{zik : i = 0, 1, . . . , I ′k} = {o} ∪ (1/kγ)Znk(+),

where Znk(+) satisfies (80) and where the Xik’s are row-wise independent zero mean
random variables with uniformly bounded fourth moments; an o-symmetric convex
polytope Qk in Rn, stochastically independent of the measurements g̃ik, that approxi-
mates either ∇K0 or DK, in the sense that, almost surely,

lim
k→∞

δ(Qk,∇K0) = 0, or lim
k→∞

δ(Qk, DK0) = 0.

Task: Construct a convex polytope Pk that approximates K0, up to reflection in the
origin.
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Action:
1. Let g̃ik = g̃(−i)k, for i = −I ′k, . . . ,−1, let xik = kγ−1zik, i = −I ′k, . . . , I ′k be the

points in the cubic array 2Cn
0 ∩ (1/k)Zn, and let

Mk(xik) =
1

(2πkγ)n

I′k∑

j=−I′k

cos(zjk · xik)g̃jk, (95)

for i = −I ′k, . . . , I ′k.
2. Run Algorithm NoisyCovLSQ with inputs n, k, Qk, and with Mik replaced by

Mk(xik), for i = −I ′k, . . . , I ′k and with the obvious re-indexing in i. The resulting output
Pk of that algorithm is also the output of the present one.

The main result in this section corresponds to Theorem 4.10 above. We first state
it, and then show that it can be proved by suitable modifications to the proof of
Theorem 4.10 if in addition γ > 1/2 + 1/(4n).

Theorem 8.1. Suppose that K0 ⊂ Cn
0 is a convex body with its centroid at the origin.

Suppose also that K0 is determined, up to translation and reflection in the origin, among
all convex bodies in Rn, by its covariogram. Let

1/2 + 1/(4n) < γ < 1. (96)

If Pk, k ∈ N, is an output from Algorithm NoisyMod 2LSQ as stated above, then, almost
surely,

min{δ(K0, Pk), δ(−K0, Pk)} → 0

as k →∞.

As we shall now show, the proof of this theorem basically follows the analysis given
in Section 4. Of course, alterations must be made, since the measurements Mik in
Algorithm NoisyCovLSQ have been replaced by the new measurements Mk(xik) defined
by (95) or equivalently by (84) with x = xik. In view of (83), we have

Mk(xik) = gK0(xik) +Nk(xik)− dk(xik),
i = −I ′k, . . . , I ′k, where Nk(xik) and dk(xik) are given by (85) and (86), respectively,
with x = xik.

We begin with a lemma. Note that Ik = 2I ′k + 1, so the expression in the lemma is
the sample mean. Also, recall that by their definition, the random variables Xik have
uniformly bounded fourth moments, and Xpk and Xqk are independent unless p = ±q,
in which case they are equal.

Lemma 8.2. Let Nk(xik)
+ = max{Nk(xik), 0} for all i and k. If (96) holds, then,

almost surely,

1

Ik

I′k∑

i=−I′k

Nk(xik)
+ → 0,

as k →∞.
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Proof. Note firstly that

1

Ik

I′k∑

i=−I′k

Nk(xik)
+ ≤ 1

Ik

I′k∑

i=−I′k

|Nk(xik)| ≤
(

1

Ik

I′k∑

i=−I′k

Nk(xik)
2

)1/2

.

Thus it suffices to prove that, almost surely,

Sk =
1

Ik

I′k∑

i=−I′k

Nk(xik)
2 → 0,

as k →∞.
We have

Sk =
1

Ik

I′k∑

i=−I′k

(
1

(2πkγ)n

I′k∑

p=−I′k

cos(zpk · xik)Xpk

)2

=
1

(2πkγ)2n

I′k∑

p,q=−I′k

(
1

Ik

I′k∑

i=−I′k

cos(zpk · xik) cos(zqk · xik)
)
XpkXqk

=
1

(2πkγ)2n

I′k∑

p,q=−I′k

cpqkXpkXqk,

say. Since c(−p)qk = cp(−q)k = cpqk, it is clearly enough to show that, almost surely,

1

(2πkγ)2n

I′k∑

p,q=1

cpqkXpkXqk → 0,

as k →∞. In view of (96) and the fact that |cpqk| = O(1), this follows from Lemma 7.2
with Yjk = Xjk, mk = I ′k, apqk = cpqk for all p, q, and k, and ν = 0. �
Proof of Theorem 8.1. We shall indicate the modifications needed in Section 4. No
changes are required in the lemmas before Lemma 4.4. For the latter, we shall use the
same notation as before, with the understanding that the indexing has changed and
the new random variables Nk(xik) replace the random variables Nik of Section 4. Thus
we write

|f |Ik =

(
1

Ik

I′k∑

i=−I′k

f(zi)
2

)1/2

,

with corresponding changes in indexing in the definitions of xIk , NIk , and Ψ. With the
same proof as Lemma 4.4, we now have the inequality

|gK0 − gPk |2Ik ≤ 2Ψ(Pk,xIk ,NIk)− 2Ψ(P (a) ∩ Cn
0 ,xIk ,NIk) +

∣∣gK0 − gP (a)∩Cn0
∣∣2
Ik

+

+
2

Ik

I′k∑

i=−I′k

(
gP (a)∩Cn0 (xik)− gPk(xik)

)
dk(xik), (97)
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instead of (34).
Proposition 4.5 and Lemma 4.6 are unchanged. We do not require Proposition 4.7

in order to conclude as in Lemma 4.8 that, almost surely,

sup
K∈Kn(Cn0 )

Ψ(K,xIk ,NIk)→ 0, (98)

as k → ∞. Indeed, it is enough to show that, almost surely, the new expression
corresponding to (37), namely,

Wk(ε) = max
j=1,...,m

{
1

Ik

I′k∑

i=−I′k

gUj (xik)Nk(xik)
+ − 1

Ik

I′k∑

i=−I′k

gLj (xik)Nk(xik)
−
}
,

converges to zero, as k → ∞. This follows from Lemma 8.2, because the coefficients
gUj (xik) and gUj (xik) are uniformly bounded by 1 and Lemma 8.2 holds both when
such coefficients are inserted and when Nk(xik)

+ is replaced by Nk(xik)
− = Nk(xik) −

Nk(xik)
+ = max{−Nk(xik), 0}.

All this is enough to ensure that Lemma 4.9 still holds. Indeed, since a translate of
Pk is contained in Cn

0 , and Ψ(Pk,xIk ,NIk) is unchanged by such a translation, we know
from (98) that, almost surely, the first and second terms on the right-hand side of (97)
converge to zero, as k → ∞. We have gP (a)∩Cn0 (xik) ≤ 1 and gPk(xik) ≤ V (2Cn

0 ), since
Pk ⊂ 2Cn

0 , and then Lemma 7.1 implies that the new fourth term on the right-hand
side of (97) converges to zero as k →∞. The rest of the proof of Lemma 4.9 proceeds
as before.

The proof of the main Theorem 4.10 now applies without change. �

The user of Algorithm NoisyMod2LSQ must supply as input an o-symmetric con-
vex polytope Qk in Rn that approximates either ∇K0 or DK. For this purpose we
provide two algorithms that do the work of Algorithm NoisyCovBlaschke and Algo-
rithm NoisyCovDiff(ϕ).

Algorithm NoisyMod2Blaschke

Input: Natural numbers n ≥ 2 and k; a positive real number hk; mutually nonparallel
vectors ui ∈ Sn−1, i = 1, . . . , k that span Rn; noisy measurements

g̃ik = |1̂K0(zik)|2 +Xik, (99)

of the squared modulus of the Fourier transform of the characteristic function of an
unknown convex body K0 ⊂ Cn

0 whose centroid is at the origin, at the points in

{zik : i = 0, 1, . . . , I ′k} = {o} ∪ (1/kγ)Znk(+),

where Znk(+) satisfies (80) and where the Xik’s are row-wise independent zero mean
random variables with uniformly bounded fourth moments.

Task: Construct an o-symmetric convex polytope Qk that approximates the Blaschke
body ∇K0.
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Action:
1. Let g̃ik = g̃(−i)k, for i = −I ′k, . . . ,−1, and let

Mk(o) =
1

(2πkγ)n

I′k∑

j=−I′k

g̃jk and Mk(hkui) =
1

(2πkγ)n

I′k∑

j=−I′k

cos(zjk · hkui)g̃jk,

for i = 1, . . . , k. Then for i = 1, . . . , k, let

yik =
Mk(o)−Mk(hkui)

hk
. (100)

2. With the natural numbers n ≥ 2 and k, and vectors ui ∈ Sn−1, i = 1, . . . , k use the
quantities yik instead of noisy measurements of the brightness function bK(ui) as input
to Algorithm NoisyBrightLSQ (see [24, p. 1352]). The output of the latter algorithm
is Qk.

We shall show that the argument of Section 5 can be modified to yield a convergence
result corresponding to Theorem 5.4. It is clear that any such result must require the
input hk to satisfy hk → 0 as k → ∞, but we need a stronger condition phrased in
terms of parameters ε and γ that satisfy (101). Since the second inequality in (101)
is equivalent to γ > (2n+ 5− 4ε)/(4n+ 4), which decreases as n increases and equals
(9 − 4ε)/12 when n = 2, it is possible to choose γ and ε so that (101) is satisfied.
Specifically, one can choose 3/4 ≤ γ < 1 and 0 < ε < 1 − γ. Note also that (101)
implies (96).

There is considerable flexibility in the choice of the parameter hk, and it would be
possible to introduce a further parameter qk by working with input vectors ui ∈ Sn−1,
i = 1, . . . , qk, where qk → ∞ as k → ∞. To avoid overcomplicating the exposition,
however, we shall not discuss this any further.

Theorem 8.3. Let K0 ⊂ Cn
0 be a convex body with its centroid at the origin. Let (ui)

be a sequence in Sn−1 such that (u∗i ) is evenly spread. Suppose that hk ∼ kγ−1+ε, k ∈ N,
where ε and γ satisfy

0 < ε < 1− γ and 2n− 4nγ + 4(1− γ − ε) < −1. (101)

If Qk is an output from Algorithm NoisyMod 2Blaschke as stated above, then, almost
surely,

lim
k→∞

δ(∇K0, Qk) = 0.

Proof. We shall indicate the changes needed in Section 5. Note that by (100), and (83)
with x = o and x = hkui, we have

yik =
Mk(o)−Mk(hkui)

hk
=
gK0(o)− gK0(hkui)

hk
+
Nk(o)−Nk(hkui)

hk
− dk(o)− dk(hkui)

hk
,

for i = 1, . . . , k, where Nk(o), dk(o), Nk(hkui), and dk(hkui) are given by (85) and (86)
with x = o or x = hkui, as appropriate.

Lemma 3.1 is unchanged. Turning to the proof of Lemma 5.1, we now have

yik = ζik + Tik,
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where

ζik =
gK0(o)− gK0(hkui)

hk
− dk(o)− dk(hkui)

hk
and Tik =

Nk(o)−Nk(hkui)

hk
, (102)

for i = 1, . . . , k. Since hk ∼ kγ−1+ε for 0 < ε < 1− γ, the second term in the previous
expression for ζik converges to zero as k →∞, by Lemma 7.1, and hence ζik → bK0(ui)
as k →∞, as before, for i = 1, . . . , k. Moreover,

bK0(ui)− ζik =

(
bK0(ui)−

gK0(o)− gK0(hkui)

hk

)
+
dk(o)− dk(hkui)

hk
,

so arguing as in the proof of Lemma 5.1, we use Lemma 3.1 with t = hk to obtain (46)
with t = hk, that is,

0 ≤ bK0(ui)−
gK0(o)− gK0(hkui)

hk
≤ (n− 1)hk

2r
bK0(ui),

if hk ≤ 2r. We also have
dk(o)− dk(hkui)

hk
= O(k−ε),

by Lemma 7.1, so there is a constant c16 = c16(n, r) such that

|bK0(ui)− ζik| ≤ c16k
−β,

for β = min{ε, 1 − γ + ε}, and all k ∈ N and i = 1, . . . , k. The rest of the proof
of Lemma 5.1 can be followed, yielding that, almost surely, there is a constant c17 =
c17(n, r) such that

|bK0 − bQk |2k ≤ 2Ψ(Qk, (ui),Tk)− 2Ψ(K0, (ui),Tk) +
c17

kβ
|bK0 − bQk |k, (103)

for all k ∈ N. (Again, we assume that the obvious changes are made in the notation.)
The next task is to check that Lemma 5.2 still holds. With (103) in hand, this rests

on proving that, almost surely,

Vk =
1

k

k∑

i=1

T 2
ik

is bounded. In fact we claim that, almost surely, Vk → 0 as k → ∞. To see this, note
that

Vk =
1

k

k∑

i=1

(
Nk(o)−Nk(hkui)

hk

)2

=
1

k

k∑

i=1

(
1

(2πkγ)n

I′k∑

j=−I′k

(
1− cos(zjk · hkui)

hk

)
Xjk

)2

=
1

(2πkγ)2n

I′k∑

p,q=−I′k

apqkXpkXqk,
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where

apqk =
1

kh2
k

k∑

i=1

(
1− cos(zpk · hkui)

)(
1− cos(zqk · hkui)

)
(104)

and hence |apqk| ≤ 4/h2
k. As in the proof of Lemma 8.2, we may take the indices p, q

from 1 to I ′k, and then, by (101), the claim follows from Lemma 7.2 with mk = I ′k and
ν = 2(1− γ − ε).

At this stage the work for Lemma 5.3 is already done. Indeed, by the Cauchy-Schwarz
inequality,

Ψ(Qk, (ui),Tk)−Ψ(K0, (ui),Tk) ≤ |bK0 − bQk |k
(

1

k

k∑

i=1

T 2
ik

)1/2

= |bK0 − bQk |k V
1/2
k .

Using this and (103) we see that, almost surely,

|bK0 − bQk |k ≤ 2V
1/2
k +

c17

kβ
→ 0,

as k →∞.
Finally, the proof of Theorem 5.4 can be applied without change. �

The next algorithm corresponds to Algorithm NoisyCovDiff(ϕ). As for that algo-
rithm, ϕ is a nonnegative bounded measurable function on Rn with support in Cn

0 ,
such that

∫
Rn ϕ(x) dx = 1.

Algorithm NoisyMod2Diff(ϕ)

Input: Natural numbers n ≥ 2 and k; positive reals δk and εk; a real number γ
satisfying 0 < γ < 1; noisy measurements

g̃ik = |1̂K0(zik)|2 +Xik, (105)

of the squared modulus of the Fourier transform of the characteristic function of an
unknown convex body K0 ⊂ Cn

0 whose centroid is at the origin, at the points in

{zik : i = 0, 1, . . . , I ′k} = {o} ∪ (1/kγ)Znk(+),

where Znk(+) satisfies (80) and where the Xik’s are row-wise independent zero mean
random variables with uniformly bounded fourth moments.

Task: Construct an o-symmetric convex polytope Qk in Rn that approximates the
difference body DK0.

Action:
1. Let g̃ik = g̃(−i)k, for i = −I ′k, . . . ,−1, let xik = kγ−1zik, i = −I ′k, . . . , I ′k be the

points in the cubic array 2Cn
0 ∩ (1/k)Zn, and let

Mk(xik) =
1

(2πkγ)n

I′k∑

j=−I′k

cos(zjk · xik)g̃jk, (106)

for i = −I ′k, . . . , I ′k.
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2. Run Algorithm NoisyCovDiff(ϕ) with inputs n, k, δk, εk, and Mik replaced by
Mk(xik), for i = −I ′k, . . . , I ′k and with the obvious re-indexing in i. The output Qk of
that algorithm is also the output of the present one.

We shall show that the argument in Section 6 used to prove Theorem 6.4 can be
modified to yield the following convergence result.

Theorem 8.4. Suppose that K0, δk, εk, and gk are as in Algorithm NoisyMod 2Diff(ϕ).
Assume that limk→∞ εk = limk→∞ δk = 0 and that

lim inf
k→∞

δ4
kk

4γn−3n−3/2 > 0, (107)

where γ > 3(1 + 1/(2n))/4. If Qk is an output from Algorithm NoisyMod 2Diff(ϕ) as
stated above, then, almost surely,

δ(DK0, Qk) ≤ c13δ
1/n
k ,

for sufficiently large k. In particular, almost surely, Qk converges to DK0 as k →∞.

Proof. Algorithm NoisyMod2Diff(ϕ) can be regarded formally as Algorithm Noisy-
CovDiff(ϕ) with Mik and Nik replaced by Mk(xik) defined by (106) and Nk(xik)−dk(xik)
defined by (85) and (86) with x = xik, respectively. We follow the arguments of Sec-
tion 6 with this substitution in mind.

For Lemma 6.1, we note first that by (85), E(Nk(xik)) = 0 for all i and k. The same
calculations as in the proof of Lemma 6.1 lead to

|E(gk(x))− gK0(x)| ≤ n(εk + 1/k) + dk,

where dk is as in Lemma 7.1. By that lemma, dk → 0 as k →∞ and hence the second
statement in Lemma 6.1 still holds.

Next, for Lemma 6.2, recall the definition (66) of βik(x). Then we have, by (85),

gk(x)− E(gk(x)) =

I′k∑

i=−I′k

βik(x)Nk(xik)

=
1

(2πkγ)n

I′k∑

j=−I′k

( I′k∑

i=−I′k

βik(x) cos(zjk · xik)
)
Xjk

=
1

(2πkγ)n

I′k∑

j=−I′k

ξjk(x)Xjk,

say. This is a weighted sum of independent random variables, so we can apply Khin-
chine’s inequality (see, for example, [29, (4.32.1), p. 307] with α = 4) to obtain

E

(∣∣∣∣
I′k∑

i=−I′k

βik(x)Nk(xik)

∣∣∣∣
4)
≤ c(2k + 1)n

(2πkγ)4n

I′k∑

j=−I′k

E |ξjk(x)Xjk|4 .
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for some constant c > 0. Also,

|ξjk(x)|4 ≤
( I′k∑

i=−I′k

βik(x)

)4

≤ 1,

by (68). The same argument as in the proof of Lemma 6.2 now leads to the conclusion
that there are constants c18 = c18(ϕ) and N5 = N5((εk), n) ∈ N such that if δ > 0, then

Pr(|gk(x)− gK0(x)| > δ) ≤ c18(2k + 1)2nk−4γnδ−4, (108)

for all k ≥ N5 and all x ∈ Rn. (Compare (65).)
Lemma 6.3 is unchanged. With (107) instead of the hypothesis (70) of Theorem 6.4,

and the new estimate (108), we arrive in the proof of Theorem 6.4 at the estimate

Pr(ak ≥ δk) ≤ c18(2k + 1)3nk−4γnδ−4
k = O(k−3/2),

so the Borel-Cantelli lemma can be used as before. This is all that is required to allow
the proof of Theorem 6.4 to go through until near the end, when we use the fact that

kδ
1/n
k → ∞ as k → ∞. By (107) and the fact that γ < 1, this still holds. Then the

conclusion is the same, namely that, almost surely,

δ(DK0, Qk) ≤ c13δ
1/n
k ,

for sufficiently large k. �

Concerning Corollary 6.5, by using γ > 3(1+1/(2n))/4 and (107) instead of (70), we
can achieve a convergence rate arbitrarily close to k−1/4+3/(8n), the same as before. If
we assume instead that the random variables Xik in Algorithm NoisyMod2Diff(ϕ) are
row-wise independent, zero mean, and satisfy (75) and (76), that γ > 1/2, and that

lim inf
k→∞

δ2
kk

n(2γ−1)

log k
> c19(n+ 2), (109)

where c19 = c19(n, σ) = (3n+2σ2)/((2π)2n), then a rate arbitrarily close to k−1/2 can be
obtained by the methods outlined in Remark 6.6.

9. Phase retrieval from the modulus

This section addresses Problem 3 in the introduction. A simple trick converts Prob-
lem 3 into one very closely related to Problem 2, considered in the previous section.

Suppose, more generally, that noisy measurements are taken of
√
ĝ, where g is an even

continuous real-valued function on Rn with support in [−1, 1]n. The just-mentioned
trick is to take two independent measurements at each point, multiply the two, and
use the resulting quantities in place of the measurements of ĝ considered earlier. Thus
instead of (81) above we have, for r = 1, 2, measurements

g
(r)
z,k =

√
ĝ(z/kγ) +X

(r)
z,k ,

of
√
ĝ, for z ∈ {o}∪Znk(+), where Znk(+) satisfies (80) and where the X

(r)
z,k ’s are row-wise

independent (i.e., independent for fixed k) zero mean random variables with uniformly
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bounded fourth moments. Then we replace g̃z,k in (81) by

gz,k = g
(1)
z,kg

(2)
z,k = ĝ(z/kγ) +

√
ĝ(z/kγ)

(
X

(1)
z,k +X

(2)
z,k

)
+X

(1)
z,kX

(2)
z,k . (110)

Setting gjk = gK0zjk,k
and Xjk = Xzjk,k, the same notation and analysis that gave (83),

but now using (82) and (110), leads instead to

Mk(x) = gK0(x) +Nk(x)− dk(x),

where

Mk(x) =
1

(2πkγ)n

I′k∑

j=−I′k

cos(zjk · x)gjk (111)

is an estimate of gK0(x),

Nk(x) =
1

(2πkγ)n

I′k∑

j=−I′k

√
ĝK0(zjk/k

γ) cos(zjk · x)
(
X

(1)
jk +X

(2)
jk

)

+
1

(2πkγ)n

I′k∑

j=−I′k

cos(zjk · x)X
(1)
jk X

(2)
jk

(112)

is a random variable, and the deterministic error dk(x) is given as before by (86).
For our analysis it will be convenient to let

Nk1(x) =
1

(2πkγ)n

I′k∑

j=−I′k

√
ĝK0(zjk/k

γ) cos(zjk · x)
(
X

(1)
jk +X

(2)
jk

)
(113)

and

Nk2(x) =
1

(2πkγ)n

I′k∑

j=−I′k

cos(zjk · x)X
(1)
jk X

(2)
jk , (114)

so that Nk(x) = Nk1(x) +Nk2(x).
To keep the exposition brief, we shall not give a formal presentation of our algorithms,

called Algorithm NoisyModLSQ, Algorithm NoisyModBlaschke, and Algo-
rithm NoisyModDiff(ϕ), since they are very similar to Algorithm NoisyMod2LSQ,
Algorithm NoisyMod2Blaschke, and Algorithm NoisyMod2Diff(ϕ), respectively. In each
case the input is as before, except that instead of (94), (99), and (105), we now have
measurements

g
(r)
ik = |1̂K0(zik)|+X

(r)
ik ,

for r = 1, 2, of the modulus of the Fourier transform of the characteristic function of K0,

where the X
(r)
ik ’s are row-wise independent zero mean random variables with uniformly

bounded fourth moments. The task is the same in each case. For the actions, we first let

gik = g
(1)
ik g

(2)
ik and then follow the actions of the appropriate algorithms in the previous

section, replacing g̃ by g. Thus in the action of each algorithm, we replace Mk(x) by
Mk(x) defined by (111), for the appropriate x.
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Theorem 9.1. Theorem 8.1 holds when Algorithm NoisyMod 2LSQ is replaced by Al-
gorithm NoisyModLSQ.

Proof. In the action of Algorithm NoisyModLSQ, the measurements used in Algo-
rithm NoisyCovLSQ are now Mk(xik), i = −I ′k, . . . , I ′k, where Mk(xik) is given by
(111) with x = xik. Thus we have

Mk(xik) = gK0(xik) +Nk(xik)− dk(xik),
i = −I ′k, . . . , I ′k, where Nk(xik) and dk(xik) are given by (112) and (86), respectively,
with x = xik.

We claim that Lemma 8.2 holds when Nk(xik) is replaced by Nk(xik). To see this,
use the triangle inequality to obtain

1

Ik

I′k∑

i=−I′k

Nk(xik)
+ ≤

(
1

Ik

I′k∑

i=−I′k

Nk(xik)
2

)1/2

≤
(

1

Ik

I′k∑

i=−I′k

Nk1(xik)
2

)1/2

+

(
1

Ik

I′k∑

i=−I′k

Nk2(xik)
2

)1/2

,

where Nk1(xik) and Nk2(xik) are given by (113) and (114), respectively, with x = xik.
Since ĝK0 is bounded, the same analysis as in the proof of Lemma 8.2, up to a constant,
applies to the first of the two sums in the previous expression. So it suffices to prove
that, almost surely,

Sk =
1

Ik

I′k∑

i=−I′k

Nk2(xik)
2 → 0,

as k →∞. As in the proof of Lemma 8.2, it is enough to show that, almost surely,

1

(2πkγ)2n

I′k∑

p,q=1

cpqkX
(1)
pk X

(2)
pk X

(1)
qk X

(2)
qk → 0,

as k →∞. This follows from Lemma 7.3 and proves the claim.
With this in hand, we can conclude exactly as in the proof of Theorem 8.1 that

Algorithm NoisyCovLSQ works with the new measurements under the same hypotheses.
�

We remark that the computation of E(Zk) in Lemma 7.3 shows why we take two inde-

pendent measurements of
√
ĝK0 and multiply, rather than taking a single measurement

and squaring it. In the latter case we would be led to

E(Zk) =
1

(2πkγ)2n

mk∑

p,q=1

apqkE(Y 2
pk)E(Y 2

qk) = O(k2n−2nγ+ν),

which may be unbounded as k →∞.

Theorem 9.2. Theorem 8.3 holds when Algorithm NoisyMod 2Blaschke is replaced by
Algorithm NoisyModBlaschke.
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Proof. We now have

yik = ζik + T ik,

where ζik is as in (102) and

T ik =
Nk(o)−Nk(hkui)

hk
=
Nk1(o)−Nk1(hkui)

hk
+
Nk2(o)−Nk2(hkui)

hk
, (115)

for i = 1, . . . , k, where Nk1 and Nk2 are given by (113) and (114). The proof of
Theorem 8.3 can be followed, except that for Lemma 5.2, one now shows that, almost
surely,

V k =
1

k

k∑

i=1

T
2

ik → 0

as k → ∞. Using the fact that the earlier analysis applies to Nk1, and using also the
triangle inequality, as we did in the proof of Theorem 9.1, with (115), we see that it
suffices to examine

1

(2πkγ)2n

I′k∑

p,q=1

apqkX
(1)
pk X

(2)
pk X

(1)
qk X

(2)
qk ,

where apqk is given by (104). Then Lemma 7.3 shows that it is possible to choose γ and
ε exactly as in Theorem 8.3 to ensure that Lemma 5.2 holds. No further changes are
required, so Algorithm NoisyCovBlaschke works with the new measurements under the
same hypotheses as in Theorem 8.3. �

Theorem 9.3. Theorem 8.4 holds when Algorithm NoisyMod 2Diff(ϕ) is replaced by
Algorithm NoisyModDiff(ϕ).

Proof. Note that by (112), we have E(Nk(xik)) = 0 for all i and k. Therefore the
same calculations as in the proof of Theorem 8.4 show that the second statement in
Lemma 6.1 still holds.

In Lemma 6.2, it is enough in view of the proof of Theorem 8.4 to consider the
contribution to gk(x)− E(gk(x)) from Nk2(xik), namely,

1

(2πkγ)n

I′k∑

j=−I′k

I′k∑

i=−I′k

βik(x) cos(zjk · xik)X(1)
jk X

(2)
jk .

This allows the same estimate as before, up to a constant. No further changes are
required, so Algorithm NoisyCovDiff(ϕ) works with the new measurements under the
same hypotheses as in Theorem 8.4. �

The previous result provides a convergence rate for Algorithm NoisyModDiff(ϕ) ar-
bitrarily close to k−1/4+3/(8n), as was noted for Algorithm NoisyMod 2Diff(ϕ) after The-
orem 8.4. If we assume instead that the random variables Xik in Algorithm Noisy-
ModDiff(ϕ) are row-wise independent, zero mean, and satisfy (75) and (76), that
γ > 1/2, and that (109) holds, then a rate arbitrarily close to k−1/2 can be obtained by
the methods outlined in Remark 6.6.
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10. Appendix

10.1. Convergence rates. Rates of convergence for Algorithm NoisyCovDiff(ϕ), and
hence for the two related algorithms for phase retrieval, are provided in Corollary 6.5
and Remark 6.6. For the other algorithms, however, rates of convergence are more
difficult to obtain. To explain why, it will be necessary to describe some results from
[24], where convergence rates were obtained for algorithms for reconstructing convex
bodies from finitely many noisy measurements of either their support functions or their
brightness functions. The algorithms are called Algorithm NoisySupportLSQ and Al-
gorithm NoisyBrightnessLSQ, respectively.

In [24], an unknown convex body K is assumed to be contained in a known ball
RBn, R > 0, in Rn. An infinite sequence (ui) in Sn−1 is selected, and one of the
algorithms is run with noisy measurements from the first k directions in the sequence
as input. The noise is modeled by Gaussian N(0, σ2) random variables. With an
assumption on (ui) slightly stronger than the condition that it is evenly spread (but still
mild and satisfied by many natural sequences), and another unimportant assumption
on the relation between R and σ, it is proved in [24, Theorem 6.2] that if Pk is the
corresponding output from Algorithm NoisySupportLSQ, then, almost surely, there are
constants C = C(n, (ui)) and N = N(σ, n,R, (ui)) such that

δ2(K,Pk) ≤ C σ4/(n+3)R(n−1)/(n+3)k−2/(n+3), (116)

for k ≥ N , provided that the dimension n ≤ 4. Here δ2 is the L2 metric, so that
δ2(K,Pk) = ‖hK −hPk‖2, where ‖ · ‖2 denotes the L2 norm on Sn−1. Convergence rates
for the Hausdorff metric are then obtained by using the known relations between the
two metrics.

It is an artifact of the method that while convergence rates can also be obtained for
n ≥ 5, neither these nor those for the Hausdorff metric are expected to be optimal. In
contrast, it has recently been proved by Guntuboyina [28] that the rate given in (116)
for n ≤ 4 is the best possible in the minimax sense. With the additional assumption
that K is o-symmetric, corresponding rates for Algorithm NoisyBrightLSQ are obtained
in [24, Theorem 7.6] from those for Algorithm NoisySupportLSQ by exploiting (4) and
the Bourgain-Campi-Lindenstrauss stability theorem for projection bodies.

There are two principal ingredients in the proof of (116). The first is [24, Corol-
lary 4.2], a corollary of a deep result of van de Geer [48, Theorem 9.1]. This corollary
provides convergence rates for least squares estimators of an unknown function in a
class G, based on finitely many noisy measurements of its values, where the noise is
uniformly sub-Gaussian. The result and the rates depend on having a suitable estimate
for the size of G in terms of its ε-entropy with respect to a suitable pseudo-metric. The
second ingredient is a known estimate (see [24, Proposition 5.4]) of the ε-entropy of the
class of support functions of compact convex sets contained in Bn, with respect to the
L∞ metric.

It should be possible to apply this method to obtain convergence rates for Algo-
rithm NoisyCovBlaschke and the two related algorithms for phase retrieval. With
Gaussian noise, or more generally uniformly sub-Gaussian noise, this requires a modifi-
cation to [48, Theorem 9.1] that, in our situation, allows (53) to be used instead of the
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same inequality without the term c11/k. (Compare [48, (9.1), p. 148].) This would yield
the same convergence rates given in [24, Theorem 7.6] for Algorithm NoisyBrightLSQ.
To cover the case of Poisson noise, however, one can make the general assumption that
the random variables are row-wise independent, zero mean, and satisfy (75) and (76),
as in Remark 6.6. This creates considerable further technical difficulties. It may well
be possible to overcome these, using the machinery behind another result of van de
Geer [48, Theorem 9.2]. But, as van de Geer points out in [48, p. 134], there is a
price to pay: One now requires a uniform bound on the class G of functions, as well as
estimates of ε-entropy “with bracketing.” The former condition might be dealt with by
(49), which implies that the sets ΠQk are uniformly bounded for any fixed realization.
It should also be possible to obtain the latter, by combining suitable modifications of
the bracketing argument of Lemma 4.6 and of the proof in [24, Theorem 7.3] of the
ε-entropy estimate for the class of zonoids contained in Bn.

But we have not carried out a complete investigation into convergence rates for
Algorithm NoisyCovBlaschke and the related algorithms for phase retrieval, despite
having a strategy for doing so, described in the previous paragraph. The main reason
is that there are more serious technical obstacles in achieving convergence rates for
Algorithm NoisyCovLSQ, even for the case of Gaussian noise. In principal, the method
outlined above could be applied by taking G to be the class of covariograms of compact
convex subsets of the unit ball in Rn. However, an estimate would be required of the
ε-entropy of this class with respect to the L∞ metric or some other suitable pseudo-
metric. Even if this were available, an application of the theory of empirical processes
as described above would yield convergence rates not for δ2(K,Pk) but rather for ‖gK−
gPk‖2. To obtain rates for δ2(K,Pk), one would then also need suitable stability versions
of the uniqueness results for the Covariogram Problem described in the Introduction.
In view of the difficulty of these uniqueness results, proving such stability versions will
presumably be very challenging.

In summary, a full study of convergence rates for the other algorithms proposed here
must remain a project for future study.

10.2. Implementation issues. The study undertaken in this paper is a theoretical
one. Although we propose algorithms in enough detail to allow implementation, the la-
borious task of writing all the necessary programs, carrying out numerical experiments,
and comparing with other algorithms, largely lies ahead.

At the present time we only have a rudimentary implementation of Algorithms Noisy-
CovBlaschke and NoisyCovLSQ. The programs were written, mainly in Matlab, by
Michael Sterling-Goens while he was an undergraduate student at Western Washington
University, and are confined to the planar case. Algorithm NoisyCovBlaschke seems
to be very fast; this is to be expected, since it is based on Algorithm NoisyBright-
nessLSQ, which is also fast even in three dimensions. Behind both of these latter
two algorithms is a linear least squares problem (cf. [25, (18) and (19)]). In contrast,
the least squares problem (18) in Algorithm NoisyCovLSQ is nonlinear. Preliminary
experiments indicate that reasonably good reconstructions, such as those depicted in
Figures 1–4 (based on Gaussian N(0, σ2) noise, k = 60 equally spaced directions in
Algorithm NoisyCovBlaschke and k = 8 in Algorithms NoisyCovLSQ), can usually be
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obtained in a reasonable time in the planar case. Occasionally, however, reconstructions
can be considerably worse, particularly for regular m-gons for very small m. Better and
faster reconstructions, also in higher dimensions, will probably require bringing to bear
the usual array of techniques for nonlinear optimization, such as simulated annealing.

Figure 1. Pentagon, no noise Figure 2. Pentagon, σ = 0.01

Figure 3. Ellipse, no noise Figure 4. Ellipse, σ = 0.01

Since the least squares problem (18) is nonlinear, it is important to control the
number of variables, that is, the number of facets of the approximation Qk to the
Blaschke body ∇K0 of K0. To a large extent, Algorithm NoisyCovBlaschke already
does this; the potential O(kn−1) variables that would otherwise be required (see [24,
p. 1335]) is, as experiments show, considerably reduced. In fact, if there is little or no
noise, a linear programming version of the brightness function reconstruction program
due to Kiderlen (see [25, p. 289], where it is stated for measurements without noise)
is not only even faster, but also produces approximations Qk to ∇K0 with at most 2k
facets. Beyond this, there is the possibility of using the pruning techniques discussed
in [41, Section 3.3].

There is also the possibility of changing the variables in the least squares prob-
lem (18). A convex polytope P whose facet outer unit normals are a subset of a
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prescribed set {±uj : j = 1, . . . , s} of directions can be specified by the vector h =
(h+

1 , h
−
1 , . . . , h

+
s , h

−
s ) such that

P = P (h) = {x ∈ Rn : −h−j ≤ x · uj ≤ h+
j , j = 1, . . . , s}.

The possible advantage in using these variables arises from the fact that, by the Brunn-
Minkowski inequality (cf. [21, Section 11]), the covariogram gP (h)(x) turns out to be

(1/n)-concave (i.e., gP (h)(x)1/n is concave) on its support in the combined variable (h, x).
One may therefore try solving the problem

min

Ik∑

i=1

(
Mik − gP (h)(xik)

)2
(117)

over the variables h+
1 , h

−
1 , . . . , h

+
s , h

−
s . By expanding the square in (117), approximating

the sums by integrals, and using the Prékopa-Leindler inequality [21, Section 7], the
objective function can be seen as an approximation to the difference of two log-concave
functions. These admittedly weak concavity properties may help.

Regularization is often used to improve Fourier inversion in the presence of noise.
We expect this to be of benefit in implementing the phase retrieval algorithms, where
preliminary investigations indicate that regularization will allow the restriction on the
parameter γ to be considerably relaxed.

Corresponding to the two basic approaches to reconstruction—one via the Blaschke
body and one via the difference body—there are two different sampling designs. For
the former, measurements are made first at the origin and at points in a small sphere
centered at the origin, and then again at points in a cubic array. For the latter, mea-
surements are made twice, each time at points in cubic array. These sampling designs
are a matter of convenience, at least regarding the cubic array. It should be possible to
use a variety of different sets of measurement points, at least for reconstructing from
covariogram measurements, with appropriate adjustments in the consistency proofs.
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