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Abstract

Chaotic strings are coupled Tchebyscheff maps on a ring-network. With a well-
specified empirical prescription they are able to explain the coupling constants
of the standard model of elementary particle physics. This empirical relation-
ship is tested further by introducing a tunable disorder to chaotic strings.
Inhomogeneous coupling weights as well as small-world perturbations of the
ring-network structure are discussed. It is found that certain combinations
of coupling and network disorder preserve the empirical relationship between
chaotic strings and the weak and strong sector of the standard model of elemen-
tary particle physics. For the electromagnetic sector it is found that already
a small disorder pushes the associated energy scale of the running coupling
constant far away from the result without disorder.

Keywords: coupled map lattice, disorder phenomena, complex networks, stan-
dard model of elementary physics

1 Introduction

Since their introduction in the 80’s by Kaneko, coupled map lattices have been
widely studied as models of various spatiotemporal phenomena in extended systems
[1, 2, 3, 4, 5, 6]. Recently the investigations have been extended to coupled chaotic
map networks, with particular interest in synchronization properties [7, 8, 9, 10, 11,
12, 13].

A different application of coupled map lattices has been presented in [14, 15,
16], where coupled Tchebyscheff maps on a 1-dimensional lattice were introduced
as a model of vacuum fluctuations. The main result of this model, called chaotic
strings, is a high-precision prediction of the numerical values of various coupling
constants, masses and mixing angles of the standard model of elementary particle
physics [17, 18]. Various physical embeddings for different parts of the models have
been suggested [14, 15, 16], but as of now it has not become clear which of these
interpretations is correct, if any.
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In this paper we are interested in several extensions of the chaotic string model
in itself and how these modifications influence the empirical relationship to the stan-
dard model of elementary particle physics. All extensions have to do with disorder
phenomena. The first extension is coupling disorder and addresses the local ran-
domization of the coupling weights of the Tchebyscheff maps. The second extension
is network disorder and addresses the random small-world deformation of the ring
topology.

2 Chaotic strings and the standard model of
elementary particles

Coupled chaotic map networks are defined by the evolution equation

xi(t + 1) = (1− ǫi)f [xi(t)] +
N∑

j=1

Aijǫij
ki

g[xj(t)] , (2.1)

with xi(t) ∈ [−1, 1] associated to vertex i, the coupling weight ǫij ∈ [0, 1] between
vertices i and j, and

ǫi =
1

ki

N∑

j=1

Aijǫij . (2.2)

The adjacency matrix Aij represents the network structure and determines the
vertex degrees ki =

∑N
j=1Aij . In [15] the network structure has been set to a 1-

dimensional lattice with periodic boundary conditions, that is a ring-network, which
fixes ki = 2, and homogeneous coupling ǫij = ǫi = ǫ. The maps of interest for chaotic
strings are Tchebyscheff polynomials up to third order in different combinations and
are summarized in table 1.

Table 1: The six coupled map dynamics considered for chaotic strings [15].

label f(x) g(x)

2A T2(x) = 2x2 − 1 T2(x) = 2x2 − 1
2B T2(x) = 2x2 − 1 T1(x) = x
2A− T2(x) = 2x2 − 1 T−2(x) = −(2x2−1)
2B− T2(x) = 2x2 − 1 T−1(x) = −x
3A T3(x) = 4x3−3x T3(x) = 4x3 − 3x
3B T3(x) = 4x3−3x T1(x) = x

The correlation function

W (ǫ) = 〈xixj〉

=
1

|E|
∑

i<j

Aij
1

T

T0+T∑

t=T0+1

xi(t)xj(t) (2.3)
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Figure 1: Dependence of the interaction energy W (ǫ) on the coupling parameter ǫ for
some of the chaotic string dynamics considered in [15]. Top: 2A (solid line) and 2B−

(crosses) dynamics in the coupling region ǫ ∈ [0, 0.2]. Bottom: 3A (closed circles) and 3B
(open squares) dynamics in the coupling region ǫ ∈ [0, 0.02]. The expression (2.3) has been
calculated with a ring size N = 1001, T = 105 iterations, and an average over 10 different
initial conditions.

between neighbouring nodes is interpreted as an interaction energy. The temporal
average is taken over long iteration times T , excluding an initial transient T0. E
and |E| represent the set and the number of all edges, respectively. The dependence
of the interaction energy on the coupling weight ǫ for some of the chaotic string
dynamics is shown in Fig. 1. According to [14, 15], the coupling values ǫ∗ leading
to a vanishing interaction energy W (ǫ∗) = 0 with dW (ǫ)/dǫ < 0 are special. A
surprising coincidence of these zeros with coupling constants of the standard model
of elementary particle physics was reported. This is summarized in table 2. The left
side displays the zeros of the interaction energy for the chaotic string dynamics.
The accuracy of the calculation only depends on the number of iterations. The
right side of the table lists corresponding running standard model couplings. The
indices denote the kind of interaction (electromagnetic, weak, strong) and particles
(electron, up-, down-, top-quark, W -boson, Higgs boson, glueballs) involved. The
energy scales at which the running couplings are evaluated are determined by the
respective masses times some empirical prefactor; see [15] for more details.

Due to the unknown Higgs boson and glueball masses, a direct comparision of the
last three cases in table 2 is not possible. In case of the Higgs boson, the comparison
can be turned around to make a mass prediction mH ≈ 154GeV [15], which agrees
with the current upper experimental bound [19]. In Ref. [20] it has been shown that
in the case of the two zeros connected to glueballs, the dynamics is non-ergodic
and thus contradicts an interpretation as a model for vacuum fluctuations. As a
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Table 2: Zeros ǫ∗ of the interaction energy (2.3) resulting from the coupled map string
dynamics (2.1) listed in table 1, and the corresponding standard model (SM) couplings
(taken from [15]).

zero running SM coupling

ǫ
(3A)
1 = 0.0008164 αd

el(3md) ≈ 0.0008166

ǫ
(3A)
2 = 0.0073038 αe

el(3me) ≈ 0.007303

ǫ
(3B)
1 = 0.0018012 αuR

weak(3mu) + αd
el(3md) ≈ 0.0018

ǫ
(3B)
2 = 0.017550 ανL

weak(3md) + αe
el(3me) ≈ 0.01755

ǫ
(2A)
1 = 0.120093 αs(mW + 2md) ≈ 0.1208

ǫ
(2B)
1 = 0.3145 αs(mgg0++ + 2mu)

ǫ
(2A−)
1 = 0.1758 αs(mgg2++ + 2mb)

ǫ
(2B−)
1 = 0.095370 αs(mH + 2mt)

consequence, these two zeros have been ruled out as being connected to standard
model couplings.

Given these results, the empirical relationship between the chaotic string model
and the standard model of elementary particle physics is striking. Some physical
embeddings for different parts of the chaotic string model have been suggested [14,
15, 16]. This of course deserves more clarification, but we will now follow a different
perspective. The chaotic string model makes several assumptions, two of them being
a uniform coupling weight and a ring-like network structure. We will extend the
chaotic string model to include perturbations to the uniform coupling and the ring
structure, and test their impact on the empirical relationship to the standard model
of elementary particle physics.

3 Coupling disorder

A straightforward way to introduce perturbations to a uniform coupling is random
disorder. It allows different coupling weights ǫij between different neighbouring ver-
tices. In order to assure that xi(t) is bound to [−1, 1], some care has to be taken.
For every edge a random disorder number ξij is drawn from the uniform distribution
defined on [1−∆, 1 +∆] with ∆ ∈ [0, 1]. The disordered coupling weight ǫij is then
defined as

ǫij =
kiξij∑N

j=1Aijξij
ǫ . (3.1)

The coupling weights ǫij obtained by this procedure are symmetrically distributed
around the average value ǫ.

The interaction energy W (ǫ,∆) has now also become a function of the coupling
disorder ∆. The zeros of table 2 will shift as a function of ∆. This is illustrated in
Fig. 2. Our numerical calculations reveal that the zeros ǫ

(3B)
2 , ǫ

(2A)
1 and ǫ

(2B−)
1 are

shifted to smaller coupling values for increasing disorder parameter ∆, whereas the
zero ǫ

(3A)
2 is shifted to larger coupling values. The zeros ǫ(3A)

1 and ǫ
(3B)
1 have not been
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Figure 2: Relative shift (ǫ∗(∆)−ǫ∗0)/ǫ
∗
0 of the zeros ǫ(2A)

1 (solid line), ǫ(2B
−)

1 (crosses), ǫ(3A)
2

(closed circles), ǫ(3B)
2 (open squares) as a function of the coupling disorder ∆. ǫ∗0 denotes

the respective zero for zero disorder ∆ = 0. The interaction energy has been calculated
with a ring size N = 1001, T = 106 (2A and 2B− dynamics) and T = 107 (3A and 3B
dynamics) iterations, and an average over 10 disorder realizations, respectively.

considered. Due to their smallness the numerical calculations are too expensive to
reach acceptable convergence.

4 Network disorder

Network disorder is different to coupling disorder. The ring-network structure is
perturbed and the coupling is kept homogeneous. A straightforward way to introduce
perturbations to the ring-structure is to add random short-cuts, thus obtaining a
small world network [21, 22]. We start with the original 1-dimensional lattice, where
every vertex i is only coupled to its respective neighbours on each side, and thus
has degree ki = 2, leading to an average degree 〈k〉 = 2 of the network. In order to
obtain a small world network, additional edges Eadd are randomly placed between
previously uncoupled vertices. Since every new edge increases the degree of both
adjacent vertices, the average degree of the resulting small world network is given
by 〈k〉 = 2 + (2|Eadd|/N), which in the following is used as the disorder parameter.

The interaction energy W (ǫ, 〈k〉) is now also a function of the network disorder
parameter. Its zeros will shift as a function of 〈k〉. This is illustrated in Fig. 3.
Our numerical calculations reveal that for increasing network disorder all zeros are
shifted to larger coupling values.
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Figure 3: Relative shift (ǫ∗(〈k〉) − ǫ∗0)/ǫ
∗
0 of the zeros ǫ

(2A)
1 (solid line), ǫ(2B

−)
1 (crosses),

ǫ
(3A)
2 (closed circles), ǫ

(3B)
2 (open squares) as a function of the network disorder 〈k〉. ǫ∗0

denotes the respective zero for zero disorder, that is a ring structure with 〈k〉 = 2. The
interaction energy has been calculated with a ring size N = 1001, T = 106 iterations (2A
and 2B− dynamics), T = 107 iterations (3A and 3B dynamics) and 10 network realizations.

5 Discussion

The 2A and 2B− couplings are associated with strong coupling constants αs(E)
at certain energy scales. A shift of the zeros ǫ∗ = αs(E) thus can be related to a
shift of the associated energy scale E. Figure 4 shows this energy shift for the 2B−

dynamics.
According to [15], the zero ǫ

(2B−)
1 is associated with the strong coupling constant

at an energy scale given by E = 2mt+E ′, with mt the mass of the top quark and E ′

proposed to be the Higgs mass mH . For zero coupling disorder and a ring-network
one obtains mH ≈ 160GeV.1 This value is just above the currently estimated energy
range 115GeV– 150GeV of the Higgs mass[19]. In case of an experimental detection
of the Higgs boson, the introduction of network disorder could then allow to shift the
energy scale E ′ to the observed value, and thus to keep the interpretation E ′ = mH .

The 3B zero is supposed to be related to a combination of two electroweak
couplings. Hence a shift can be associated to a different combination or a change
in the energy scale. Note however, that the energy-dependence of the electroweak
coupling is much smaller than for the strong coupling.

As one can see in Figs. 2, 3, for three out of the four considered zeros the coupling
and network disorder shift the zero ǫ∗ in different directions. For these zeros we find

1Numerical differences to the result given in [15] arise from the way how the quark masses and
thresholds are handled in the calculation of the running strong coupling constant.
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Figure 4: Energy shift in the interpretation of the zero ǫ
(2B−)
1 as a running strong coupling

constant αs(E). According to [15] the energy is given by E = E′ + 2mt, where mt is the
top quark mass (literature value mt = 170.9GeV [18]), and E′ is supposed to be the Higgs
mass mH . The lower part shows the shift due to coupling disorder, whereas the upper
part shows the shift due to network disorder. The running strong coupling αs(E) has been
calculated as in [23].
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Figure 5: Specific combinations of coupling and network disorder, which leave the zero ǫ∗

of the interaction energy independent of ∆ and 〈k〉, and keep it equal to its non-perturbed
value. The interaction energy has been calculated with N = 1001 and T = 106, 10 cou-
pling/network disorder realizations for the 2A (solid line) and 2B− (crosses) dynamics,
and 100 coupling/network disorder realizations for the 3B (open squares) dynamics.

a curve 〈k〉 (∆) with W (ǫ∗)=0, where ǫ∗ is fixed to the respective value obtained
for a homogeneous coupling and a unperturbed ring-network structure as in [15]
(see Fig. 5). This finding implies that for these zeros the specific combination of
coupling and network disorder reproduces the zero ǫ∗ as given in [15] for the ring
with homogeneous couplings.

In contrast to the zeros of the 2A, 2B− and 3B dynamics, the zero ǫ
(3A)
2 of the

3A dynamics is shifted to larger values for coupling as well as network disorder.
Thus it is not possible to combine the two forms of disorder in order to maintain the
value as given in [15]. In [15] the zero ǫ

(3A)
2 is related to the running electromagnetic

coupling αel(E) at three times the electron mass scale E = 3me. This is a rather
small energy. In fact, the fine structure constant αel(0) at zero energy is a lower
bound for a running electromagnetic coupling. It is an interesting observation that
the zero of the 3A dynamics is only shifted to larger values, but not to smaller values.
These would not allow for an interpretation in terms of smaller energies due to the
lower bound. The larger values are associated to larger energy scales, which are of
the order 10MeV for network disorder and of the order 10GeV for coupling disorder
(see Fig. 6).
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Figure 6: Energy shift in the interpretation of the zero ǫ
(3A)
2 as a running electromagnetic

coupling constant αel(E). According to [15] the energy is E ≈ 1.5MeV ≈ 3me for zero cou-
pling and network disorder. The lower curve shows the energy shift for increasing network
disorder, whereas the upper curve shows the shift due to increasing coupling disorder. The
running electromagnetic coupling αel(E) has been calculated as given in [15], with particle
masses and the fine structure constant αel(0) taken from [18].
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6 Conclusion

We have studied the effect of coupling and network disorder on the zeros of the inter-
action energy in chaotic strings as introduced in [15]. It has been found that certain
combinations of coupling and network disorder preserve the empirical relationship
between chaotic strings and the weak and strong sector of the standard model of
elementary particle physics. For the electromagnetic sector it has been found that
already a small disorder pushes the associated energy scale of the running coupling
constant far away from the result without disorder.

Further studies on the empirical relationship between chaotic strings and the
standard model of elementary particle physics should also address the more dynam-
ical properties of chaotic strings, like for example desynchronization, synchronization
and correlations in general. Although there have been extensive studies on coupled
map lattices, these works do not consider the specific combinations of Tchebyscheff
maps used here. The impact of coupling and network disorder as introduced in this
paper deserves particular attention, since they are not only interesting in connection
with the chaotic string model, but for dynamical systems in general.
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